Course Code: ZOO 314 Number of Credits: 3 + 1 Effective from AY: 2020 -21

Prerequisite	Basic understanding of different components and functions of the cell.	
for the Course:		
Objectives:	3. To develop advanced concepts of structural and functional properties of cell	
	A To understand dynamic functions associated with cell mer	nbrane and
	organelles	norane and
Content	Module 1	
	Cell membrane: Plasmamembrane Dynamics involved in Membrain fluidity (Paracrystalline state, Liquid-disordered state	07 hrs.
	and Liquid-ordered state), Transbilayer movements, lateral movements, Membrane Rafts, Caveolins, cell-cell interaction, membrane fusions.	
	Importance of Freeze-fracture microscopy and Fluorophore Photobleaching experiments to decipher membrane structure and dynamicm	02 Hrs
	Nuclear transport: Passive Transport and selective energy dependant transport, Karyopherins (Importins and exportins), NLS and NES	03 Hrs
	Module 2	
	Endomembrane system: Main Vesicular transport pathways (inward transport: Endocytotic pathway and Outward Transport: Secretory pathway) of endomembrane systems and transport proteins involved.	04 Hrs
	Structural and functional Polarization of Golgi apparatus, Two models for cis to trans-Golgi progression (Cisternal Maturation Model and Vesicular transport model, three pathways of protein sorting at trans Golgi network: Signal mediated diversion to Lysosomes, Signal mediated diversion to regulated secretion, constitutive secretory pathways. LAMP and LIMP of Lysosomes and their significance	06 hrs
	Synthesis, Structure and Functions of Ribosome and its subunits in Prokaryotes and Eukaryotes. Concept of LUCA in relation to Ribosomes.	02 Hrs
	Comparison of constitution of Cytoplasm, Cytosol and Nucleoplasm. Comparison of Organelle composition of Protein secreting and Steroid secreting Cells. Comparison of Cytoskeletal elements of Prokaryotes and Eukaryotes.	03 Hrs
	Programmed and non-programmed Cell death and its types, Autophagy, Pyroptosis, Necroptosis, Parthonatos, Ferroptosis, Apoptosis and Necrosis. Extrinsic <i>versus</i> Intrinsic pathway of	04Hrs

	Apoptosis in Mammals.		
	Cell signaling: General Principles. Specific responses to cell	05 Hrs	
	signaling (Survive, Grow+divide, Differentiate, Die) with		
	example each, Feedback loops of signaling networks, adaptation		
	to sensitivity to signaling. Overview of Receptors, Signaling		
	transducers and second messengers.		
	Module 4 Practicals:	12 x 2 Hrs	
	1. Isolation of plasmamembrane from blood cells or from		
	hepatocytes.		
	2. Cytoskeletal element staining using buccal epithelial cells.		
	3. Temporospatial patterns of apoptosis in chick embryos during		
	the morphogenetic period of development.		
Pedagogy:	Lectures/ tutorials/Group discussions/PBL/self-study		
Learning	3. Understand the functions of the cell at the molecular level.		
Outcome:	4. Gain insight into the most significant functional cellular ma	chinery to	
	expand understanding of biological disturbances.		
References	13. Alberts B, Johnson A, Lewis J, et al. Molecular Biology	of the Cell,	
/Reading	Taylor & Francis Group, New York, USA.		
	14. Lodish H, Berk A, Lawrence S, et al., Molecular Cell Biology, Freeman		
	WH & Co. New York.		
	15. Watson JD, Beyker, Bell JD, et al., Molecular Biology of the Gene,		
	Pearson Education, Delhi.		
	16. Bray BAD, Lewis J, Raff M, Roberts K and Watson JD, Molecular		
	Biology of the Cell, Garland Publishing Co. Ltd. New York.		
	17. De Robertis EDP and De Robertis EMF, Cell and Molecular Biology		
	Saunders College, Philadelphia Dowben RM, Cell Biology, Harper and		
	Row Publ. London.		
	18. Nelson, D. L. and Cox, M. M. Lehninger Principles of		
	Biochemistry. Seventh Edition (2017). Freeman WH and Co,	USA	