Course Title: Molecular Biology

Course Code: ZOC 104

insertion, Covalent X-linking, AP site.		
Different types of Mutagens: Base analogues (5-Bromouracil and 2- amino purines), EMS, acridines, NTG, Hydroxylamine; mutagenic radiations- UV, X-rays and gamma rays. Ames test; Auxotrophy; Somatic and germline mutations with examples in Human		
DNA repair mechanisms in Eukaryotes and Prokaryotes: Nucleotide Excision repair, mismatch repair, recombination repair, homologous end joining, photo reactivation and SOS Repair.	12 hours	
Homologous recombinational repair: Role of <i>RecA/RadA/Rad51</i> in DNA damage repair. Role of BRCA1 in DNA damage repair. Mutation in BRCA1 as development of breast cancer. Role of p53 protein in DNA repair and tumor suppressor.		
 Module 3 How cells read the Genome DNA to Protein: Replication process in prokaryotes and Eukaryotes: Rolling circle/theta model, telomere replication. Transcription in prokaryotes: prokaryotic promotors, Rho dependent and Rho independent transcription termination. Transcription and Post transcriptional modifications in eukaryotes: Eukaryotic promoters, transcription factors and RNA polymerase I, II, III. Transcription Inhibitors. Splicing, 5'-caping, 3'-poly A tail. Various non coding RNAs and their role in different biological processes: rRNA, tRNA, snoRNA, snRNA,exRNAs, scaRNAs, gRNA, Telomerase RNA,long ncRNAs (Xist and HOTAIR). Translation of mRNA in prokaryotes and Eukaryotes: Initiation, elongation and termination. Polycistronic and monocistronic mRNA. Shine-Dalgarno (SD) Sequence, Kozak sequence, IRES sequence, Ribosomes, Genetic code,codon bias, wobble hypothesis, degeneracy of codon. Posttranslational modification of proteins (Protein splicing, phosphorylation, methylation, N-linked glycosylation).Inhibitors of 	12 hours	

	RNA world and origin of life: Ribozymes (Ribonuclease P, self-			
	splicing introns I and II, spliceosome, viroids, hair pin ribozyme,			
	hammer head ribozyme).Some viruses contain RNA as genetic material e.g. TMV, HIV; Concept of reverse transcription; Viroid,			
	Virusoid, Prions.			
	Regulation of Gene expression in Prokaryotes and Eukaryotes:			
	Heterochromatin and euchromatin – acetylation, phosphorylation, methylation. Epigenetics. Gene dosage effect.Real time PCR			
	technology (qPCR): Absolute quantification and Relative			
	quantification, Cycle threshold (Ct values), SYBR Green Technology			
	and Taq Man probe technology. Various Reporter dyes and			
	quenchers used in Taq Man probe technology. Multiplexing with			
	real-time PCR technology.			
	Regulation of gene expression at transcription level in prokaryotes: lac			
	operon and <i>trp</i> operon. transcriptional attenuation.			
	Regulation of gene expression at transcription level in eukaryotes:			
	Enhancers, silencers, transcription factors (DNA binding motifs and their role in gene regulatory proteins).			
	then role in gene regulatory proteins).			
	Post transcriptional regulation of gene expression:			
	Riboswitches, Alternate splicing, trans splicing, RNA editing, RNA			
	Interference (miRNA, siRNA, piRNA, Fire and Mello Nobel Prize			
	winning experiment).			
	Concept of Transcriptomics and Proteomics. Their application in			
	research and Medical or diagnostics.			
	CDISDD Caro Technology Competition Andia (1996)			
	CRISPR Cas9 Technology: Gene editing. Application of this technology in Medicine.			
Pedagogy:	Lectures/tutorials /online teaching mode/ self-study.			
Learning	1. State-of-art knowledge of molecular organisation of chromosomes and			
Outcome:	genes.			
	2. 2. Decipher the role of large numbers of molecular events associated with			
	model animal systems and its application in molecular research.			
References /Reading:	1. Clark D, Pazdernik N and McGehee M (2018), Molecular Biology. 3 rd Edition Academic Call			
/ Neauling:	Edition, Academic Cell.2. Davis LG, Dibner MD and Battey JF (1986), Basic Methods in Molecular			
L				

	Biology, Elsevier.
3.	Gardner EJ, Simmons MJ and Snustad DP (1991), Principles of Genetics,
	John Wiley & Sons.
4.	Karp G, Iwasa J and Marshall W (2019), Karp's Cell and Molecular
	Biology, 9th Edition, John Wiley.
5.	Krebs JE, Goldstein ES, Kilpatrick ST (2018), Lewin's GENES XII, Jones
	and Bartlett Learning.
6.	Krebs JE, Lewin B, Goldstein ES and Kilpatrick ST (2014), Lewin's
	Genes XI, Jones and Bartlett Publishers.
7.	Malacinski GM (2015), Freifelder's Essentials of Molecular Biology,
	Narosa Book Distributors Private Limited.