Semester III Name of the Programme: M. Sc. Zoology Course Code: ZOO-600 Number of Credits: 03 Effective from AY: 2023-24

Title of the Course: Neurophysiology (Theory)

Pre-requisites Basic working knowledge of the Nervous system. for the Course: Parallel enrolment for the courses ZOO-602 Neurophysiology (Practicals) Course 1. To review the gross and microanatomy of the nervous system to examine **Objectives:** the blood-brain barrier, neuro circuits, and types of synaptic transmission. 2. To examine electrophysiological techniques for the acquisition of data and to compare the electrophysiology of impulse conduction in various nerve fibers. 3. To inspect the neurophysiological aspect of learning, memory formation, sensation, sleep, posture, and balance. Content: Module 1 Review of classification of neurons and their functions. 4 hours Blood-brain barrier and its physiological importance, CSF composition, formation, and drainage. Physiological characteristics of neuronal cell membrane 2 hours components for impulse conduction. Myelin ultrastructure and Nodes of Ranvier, nerve impulse 4 hours conduction in myelinated and unmyelinated neurons. Electrophysiology of neurons. Comparison of action 3 hours potentials of giant axon of Squid and mammalian neuron. Voltage and Cell-Patch Clamp Techniques. 2 hours Module 2 Types of synaptic connections (axosomatic, axodendritic, 2 hours dendro-dendritic, and axo-axonal synapses). Properties of Synapse. The basic concept of Neural integration: Diverging, Converging, and Reverberating circuits. Chemical and electrical synapses and their transmission 4 hours

	physiology. Axonal impulse conduction-excitatory and	
	inhibitory synaptic transmission.	
	Neurotransmitters, Neuropeptides, and receptors.	2 hours
	Change investored in somethy sizing the property of a state of the size	2 h avva
	Steps involved in synthesizing, transporting, and releasing neurotransmitters and neuropeptides.	2 hours
	Synthesis and release of Acetylcholine, Glutamate, GABA, Dopamine, Norepinephrine, and Epinephrine, Serotonin, Nitric oxide.	5 hours
	Module 3	
	Learning and Memory types and its Neural and Cellular basis in Aplysia, Drosophila, Honey bee, and Humans.	4 hours
	Neurophysiology of Avian song/ call formation.	4 hours
	Cognition and its major domains. Mechanoreception, Photoreception, Chemoreception.	2 hours
	Neurophysiology of balance and posture.	3 hours
	Neurophysiology of sleep.	2 hours
Pedagogy:	Lectures/ Presentations/ Assignments/ Self-study/ Discussion	
References/ Readings:	 B. Scott, G. Siegel, R. W. Albers, and D. L. Price, Eds., Basic Neurochemistry: Principles of Molecular, Cellular, and Medical Neurobiology. Academic Press, 2011. C. Hammond, Cellular and Molecular Neurophysiology. Academic Press, 	
	 2008. R. Carpenter and B. Reddi, Neurophysiology: A Conceptual Hodder and Arnold. UK, 2012. 	al Approach,
	 D. Purves, G. J. Augustine, D. Fitzpatrick, L. C. Kartz, A. S. Lal McNamara and S. M. Wiliams, Eds., Neuroscience. Oxfor Press, 2018. 	
	5. R. Menzel and P. Benjamin, Eds., Invertebrate Learning an Academic Press, 2013.	nd Memory,
	 D. Poeppel, G. Mangun and M. S. Gazzaniga, Eds., The Neurosciences. A Bradford Book the MIT Press 	ne Cognitive Cambridge,

	Massachusetts London, England, 2009.
Course	The learner will
Outcomes:	 Appraise and justify the importance of the molecular setup of the nervous system cells to bring about neurotransmission. To predict and justify the neurophysiological changes during pathological alterations in neuronal functioning. To elaborate on the understanding of neurophysiological aspects of learning and memory. To elaborate on the functional aspects of sleep, sensation, and balance.