Core Papers				
Sl.	Subject	Paper title	Credits	
No.	code			
1.	BCC 101	Fundamentals of Biomolecules [T]	3	
2.	BCC 103	Analytical Biochemistry-I [T]	3	
3.	BCC 106	Bioenergetics and metabolism [T]	3	
4.	BCC 107	Molecular Biology [T]	3	
5.	BCC 108	Laboratory course in Biochemistry-I	4	
		a. Fundamentals of Biomolecules [P]		
		b. Analytical Biochemistry-1 [P]		
		c. Molecular Biology [P]		
		d. Field trip/study tour [P]		
	1	Optional Papers		
1.	BCO 110	Immunology and Immunotechniques [T]	3	
2.	BCO 111	Biochemistry of Environmental Pollution and Remediation	3	
		[T]		
3.	BCO 124	Cell biology [T]	3	
4.	BCO 125	Analytical Biochemistry-II	3	
5.	BCO 126	Laboratory techniques and Applications of Biochemistry	4	
		a. Cell biology [P]		
		b. Immunology and Immunotechniques [P]		
		c. Analytical Biochemistry-II [P]		
		d. Biochemistry of Environmental Pollution and		
		Remediation [P]		

M.Sc. Biochemistry revised syllabus with effect from A.Y. 2021-2022

6. Khopkar S. M., Environmental Pollution Analysis. New Age	
International Pvt. Ltd.; 2005, 1 st edition.	
7. Mitchell R., Cu J. D.; Environmental Microbiology; Wiley-	
Blackwell Publication; 2009.	
8. Moore J. W., Moore, E. A.; Environmental Chemistry;	
Academic Press; 1976, 1 st edition	
9.Maier R., Pepper I., Gerba, C., Gentry T.; Environmental	
Microbiology; Academic Press; 2008, 2 nd edition	

Programme: M. Sc. (Biochemistry) Title of the Course: Cell Biology [T] Effective from AY: 2021-22

Course Code: BCO 124

Number of Credits: 3

Prerequisites	Should have basic knowledge on Prokaryotic and eukaryotic cells.
for the	
course:	
Course	The objective is to offer detailed knowledge about cell biology,
Objectives	various cellular organelles and the cell communication pathways
	associated with the cellular processes of the cells. The course aims to
	provide insights of basic cell culture techniques.
Course	1. Students will learn about cell structure, cell division and cell
Outcomes	cycle mechanisms, various cellular organelles and their
	functions.
	2. Students will acquire insight into the processes of transport
	across cell membranes,
	3. Students will gain knowledge about the concepts of various
	cellular communication pathway and their importance.
	4. This course will give them understanding of basic Cell culture
	techniques needed to work in a Biological research laboratory.
	5. This course will provide the students with the base for various
	courses in life science including Cancer biology,
	Neurochemistry, etc.

Content	1. Structural organizations, structure and functions of cellular	<mark>6h</mark>
	and sub-cellular organelles: prokaryotic and eukaryotic cells,	
	Animal and plant cells	
	2. Biological membrane structure and function: Structure and	4h
	functions of membrane, Transport across cell membrane-	
	Passive and active transport of molecules across biological	
	molecules, membrane pumps.	
	3. Cell division and cell cycle: Mitosis and Meiosis, their	4h
	regulation	
	4. Cellular communication and Cell signalling: Signal	10h
	transduction pathway, Signalling molecules and their receptor-	
	G-Protein Coupled Receptors, Receptor Tyrosine Kinases, MAP	
	kinase pathway, JAK-STAT pathway; light signaling in plants,	
	bacterial chemotaxis and quorum sensing	
	Programmed cell death: Apoptosis	
	5. Plant tissue culture: techniques and applications- Introduction	4h
	to plant tissue culture and various requirements, preparation steps	
	for tissue culture, surface sterilization of plant tissue material,	
	basic procedure for aseptic tissue transfer, tissue culture	
	methodologies; incubation and maintenance of culture;	
	Applications of PTC.	
	6. Animal tissue culture: techniques and applications-	4h
	Introduction to animal tissue culture and various requirements,	
	Stem cells, typical cell lines, Growing mammalian cells and	
	general maintenance of cells; Application of ATC.	
	7. Microbial culture techniques: In vitro culture techniques,	4h
	nutrient requirements.	
Pedagogy:	Lectures (online or physical)/ tutorials/ laboratory work/ viva/	
	seminars/ term papers/assignments/ presentations/ self-study.	
Text Books/	1. Gerald Karp. Cell and Molecular Biology: Concepts and	
References /	experiments. John Wiley and sons, Inc. 2015, 8th edition.	
Readings:	2. Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger,	
	Anthony Bretscher, Hidde Ploegh, Angelika Amon, Kelsey C.	

	Martin. Molecular cell biology. W.H. Freeman and company,
	New York. 2016, 8 th edition.
3	. DeRobertis and Saunders. Cell and Molecular Biology. Saunders
	College Publishers. 2017, 8 th edition.
4	. Pranav Kumar and Usha Mina. Pathfinder Academy CSIR-JRF-
	NET Life Sciences. Pathfinder publications. 2016, 7 th edition.
5	. Michael Pelczar, Jr, R.D. Reid, E.C.S. Chan. Microbiology.
	MacGraw-Hill. 2001, 5 th edition.
6	. R. Ian Freshney. Culture of Animal Cells: A Manual of Basic
	Technique and Specialized Applications. Wiley-Blackwell. 2016,
	7th Edition.
7	. Roberta H. Smith. Plant tissue culture: technique and experiments.
	Academic Press. 2012, 3 rd edition.

Programme: M. Sc. (Biochemistry)Course Code: BCO 125Title of the Course: Analytical Biochemistry-IINumber of Credits: 3Effective from AY: 2021-22

Prerequisites	Students should have studied the theory/ instrumentation and
for the	application of some of the basic bio-analytical techniques. It is
<u>course:</u>	assumed that students have a basic knowledge of fundamentals in
	biochemistry and certain basic techniques in routine laboratory
	analysis.
<u>Course</u>	1. Introduction of various bioanalytical techniques for analysis.
Objectives:	2. Evaluate the utility of various analytical techniques as a
	qualitative and quantitative tool.
	3. Develop concepts in techniques and instruments required for
	macromolecule structure determination and other techniques
	such as tracers for metabolic pathways.
<u>Course</u>	1. Students should be able to differentiate between various
Outcomes:	analytical techniques based on their theory and sensitivity
	achieved.