.		
Pre-requisites	Basic knowledge of nuclear and cellular components and the functioning of	
for the Course:	the cell.	
Course	1. To summarize the experiments that led to the discovery of DNA.	
Objectives:	2. To explain and analyze the molecular structure and function of Nucleic	
	acids.	
	3. To categorize the types of DNA damage and repair systems.	
	4. To explain the molecular techniques associated with Nucleic acids.	
Content:	Module 1	
	Journey to the discovery of DNA structure (Review of research	2 hours
	work of Rosalind Franklin, Maurice Wilkins, Linus Pauling,	
	Erwin Chargaff, Watson, and Crick to derive a double helix	
	DNA model).	
	Different types of bonds found in DNA double helix and their	2 hours
	associated applications, different types of DNA (B-DNA, A-DNA	
	& Z-DNA).	
	DNA packaging in bacteria (Looped and supercoiled structures,	2 hours
	enzymes, and protein involved in DNA compactization),	
	Eukaryotic DNA Packaging (Polynucleotides-DNAHelix-	3 hours
	Nucleosome-Chromatosomes-solenoid-Chromatin-	
	Chromosome, Cohesins, and condensins), histone structure,	
	Types of DNA sequences, the structure of Telomere,	2 hours
	Centromere,	
	Types of DNA damages (Single base alterations, Doble base	
	alterations, Chain Breaks, and Cross linking), Types of	4 hours
	Mutagens, DNA repair mechanisms (Direct reversal, MMR,	
	BER, NER, HR, MMEJ, NHEJ, SOS)	
	Module 2	

	Understanding central dogma and flow of information. Replication: Prokaryotic (also rolling circle model and Theta model) and eukaryotic DNA replication in Prokaryotes and Eukaryotes,	4 hours
	Transcription in prokaryotes (also emphasize Promoter clearance and Promoter escape), Types of RNA Pol Proofreading (Pyro-phosphorolytic editing and Hydrolyting editing), RNA Pol inhibitors/Blockers examples.	3 hours
	Transcription in Eukaryotes, Eukaryotic promoter sequence, domains of Transcription factors (Trans-activating domain and DNA binding domains various types)	3 hours
	RNA structures (Primary, Secondary, and Tertiary), RNA types (Coding and non-coding), Splicing (Types and classes), Trans splicing, and alternate splicing.	5 hours
	Module 3 Translation in Prokaryotes and Eukaryotes, Codon and associated concepts, Protein structure and Post-translational modifications (folding, Protein splicing, Phosphorylation- dephosphorylation, N-glycosylation, Methylation, etc.).	5 hours
	Inhibitors of protein synthesis, Ramachandran plot for protein structure, The triple helical structure of the collagen protein. Prokaryotic Gene regulation (Lac Trp operons.), Sum-up of various levels of gene regulation in Eukaryotes.	3 hours
	PCR techniques, CISPR/Cas 9 techniques, and their applications.	5 hours
		2 hours
Pedagogy:	Lectures/Tutorials /Presentations/ Group discussion/Self-study.	
References/ Readings:	1. D. Clark, N. Pazdernik and M. McGehee, Molecular Biology. Academic Cell. 2018	
	2. L. G. Davis, M. D. Dibner and J. F. Battey, Basic Methods	in Molecular

	Biology. Elsevier, 1986.	
	3. E. J. Gardner, M. J. Simmons and D. P. Snustad, (1991), Principles of	
	Genetics. John Wiley & Sons, 1991	
	4. G. Karp, J. Iwasa and W. Marshall W, Karp's Cell and Molecular Biology.	
	9th Edition, John Wiley, 2019.	
	5. J. E. Krebs, E. S. Goldstein, S. T. Kilpatrick, Lewin's GENES XII. Jones and	
	Bartlett Learning, 2018.	
	6. G.M. Malacinski, Freifelder's Essentials of Molecular Biology, Narosa Book	
	Distributors Private Limited, 2015.	
Course	The learner will	
Outcomes:	1. Distinguish between DNA, RNA, and Protein and the various processes	
	involved in the flow of information through these molecules.	
	2. Relate DNA structure and manipulation to the function and control of	
	genes.	
	3. Critically evaluate the literature related to molecular biology and modify	
	them.	
	4. Formulate techniques associated with molecular biology.	

(Back to top)