Course Code: ZOO 401 Number of Credits: 3 Effective from AY: 2020 -21

Prerequisite	Basic knowledge of classical genetics and fundamental aspects of genetics.	
for the Course:		
Objectives:	 To develop concepts in classical animal genetics and their application. It leads to a better understanding of human genetic profile and the related diseases. To relate the genetic concepts and the basic principles to produce better breeds of animals which can benefit economically. This course also aids in gaining better knowledge of novel aspects of Genetics and Bioinformatics. 	
Content:	Module 1:	
	Chromosomal Genetics: Chromosomal basis of inheritance and	4 hrs
	Cytological basis of crossing over- Sterns experiments in Drosophila,	
	Inheritance of linked genes -Coupling and Repulsion phase,	
	differential chromosomal staining techniques.	
	Mapping genomes: a) Genetic mapping – DNA markers - RFLPs, SSLPs, SNPs b) Physical mapping - Restriction mapping, Fluorescent in situ hybridization, Radiation hybrid mapping and Sequence tagged site mapping, gene mapping in Drosophila using two point and three	6 hrs
	point test crosses with an emphasis on interference and coefficient of coincidence. Genetic models: Mouse as a model mammal for genetic studies, other animal models for human diseases.	2 hrs
	Modulo 2:	6 hrs
	Review of Pedigree analysis: Autosomal recessive disorders, Autosomal dominant disorders, X-linked recessive disorders, X- linked dominant disorders, Y-linked disorders (two examples each). Bioinformatics: tools and application in genetic studies. Cancer Genetics: Introduction and cellular aspects; Proto- oncogenes; Oncogenes; Viruses and Cancer; Oncoproteins; Tumor suppressor genes; Inherited Cancer genes (Familial Cancers).	6 hrs
	Module 3: Genetic applications in Fishes, Livestock and Wildlife: Evaluation and characterization of various indigenous breeds of fishes, livestock and poultry. <i>Ex-situ</i> and <i>In-situ</i> conservation of animal and poultry	6 hrs
	genetic resources.	3 hrs

	Role of artificial insemination / frozen semen / embryo transfer /	
	ONBS / MOET technology in animal breeding. 3 hrs	
	Gene editing in livestock: Promise, prospects and policy. Knock-out	
	animals, Conditional knock outs using cre-loxP recombination; tissue	
	specific promoters.	
Pedagogy:	Lectures/Tutorials/Videos/Assignments/Group Activities/Self-study.	
Learning	1. Understand Classical genetics and learn about microbial genetics and the	
Outcome:	related use of the concept in laboratories.	
	2. Learn about Drosophila genetics to study genetic principles using the	
	model of Drosophila	
	3. Study the lesser known field of epigenetics	
	4. Knowledge on cancer and inherited genetics.	
	5. Distinguish between structural, functional and comparative genomics	
	and how they differ from proteomics.	
	6. Evaluation of the various techniques used in advanced genetic analysis.	
D . f	7. Learn about the novel field of Bioinformatics.	
References /Dooding:	1. Klug wS, Cummings MR, Spencer C and Palladino MA (2008): Concepts	
/Keaunig.	2 Snustad and Simmons (2005): Principles of Genetics 4th Ed. John Wiley	
	& Sons, USA.	
	3. Russell J (2009): Genetics, Benjamin-Cummings Publishing Company,	
	San Francisco, California, USA	
	4. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, and Walter P (2002):	
	Molecular Biology of the Cell, 4 th edition, Taylor & Francis Group, New	
	York, USA.	
	5. Griffiths AJF., Gelbart WM, Lewontin RC and Miller JH (1999): Modern	
	Genetic Analysis: Integrating Genes & Genomes, WH Freeman & Co. New	
	York.	
	6. Hartl DL and Jones EW (2004): Genetics: Analysis of Genes and Genomes,	
	6 th edition Jones & Bartlett Publishers, Boston, USA.	
	7. Benjamin L (2008): Genes IX, 9th edition, Publisher - Jones and Barlett	
	Publishers Inc.	
	8. Primiose SB and Twyman RM (2001). Principle of Genome Analysis and	
	9 Watson ID Baker TA Bell SP Gann A Levine M Losick R (2012)	
	Molecular Biology of the Gene 7th edition Pearson Education Delhi	
	India.	