Course Code: ZOO 331 Number of Credits: 3 Effective from AY: 2020 -21

Prerequisite	Basic knowledge on Non-chordate and Chordate anatomy and Physiology is		
for the	prerequisite for this course.		
Course:			
Objectives:	 To develop knowledge about fundamental Neurophysiological concepts in animal models and in humans. To be aware of electrophysiology techniques involved in recording neurological parameters. 		
Content	Module 1:		
	Review of classification of neurons and their functions. Blood- brain barrier and its physiological importance, CSF composition, formation and drainage.	03Hrs	
	Physiological characteristics of neuronal cell membrane components for impulse conduction.	03 Hrs	
	Electrophysiology of neuron. Comparison of action potentials of Giant axon of Squid and mammalian neuron, Voltage and Cell-Patch Clamp Techniques.	04Hrs	
	Myelin ultrastructure and Nodes of Ranvier, Nerve impulse conduction in Myelinated and Unmyelinated neurons.	02Hrs	
	Module 2		
	Types of synaptic connection and their conduction physiology: Axosomatic, axodendritic, Dendrodendritic and Axoaxonal synapses. Chemical and electrical sysnapse.	03 Hrs	
	Axonal impulse conduction-excitatory and inhibitory synaptic transmission. Properties of Synapse.	03 Hrs	
	Effect of Acidosis & Alkalosis, Effect of Hypoxia on Synaptic Transmission, Effect of Narcotic drugs on Synaptic Transmission.	04 Hrs	
	Basic concept of Neural integration: Diverging, Converging and Reverberating circuits.	02Hrs	

	Module 3Learning and Memory types and its Neural and Cellular basis in Aplysia, Drosophila, Honey bee and Humans.Cognitionanditsmajordomains.Mechanoreception, Photoreception	06 Hrs 04 Hrs	
		02.11	
	Neurophysiology of Balance and Posture.	02 Hrs	
Pedagogy:	Lectures/ tutorials/Group discussions/PBL/self-study		
Learning	1. Understanding of Neurophysiological concepts.		
Outcome:	2. Understanding of learning, memory formation and cognition.		
References	1. Siegel, G. J.; Agranoff, B. W.; Albers, R. W., et al., (2011). Basic		
/Reading	Neurochemistry: Molecular, Cellular and Medical Aspects. Academic Press.		
C	2. Hammond, C. (2008). Cellular and Molecular Neurophysiology. Academic		
	Press.		
	3 Carpenter, R. Reddi, B. (2012). Neurophysiology: A Conceptual Approach.		
	Hodder and Arnold UK		
	4 Purves D: Augustine G I: Fitzpatrick D.	et al. (2018)	
	Neuroscience Oxford University Press	<i>(2010)</i> .	
	5 Manzal R · Banjamin P (2013) Invartabrata Laarnin.	a and Memory	
	J. Menzel, R., Benjannin, F. (2013). Inventebrate Learning and Memory, Volume 22. Academic Dress		
	Volume 22. Academic Press.		
	6. Gazzaniga, M. S. (2009). The Cognitive Neurosciences. A Bradford Book		
	the MIT Press Cambridge, Massachusetts London, England	d.	