Name of the Programme:M. Sc. ZoologyCourse Code:ZOO-521Title of the Course:Advances in Genetics (Theory)Number of Credits:03Effective from AY:2023-24

Pre-requisites	Basic working knowledge of classical genetics	
for the Course:		
Course	1. To develop concepts of genetics pertaining to human beings	
Objectives:	2. To classify chromosomes and modes of inheritance	
	3. To recognize genetic abnormalities and recall their s	ignificance in
	medical genetics	
Content:	Module 1	
	Basic principles of genetics, human genetic make-up, genes as	
	submicroscopic factors controlling human traits, packing of	15 hours
	DNA/chromatin into chromosomes, nucleosomes and	
	histones. Review on test cross, back cross, Polytene and	
	Lampbrush chromosomes, human chromosome structure, sex	
	determination in man, sex chromatin, Lyon hypothesis, human	
	karyotype, banding techniques, chromosome identification	
	and nomenclature (ISCN). Principles of inheritance in man	
	(autosomal / sex linked / dominant / recessive / mitochondrial	
	inheritance); human pedigree analysis, human genetic	
	disorders, chromosomal (structural and numerical; autosomal	
	or X linked) and biochemical (congenital diseases / inborn	
	errors of metabolism) with examples, Eugenics, euphenics and	
	euthenics; genetic counseling.	
		15 hours
	Module 2	
	Prenatal diagnosis of genetic disorders, cytogenetic,	
	biochemical and ultrasonography techniques, amniocentesis,	
	chorionic villus sampling, cordocentesis, biochemical markers	
	for prenatal diagnosis, triple test for Down's syndrome.	
	Dermatoglyphics and its application in the diagnosis of human	
	genetic disorders, principles of FISH, RFLP & DNA	
	fingerprinting and their uses in human genetics. Genetic	15 hours
	models: mouse as a model mammal for genetic studies, other	
	animal models for human diseases.	
	Module 3	

	Cancer genetics: Introduction and cellular aspects; types of	
	cancers, protooncogenes; oncogenes; viruses and cancer;	
	oncoproteins; tumor suppressor genes; inherited cancer genes	
	(familial cancers); cell cycle dysregulation in cancer,	
	chromosomal instability; roles of p21, p53, ATM, BRCA1/2 in	
	preventing cancer, tests for detection of cancer, treatment of	
	cancer: radiotherapy, chemotherapy, hyperthermia, targeted	
	drug therapy, immunotherapy	
	Mapping genomes: a) Genetic mapping – DNA markers -	
	RFLPs, SSLPs, SNPs b) Physical mapping - Restriction mapping,	
	fluorescence in situ hybridization (FISH), radiation hybrid	
	mapping and sequence tagged site mapping, gene mapping in	
	Drosophila using two point and three point test crosses with	
	an emphasis on interference and coefficient of coincidence.	
Pedagogy:	Lectures/ tutorials/online teaching mode/self-study and discussions/	
	Assignments/ Group activities/ Presentations	
References/	1. P. Turnpenny, S. Ellard, Emery's Elements of Medical Genetics and	
Readings:	Genomics, 16th ed. Elsevier, 2020.	
	2. T. Strachan, A. Read, Human Molecular Genetics, 5th edition. Garland	
	Science, 2018.	
	3. M.L. Kothari, L.A. Mehta, and S.S. Roychoudhury, Essentials of Human	
	Genetics, India: Oxford University Press, 2009.	
	4. B.A. Pierce, Genetics: A Conceptual Approach, 7th ed. W. H. Freeman	
	and Company, 2020.	
	5. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter,	
	Molecular Biology of the Cell, 6th ed. New York, USA: Taylor & Francis	
	Group, 2014.	
Course	The learner will	
Outcomes:	1. Identify the different modes of inheritance of genetic disorders	
	2. Categorize the different types of genetic disorders	
	3. Determine the medical significance of genetic alterations	
	4. Interpret the results of various techniques for diagnosis of genetic	
	aiseases	

(Back to top)