Pre-requisites	Basic working knowledge of diversity, cell biology, genetics and	classical
for the Course:	evolutionary biology	
Course	1. To develop concepts in evolutionary biology of animals and humans	
Objectives:	2. To perceive different theories of evolution and their relevant applications	
	3. To examine the importance of populational genetics in	n influencing
	evolution	
Content:	Module 1	15 hours
	Emergence of evolutionary thoughts, Creation and evolution,	
	Evolutionary theories and evidences: Contributions of	
	Lamarck, Darwin, Darwin-Wallace postulates, concepts of	
	variation, adaptation, struggle, fitness and natural selection;	
	Spontaneity of mutations; The evolutionary synthesis,	
	limitations of Darwinism, Neo Darwinism.	
	Origin of cells and unicellular evolution: Origin of basic	
	biological	
	molecules, Abiotic synthesis of organic monomers and	
	polymers,	
	Concept of Oparin and Haldane, Experiment of Miller (1953),	
	The first cell, Evolution of prokaryotes, Origin of eukaryotic	
	cells, Evolution of unicellular eukaryotes.	
	Paleontology and Evolutionary History: Overview of	
	evidences - Paleontological, Embryological, Comparative	
	morphological, Anatomical, Genetics and Cytological,	
	Molecular Biological evidences.	
	The Evolutionary time scale: Eras, periods and epoch; Major	
	events in the evolutionary time scale; Origins of unicellular	
	and multi cellular organisms; Major groups of plants and	
	animals; Stages in primate evolution including Homo, Human	
	evolution.	
		451
	Population genetics: Populations, Gene pool, Gene frequency;	15 hours
	Hardy- Weinberg Law; Evolutionary forces that affect the	
	allelic frequencies: Mutation, Migration, Selection - Stabilizing	

	selection, Directional selection, disruptive selection,	
	Balancing selection, Frequency dependent selection, Density	
	dependent selection, Group and kin selection, Selection	
	coefficient, Selective value, Selection in natural Populations,	
	Genetic drift, Nonrandom mating.	
	Hybridization and speciation: Concept of species and models	
	of speciation based on distribution sympatric, allopatric,	
	stasipatric, genetic drift, genetic revolution, genetic	
	transilience, Founder-flush theory, phylogenetic gradualism,	
	punctuated equilibrium, hybridization, adaptive radiation,	
	isolating mechanisms.	
	Molecular Evolution: Molecular phylogeny, neutral theory,	
	molecular clock.	
Pedagogy:	Use of conventional, online and ICT Methods. Field visit/Case study/	
	ecotourism project proposal/project/self-	
	study/Lecture/Tutorials/Assignments	
References/	1. D.J. Futuyma, Evolution, 3 rd ed., New York: Sinauer Associates, 2006,	
Readings:	2. M. Ridley, Evolution, 3 rd ed, New York: Wiley-Blackwell Publishers, 2003.	
	3. M.R. Rose, and L.D. Mueller, Evolution and Ecology of the Organism, New	
	York: Prentice Hall, 2005.	
	4. N.H. Barton, D.E.G. Briggs, J.A. Eisen, A.E. Goldstein, N.H. Patel, Evolution,	
	New York: Cold Spring Harbor Laboratory Press, 2007.	
	5. M.W. Strickberger, Evolution, Jones and Bartlett Publishers, Sudbury,	
	2013.	
Course	The learner will	
Outcomes:	1. Explain the logical sequence of events of animal and human evolution	
	2. Correlate the available evidences of evolutionary patterns	
	3. Integrate the concepts of populational genetics with evolution	
	Predict evolutionary trends in a population of animals	