Name of the Programme: M.Sc. Zoology

Course Code: ZOO-508Title of the Course: Molecular Aspects of Developmental BiologyNumber of Credits: 03

Effective from AY: 2023-24

Pre-requisites	A basic understanding of cellular and molecular biology is essential.		
for the Course:			
Course	1. To provide a comprehensive understanding of the conce	pts of early	
Objectives:	animal development		
	2. To compare and contrast various events that oc	cur during	
	gametogenesis, cleavage formation and fertilization.		
	3. Construct in-depth knowledge of cell signalling pathways the	hat regulate	
	embryonic induction, tissue interactions, pattern forr	mation and	
	expression of regulatory genes.		
	4. Critically assess the current scientific literature on topics	s related to	
	developmental biology.		
Content:	Module 1		
	Mammalian Gametogenesis: ultra structure of sperm and egg;	7 hours	
	Molecular events in mammalian fertilization (capacitation,		
	prevention of polyspermy, genetic fusion, activation of egg	5 hours	
	metabolism).		
	Cleavage in mammals, the difference between somatic mitosis		
	and cleavage, regulation of cleavage.	3 hours	
	Gastrulation (epiboly and emboly). Development of		
	Extra embryonic membrane.		
	Module 2		
	Mechanism of cell cellular differentiation; Stages of Commitment (differentiation, specification and		
	determination; cellular communication: paracrine factors	8 hours	
	and signal transduction cascades (Jak-Stat pathway,		
	smooth and patched protein pathway, wnt signalling pathway,		
	SMAD pathway).		
	Developmental dynamics of cell speciation:	7 hours	
	Specification of body axes in sea urchin-, insect-, fish-, avian-		
	and mammalian embryo.		
	Module 3		
	Induction and competence; a cascade of induction		
	during the formation of a lens; epithelium-	5 hours	
	mesenchyme interaction during the formation of feathers in a		
	bird.		

	The central nervous system and the epidermis: Primary and	4 hours	
	Secondary neurulation; Differentiation of the Neural Tube.		
	Embryonic field; Pattern formation in vertebrate limbs,	3 hours	
	generation of the proximal-distal, anterior-posterior, dorso -		
	ventral axis of the limb.		
	Regeneration ability of animals; Role of Interstitial cells in	3 hours	
	Regeneration in Hydra. Molecular mechanism of regeneration		
	of limb in Salamander.		
Pedagogy:	Lectures/tutorials/online teaching mode/self-study.		
References/	1. M.J.F. Barresi and S.F. Gilbert, Developmental Biology (12	th edition),	
Readings:	Oxford University Press, UK, 2019.		
	 B.M. Carlson, Pattern's Foundation of Embryology, Mc Graw Hill Inc., USA,2003. 		
	 S.F. Gilbert, Developmental Biology (5th edition), Sinauer Associates Inc., 2003. 		
	 S.F. Gilbert, Developmental Biology (10th edition), Sinaue Inc., Sunderland, USA, 2016. 	r Associates	
	 S.F. Gilbert, Developmental Biology (8th edition), Sinauer Inc., Sunderland, USA. 2006. 	Associates	
	 S.A. Moody, Principles of Developmental Genetics, Academic Press., New York, 2015. 		
	 J.M.W. Slack, Essential Developmental Biology, Willey Pub 2012. 	blication, USA,	
	8. L. Wolpert, C. Tickle and A.M. Arias, Principles of Develop University Press, 2019.	ment, Oxford	
Course	The learner will		
Outcomes:	 Appraise the morphological process that transforms a fail into a multicellular organism. 	ertilized egg	
	2. Assess the molecular, biochemical and cellular events that	regulate the	
	development of specialised cells, tissue and organs durin	-	
	development.	-	
	3. Compare different model organisms which can be used to	o investigate	
	various developmental processes.		
	4. Justify how different genes control axis formation in inver-	tebrates and	
	vertebrates.		
	5. Create comprehensive knowledge of various steps involve	d in Pre and	
	Post- fertilization process in mammals.		
(Back to top)			

(Back to top)