MT203 Applied Operations Research

Prerequisites: CS101, Standard XII Mathematics or equivalent.

Course Contents:	
Decision making in Operations Research	<mark>(5%)</mark>
Linear Programming (LP): LP formulations, LP model and resource allocation	(10%)
LP: Algebraic solutions, standard LP model, simplex method, special cases in sim	plex method (10%)
LP: duality and sensitivity analysis: Definition of dual, primal-dual relationships,	
of duality, dual simplex method, sensitivity analysis	(10%)
Transportation Model: solution of the transportation model, assignment model	(10%)
Networks: network minimization, shortest route problem, maximal flow problem,	
LP representation of networks	(10%)
Revised simplex method for LPP, bounded variables, decomposition algorithm	(10%)
Integer programming: cutting plane algorithm, branch and bound method.	(10%)
Dynamic programming: Problem of dimensionality, solution of linear programs b	
	<mark>(10%)</mark>
	1
Project scheduling by PERT-CPM: critical path calculations, construction of time	
leveling, probability and cost considerations, project control	(10%)
	(=0()
Non-Linear programming algorithms	(5%)

Main Reading

- 1. Hamdy A.Taha, Operations Research: An Introduction, Pearson Education
- 2. Pradeep Prabhakar Pai, Operations Research: Principles and practice, OXFORD University Press
- 3. Frederick S.Hillier and Mark S.Hillier, Introduction to management science: A modeling and case studies approach with spreadsheets, Tata McGraw-Hill.
- 4. Frederick S Hillier, and Gerald J. Lieberman, Introduction to Operations Research, McGraw Hill.