Pre-requisites	Basic knowledge on Zoology, Anatomy, Physiology, Ecology.	
for the Course:		
Course	1. To provide knowledge on the major definitions and key concepts of	
Objectives:	animal architecture, functionality, and basic principles of anima	l engineering
	2. To incite curiosity in the learner regarding the interface of	⁻ behaviour,
	ecology and evolution	
	3. To reflect on the collective behaviours/ interactions amon	g
	communities and whole ecosystems.	
	4. To instill in the learner and the society an appreciation to	wards animals
	and their building behaviour through observation	
Content:	Module 1	15 hours
	Introduction, innate and learned behaviours	
	Allogenic and autogenic engineers.	
	Why animals build? Function – habitat, feeding – burrowers	
	and nest builders (prey capture architecture, trap builders),	
	Intraspecific communication - Courtship and territoriality.	
	Module 2	
	Construction and civil engineering	15 hours
	Building materials – materials obtained from nature – Mud,	
	soil and stones (ants), self- created materials (edible nest	
	swiftlet, Honey bees, Silk from Trichoptera and Lepidoptera,	
	silkworm, spiders), processed materials (wasp nests,	
	Psychidae cocoons, Weaverbirds) – Urbanisation in selection	
	of building materials (Carton, Paper, steel wool) Case study of	
	corvidae.	
	Module 3	15 hours
	Building behaviour – piling up (Yellow head jawfish, herons,	
	pelicans etc,) Interlocking and weaving (tailorbird,	
	spiderhunter, baya weaver), Sticking together (Polychaete),	
	folding and rolling (tent making bats, arthropods- spiders and	
	lepidoptera), spinning and weaving (insect cocoons, spider	
	webs), Burrows (Uca crabs, Alpheid shrimp, Kingfishers, mice	

	and rats), Bioturbation	
	Patch dynamics and species diversity, Mutualism and	
	associations (Blind shrimp – goby).	
	Module 415 hours	
	Habitat modifiers: Ecosystem engineers vs keystone species	
	Animal architecture as evolutionary evidence – habitat range	
	extension, speciation, and social evolution. Animal	
	architecture as behavioural evidence, atavism, niche	
	construction, ecological and cultural inheritance.	
Pedagogy:	Lectures/ tutorials/ presentations/ Colloquia/ Group discussions /self-study/	
	field visits/ field reports/ Mini Projects	
References/	1. M. Hansell, Animal Architecture, First Edition, Oxford: Oxford University	
Readings:	Press, 2005.	
	2. K. Cuddington, J. E. Byers, W. G. Wilson, A. Hastings, Ecosystem	
	engineers: plants to protists. Academic Press, 2011.	
	3. M. Hansell, Bird nests and construction behaviour. Cambridge University	
	Press, 2000.	
	4. M. Hansell, Built by animals: the natural history of animal architecture.	
	Oxford: Oxford University Press, 2007.	
	5. G. B. Wiggins, Caddisflies: the underwater architects. University of	
	Toronto Press, 2004.	
	6. J. S. Turner, The extended organism: the physiology of animal-built	
	structures. Harvard University Press, 2009.	
Course	The learner will	
Outcomes:	1. Demonstrate knowledge concerning the key concepts of animal	
	architecture and ecosystem engineering.	
	2. Characterise species behaviour and interactions among community	
	and ecosystems	
	3. Develop skill to compare and contrast between the most important	
	types of materials used and building behaviour observed in animals.	
	4. Evaluate habitat modifiers and their evolutionary significance.	