Course Code: ZOO-411 Course Title: Bioinformatics: Introduction to Biological Databases

Number of Credits: 2 Effective from AY: 2020 -21

Prerequisite	Basic knowledge of Cell and Molecular biology, Genetics.	
for the Course:	Dasie knowledge of cent and Molecular biology, Genetics.	
Objectives:	1. To expose students to this subject and modern technology.	
	2. To make students understand fundamental principles of bio inform	natics for an
	in depth understanding of the related subjects.	
	3. Application of this novel field in Zoology and use of this subject wi	th respect to
	Evolutionary significance.	1
Content:		
	Module1:	1 hr
	Bioinformatics- Introduction and definition, History and Scope,	
	Applications of Bioinformatics in various fields.	
	Nucleic Acid Sequence Databases :	8 hrs
	Nucleic acid sequence databases (GenBank, EMBL, DDBJ),	O III S
	Keyword-based search at Entrez Search Engine at NCBI.	
	 Sequence Submission tools at NCBI, EMBL etc. 	
	Protein sequence database: UniProtKB (SwissPort, TrEMBL).	
	Species specific database for mouse and zebra fish Metabolic pathway	
	databases.	
	Omen Access Bibliognambic Description and Literature Detabases	
	Open Access Bibliographic Resources and Literature Databases: • PubMed,	
	MEDLINE,	
	PubMedCentral at NCBI	
	T dovied contrar at 140B1	
	Module 2	2 1
	Sequence Analysis: Various File Formats for Biomolecular	3 hrs
	Sequences:	
	• GenBank	
	• FASTA	
	Basic concepts of sequence analysis:	7 hrs
	Global Pair wise Sequence AlignmentLocal Pair wise Sequence Alignment	
	 Local Fall wise Sequence Alignment Needleman and Wunsch, Smith and Waterman algorithms for 	
	pair wise alignments, gap penalties, use of pair wise alignments	
	for analysis of Nucleic acid and Protein sequences and	
	interpretation of results.	5 hrs
	Databases Searches :	
	• BLAST	
	• FASTA	
	Multiple Sequence Alignment:	

	The second for MCA	
	• The need for MSA	
	Basic concepts of various approaches for MSA (e.g.	
	progressive, hierarchical, iterative etc.).	
	Concept of Phylogeny:	
	Molecular Phylogeny	
	Various Methods of Phylogenetic Tree Construction	
	Scoring matrices: Basic concept of a scoring matrix, Matrices for	
	nucleic acid and proteins sequences, PAM and BLOSSUM series.	
Pedagogy:	Lectures/ tutorials/online teaching mode/self-study.	
Learning	The students will acquire the knowledge about:	
Outcome:	1. Various bioinformatics tools and techniques and how to use that for the analysis	
	of the biological experimental data.	
	2. Concepts of various databases and various methods for the data retrieval, data	
	storage, and data mining and use that data for the further analysis.	
	3. In-Silico approach for the protein modeling and drug discovery process.	
	4. Sequencing techniques and gene annotation as well as submission of the	
	sequences to the various databases.	
References	1. Mount D (2005), Bioinformatics Sequence and Genome Analysis.	
/Reading:	2. Xiong J (2006), Essential Bioinformatics: Cambridge University Press.	
	3. Wood AH, Parry TK and Smith DJ (2001), Introduction to bioinformatics,	
	Pearson education Asia.	
	4. Baxevanis AD & Ouellette BFF (2001), Bioinformatics: A practical guide to the	
	analysis of genes and proteins, Wiley Interscience – New York.	
	5. Misener S & Stephen A (2000), Bioinformatics: Methods and Protocols Krawetz,	
	Humana Press, New Jersey.	
	,	
	6. Higgins D & Taylor W (2000), Bioinformatics, Sequence, structure and	
	databanks — Oxford University Press.	
	7. Bosu O and Thukral SK (2007), Bioinformatics Databases, Tools and Algorithms.	