Programme: M. Sc. (Marine Sciences) Course Code: MSO 362 Number of Credits: 02

Effective from AY:June, 2018-19

Prerequisites for the course:	Physical Oceanography, with flexibility to those having interest to learn basics of fluid dynamics.	
Objective:	This is introduced to acquaint students with a hands-on-experience on what they learned in the theory. It involves field based observations and numerical techniques.	
Content:	 Module – I Kinematics analysis of wind and ocean current – Isotach and isogen analysis and construction of streamline patterns (10 hrs; Ref1) Construction of trajectories of air parcels from successive synoptic charts (8 hrs; Ref1) Computation of divergence and vorticity in horizontal flow (12 hrs; Ref2) Module – II Construction of stream lines for simple types of flow (7 hrs; Ref2) Field observations and analysis of Physical Oceanographic parameters of estuarine watersusing conductivity temperature and depth (CTD) instrument (15 hrs; Ref1,3) Analysis of aerosol trajectory using HYSPLIT (HYbrid Single – Particle Lagrangian Integrated Trajectory) model. (8 hrs; Ref4) 	24 hours 24 hours
Pedagogy:	This involves field observations (time series) and associated numerical techniques to differentiate different components of vector velocity.	
References/ Readings	 Introduction to Physical Oceanography, 2008 – Robert H. Stewart, Department of Oceanography Texas, A&M University, Oceanworld.tamu.edu/resources/ocng_textbook/PDF files/book.pdf Guide to wave analysis and forecasting (2nd edition), 1998 - World Meteorological Organization (WMO- no 702) ISBN-92-63-12702-6, <u>www.wmo.int/pages/prog/amp/mmop/documents/WMO%20No%20702/WMO702.pdf</u> Ocean Circulation and Climate (2nd Ed), 2013 - A 21st Century perspective eds. Siedler, G, Griffies, S, Gould .J, and Church, J, ISBN- 978-0-12-391851-2, Academic press. HYSPLIT- Hybrid Single Particle Lagrangian integrated Trajectory Model, Air Resources Laboratory, <u>http://www.arl.noaa.gov/</u>. NOAA technical memorandum ERL, ARL-224, Roland R. Draxler and Hess, G.D The physics of marine atmosphere, 1965 – Roll, H.U., Academic Press, London. Atmosphere – Ocean Dynamics, 1982 Gill, Adrian E, International Geophysics, 30 Academic press, New York. 	
Learning Outcomes	Apply the knowledge gained to solve issues confronting the coastal regions specifically coastal dynamics leading to erosion.	