

Goa University P.O. Goa University, Taleigao Plateau, Goa 403 206, India

Syllabus of M.Sc. (Marine Microbiology) Programme

The School of Earth, Ocean and Atmospheric Sciences (SEOAS) offers a two-year full time M.Sc. Marine Microbiology programme, w.e.f. the academic year 2020-21. This Programme was initiated in June 2012, under the award of UGC sponsored 'Innovative Programme for teaching and research in interdisciplinary and emerging areas'.

The Programme is meant for students to pursue higher studies in Marine Microbiology. Being a University in coastal state of India, Goa University provides a strategic advantage in learning Microbiology of marine and coastal ecosystems. It serves to impart advanced training to students in the field of Marine Microbiology with focus on marine microbial diversity, bioprospecting and applications of marine microbes in the production of various biologically significant metabolites; and in bioremediation of polluted environments. Students undergo hands-on training with state-of-the art technologies and are trained so as to develop an aptitude for independent research. The Programme equips students for higher research leading to the Ph.D. Degree in India or in International Universities overseas, or for employment in Research Institutes, in teaching, and in Industry, the students finding speedy employment.

Prerequisites: B. Sc. Microbiology

Course Structure of M.Sc. Marine Microbiology

Core papers: 32 Credits

Optional Papers: 32 Credits

Code	Title of paper	L-T-P hrs/week	Credits
	Semester I - Core Papers		
MMC 101	Microbial Biochemistry	3-0-0	3
MMC 102	Microbial Biochemistry – Practical	0-0-2	1
MMC 103	Fundamentals of Oceanography	3-0-0	3
MMC 104	Fundamentals of Oceanography – Practical	0-0-2	1
MMC105	Microbial Taxonomy and Systematics	3-0-0	3
MMC 106	Microbial Taxonomy and Systematics – Practical	0-0-2	1
MMC 107	Mathematics and Statistics in Biology	3-0-0	3
MMC108	Mathematics and Statistics in Biology -Practical	0-0-2	1
			Total = 16
	Semester II - Core Papers	1	
MMC 201	Techniques and Instrumentation in Microbiology	3-0-0	3
MMC 202	Techniques and Instrumentation in Microbiology - Practical	0-0-2	1
MMC 203	Industrial Microbiology	3-0-0	3
MMC 204	Industrial Microbiology – Practical	0-0-2	1
MMC 205	Microbial Genetics and Gene Regulation	3-0-0	3
MMC 206	Microbial Genetics and Gene Regulation - Practical	0-0-2	1
MMC 207	Microbial Ecology	3-0-0	3
MMC 208	Microbial Ecology – Practical	0-0-2	1
		Total = 16	
	Semester III - Optional Papers	•	
MMO 301	Marine Virology	3-0-0	3
MMO 302	Marine Zooplankton Ecology and Microbial Interactions	3-0-0	3
MMO 303	Marine Zooplankton – Practical	0-0-2	1
MMO 304	Archaea	3-0-0	3
MMO 305	Archaea – Practical	0-0-2	1
MMO 306	Genetic Engineering	3-0-0	3
MMO 307	Genetic Engineering – Practical	0-0-2	1
MMO 308	Marine Mycology	3-0-0	3
MMO 309	Marine Mycology – Practical	0-0-2	1
MMO 310	Marine Pollution and Monitoring	3-0-0	3
MMO 311	Marine Pollution and Monitoring – Practical	0-0-2	1
MMO 312	Analytical Techniques in Phytoplankton Studies	0-0-2	1
MMO 313	Marine Extremophilic Microorganisms: Culturing and Characterization	0-0-2	1
MMO 314	Analysis of Microbial Pathogens in the Marine Environment	0-0-2	1

0-0-2	1
0-0-2	1
0-0-2	1
0-0-2	1
0-0-2	1
0-0-2	1
	Total = 16
3-0-0	3
4-0-0	4
3-0-0	3
2-0-0	2
2-0-0	2
3-0-0	3
3-0-0	3
3-0-0	3
2-0-0	2
3-0-0	3
3-0-0	3
0-0-8	8
	Total = 16
	0-0-2 0-0-2 0-0-2 0-0-2 0-0-2 0-0-2 0-0-2 0-0-2 0-0-2 0-0-2 0-0-2 0-0-2 0-0-2 3-0-0 2-0-0 3-0-0 3-0-0 3-0-0 3-0-0 3-0-0 3-0-0 3-0-0 3-0-0 3-0-0 3-0-0 3-0-0

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 101 Title of the Course: MICROBIAL BIOCHEMISTRY Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites	The student should be familiar with the different biomolecules and their metabolism.	
Objective:	This course deals with the characteristics, properties and biological significance of the biomolecules of life. In depth knowledge of the energetics and regulation of different metabolic	
	processes in microorganisms.	
Content:		
1	Biological Molecules	12 L
1.1	Proteins	
	Amino acids: features and properties.	
	Protein: structure, principles of separation and purification,	
	molecular weight determination; sequencing and synthesis.	
	Enzymes: activity, inhibition, mechanism of action	
1.2	Carbohydrates	
	Monosaccharides: types, characteristics and properties.	
	Disaccharides, oligosaccharides, polysaccharides – biological	
	significance.	
1.3	Lipids	
	Fatty acids: saturated and unsaturated, structure and properties.	
	Lipids: biological significance; lipid composition of	
	microorganisms.	
		147
2	Overview of Carbohydrate, Amino acid, Nucleotide and	14 L
	I inid matchalia nothwaya	
2.1	Lipid metabolic pathways	
2.1	Carbohydrate metabolism	
2.1	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms,	
2.1	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose	
2.1	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism),	
2.1	Carbohydrate metabolism Central pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.	
2.1	Carbohydrate metabolism Central pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle. Gluconeogenesis from TCA intermediates / amino acids / acetyl-	
2.1	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions.	
	Carbohydrate metabolism Central pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle. Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions. Lipid Metabolism	
	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions.	
	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions.Lipid MetabolismAnabolism: Biosynthesis of fatty acids: saturated and	
2.2	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions.Lipid MetabolismAnabolism: Biosynthesis of fatty acids: saturated and unsaturated, triglycerides, phospholipids,	
2.2	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions.Lipid MetabolismAnabolism: Biosynthesis of fatty acids: saturated and unsaturated, triglycerides, phospholipids,Amino Acid and Nucleotide Biosynthesis	
2.2	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions.Lipid MetabolismAnabolism: Biosynthesis of fatty acids: saturated and unsaturated, triglycerides, phospholipids,Amino Acid and Nucleotide Biosynthesis Amino acid biosynthetic pathways and their regulation.	
2.2	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions.Lipid MetabolismAnabolism: Biosynthesis of fatty acids: saturated and unsaturated, triglycerides, phospholipids,Amino Acid and Nucleotide BiosynthesisAmino acid biosynthetic pathways and their regulation.Purine and pyrimidine nucleotides, Deoxyribonucleotides:	
2.2	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions.Lipid MetabolismAnabolism: Biosynthesis of fatty acids: saturated and unsaturated, triglycerides, phospholipids,Amino Acid and Nucleotide BiosynthesisAmino acid biosynthetic pathways and their regulation.Purine and pyrimidine nucleotides, Deoxyribonucleotides: biosynthesis and regulation. Biosynthesis of nucleotide coenzymes	
2.2	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions.Lipid MetabolismAnabolism: Biosynthesis of fatty acids: saturated and unsaturated, triglycerides, phospholipids,Amino Acid and Nucleotide BiosynthesisAmino acid biosynthetic pathways and their regulation.Purine and pyrimidine nucleotides, Deoxyribonucleotides: biosynthesis and regulation. Biosynthesis of nucleotide coenzymesMechanisms involved in Photosynthesis, Chemosynthesis and	10 L
2.2	Carbohydrate metabolismCentral pathways of metabolism – regulatory mechanisms, bioenergetics and significance – EMP, TCA cycle (glucose aerobic and anaerobic metabolism, malate metabolism), Glyoxylate cycle.Gluconeogenesis from TCA intermediates / amino acids / acetyl- CoA; biosynthesis of polysaccharides and sugar interconversions.Lipid MetabolismAnabolism: Biosynthesis of fatty acids: saturated and unsaturated, triglycerides, phospholipids,Amino Acid and Nucleotide BiosynthesisAmino acid biosynthetic pathways and their regulation.Purine and pyrimidine nucleotides, Deoxyribonucleotides: biosynthesis and regulation. Biosynthesis of nucleotide coenzymes	

	Organisms and photosynthetic pigments, fundamental processes	
	in Photosynthesis. Photosynthetic electron transport and	
	photophosphorylation	
3.2		
3.2	Chemosynthesis	
	Organisms, substrates, bioenergetics of metabolism.	
3.3	Osmoregulation	
	Salt-in-cytoplasm mechanism, Organic-Osmolyte mechanism,	
	Proton-motive force, Osmolyte transporters, Osmosensing.	
Pedagogy:	Lectures/tutorials/assignments/self-study	
References /	Lehninger, A., Cox, M. and Nelson, D. L., Principles of	
Readings	Biochemistry, W. H. Freeman & Company.	
	Moat, A. G., Foster, J. W. and Spector, M. P., Microbial	
	Physiology, A. John Wiley & Sons Inc. Publication.	
	Voet, D., Voet, J. G. and Pratt, C. W., Principles of	
	Biochemistry, John Wiley and Sons Inc.	
	Murray, R. K., Bender, D. A., Botham, K. M., Kennelly, P. J.,	
	Rodwell, V. W. and Weil, P. A., Harper's Illustrated	
	Biochemistry, The McGraw-Hill Companies, Inc.	
	Bull, A. T. and Meadow, P., Companion to Microbiology,	
	Longman Group Limited, New York	
	Plummer, D. T., An Introduction to Practical Biochemistry, Tata	
	McGraw Hill Publishing Company	
	H. J. Kunte, Osmoregulation in Bacteria: Compatible Solute	
	Accumulation and Osmosensing. Environ. Chem. 2006, 3, 94–	
	99. doi:10.1071/EN06016	
Learning	1. Apply the knowledge to understand the microbial	
outcomes	physiology and to identify the microorganisms.	
	2. Understand the regulation of the biochemical pathway	
	and possible process modifications for improved control	
	over microorganisms for microbial product synthesis.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 102 Title of the Course: MICROBIAL BIOCHEMISTRY - Practical Number of Credits: 1 Effective from Academic Year: 2020-21

D		
Prerequisites:	It is required that students have theoretical knowledge about	
	various biomolecules	
Objective:	This course provides opportunities for hands-on experience	
	with microbiological and biochemical concepts in laboratory	
	setup.	
Content:		
Ι	Microbial Biochemistry (MMC 102)	24 H
1.	Standard curve for carbohydrates.	
2.	Standard curve for protein.	
3.	Enzyme assay.	
4.	Precipitation of protein from solution by salting out.	
5.	Dialysis.	
6.	Specific activity, fold purification, percentage yield of	
	enzyme.	
7.	Molecular weight determination by SDS-PAGE.	
Pedagogy:	Experiments in the laboratory	
References /	Plummer, D. T., An Introduction to Practical Biochemistry,	
Readings	Tata McGraw Hill Publishing Company	
	Murray, R. K., Bender, D. A., Botham, K. M., Kennelly, P. J.,	
	Rodwell, V. W. and Weil, P. A., Harper's Illustrated	
	Biochemistry, The McGraw-Hill Companies, Inc.	
Learning	Skilful handling and estimating biomolecules and other	
Outcomes	metabolic products of microorganisms	

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 103 Title of the Course: FUNDAMENTALS OF OCEANOGRAPHY Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites:	Basic understanding of the marine environments.	
Objective:	Introduce the students to the dynamic nature of the marine	
o sjeen ver	environment.	
Content:		
1	Introduction to Physical Oceanography	12 L
1.1	Physical properties of the sea - temperature, salinity, pressure,	
	density. Mixed layer depth. Ocean circulation- wind driven and	
	thermohaline circulation. Eddies and gyres. Coriolis effect.	
	Upwelling. Ekman transport. Currents. Water mass. Waves,	
	tides and tsunamis. Sound in the ocean, energy from oceans.	
1.2	Atmospheric circulation, albedo, land-sea breeze, tropical	
	cyclone, Indian monsoon, ITCZ, heat flux, ENSO - El Nino, La	
	Nina, Southern Oscillation, Indian Ocean Dipole	
2	Introduction to Chemical and Geological Oceanography	12 L
2.1	Chemical properties of seawater. Elemental composition of	
	seawater. Salinity and chlorinity. Residence time. Dissolved	
	gases. Nutrients. Carbonate system. pH and alkalinity. Calcium	
	carbonate precipitation and dissolution. Carbonate compensation	
2.2	depth and lysocline. Radioactivity.	
2.2	Geological time scale. Origin of the oceans. Ocean basins. Plate	
	tectonics and seafloor spreading. Ocean floor morphology. Marine minerals and sediments types.	
	Marme minerals and sedments types.	
3	Introduction to Biological Oceanography	12 L
	Habitat - estuaries, mangroves, salt marshes, rocky and	
	intertidal, coral reefs, seagrass, coastal and open ocean,	
	hydrothermal vents and cold seeps. Marine zonation. Pelagic	
	and benthic communities. Marine photosynthesis. Phytoplankton	
	and primary production. Gross and net productivity. New and	
	regenerated productivity, f-ratio. Pigments. Redfield ratio.	
	Measurement and control of secondary production. Benthic-	
	pelagic coupling. Bioturbation. Bioluminescence. Exclusive	
	economic zone.	
Pedagogy:	Lectures/tutorials/assignments/self-study	
References/	The Ocean: Their Physics, Chemistry and Biology, 1962 -	
Readings	Sverdrup, H.U., Johnson, M.W. and Flemming, R.H., Asia Publ.	
ixtaulligo	House, New Delhi.	
	Descriptive Physical Oceanography: An Introduction, 1989 -	
	2	

Munn, C., Marine Microbiology: Ecology and Applications,
Garland Science, Taylor and Francis, N.Y
Meller, C. B., Wheeler, P. A., Biological Oceanography,
WileyBlackwell Publishers.
Oceanography (5th ed), 1990 Grant Gross, M., Englewood
Cliffs, N.J. Prentice Hall.
Introductory Oceanography (5th ed), 1988 Thurman, H.V.,
Columbus Mercill Publ. Co, Ohio.
Provides brief knowledge on how marine physics, chemistry,
biology and geology are interrelated. Understanding of how different physicochemical processes govern life in the ocean.

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 104 Title of the Course: FUNDAMENTALS OF OCEANOGRAPHY - Practical Number of Credits: 1 Effective from Academic Year: 2020-21

Prerequisites:	Basic understanding of the unique properties of water.	
Objective:	To study physicochemical and biological parameters of	
U	seawater.	
Content:		24 H
1.	Estimation of seawater salinity by titration method.	
2.	Determination of dissolved O ₂ of seawater using Winkler's	
	method.	
3.	Determination of pH of seawater by	
	potentiometric/spectrophotometric method.	
4.	Determination of nitrate, phosphate, silicate by	
	spectrophotometric method.	
5.	Determination of chlorophylls and phaeo-pigments by	
	spectrophotometric method.	
Pedology:	Laboratory experiments/ Field trips	
References /	Grasshoff, K., Ehrhardt, M. and Kremling, K., (1999).	
Readings	Methods of Seawater Analysis, Verlag Chem., Weinheim.	
	Ewing, G. W.; (1981) Instrumental Methods of Chemical	
	Analysis. McGraw-Hill, New York.	
	Parsons, T. R., Maita, Y. and Lalli, C. M.; (1984). A Manual	
	of Chemical and Biological Methods for Seawater Analysis,	
	Pergamon Press, Oxford.	
	Strickland, J.D.H, and Parsons T.R., (1972). A practical	
	handbook of seawater analysis, Fisheries Board of Canada	
	bulletin.	
Learning	Students will know to carry out field surveys and analyse the	
outcomes	physicochemical and biological parameters of the marine	
	system.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 105 Title of the Course: MICROBIAL TAXONOMY AND SYSTEMATICS Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites:	It is required that students should have a basic understanding of binomial nomenclature, the basis of classification systems and be familiar with the distinguishing features of different groups of microorganisms.	
Objective:	This course introduces the development of taxonomy and systematics, the various characters used for this purpose, the rules governing the different taxonomy and classification systems and the salient features of the different microbial groups. It also focuses on the rapidly evolving nature of taxonomy and systematics.	
Content:		
1.		
1.1	Microbial taxonomy and systematics Concepts of taxonomy (characterization, classification and nomenclature) and systematics; classification of microorganisms, three domain, six-kingdom, 8-kingdom systems.	2 L
1.2	Phenotypic characters - Morphology, Biochemical tests (e.g. API, BIOLOG), Bacteriophage typing, Serotyping.	4 L
1.3	Chemotaxonomic markers - Cell wall components, lipid composition, cellular fatty acid (FAME analysis), isoprenoid quinones, protein profiles (e.g. MALDI-TOF).	6 L
1.4	Nucleic acid-based techniques – Terminal Restriction Fragment Length Polymorphism (TRFLP); G+C content (T _m and HPLC); pyrosequencing; 16S rRNA, 18S rRNA and ITS gene sequencing; phylogenetic analysis; DNA-DNA hybridization.	8 L
1.5	Concepts of species, numerical taxonomy and polyphasic taxonomy.	4 L
2.	Salient features of phylum, class and orders with representative examples of the following – Archaea, Eubacteria (bacteria, cyanobacteria, actinomycetes), Mycota, Protista (algae, protozoa, diatoms); and viruses.	12 L
Pedagogy:	Lectures/tutorials/assignments/self-study	
References/ Readings	Sneath, A. H. P., Mair, S. N. and Sharpe, E. M., Bergey's Manual of Systematic Bacteriology Vol. 2. Williams & Wilkins Bacteriology Symposium, Series No 2, Academic Press, London/New York.	
	Goodfellow, M., Mordarski, M. and Williams, S. T., The biology of the actinomycetes, Academic Press.	

	Coodfollow M and Minnikin D. E. Chamical Mathada in	
	Goodfellow, M. and Minnikin, D. E., Chemical Methods in	
	Bacterial Systematics, The Society for Applied Bacteriology.	
	Technical Series No. 20, Academic Press.	
	Barlow, A., The prokaryotes: A Handbook on the Biology of	
	Bacteria: Ecophysiology, Isolation, Identification, Applications,	
	Volume 1, Springer-Verlag.	
	Kurtzman, C. P., Fell, J. W. and Boekhout, T., The Yeasts - A	
	Taxonomic Study, Elsevier.	
	Prescott, L. M., Harley, J. P. and Klein, D.A., Microbiology.	
	McGraw Hill, New York.	
	Norris, J. R. and Ribbons, D. W., Methods in Microbiology, Vol.	
	18 & 19, Academic Press.	
	Reddy, C. A., Methods for General and Molecular Microbiology,	
	ASM Press.	
Learning	1. Apply knowledge of the standard rules of classification	
outcomes	systems to categorize microorganisms.	
	2. Appreciate and explain the dynamic and ever developing	
	nature of the field of microbial taxonomy and systematics.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 106 Title of the Course: MICROBIAL TAXONOMY AND SYSTEMATICS - Practical Number of Credits: 1 Effective from Academic Year: 2020-21

Prerequisites:	It is required that students should have a basic understanding of the	
r rerequisites.	1 0	
Objective:	different types of marine microorganisms and their diversity. This course provides opportunities for hands-on experience with	
Objective:		
	the microbiological and biochemical techniques used for	
	characterization of different microbial groups.	24.11
Content:		24 H
1.	Morphological, physiological and biochemical characterization of bacteria.	
2.	Chemotaxonomic analysis of cell wall.	
3.	Characterization of actinomycetes (Streptomyces sp.).	
4.	Characterization of yeast (Saccharomyces cerevisiae,	
	Schizosaccharomyces pombe).	
5.	Characterization of cyanobacteria.	
Pedagogy:	Experiments in the laboratory, data collection and processing.	
References /	Sneath, A. H. P., Mair, S. N. and Sharpe, E. M., Bergey's Manual	
Readings	of Systematic Bacteriology Vol. 2. Williams & Wilkins	
0	Bacteriology Symposium, Series No 2, Academic Press,	
	London/New York.	
	Goodfellow, M., Mordarski, M. and Williams, S. T., The biology	
	of the actinomycetes, Academic Press.	
	Goodfellow, M. and Minnikin, D. E., Chemical Methods in	
	Bacterial Systematics, The Society for Applied Bacteriology.	
	Technical Series No. 20, Academic Press.	
	Barlow, A., The prokaryotes: A Handbook on the Biology of	
	Bacteria: Ecophysiology, Isolation, Identification, Applications,	
	Volume 1, Springer-Verlag.	
	Kurtzman, C. P., Fell, J. W. and Boekhout, T., The Yeasts - A	
	Taxonomic Study, Elsevier.	
	Prescott, L. M., Harley, J. P. and Klein, D.A., Microbiology.	
	McGraw Hill, New York.	
	Norris, J. R. and Ribbons, D. W., Methods in Microbiology, Vol.	
	18 & 19, Academic Press.	
	Reddy, C. A., Methods for General and Molecular Microbiology,	
	ASM Press.	
Learning	1. Application of techniques to characterize different groups of	
outcomes	microorganisms.	
outcomes	microor Sumama,	

Program: M.Sc. Marine Microbiology Course Code: MMC 107 Title of the Course: MATHEMATICS AND STATISTICS IN BIOLOGY Number of Credits: 3 Effective from Academic Year: 2020-21

D		
Prerequisites:	Basic ability to handle numbers and calculation.	
Objective:	The paper develops concepts about types of data observed in	
	biological experiments, its handling and processing. It covers	
	many mathematical techniques that are useful in understanding	
	and predicting the behaviour of biological systems. It develops	
	concepts of hypothesis and formulation of experiments. It gives	
	understanding of various statistical operations needed to carryout	
	and process the biological data.	
Content:		
1	Functions and analysis	10 L
1.1	Introduction to Calculus: Scaling parameters, Non-linear	05 L
	parameters;	
	Rates of change and the derivative: Linearity rule, Product rule,	
	Quotient rule, Chain rule;	
	The Definite Integral: linearity rule, partition rule.	
1.2	Fitting linear models to data, The Basic linear least squares	05 L
1.2	method, Fitting the exponential model by linear least squares.	00 1
	Basic models of population growth: exponential and logistic.	
	Nutrient uptake the Michaelis-Menten model; Droop model for	
	internal nutrient stores and Monod model for growth and external	
	nutrient supply. Analysis of population dynamics – models of	
	production, growth and multiple reacting species, aquatic	
	ecosystem in estuary and ocean viz. Lotka-Volterra Model.	
2		05 T
2	Data collection and representation	05 L
2.1	Characteristics of biological data: Variables and constants,	02 L
	derived variables (ratio, index, rates), types of measurements of	
	biological data (interval scale, ratio scale, ordinal scale, nominal	
	scale, discrete and continuous data).	
2.2	Data handling: Population and samples, random samples,	03 L
	parameter and statistics, accuracy and precision, accuracy in	
	observations, Tabulation and frequency distribution, relative	
	frequency distribution, cumulative frequency distribution.	
	Graphical representation: types of graphs, preparation and their	
	applications.	
3	Statistical analysis	21 L
3.1	Measures of central tendency: characteristics of ideal measure,	04 L
	Arithmetic mean – simple, weighted, combined, and corrected	
	mean, limitations of arithmetic mean; Median – calculation for	
	raw data, for grouped data, for continuous series, limitations of	
	median; Mode – computation of mode for individual series, by	
L		L

	1	
	grouping method, in a continuous frequency distribution,	
	limitations of modes; Relationship between mean, median and	
	mode.	
	Measure of dispersion: variability, Range, mean deviation,	
	coefficient of mean deviation, standard deviation (individual	
	observations, grouped data, continuous series), variance,	
	coefficient of variance, limitation. Skewness, Kurtosis, Moments.	
3.2	Correlation analysis – Correlation, covariance, correlation	03 L
	coefficient for ungrouped and grouped data, Karl Pearson's	
	Coefficient, Rank Correlation coefficient, scatter and dot diagram	
	(graphical method).	
	Regression analysis – simple and multiple, linear and non-linear;	
	examples: DNSA conversion by reducing sugar, survival/growth	
	of bacteria	
3.3	Probability : Probability, Combinatorial Techniques, Elementary	02 L
	Genetics	
3.4	Theoretical Distribution: Binomial, Poisson, Normal	02 L
	Distributions.	
3.5	Hypothesis Testing – parameter and statistics, sampling theory,	03 L
	sampling and non-sampling error, estimation theory, confidence	
	limits, testing of hypothesis, test of significance; Students' T-test,	
	t-distribution, computation, paired t-test.	
3.6	Chi-square test, F-test and ANOVA.	04 L
3.7	Non-parametric tests: Wilcoxon Signed Rank test, Mann-	02 L
	Whitney 'U'test, Kruskal-Wallis 'H' test	022
3.8	Introduction to Bioinformatics	01 L
		01 L
Pedagogy:	Lectures/tutorials/assignments/self-study/Moodle/Videos	
References/	Kothari, C. R., Quantitative Techniques, Vikas Publishing House.	
Readings:	Roman, C. R., Quantitative reeninques, visus ruensning riouse.	
	Arora, P. N. and Malhan, P. K., Biostatistics, Himalaya	
	Publishing House.	
	Danilina, N.I., Computational Mathematics, Mir Publishers.	
	Surya, R. K., Biostatistics, Himalaya Publishing House.	
	Edelstein-Keshet, L., Differential Calculus for the Life Sciences,	
	The University of British Columbia, Open Book	
Loorning	Able to collect, handle, process and present the Biological Data.	
Learning outcomes	Able to conect, handle, process and present the Biological Data. Apply the principles of statistics on biological experiments.	
onicomes	ADDIV the principles of statistics on piological experiments.	

Program: M.Sc. Marine Microbiology Course Code: MMC 108 Title of the Course: MATHEMATICS AND STATISTICS IN BIOLOGY -PRACTICAL Number of Credits: 1 Effective from Academic Year: 2020-21

Prerequisites:	Basic ability to handle numbers and calculation.	
Objective:	Handling and processing of biological data for statistical	
Ū	analysis.	
Content:		24 H
1.	Excel spreadsheet and data analysis.	
2.	Linear equation analysis (regression analysis).	
3.	Normal distribution.	
4.	Hypothesis testing.	
5.	Working with Grapher and Surfer	
Pedagogy:	Data processing, computations	
References /	Kothari, C. R., Quantitative Techniques, Vikas Publishing	
Readings:	House.	
	Arora, P. N. and Malhan, P. K., Biostatistics, Himalaya	
	Publishing House.	
	Danilina, N.I., Computational Mathematics, Mir Publishers.	
	Surya, R. K., Biostatistics, Himalaya Publishing House.	
	Edelstein-Keshet, L., Differential Calculus for the Life	
	Sciences, The University of British Columbia, Open Book	
Learning	Ability to process data and statistical interpretation of	
Outcomes:	microbiology-related experiments.	

Program: M.Sc. Marine Microbiology Course Code: MMC 201 Title of the Course: TECHNIQUES AND INSTRUMENTATION IN MICROBIOLOGY Number of Credits: 3 Effective from Academic Year: 2020-21

and should be able to use basic instruments in Microbiology. Objective This course develops the concepts of methodology involved in studying the different components of microbial cell and various techniques and instruments involved in product analysis. Content 1 1. 12 L 1. 12 L 1. Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 2. I2 Microscopy: Epifluorescence filter techniques: Isotope and tracer techniques: Isotope and tracer techniques: Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Sin	-		1
Objective This course develops the concepts of methodology involved in studying the different components of microbial cell and various techniques and instruments involved in product analysis. Content 1 1. 12 L 1.1 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 12 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 13 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 14 1.3 Spectrophotometry: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 12 L 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 12 L 2.1 Microscopy: Epifluorescence filter techniques: Isotope and tracer techniques: Isotope and tracer techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 12 L	Prerequisites	The student should be familiar with the concepts in basic chemistry	
studying the different components of microbial cell and various techniques and instruments involved in product analysis. Image: Content instruments involved in product analysis. 1. 1. 12 L 1.1 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 12 L 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 12 L 2. 12 L 2.1 Microscopy: Epifluorescence filter techniques: Isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 12 L 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 12 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro- 12 L			
techniques and instruments involved in product analysis. Content 1 1. 12 L 1.1 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 12 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 14 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 14 1.3 Spectrophotology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 12 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 12 L 2. 12 L 12 L 2.1 Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy. 12 L 2.2 Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 12 L 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and	Objective		
Content 1 1. 12 L 1. 12 L 1.1 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 2. 12 L 2.1 Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy. 2.2 Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3. 12 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		studying the different components of microbial cell and various	
1. 12 L 1.1 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 2. 12 L 2.1 Microscopy: Epifluorescence filter techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3. I2 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		techniques and instruments involved in product analysis.	
1. 12 L 1.1 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 2. 12 L 2.1 Microscopy: Epifluorescence filter techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3. I2 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-			
1.1 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 2. 12 L 2.1 Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy. 2.2 Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3. I2 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-	Content		
GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 2. 12 L 2.1 Microscopy: Epifluorescence filter techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3. 12 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-	1.		12 L
molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 2. 12 L 2.1 Microscopy: Epifluorescence filter techniques: Isotope and tracer techniques: Isotope and tracer techniques: Isotope and tracer techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3. Cell and tissue culture technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-	1.1	Chromatographic techniques:	
lipids, pigments, nucleic acids and proteins/enzymes). 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 2. 12 L 2.1 Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy. 2.2 Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3.		GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and	
lipids, pigments, nucleic acids and proteins/enzymes). 1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 2. 12 L 2.1 Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy. 2.2 Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondar//established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3.		molecular exclusion. (using examples for separation of microbial	
1.2 Chromatographic techniques: GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria). 1.3 Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 2. 12 L 2.1 Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy. 2.2 Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3. 12 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-			
molecular exclusion. (using examples for separation of microbial lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria).1.3Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS.2.12 L2.1Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy.12 L2.1Cell and tissue culture techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography12 L3.Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.12 L3.Lettrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-12 L	1.2		
lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria).1.3Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS.2.12 L2.1Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy.2.12 L3.Cell and tissue culture techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		GC, HPLC, detectors, column/s matrix- Ion-exchange, affinity and	
lipids, pigments, nucleic acids and proteins/enzymes). Centrifugation: Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria).1.3Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS.2.12 L2.1Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy.2.12 L3.Cell and tissue culture techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		molecular exclusion. (using examples for separation of microbial	
Principles, methodology, application; Density gradient centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria).1.3Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS.2.12 L2.1Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy.12 L2.1Microscopy: Epifluorescence filter techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography12 L3.Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.12 L3.12 L3.12 L			
centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria).1.3Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS.2.12 L2.1Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy.2.2Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-			
centrifugation; Ultracentrifugation (Separation of ribosomal subunits of bacteria).1.3Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS.2.12 L2.1Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy.2.2Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		Principles, methodology, application; Density gradient	
subunits of bacteria).1.3Spectrophotometry: Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS.2.12 L2.12 L2.1Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy.12 L2.2Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography122.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-12 L			
Atomic Absorption Spectrophotometry (AAS), UV-Visible, fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 12 L 2. 12 L 2.1 Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy. 12 L 2.2 Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 1 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 12 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro- 12 L			
fluorimetry, Fourier transformation infra-red spectroscopy (FTIR), NMR, MS. 12 L 2. 12 L 2.1 Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy. 2.2 Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3. 12 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-	1.3	Spectrophotometry:	
(FTIR), NMR, MS.12 L2.12 L2.1Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy.2.2Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		Atomic Absorption Spectrophotometry (AAS), UV-Visible,	
(FTIR), NMR, MS.12 L2.12 L2.1Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy.2.2Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		fluorimetry, Fourier transformation infra-red spectroscopy	
2.1 Microscopy: Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy. 2.2 Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 3. 12 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-			
Epifluorescence filter technique (DEFT), SEM, TEM, Confocal microscopy.2.2Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-	2.		12 L
microscopy. Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography 2.3 Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet. 12 L 3. 12 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-	2.1	Microscopy:	
2.2Radio-isotope and tracer techniques: Isotope and types of isotopes, Radio-activity counters, Autoradiography2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		Epifluorescence filter technique (DEFT), SEM, TEM, Confocal	
Isotope and types of isotopes, Radio-activity counters, AutoradiographyIsotopes, Radio-activity counters, Autoradiography2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.12 L3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		microscopy.	
Autoradiography2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-	2.2	Radio-isotope and tracer techniques:	
2.3Cell and tissue culture techniques: Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.12 L3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		Isotope and types of isotopes, Radio-activity counters,	
Primary and secondary/established cell lines, Monolayer and suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.12 L3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		Autoradiography	
suspension cultures, Fluorescence activated cell sorting (FACS), Biohazards and Biosafety cabinet.3.12 L3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-	2.3	Cell and tissue culture techniques:	
Biohazards and Biosafety cabinet. 12 L 3. 12 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		Primary and secondary/established cell lines, Monolayer and	
3. 12 L 3.1 Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		suspension cultures, Fluorescence activated cell sorting (FACS),	
3.1Electrophoretic technique: PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-		Biohazards and Biosafety cabinet.	
PAGE, IEF, PFGE, DGGE, TGGE, Single stranded conformation polymorphism (SSCP), Electroporator, Micro-			12 L
conformation polymorphism (SSCP), Electroporator, Micro-	3.1	Electrophoretic technique:	
		PAGE, IEF, PFGE, DGGE, TGGE, Single stranded	
array technique.		conformation polymorphism (SSCP), Electroporator, Micro-	
unuj teeninque.		array technique.	

3.2	Isolation of cell organelles: Different methods of cell lysis/ breakage and isolation and purification of various cell organelles - Cell surface structures, cell envelopes, plasma membranes, peptidoglycan, Outer membrane, ribosomes, protoplasts, spheroplast.	
3.3	Others: X-ray diffraction.	
Pedagogy:	Lectures/tutorials/assignments/self-study/Moodle/Videos	
References /	Wilson, K. and Walker, J., Principles and Techniques of	
Readings:	Biochemistry and Molecular Biology, Cambridge University Press,	
	N.Y., USA.	
	Cooper, T. G., The Tools of Biochemistry, Wiley India Pvt. Ltd.	
	Goswami, C., Paintal, A. and Narain, R., Handbook of	
	Bioinstrumentation, Wisdom Press, New Delhi.	
	Norris, J. R. and Ribbons, D. W., Methods in Microbiology,	
	Volume 5, Part B, Academic Press.	
	Colowick, S. P. and Kaplan, N. O., Methods in Enzymology, Vol. VI, Academic Press, N.Y.	
	Parakhia, M. V., Tomar, R. S., Patel, S. and Golakiya, B. A., Molecular Biology and Biotechnology: Microbial Methods, New India, Pitampura.	
	Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, USA.	
	Jayaraman, J., Laboratory Manual in Biochemistry, John Wiley & Sons Limited, Australia.	
Learning outcomes	Ability to use techniques and instruments involved in the study of microorganisms and their products.	

Program: M.Sc. Marine Microbiology Course Code: MMC 202 Title of the Course: TECHNIQUES AND INSTRUMENTATION IN MICROBIOLOGY - PRACTICAL

Number of Credits: 1 Effective from Academic Year: 2020-21

Prerequisites	The student should be familiar with the concepts in basic	
I Tel equisites	chemistry and should be able to use basic instruments in	
	Microbiology.	
Objective	This course develops the skills for techniques and instrumentation	
ũ	in microbiology.	
Content:		24 H
1.	Microscopy – compound, phase contrast – of bacterial cells.	
2.	Density gradient separation of microbial cells.	
3.	Cell disruption of pigmented bacteria/yeast by sonicator, efficacy of sonication and pigment profiling using UV-visible spectrophotometer.	
4.	Polyacrylamide gel electrophoresis (PAGE), Zymogram.	
5.	Molecular exclusion chromatography.	
Pedagogy:	Experiments in the laboratory	
References /	Wilson, K. and Walker, J., Principles and Techniques of	
Readings:	Biochemistry and Molecular Biology, Cambridge University Press,	
	N.Y., USA.	
	Cooper, T. G., The Tools of Biochemistry, Wiley India Pvt. Ltd.	
	Goswami, C., Paintal, A. and Narain, R., Handbook of	
	Bioinstrumentation, Wisdom Press, New Delhi.	
	Norris, J. R. and Ribbons, D. W., Methods in Microbiology,	
	Volume 5, Part B, Academic Press.	
	Colowick, S. P. and Kaplan, N. O., Methods in Enzymology, Vol. VI, Academic Press, N.Y.	
	Parakhia, M. V., Tomar, R. S., Patel, S. and Golakiya, B. A.,	
	Molecular Biology and Biotechnology: Microbial Methods, New	
	India, Pitampura.	
	Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning:	
	A Laboratory Manual, Cold Spring Harbor Laboratory Press,	
	USA.	
	Jayaraman, J., Laboratory Manual in Biochemistry, John Wiley &	
	Sons Limited, Australia.	
Learning	Ability to use techniques and instruments for carrying out	
outcomes	microbiological research work or in the industries.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 203 Title of the Course: INDUSTRIAL MICROBIOLOGY Number of Credits: 3 Effective from Academic Year: 2020-21

D		
Prerequisites	Basic knowledge about the types of microbes and their	
	products of industrial relevance. Knowledge of microbial	
	biochemistry, physiology, genetics and statistics.	
Objective:	Development of concepts in the processes, instruments,	
	management, quality, etc. being used in the industries to	
	produce the products using marine microorganisms.	
Content:		
1.	Upstream Processing	12 L
1.1	Industrial strains, Fermentation media, Asepsis and	
	sterilisation	
1.2	Bioreactor design and operation: classification of reactors;	
	designing parameters for reactors (stirred tank reactor, airlift	
	reactor, plug flow reactor), rheology of fermentation broth,	
	gas-liquid mass transfer, heat transfer, scale up	
1.3	Solid substrate fermentation (SSF): Principles and	
1.5	application with examples – penicillin, amylase;	
	Immobilized enzymes and cell systems.	
	minioonized enzymes and cen systems.	
2		10 1
2.	Process control and Downstream processing	12 L
2.1	Fermentation monitor and control: speed, temperature, gas,	
	pH, Dissolved oxygen, foam, redox, air flow, weight,	
	pressure, biomass; On-line and off-line analysis	
2.2	Layout and components of fermentation process for	
	extracellular and intracellular microbial products, Recovery	
	of biomass (cells and solid particles), cell disruption for	
	recovery of intracellular products, primary isolation	
	(extraction, sorption), precipitation, industrial processes for	
	chromatography and fixed bed adsorption, membrane	
	separations; drying, crystallisation, whole broth processing	
	(Penicillin production).	
2.3	Formulation, packaging; QC/QA; IPR	
		10-7
3.	Applications in industry	12 L
3.1	Industrially important marine microorganisms;	
	Microbiological techniques in marine food industry –	
	canning, freezing, drying	
3.2	Industrial production and application – enzymes	
	(Proteases, Lipases, amylase, pectinase), carotenoids, eps,	
	bioplastics, biopolymers – xanthan, pigments, Antibiotics-	
	erythromycin, steroids, SCP, biofuels	

3.3	Entrepreneurship	
Pedagogy:	Lectures/tutorials/assignments/self-study/Moodle/Videos	
References /	Demain, A. L., Davies, J. E. and Atlas, R. M. Manual of	
Readings	Industrial Microbiology and Biotechnology, ASM Press.	
	Flickinger, M. C. and Drew S. W., The Encyclopedia of	
	Bioprocess Technology: Fermentation, Biocatalysis and	
	Bioseparation, Volumes 1 - 5, John Wiley Publisher.	
	Stanbury, P. F., Whitaker, A. and Hall, S.J., Principles of	
	Fermentation Technology, Butterworth-Heinemann	
	Publishers.Arad S. M. (1999). Polysaccharides from red microalgae.	
	In Cohen Z (Ed) Chemicals from Microalgae, Taylor and	
	Francis, London, pp 282-292.	
	Borowitzka M. A. (1995) Microalgae as sources of	
	pharmaceuticals and other biologically active compounds.	
	Journal of Applied Phycology 7, 3-15.	
	Kopecky J., Schoefs B., Loest K., Stys D. and Pulz O.	
	(2000). Microalgae as a source for secondary carotenoid	
	production: a screening study. Archiv für Hydrobiologie	
	Supplement 133, 153-168.	
	Melis A. and Happe T. (2001). Hydrogen production.	
	Green algae as a source of energy. Plant Physiology 127,	
	740-748	
Learning	1. Apply the principle of management and controls on the	
Outcomes	microbial processes in industrial settings.	
	2. Apply the principles of physiological understanding in	
	improvement of the industrial processes.	
	3. Study the industrial processes for production of	
	metabolites from marine microoorganisms	

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 204 Title of the Course: INDUSTRIAL MICROBIOLOGY - Practical Number of Credits: 1 Effective from Academic Year: 2020-21

Prerequisites	Knowledge of basic microbiology techniques	
Objective:	This course develops the skills for techniques and	
U	instrumentation in industrial microbiology.	
Content	Industrial Microbiology	24 H
1.	Exopolysaccharide production using marine microbial isolates	
2.	Rheology of substrate solutions.	
3.	Designing of fermentor – stirred tank reactor	
4.	Culturing spirulina (Arthrospira platensis)	
Pedagogy:	Experiments in the laboratory, data collection and processing.	
References/	Flickinger, M. C. and Drew S. W., The Encyclopedia of	
Readings	 Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, Volumes 1 - 5, John Wiley Publisher. Stanbury, P. F., Whitaker, A. and Hall, S.J., Principles of Fermentation Technology, Butterworth-Heinemann Publishers. Arad S. M. (1999). Polysaccharides from red microalgae. In Cohen Z (Ed) Chemicals from Microalgae, Taylor and Francis, 	
	London, pp 282-292. <u>https://www.justspirulina.org/spirulina-growing-requirements</u> Habib, M.A.B.; Parvin, M.; Huntington, T.C.; Hasan, M.R. A	
	review on culture, production and use of spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular. No. 1034. Rome, FAO. 2008. 33p.	
Learning Outcomes	Able to handle the instruments for carrying out microbiological research work or in the industries.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 205 Title of the Course: MICROBIAL GENETICS AND GENE REGULATION Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites	It is required that the students have a basic knowledge of	
	DNA (structure and replication), Prokaryotic and	
	eukaryotic genome organisation, mutation concept, basic	
	knowledge transcription and translation.	
Objective:	This course develops concepts in molecular biology: DNA	
Ŭ	packaging, DNA damage and repair, gene structure,	
	expression and regulation in both prokaryotes and	
	eukaryotes	
Content:		Lectures
1	Chromosomes, Genomes and it's evolution	6 L
1.1	Fundamental functions of DNA. Chromosomal DNA and	
	its packaging in the chromatin fibre. Chromatin structure,	
	structural features (Telomere, Centromere and Repetitive	
	sequences) of chromosomes and their functions. Gene	
	duplication and mutations. Genomic islands.	
1.2	Structural chromosomal aberrations and their significance:	
.	Deletion, duplication, inversion, translocation. Aneuploidy	
	and polyploidy.	
	and polypioldy.	
2	DNA Damage, DNA Repair and Recombination	18 L
2.1	Types of DNA damage (spontaneous and induced DNA	
2.1	damage). Mutagenesis, mutation and mutants: Somatic and	
	germinal mutation, spontaneous and induced mutations,	
	site specific using PCR/ cassette mutagenesis, and random	
	mutagenesis. Types of mutation: silent mutation, missense	
	mutation, nonsense mutation, Read through mutation,	
	frameshift- insertion and deletion mutation, translocation,	
	Inversion, suppressor mutation.	
	Mutagenic chemicals and radiations and their mechanism	
	of action: Base analogues (5-Bromouracil and 2-amino	
	purines), EMS, acridines, NTG, Hydroxylamine;	
	mutagenic radiations- UV, X-rays and gamma rays. Ames	
2.2	test; Auxotrophy.	
2.2	Mechanisms/pathways to remove damaged DNA: Excision	
	repair, mismatch repair, recombination repair in <i>E. coli</i> and	
	SOS Repair. Role of RecA in DNA damage repair,	
• •	Photoreactivation repair in E. coli involving photolyase.	
2.3	Mechanisms of Genetic Recombination: General and site-	
	specific recombination. Heteroduplex DNA formation	
	(Homologous recombination). Synaptonemal Complex,	
	Bacterial RecBCD system and its stimulation of chi	
	sequences. Role of RecA protein, homologous	
	recombination, Holliday junctions.	

3	Genomic rearrangements, Gene structure and control of gene expression in Prokaryotes and Eukaryotes	12 L
3.1	Mechanism of General and programmed DNA	
	rearrangements, Antigenic and phase variation in bacteria.	
	Transposons: IS elements – Composite transposons (Tn3,	
	Tn10), Ty, Copia and P type, Mechanism of transposition.	
	Role of transposons in DNA rearrangements and microbial	
3.2	genome evolution An overview of Gene expression control, DNA binding	
5.2	motifs in gene regulatory proteins, genetic switches and	
	their role in control of gene expression. Post-transcriptional	
	controls-transcriptional attenuation, Riboswitches,	
	Alternate splicing, RNA editing, RNA Interference.	
Dadagagay		
Pedagogy:	Lectures/tutorials/assignments/self-study	
References/	Gardner, E. J., Simmons, M. J. and Snustad, D. P.,	
Readings	Principles of Genetics, John Wiley & Sons.	
	Krebs J. E., Lewin B., Goldstein E. S. and Kilpatrick, S.T.,	
	LEWIS Genes XI, Jones and Bartlett Publishers.	
	Maloy, S. R., Cronan, J. E. and Freifelder, D., Microbial	
	Genetics, Jones and Bartlett Publishers.	
	Streips, U. N. and Yasbin, R. E., Modern Microbial	
	Genetics, John Wiley.	
	Peter, J. R., iGenetics: A Molecular Approach, Pearson	
	Education.	
	Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.,	
	Roberts, K. and Walter, P., Molecular Biology of the Cell,	
	Garland Science.	
	Watson, J. D., Molecular Biology of the Gene,	
	Pearson/Benjamin Cummings.	
	Malacinski, G.M., Freifelder's Essentials of Molecular	
	Biology, Narosa Book Distributors Private Limited.	
	Twyman, R. M. and Wisden, W., Advanced Molecular Biology: A Concise Reference, BIOS Scientific Publishers.	
	Davis, L. G., Dibner, M. D. and Battey, J. F., Basic	
	Methods in Molecular Biology, Elsevier.	
	Gerhardt, P., Methods for General and Molecular	
	Bacteriology, Elsevier.	
Learning	Understanding of gene structure, expression, mutagenesis	
Outcomes	and regulation of gene expression in both prokaryotes and	
	eukaryotes for application in molecular research and its	
	significance in microbial evolution.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 206 Title of the Course: MICROBIAL GENETICS AND GENE REGULATION - Practical Number of Credits: 1 Effective from Academic Year: 2020-21

Basic knowledge about nucleic acids and replication	
This course provides hands-on experience with DNA	
extraction, purification and electrophoretic techniques.	
Microbial Genetics and Gene Regulation	24 H
Isolation of genomic DNA of bacterial cells, estimation of	
quantity and purity of DNA by spectrophotometry, and agarose	
gel electrophoresis.	
Isolation of genomic DNA from environmental sample	
(sediment/ seawater).	
PCR / RT-PCR amplification of a specific gene using genomic	
determine amplicon size.	
UV mutagenesis and screening of pigment deficient mutants of	
Serratia marcescens.	
Experiments in the laboratory.	
· · · · · · · · · · · · · · · · · · ·	
Davis, L. G., Dibner, M. D. and Battey, J. F., Basic Methods in	
Molecular Biology, Elsevier.	
Gerhardt, P., Methods for General and Molecular Bacteriology,	
Elsevier.	
To learn techniques involved in genomic DNA isolation and	
PCR amplification for use in molecular research.	
	extraction, purification and electrophoretic techniques. Microbial Genetics and Gene Regulation Isolation of genomic DNA of bacterial cells, estimation of quantity and purity of DNA by spectrophotometry, and agarose gel electrophoresis. Isolation of genomic DNA from environmental sample (sediment/ seawater). PCR / RT-PCR amplification of a specific gene using genomic DNA as a template and agarose gel analysis of PCR product to determine amplicon size. UV mutagenesis and screening of pigment deficient mutants of <i>Serratia marcescens</i> . Experiments in the laboratory. Davis, L. G., Dibner, M. D. and Battey, J. F., Basic Methods in Molecular Biology, Elsevier. Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier. To learn techniques involved in genomic DNA isolation and

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 207 Title of the Course: MICROBIAL ECOLOGY Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites	Basic understanding of the marine environment and	
1 Ter equisites	microorganisms.	
Objective:	Introduce the students to the marine environment, biodiversity	
Objective.	and their interaction. Impart knowledge on the effect of	
Contonto	climate change on microbial ecology.	
Content:	Moning and induced the dimension and its interpretion	10 T
1	Marine environment, biodiversity and its interaction	12 L
1.1	Marine microbial diversity. Ecosystem and food webs. Energy	
	flow and cycling. Interaction between biotic and abiotic	
1.0	factors.	
1.2	Marine microbiome- Diversity, evolution and function,	
	mutualism, commensalism, parasitism, microbial symbiosis,	
	microbiomes from plankton, fish, coral, sponge, deep-sea	
	invertebrate, and animals. Stress response and adaptation.	
	Marine probiotics, prebiotics and its application.	
1.3	Biogeochemical cycles – carbon, nitrogen, phosphorus,	
	sulphur, iron and manganese	
1.4	Oxygen minimum zones (OMZs), anaerobic microbial	
	metabolism, OMZs in the world oceans, anthropogenic impact	
2	Microbes and Carbon Cycling	12 L
2.1	Marine carbon reservoirs, ocean carbon cycle, carbon pump-	
	solubility, carbonate, biological, microbial, microbial loop,	
	role of picoplankton.	
2.2	Production, transformations and fate of dissolved organic	
	matter (DOM), Sources and composition of DOM, reactivity	
	class of DOM, DOM release and microbial food webs,	
	Extracellular enzymes, DOM release and global climate	
	change, role of DOM in the ecosystem, chromophoric	
	dissolved organic matter (CDOM), factors affecting CDOM	
	and its role in the ecosystem. Carbon cycling in the anoxic	
	environment and sediments.	
3	Marine Ecosystem and Global Climate Change	12 L
	Greenhouse gases. Warming potential. Changes in physical	
	and biogeochemical properties: ocean acidification, global	
	warming, deoxygenation. Causes, changing chemistry of the	
	ocean. Physiological, population and community response in	
	marine organisms. Impact on marine plankton, fishery, coral,	
	humans. Changes in growth, distribution, energetics, food	
	web, marine productivity, microbial loop, reproduction,	
	survival, recruitment, prey-predator interaction. Thermal	
	survival, recruitment, prey-predator interaction. Thermal	

	limits and distribution of organisms. Climate change refugia and adaptation. Coastal and ocean species migration and change in the structure, Environmental and economic consequences. Multiple stressors and Synergistic effects.	
Pedagogy:	Lectures/tutorials/assignments/self-study	
References /	Mitchell, R. and Kirchman, D. L., Microbial Ecology of the	
Readings	Oceans, Wiley- Blackwell Publishers.	
	Nybakken, J. W. and Bertness, M. D., Marine Biology: an	
	Ecological Approach, Benjamin Cummings, San Francisco.	
	Munn, C., Marine Microbiology: Ecology and Applications,	
	Garland Science, Taylor and Francis, N.Y.	
	Elements of Marine ecology (4th ed) 1982 – Tait, R.V. and	
	Dipper, F. Butterworth – Heinemann	
	Textbook of Marine Ecology, 1980 – Nair, N.B. & Thampy,	
	D.M., Macmillan, 352 pp	
	Marine Biology, 1984, Thurman, H.V. and Webber, H.H.,	
	Harper Collins Publishers	
Learning	Students will understand the concept of the marine	
outcomes	biodiversity and the factors governing them. Role of climate	
	change in marine ecosystem.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMC 208 Title of the Course: MICROBIAL ECOLOGY - Practical Number of Credits: 1 Effective from Academic Year: 2020-21

		1
Prerequisites	Basic understanding of the unique features of marine	
	environments and microorganisms.	
Objective	Enable the students to identify microbes and understand their role	
	in the marine environment.	
Content		24 H
1.	Enumeration of plankton associated microbes.	
2.	Determination of particulate organic matter (carbon/ nitrogen/	
	phosphorus) from plankton/ seawater.	
3.	Determination of carbohydrates/proteins/lipids from plankton/ seawater/ sediments.	
4.	Estimation of CDOM from seawater by spectrophotometric	
	method.	
5.	Determination of extracellular enzymes from plankton/ seawater/	
	sediments by MUF.	
6.	Determination of sulphide in seawater.	
Pedagogy:	Laboratory experiments/ Field trips	
References /	Parsons, T. R., Maita, Y. and Lalli, C. M.; (1984). A Manual of	
Readings	Chemical and Biological Methods for Seawater Analysis,	
0	Pergamon Press, Oxford.	
	Zoppini et al., (2005). Extracellular enzyme activity and dynamics	
	of bacterial community in mucilaginous aggregates of the northern	
	Adriatic Sea. Science of The Total Environment 353(1-3):270-86.	
	Strickland, J.D.H, and Parsons T.R., (1972). A practical handbook	
	of seawater analysis, Fisheries Board of Canada bulletin. (2nd	
	edition).	
	Padini et al., (2014). Contrasting phytoplankton community	
	structure and associated light absorption characteristics of the	
	western Bay of Bengal. Ocean Dynamics. 64:89–101.	
Learning	Understanding the role of microbes in the marine ecosystem and	
outcomes	how to estimate it.	

Program: M.Sc. Marine Microbiology Course Code: MMO 301 Title of the Course: MARINE VIROLOGY Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites	It is required that students have a basic knowledge of viruses- their	
	structure, classification and also about marine environment-	
	different habitats.	
Objective	This course develops concepts about viruses in marine	
	environment, different approaches to study them, their role and	
	significance in marine environment, few diseases of fishes,	
	shrimps, shell-fishes.	
Content:		
1.	Virus Structure, Diversity and Assay	14 L
1.1	Marine Viruses - Introduction	
1.2	Marine phages and their host: Archaea, bacteria and cyanobacteria,	
	phytoplanktons, algae	
1.3	Marine viruses and their hosts: fish and shrimp; Giant marine virus	
1.4	Metagenomic approaches to study the diversity of marine viruses	
2.	Multiplication and Assay of Phages and Viruses	08 L
2.1	Bacteriophage life cycles - lysogenic (latent) and lytic (virulent)	
2.2	Viral multiplication	
2.3	One step growth profile.	
2.4	Assay: plaque assay (PA); most-probable number (MPN)	
3.	Significance of viruses in marine ecosystem	14 L
3.1	Movement of viruses between biomes	
3.2	Effect of viruses on ecology of the marine ecosystem: Role of viruses	
	in microbial loop, viral shunt	
3.3	Marine viruses and global climate change	
3.4	Viral pathogens of marine aquatic organisms: Lymphocystis virus,	
	Infectious pancreatic necrosis virus (IPNV), Nervous necrosis virus	
	(NNV), Salmon Alphavirus (SAV), Infectious haematopoietic	
25	necrosis virus (IHNV)	
3.5	Viruses in shell-fish and shrimps, and health hazards: Norwalk virus and Hepatitis virus A.	
Pedagogy:	Lectures/tutorials/assignments/self-study/Moodle/Videos	
I cuagugy.		
References/	Sano, E., Carlson, S., Wegley, L., Rohwer, F. (2004) Movement of	
Readings:	Viruses between Biomes. Applied and Environmental Microbiology,	
ittuuings.	70: 5842–5846.	
	10. 30+2-30+0.	

	 Breitbart, M., Thompson, L. R., Suttle, C. A., Sullivan, M. B. (2007) Exploring the Vast Diversity of Marine Viruses. Oceanography, 20: 135-139. Rohwer, F., Thurber, R. V. (2009) Viruses manipulate the marine environment. Nature, 459: 207-212. Danovaro, R., Corinaldesi, C., Dell'Anno, A., Fuhrman, J.A., Middelburg, J.J., Noble, R.T., Suttle, C.A. (2011) Marine viruses and global climate change. FEMS Microbiology Reviews, 35: 993–1034. Crane, M., Hyatt, A. (2011) Viruses of Fish: An Overview of Significant Pathogens. Viruses, 3: 2025–2046. Woo, P. T. K. and Bruno, D. W., Fish Diseases and Disorders. Vol 3: Viral, Bacterial and Fungal Infections. CABI Publishing. Bosch, A., Le Guyader, S.F. (2010) Viruses in Shellfish and Food, Environmental Virology 2: 115-116. 	
	 Davis, B. D., Dulbecco, R., Eisen, H. N. and Ginsberg, H. S., Microbiology, Harper and Row Publishers. Microbiology and Immunology – Online, Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine. 	
Learning outcomes	Explain the role of viruses in marine environment,, the effect of viruses on global climate change. Apply the knowledge of viral diseases in aquaculture, various techniques of studying them in research.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 302 Title of the Course: MARINE ZOOPLANKTON ECOLOGY AND MICROBIAL INTERACTIONS

Number of Credits: 3 Effective from Academic Year: 2020-21

D		Τ
Prerequisites	Knowledge of marine ecology with respect to different marine organisms	
	found in seawater, metabolic diversity, various biological phenomena	
	occurring in marine environment.	
Objectives	This course will introduce students to the biology of marine zooplankton	
	which are the free-floating microscopic animals in the sea. Students will	
	gain a deeper insight into the role of zooplankton in marine ecology and	
	ecosystem functioning. They will also learn about global programs	
	related to ocean observations.	
Content		
1	Introduction to Zooplankton and Associated Microbial Communities	12 L
1.1	Classification based on size, ecology, as per depth distribution, length of	
	planktonic life; Distribution; Spatial Temporal variation, Seasonal	
	changes in zooplankton abundance, Encounter rate, Reynold's number,	
	particle-tracking velocimetry, microscale turbulence, changes in vertical	
	distribution, migration	
1.2	Diversity and biomass size spectra: Sampling, Instruments, Laser optical	1
1.2	plankton counter, ZooScan, ZooCAM; diversity indices	
1.3	Feeding mechanism: Passive ambush feeding, Active ambush feeding,	
1.5	Feeding-current feeding (Direct interception, Filter feeding, Scanning	
	currents, Hovering versus cruising), Cruise feeding (small prey, marine	
	snow) Detection of possible modes of selective feeding. Coloulation of feed	
	Detection of possible modes of selective feeding, Calculation of feed	
	rates, Intraguild predation; impact of zooplankton food selectivity on	
1.4	plankton dynamics and nutrient cycling	
1.4	Zooplankton associated microbial communities – prokaryotes,	
	eukaryotes; aerobes, anaerobes	
1.5	Zooplankton monitoring projects, Continuous plankton recorder surveys,	
	The Scientific Committee on Oceanic Research (SCOR), Global Ocean	
	Observing System (GOOS), JGOFS, Global Alliance of CPR Surveys	
	(GACS), Global Ocean Ecosystem Dynamics (GLOBEC), Integrated	
	Marine Biosphere Research (IMBeR), Ocean Biogeographic Information	
	System (OBIS)	
2	Systematics, Genomics and Molecular Detection	12 L
2.1	Systematics and morphology of the major groups such as copepods,	
	rotifers, chaetognaths, euphausids, mysids, ostracods, tintinnids,	
	cnidarians; Growth, Reproduction and development lifecycles; Protists	
	(Mastigophora, Sarcodina, Ciliophora)	
2.2	Population genomics of marine zooplankton: Genomic resources,	
<i>-</i> -	Mitogenomes, Transcriptomic resources, Genomic basis of adaptation,	
	Metagenetics & metabarcoding, Case studies (<i>Calanus finmarchicus</i> ,	
	interagencies & metabalcoung, Case studies (Catanus Jinmarchicus,	

		1
	Acartia tonsa, Euphasia superba, Spadella cephaloptera); Molecular	
	detection, Sandwich hybridization assay, Zooplankton diversity analysis	
	through single-gene sequencing of community sample; Non-destructive	
	genome skimming for aquatic copepods; Target Capture Sequencing for	
	cross-species relevance; Single Cell Genomics approach for pico- and	
	nano-sized protists	
3	Ecological Significance of Zooplankton and Trophic Interactions	12 L
3.1	Zooplankton indicators of water quality: in bays, in brackish coastal	
	waters (Rotifer trophic state indices); Zooplankton toxicity test methods	
	for marine water quality evaluations; Effect of water quality on structure	
	of zooplankton assemblages – anthropogenic pressure	
3.2	Elemental stoichiometry of zooplankton, implications in nutrient cycling;	
5.2	microzooplankton stoichiometry plasticity	
3.3	Association between Vibrios and zooplankton	
5.5	1	
2.4	Bacterial bioluminescence as a lure for marine zooplankton	
3.4	Studies on the Interrelationships of Zooplankton and Phytoplankton,	
	Microcosm experiments for interactions between zooplankton,	
	phytoplankton and microbial foodweb; Zooplankton impact on the	
	trophic structure of phytoplankton, Implications of climate change	
3.5	Zooplankton grazing as an important source of mortality for harmful algal	
	bloom species; zooplankton as toxin vectors or toxin sink; Relevance of	
	marine chemical ecology to zooplankton	
3.6	Impact of climatic change on zooplankton: microzooplankton grazing	
	rates due to changes in heterotrophic bacteria, zooplankton population	
	dynamics influencing the recruitment success of pelagic fish stocks	
Pedagogy:	Lectures/tutorials/assignments/self-study/Moodle/Videos	
Reading/	Methods in Marine Zooplankton Ecology, 1984 Omori, W. and Ikeda, T.	
References:	Wiley	
References.	Zooplankton Methodology Manual, 2000 Harris, R., Wiebe, P., Lenz, J.,	
	Skjoldal, H.R., Huntley, M. (Eds), ICES Academic Press, San Diego, pp.	
	68	
	Tropical Zooplankton, 1984 Dumont, H. The Hogue Dr. W. Junk	
	Publishers	
	Atlas of Marine Zooplankton Straits of Magellan: Amphipods,	
	Euphausids, Mysids, Ostracods, and Chaetognaths, 1997 Guglielmo, L.	
	New York Springer-Verlag	
	Introduction to Marine Plankton, 2004 Mitra, A. Delhi Daya Publishing	
	House	
	Plankton and Productivity in the Oceans: Zooplankton, 1980 Raymont,	
	J.E.G., Burton, J.D., Dyer, K.R. (Eds), Pergamon Press	
	Marine Microbiology Ecology and Applications, 2011 Munn, C.B. New	
	York: Garland Science	
	Marine Microbiology: Facets and Opportunities, 2004 Ramaiah, N. Dona	
	Paula, Goa, National Institute of Oceanography.	
	How zooplankton feed: mechanisms, traits and trade-offs, 2011 Kiørboe,	
	T. Biological Reviews 86: 311-339.	
	·	

	Ecological Stoichiometry of Ocean Plankton, 2018 Moreno, A.R.,	
	Martiny, A.C., Annual Review of Marine Science 10: 43-69.	
	Single cell genomics yields a wide diversity of small planktonic protists	
	across major ocean ecosystems, 2019 Sieracki, M.E., Poulton, N.J.,	
	Jaillon, O., Wincker, P., de Vargas, C., Rubinat-Ripoll, L., Stepanauskas,	
	R., Logares, R., Massana, R., Nature Scientific Reports 9: 6025.	
Learning	1. Explain the role of zooplankton in various oceanographic processes.	
Outcomes:	2. Apply the knowledge of different groups of zooplankton to study them	
	in any marine pelagic environment.	
	3. Explain the application of modern genomics technology for their	
	detection.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 303 Title of the Course: MARINE ZOOPLANKTON - PRACTICAL Number of Credits: 1 Effective from Academic Year: 2020-21

	Γ	
Prerequisites	Knowledge of marine ecology is a prerequisite.	
Objectives	To get practical knowledge of handling the sampling, microscopy	
	and molecular identification of zooplankton.	
Content:		24 H
1.	Sampling of marine zooplankton	
2.	Identification of marine zooplankton up to different groups or order.	
3.	Methods of biomass estimation.	
4.	Grazing studies (dilution plot).	
5.	DNA extraction from zooplankton specimens for PCR.	
Pedagogy:	Field visit, laboratory experiments	
Reading /	Methods in Marine Zooplankton Ecology, 1984 Omori, W. and	
References:	Ikeda, T. Wiley	
	Zooplankton Methodology Manual, 2000 - Harris, R., Wiebe, P., Lenz, J., Skjoldal, H.R., Huntley, M. (Eds), ICES Academic Press, San Diego, pp. 68	
	Atlas of Marine Zooplankton Straits of Magellan: Amphipods, Euphausids, Mysids, Ostracods, and Chaetognaths, 1997 Guglielmo, L. New York Springer-Verlag	
Learning outcomes:	Practical knowledge of sampling, and identification of marine zooplankton and DNA isolation from the specimens for molecular identification.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 304 Title of the Course: ARCHAEA Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites	Basic knowledge of 3 domains of life, difference between	
	prokaryotic cells, eukaryotic cells and archaea.	
Objective:	This course develops concept of Three domains of Life, Ecology,	
	physiology and diversity of Archaea, cell structure and	
	architecture of archaea, metabolism and energetics of archaea and	
	Genetics of domain Archaea.	
Content:		
1.	Archaea – significance, ecology and cell organization	12 L
1.1	Significance of Archaea: Biotechnology, Biogeochemical	
	cycling, Evolutionary developments	
1.2	Ecology, physiology and diversity of Archaea Global econiches:	
	Deep Sea, Hydrothermal vent, Dead Sea, solar salterns,	
	geothermal vents, solfataras, Antarctica, soda lake. Study of	
	archaeal biodiversity; unculturable archaea by metagenomics.	
	Archaeal culture retrieval methods, novel samplers. Preservation	
	and maintainance of archaeal cultures. Nutrition, growth and	
	growth kinetics and physiological versatility, Stress response of	
	Methanogens (Methanobacterium thermoautotrophicum);	
	Halophiles (H. salinarum); Thermophiles (Thermoplasma	
	acidophilum); Thermoacidophiles (Sulfolobus acidocaldarius);	
	Psychrophilic archaea (Methanogenium frigidum,	
	Methanococcoides burtonii); Methanotrophs. Methylotrophs	
1.3	Cell structure and architecture of Archaea: Cellular	
	organization: cell morphotypes, cell envelopes -archaeal	
	membrane lipids and cell wall, appendages -pili, flagella,	
	cannulae, hami. Novel bio-molecules: Glycerol diether moieties	
	and macrocyclic lipid, novel enzymes, co-enzymes:	
	methanopterin, formaldehyde activation factor, Component B,	
	Coenzyme M, F420, F430, corrinoids.	
2.	Metabolism and energetics of Archaea	12 L
2.1	Modified anabolic pathways of carbohydrates and lipids;	
	methanogenesis and acetoclastic reactions.	
2.2	Modified central metabolic pathways: EMP, ED, incomplete	
	TCA; reverse Kreb cycle, carbon dioxide reduction pathways:	
	reductive acetyl-CoA pathway, 3-hydroxypropionate pathway.	
	Chemolithoautotrophy.	
2.3	Bioenergetics: ATP synthesis (i) respiration-driven (ii) light-	
	driven, involving bacteriorhodopsin (iii) chloride-driven,	
	involving halorhodopsin. Gibb's free energies of metabolic	
	reactions of methanogens.	
		1

3.	Genome of Archaea	12 L
3.1	Size of genome, G + C content, associated proteins, archaeal histones and nucleosomes, introns in archaea, archaeal RNA polymerases, reverse DNA gyrase.	
3.2	Plasmids, transposons -IS elements. Modifications in tRNA and rRNA structure. Novel 7S rRNA. DNA replication, translation and transcription in archaea.	
3.3	Gene organization in Archaea: (i) <i>his</i> operon (ii) <i>bob</i> operon (iii) <i>mcr</i> operon.	
Pedagogy:	Lectures/tutorials/assignments/self-study	
References/	Woese, C. R., Fox, G. E., (1977) Phylogenetic structure of the	
Readings	prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA. 74: 5088–5090.	
	Blum, P., Archaea: New Models for Prokaryotic Biology, Academic Press.	
	Cavicchioli, R., Archaea: Molecular and Cellular Biology, ASM Press.	
	Garrett, R. A. and Hans-Peter, K., Archaea: Evolution, Physiology and Molecular Biology, John Wiley and Sons.	
	Howland, J. L., The Surprising Archaea: Discovering Another Domain of Life, Oxford University Press.	
	Barker, D. M., Archaea: Salt-lovers, Methane-makers, Thermophiles and Other Archaeans, Crabtree Publishing Company.	
	Munn, C., Marine Microbiology: Ecology and Applications, Garland Science, Taylor and Francis Group, N.Y.	
	Boone, D. R. and Castenholz, R. W., Bergey's Manual of Systematic Bacteriology: The Archaea and The Deeply Branching and Phototrophic Bacteria, Springer Science and Business Media.	
	Corcelli, A. and Lobasso, S., (2006) Characterization of Lipids of Halophilic Archaea. Methods in Microbiology, 35: 585-613.	
	Rothe, O. and Thomm, M., (2000) A simplified method for the cultivation of extreme anaerobic archaea based on the use of sodium sulfite as reducing agent, Extremophiles. 4: 247-252.	
Learning outcomes	 Explains the concept of third domain of Life Archaea. Explains the Ecology, Physiology and Biochemistry of domain Archaea. Principles of Archaeal Genetics and application. 	
	4. Application of Archaea and archaeal bioactive compounds in Industry.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 305 Title of the Course: ARCHAEA- Practical Number of Credits: 1 Effective from Academic Year: 2020-21

1		•
Prerequisites	It is required that students have basic knowledge of 3 domains of	
	life and basic microbiology techniques.	
Objective:	This course develops concepts in sampling and isolation of	
0	archaea from different econiches. Also identification of archaea	
	and study of archaeal pigments.	
Content:		
1.	Isolation and culturing of archaea	24 H
2.	Identification of archaeal isolates	
2.1	Biochemical tests for archaea	
2.2	Extraction of archaeal pigment and characterization using UV-Vis spectroscopy	
2.3	Screening for archaeal enzymes	
Pedagogy:	Experiments in the laboratory	
References /	Munn, C., Marine Microbiology: Ecology and Applications, Garland	
Readings	Science, Taylor and Francis Group, N.Y.	
	Boone, D. R. and Castenholz, R. W., Bergey's Manual of Systematic	
	Bacteriology: The Archaea and The Deeply Branching and	
	Phototrophic Bacteria, Springer Science and Business Media.	
	Corcelli, A. and Lobasso, S., (2006) Characterization of Lipids of	
	Halophilic Archaea. Methods in Microbiology, 35: 585-613.	
	Rothe, O. and Thomm, M., (2000) A simplified method for the	
	cultivation of extreme anaerobic archaea based on the use of sodium	
	sulfite as reducing agent, Extremophiles. 4: 247-252.	
Learning	1. Sampling from different Econiches of Archaea	
outcomes	2. Skill development for Isolation, culturing of Archaea and	
	identification of archaea.	
l	3. Bioprospecting of bioactive molecules from archaea.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 306 Title of the Course: GENETIC ENGINEERING Number of Credits: 3

Prerequisites	Knowledge of bacterial and animal genetics, basic molecular and	
1	microbiology is a prerequisite.	
Objective:	This course aims to introduce the fundamental tools and techniques	
	required for molecular cloning, with emphasis on DNA editing to	
	protein expression in wide variety of hosts. Applications of genetic	
	engineering in agriculture, therapeutics and industry will be	
	covered.	
Content:		
1.	Introduction to genetic engineering and tools involved in genetic	12 L
	manipulation	
1.1	Introduction to genetic engineering	
1.2	Tools and techniques involved in genetic manipulation I	
А.	DNA modifying enzymes: restriction endonucleases, exonucleases,	
	DNA ligases (T4 DNA Ligase and <i>E.coli</i> DNA ligase), Terminal	
	DNA transferase, DNA Polymerases (Taq, Amplitaq, vent, Exo-	
	vent, Pfu, T4 etc), Reverse transcriptase, T4 polynucleotide kinases,	
	Alkaline phosphatase, S-1 Nuclease, Mung bean nuclease, RNases.	
B.	Gene cloning systems/Hosts: Gene cloning in <i>E. coli</i> and other	
	organisms such as Bacillus subtilis, Saccharomyces cerevisiae and	
	other microbial eukaryotes. Retroviruses and retroposons, Genomic	
	organization T4, Lambda Phage, TMV, SV40, Petite mutants of	
	yeast, F plasmids and their use in genetic analysis R plasmids	
	antibiotic resistance, Ti plasmid, 2µ plasmid	
C.	Sequencing Vectors: pUC 19 and M-13 Phage vector.	
2.	Tools and techniques involved in genetic manipulation II	12 L
А.	Expression vectors: Prokaryotic (pET, pGEX-2T). Characteristics	
	of expression vectors: strong bacterial and viral promoters (lac, trp,	
	tac, SV 40, T7, T3) for induction of gene expression.	
B.	Cloning vectors: plasmid (pUC19, pBR 322), λ phage based	
	vectors, cosmid vectors, Phasmid vectors, shuttle vectors, High	
	capacity Cloning vectors (BAC and YACs).	
C.	Construction of cDNA molecule and its transfer to appropriate host	
	(bacteria/yeast/plant cell/animal cell) using a suitable technique:	
	transformation, electroporation, transfection, gene gun.	
D.	Other Recombinant DNA techniques: Use of radioactive and non-	
	radioactive nucleotides for DNA probe preparation and detection of	
	hybrids, Gel retardation assay, Restriction mapping, RFLP, PCR,	
	RT-PCR, Real time PCR, Microarray, DNA sequencing using	
	Sanger's Dideoxy chain termination method and automated	
	sequencer; Illumina sequencing; chromosome walking.	
3		12 L

A.	Screening of Genetic diseases using DNA probes (DNA	
	diagnostics).	
В.	Application of recombinant DNA technology in solving parental	
	dispute and criminal cases (DNA finger printing).	
3.2	Application of genetic engineering production of recombinant	
	drugs, vaccines and hormones	
А.	Production of recombinant proteins and drugs (insulin, tissue	
	plasminogen activator, erythropoietin, human growth hormones,	
	Antibodies (including bispecific antibodies), vaccines, interferons,	
	DNA vaccines: merits and demerits, Edible vaccines- merits and	
	demerits.	
В.	Genetic manipulation to increase recombinant protein stability and	
	secretion using signal sequences.	
3.3	Genetic engineering of microbes for production of enzymes,	
•	biomolecules and fermentation products.	
А.	Genetic manipulation of microbes to over-produce industrially	
B.	valuable enzymes. Production of microbial SCPs.	
D.		
3.4	Genetic engineering of microbes for bioremediation and	
	biomonitoring of toxic environmental pollutants,	
	Biohydrometallurgy	
A.	Microbial bioremediation of xenobiotics by recombinant microbes.	
В.	Bioremediation of toxic heavy metals and organometals by recombinant microbes.	
C.	Biohydrometallurgy using recombinant microbes for recovery of	
C.	precious metals.	
Pedagogy:	Experiments in the laboratory	
i cuagogy.		
References/	Old, R. W. and Primrose, S. B., Principles of Gene Manipulation:	
Readings	An introduction to Genetic Engineering, University of California	
8-	Press.	
	Glick, B. R., Pasternak, J. J. and Patten, C. L., Molecular	
	Biotechnology: Principles and Applications of Recombinant DNA,	
	ASM Press.	
	Williamson, R., Genetic Engineering, Volumes 4-7, Academic	
	Press.	
	Glover, D. M., Gene cloning: The Mechanics of DNA	
	Manipulation, Springer-Science+Business Media, B. V	
	Green, M. R. and Sambrook, J., Molecular Cloning: A Laboratory	
	Manual, Cold Spring Harbor Laboratory, New York	
	Davis, L. G., Dibner, M. D. and Battey, J. F., Basic Methods in	
Lagreeter	Molecular Biology, Elsevier.	
Learning Outcomes	1. Understanding of tools and techniques involved in molecular	
Outcomes	cloning. 2. Overall understanding about the importance of GMOs, GMPs and other engineered products in science and industry.	
1	Town 5 and other engineered products in science and industry.	1

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 307 Title of the Course: GENETIC ENGINEERING - Practical Number of Credits: 1

Prerequisites	Theoretical understanding of chromosomal DNA, plasmid	
	DNA, selection media and preparatory microbiology is needed.	
Objective:	To have a hand on experience on plasmid DNA isolation,	
-	modification and insertion; basically a DNA cut-copy-paste	
	technology that forms the basis of any genetic engineering wet	
	lab.	
Content:		24 H
1.	Plasmid extraction	
2.	Restriction mapping of bacterial plasmid and agarose gel	
	analysis.	
3.	Preparation of competent cells and transformation of <i>E. coli</i>	
	host with plasmid DNA using heat shock method and	
	electroporator; confirmation of positive transformants.	
4.	Assessment of DNA ligation activity of T4 DNA ligase.	
Pedagogy:	Experiments in the laboratory	
References /	Green, M. R. and Sambrook, J., Molecular Cloning: A	
Readings	Laboratory Manual, Cold Spring Harbor Laboratory, New York	
	Davis, L. G., Dibner, M. D. and Battey, J. F., Basic Methods in	
	Molecular Biology, Elsevier.	
Learning	1. A practical understanding of how the DNA modifying	
Outcomes	enzymes work.	
	2. Hand-on experience with plasmid and bacterial host	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 308 Title of the Course: MARINE MYCOLOGY Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites	The student should be familiar with the structural morphology of the fungus and their existence in the surrounding environment.	
Objective:	This course deals with detailed classification and identification of	
	fungi, fungal ecology in marine and extreme habitats, fungal	
	genetics and applications of fungal enzymes and various primary	
	and secondary metabolites.	
Content:		
1.	Fungal diversity and distribution	14 L
1.1	Fungi: Phylogeny and detailed classification	
-	Econiches of Marine Fungi: Polyhaline Coastal Environment (salt	
	marsh, mangrove, estuarine and Oceans); Hypersaline	
	environment (solar salterns, Salt Lake, Dead Sea); Deep Sea	
	(Hydrothermal vents).	
1.2	Extremophilic Fungi	
	Halophiles, Xerophiles, Oligotrophs, Barophiles, Psychrophiles,	
	Thermophiles.	
1.3	Techniques to study marine and extremophilic fungi	
	Sample collection and isolation procedures;	
	Identification - Morphotyping; Secondary metabolites; Molecular	
	finger printing: FAME, Karyotyping, Gene sequencing.	
2.	Physiology and Genetics	12 L
<i></i> •	I hysiology and Genetics	
2.1	Growth and development	14 L
	Growth and development	14 L
	Growth and development Growth cycle. Fungal hormones- attractants, morphogenesis and	
2.1	Growth and development Growth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins.	
2.1	Growth and development Growth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins. Fungal genetics	
2.1	Growth and developmentGrowth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins.Fungal geneticsCross over and tetrad analysis, gene conversion, mating type	
2.1	Growth and development Growth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins. Fungal genetics Cross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic	
2.1	Growth and developmentGrowth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins.Fungal geneticsCross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance.Fungal associations: Saprophytes, parasites and symbionts on	
2.1	Growth and development Growth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins. Fungal genetics Cross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance.	
2.1	Growth and developmentGrowth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins.Fungal geneticsCross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance.Fungal associations: Saprophytes, parasites and symbionts on higher forms of marine life.	
2.1 2.2 3.	Growth and developmentGrowth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins.Fungal geneticsCross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance.Fungal associations: Saprophytes, parasites and symbionts on higher forms of marine life.Threats and Applications	12 L 10 L
2.1	Growth and development Growth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins. Fungal genetics Cross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance. Fungal associations: Saprophytes, parasites and symbionts on higher forms of marine life. Threats and Applications Mycoses	
2.1 2.2 3. 3.1	Growth and development Growth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins. Fungal genetics Cross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance. Fungal associations: Saprophytes, parasites and symbionts on higher forms of marine life. Threats and Applications Mycoses Diseases of fish, bivalves and corals	
2.1 2.2 3.	Growth and development Growth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins. Fungal genetics Cross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance. Fungal associations: Saprophytes, parasites and symbionts on higher forms of marine life. Threats and Applications Mycoses Diseases of fish, bivalves and corals Bioprospecting and bioremediation	
2.1 2.2 3. 3.1	Growth and developmentGrowth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins.Fungal geneticsCross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance.Fungal associations: Saprophytes, parasites and symbionts on higher forms of marine life.Threats and ApplicationsMycosesDiseases of fish, bivalves and coralsBioprospecting and bioremediationIndustrially important enzymes. Secondary metabolites: Natural	
2.1 2.2 3. 3.1	Growth and development Growth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins. Fungal genetics Cross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance. Fungal associations: Saprophytes, parasites and symbionts on higher forms of marine life. Threats and Applications Mycoses Diseases of fish, bivalves and corals Bioprospecting and bioremediation Industrially important enzymes. Secondary metabolites: Natural products – nutraceuticals, antimicrobials, antitumour agents,	
2.1 2.2 3. 3.1	Growth and developmentGrowth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins.Fungal geneticsCross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance.Fungal associations: Saprophytes, parasites and symbionts on higher forms of marine life.Threats and ApplicationsMycosesDiseases of fish, bivalves and coralsBioprospecting and bioremediationIndustrially important enzymes. Secondary metabolites: Natural	
2.1 2.2 3. 3.1	Growth and development Growth cycle. Fungal hormones- attractants, morphogenesis and differentiation. Secondary metabolites: pigments, mycotoxins. Fungal genetics Cross over and tetrad analysis, gene conversion, mating type switching; Deuteromycotina: parasexuality, cytoplasmic inheritance. Fungal associations: Saprophytes, parasites and symbionts on higher forms of marine life. Threats and Applications Mycoses Diseases of fish, bivalves and corals Bioprospecting and bioremediation Industrially important enzymes. Secondary metabolites: Natural products – nutraceuticals, antimicrobials, antitumour agents,	

References/	Alexopoulus, C. J., Mims, C. W. and Blackwell, M., Introductory	
Readings	Mycology, John Wiley & Sons.	
	Mehrotra, R. S. and Aneja K. R., An Introduction to Mycology.	
	Wiley Eastern Limited.	
	Deacon, J. W., Introduction to Modern Mycology, Volume 7 of	
	Basic Microbiology, Blackwell Scientific Publications.	
	Kendrick, B., The Fifth Kingdom, Focus Publishers.	
	Davis, B. D., Dulbecco, R., Eisen, H. N. and Ginsberg, H. S.,	
	Microbiology, Harper and Row.	
	Onions, A. H. S., Allsop, D. and Eggins H. O. W., Smith's	
	Introduction to Industrial Mycology, Edward Arnold, London.	
	Domsch, K. H., Gams, W., and Anderson, T-H., Compendium of	
	Soil Fungi, Eching, IHW-Verlag.	
	Borse, B. D., Bhat, J. D., Borse, K. N., Tuwar, N. S. and Pawar,	
	N. S., Marine Fungi of India (Monograph), Broadway Publishing	
	House.	
	Raghukumar, C., Biology of Marine Fungi, Springer Publishers.	
	Seshagiri Raghukumar, Fungi in Coastal and Oceanic Marine	
	Ecosystems, Springer Publishers. Doi: 10.1007/978-3-319-54304-	
	8	
Learning	Apply the knowledge in fungal taxonomy, bioremediation and	
outcomes	bioprospecting of secondary metabolites and industrially	
	important fungal enzymes.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 309 Title of the Course: MARINE MYCOLOGY - Practical Number of Credits: 1 Effective from Academic Year: 2020-21

		•
Prerequisites	The student should know to cultivate the fungal cultures.	
Objective:	The course deals with sampling techniques for marine samples to	
	isolate fungi and identify them	
Content:		24 H
1.	Study of representative fungal cultures: (a) Colony and (b)	
	Morphological characteristics.	
2.	Isolation and identification of fungi from marine ecosystem	
3.	Biosorption of metal using marine fungal isolate.	
Pedagogy:	Lectures/tutorials/assignments/self-study	
References/	Alexopoulus, C. J., Mims, C. W. and Blackwell, M., Introductory	
Readings	Mycology, John Wiley & Sons.	
	Mehrotra, R. S. and Aneja K. R., An Introduction to Mycology.	
	Wiley Eastern Limited.	
	Deacon, J. W., Introduction to Modern Mycology, Volume 7 of	
	Basic Microbiology, Blackwell Scientific Publications.	
	Kendrick, B., The Fifth Kingdom, Focus Publishers.	
	Borse, B. D., Bhat, J. D., Borse, K. N., Tuwar, N. S. and Pawar,	
	N. S., Marine Fungi of India (Monograph), Broadway Publishing	
	House.	
Learning	Apply the knowledge in fungal taxonomy, bioremediation and	
outcomes	bioprospecting of secondary metabolites and industrially	
	important fungal enzymes.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 310 Title of the Course: MARINE POLLUTION AND MONITORING Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites	Basic knowledge about marine environment and pollution.	
Objective	Introduce the students to various marine pollutants, its impact on	
	marine ecosystems and humans and how to monitor it.	
Content		
1.	Sources and pathways of pollution	12 L
1.1	Marine environment, pollutants, toxicity, point and non-point sources of pollution.	
1.2	Oil spills, tarballs, polyaromatic hydrocarbons. Domestic sewage. Agricultural waste. Nutrients. Industrial and thermal power plants. Pesticides and persistent organic pollutants. Pharmaceuticals and personal care products. Antibiotics. Metals, metalloids and organo metals, Radioactive waste. Deep- sea mining. Ocean dumping.	
1.3	Marine Debris- sources, constituents, derelict of fishing gears, plastics/microplastics, garbage patch in the oceans.	
1.4	Acoustic pollution- sources and conservation of marine ecosystem	
2.	Threat to marine ecosystem, biodiversity, community structure and humans	12 L
2.1	Eutrophication. Anaerobiosis. Biofouling and bioinvasion. Biocorrosion. Bioaccumulation and biomagnification. Case studies.	
2.2	Impact on estuarine, mangroves, coastal and open ocean, coral reefs.	
	Effect of pollution on life cycle and health of phytoplankton, zooplankton, fish, shellfish, corals reefs, humans. Harmful algal blooms, red tides.	
	Effect of marine pollutants on productivity and sustainability of marine econiche.	
	Effect of marine pollution on humans: Minamata, itai itai diseases, neurological disorders, reproductive disorder, carcinogenesis and teratogenic effects.	
3.	Pollution Monitoring and Regulation	12 L
3.1	Ocean health index, maritime laws, law of the sea and exclusive economic zone. Green chemistry.	
3.2	Biomonitoring and bioremediation, microbial degradation, bio- attenuation, bioaugmentation bioindicators, role of foraminifera as a bioindicator, biotracers, biosensors, biomarker, genetically engineered organisms, quorum sensing, cleanups.	

3.3	Conomics in marine manitaring: Environmental DNA DNA
5.5	Genomics in marine monitoring: Environmental DNA. DNA
	barcoding and metabarcoding. Metagenomics. Microarrays. RT-
	PCR. Short nucleotide polymorphisms. Transcriptomics.
3.4	Remote sensing in pollution monitoring. Marine conservation,
	Marine protected areas, Marine parks and sanctuaries. Marine
	environment-related legislation in the world and in India. Marine
	pollution monitoring programs. Marine environmental impact
	assessment. Wastewater treatment plants: primary, secondary and
	tertiary treatment.
Pedagogy:	Lectures/tutorials/assignments/case studies/self-study
References /	Satyanarayana, T., Johri, B. and Anil, T., Microorganisms in
Readings	Environmental Management, Springer Publishers
	Judith, S.W., Marine Pollution: What Everyone Needs To Know.
	Oxford University Press.
	King, R. B., Sheldon, J. K. and Long, G. M. (1997) Practical
	Environmental Bioremediation: The Field Guide, Lewis
	Publishers.
	Kennish, M. J. (1996) Practical Handbook of Estuarine and
	Marine Pollution. CRC Press, Francis and Taylor.
	Naik, M. and Dubey, S. K. (2017). Marine Pollution and
	Microbial Remediation, Springer Publications
	Prince, R. C., Bioremediation of Marine Oil Spills. In:
	Handbook of Hydrocarbon and Lipid Microbiology, Springer
	Publishers.
Learning	Knowledge on how marine pollutants can affect marine
Outcomes	organisms and humans.
3	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 311 Title of the Course: MARINE POLLUTION AND MONITORING - Practical Number of Credits: 1 Effective from Academic Year: 2020-21

Prerequisites	Basic knowledge about marine environment and pollution.	
Objective	Estimate the pollutants from the marine environment	
Content		24 H
1.	Impact of lead/selenium/arsenic/chromium on the marine	
	microbes.	
2.	Impact of naphthalene/anthracene on the marine microbes.	
3.	Determination of biochemical and chemical oxygen demand.	
4.	Size classification of marine debris/plastic.	
Pedology	Laboratory experiments/ Field trips	
References /	Grasshoff, K., Ehrhardt, M. and Kremling, K., Methods of	
Readings	Seawater Analysis, Verlag Chem., Weinheim.	
	Instrumental Methods of Chemical Analysis, 1981 – Ewing, G.	
	W.; McGraw-Hill, New York.	
	Parsons, T. R., Maita, Y. and Lalli, C. M.; (1984). A Manual	
	of Chemical and Biological Methods for Seawater Analysis,	
	Pergamon Press, Oxford.	
	Strickland, J.D.H, and Parsons T.R., (1972). A practical	
	handbook of seawater analysis, Fisheries Board of Canada	
	bulletin. (2nd edition).	
Learning	Hands-on training to identify whether any marine	
outcomes	ecosystem/organisms are polluted and measure it	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 312 Title of the Course: ANALYTICAL TECHNIQUES IN PHYTOPLANKTON STUDIES Number of Credits: 1 Effective from Academic Year: 2020-21

Prerequisites	Knowledge of marine ecology is a prerequisite.	
Objective:	To get a practical knowledge of handling the sampling, isolation	
	and purification process of phytoplankton. The course will enable	
	the students to identify phytoplankton and learn the	
	bioprospecting of marine phytoplankton	
Content		24 H
1.	Sampling and collection of phytoplankton.	
2.	Estimation of phytoplankton biomass.	
3.	Identification of phytoplankton.	
4.	Culturing of phytoplankton (f/2, K medium).	
5.	Extraction and bioactivity (bioprospecting).	
Pedagogy:	On site sampling and laboratory experiments	
Reading/	Sournia, A., UNESCO Monographs on Oceanographic	
References	Methodology, Vol. 6, Phytoplankton Manual, UNESCO	
	Publishing, Paris.	
	Tomas, C.R. (Ed.) 1996 Identifying Marine Diatoms and	
	Dinoflagellates. Academic Press, Inc., N. York, 598 pp.	
	Tomas, Carmelo, R. 1997. Identifying Marine Phytoplankton.	
	Academic Press	
Learning	Practical knowledge of sampling, isolation, identification of	
outcomes	marine phytoplankton and bioprospecting for its commercial	
	secondary metabolites	

Programme: M.Sc. (Marine Microbiology)

Course Code: MMO 313

Title of the Course: MARINE EXTREMOPHILIC MICROORGANISMS: CULTURING AND CHARACTERIZATION

Number of Credits: 1

Effective from Academic Year: 2020-21

-		
Prerequisites	Basic knowledge of extreme marine environments and their	
	defining features is necessary.	
Objective:	This course aims to widen the students' understanding of the	
	techniques involved in sampling extreme marine environments	
	and processing and characterization procedures, for different	
	categories of extremophiles.	
Content:		<mark>24 H</mark>
1.	Technique for isolation of	
_	psychrophiles/halophiles/oligotrophs/anaerobes/organic solvent-	
	tolerant bacteria.	
2.	Effect of varying salt concentrations on growth of	
_	halophiles/halotolerant microbes.	
3.	Growth of bacterial isolates at varying nutrient levels.	
Pedagogy:	Experiments in the laboratory	
References /	Brock, T. D., Thermophilic Microorganisms and Life at High	
Readings	Temperatures, Springer, New York.	
	Horikoshi, K. and Grant, W. D., Extremophiles – Microbial Life	
	in Extreme Environments, Wiley, New York.	
	Rainey, F. A., Oren, A. (2006) Extremophile microorganisms and	
	the methods to handle them. Methods in Microbiology, 35:1-25.	
	Satyanarayana, T., Raghukumar, C., Shivaji, S. (2005)	
	Extremophilic microbes: diversity and perspectives. Current	
	Science, 89(1): 78-90.	
	Ventosa, A., Nieto, J. J., Oren, A. (1998) Biology of moderately	
	halophilic aerobic bacteria. Microbiology and Molecular Biology	
	Reviews, 62: 504-544.	
	ICONOWS, 02. 304-344.	
Looming	Skills in isolation and characterization of different groups of	
Learning	Skills in isolation and characterization of different groups of	
Outcomes	extremophiles.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 314 Title of the Course: ANALYSIS OF MICROBIAL PATHOGENS IN THE MARINE ENVIRONMENT Number of Credits: 1 Effective from Academic Year: 2020-21

Prerequisites	It is required that students have basic knowledge about marine	
	environment, climate change, pollutants in marine environment	
	and basic microbiology techniques.	
Objective:	This course develops concepts in protocols/ strategies for	
	characterization of pathogenic organisms from the marine	
	environment and for determining the efficacy of sanitizers used in	
	aquaculture.	
Content:		24 H
1.	Detection of different indicator and pathogenic organisms from	
	marine environments such as S. aureus, E. coli, V. cholerae,	
	Salmonella, Shigella, by conventional and rapid methods.	
2.	Characterization of pathogenic isolates - determination of salinity	
	tolerance and antibiotic resistance.	
3.	Testing the efficacy of aquaculture sanitizer (phenol).	
Pedagogy:	Experiments in the laboratory	
	ž – – – – – – – – – – – – – – – – – – –	
References/	1.Hester, R. E., Harrison, R. M., Marine Pollution and Human	
Readings	Health, Vol. 33, Issues in Environmental Science and	
	Technology, Royal Society of Chemistry.	
	2.Belkin, S. and Colwell, R. R., Oceans and Health: Pathogens in	
	Marine Environment. Springer Publishers.	
	3.Noga E. J., Fish Disease: Diagnosis and Treatment, Wiley-	
	Blackwell Publishers.	
	4.Rheinheimer, G., Aquatic Microbiology, John Wiley	
	Publishers.	
	5.Clark, R. B., Frid, C., Attrill, M., Marine Pollution, Oxford	
	University Press.	
	6.Wedemeyer, G. A., Meyer, F. P. and Smith, L., Environmental	
	Stress and Fish Diseases, TFH Publications, Neptune, New	
	Jersey.	
	7.Buller, N. B. and Plumb, J. A., Bacteria from Fish and Other	
	Aquatic Animals: A Practical Identification Manual, CABI	
	Publishing.	
	i uonsinng.	
Learning	1) Students will learn to quantify and characterize bacterial	
Outcomes	· · ·	
Outcomes	pathogens and compare against relevant standard guidelines.	
	2) They will be able to formulate effective strategies for	
	monitoring aquaculture systems.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 315 Title of the Course: MICROBIAL REMEDIATION - PRACTICAL Number of Credits: 1 Effective from Academic Year: 2020-21

Prerequisites	It is required that students have basic knowledge about marine	
	environment, marine pollutants, and xenobiotics. Basic	
	microbiology techniques.	
Objective:	This course develops concepts in application of marine	
-	microorganisms in pollution abatement and sustainable	
	development.	
Content:		24 H
1.	Use of hydrocarbon-degrading marine bacteria to test degradation of sodium benzoate.	
2.	Isolation of biosurfactant-producing microorganisms.	
3.	Isolation of selenite/tellurite resistant marine-derived bacteria for application in bioremediation.	
4.	Use of bacterial/fungal isolates for decolourization of dyes.	
Pedagogy:	Experiments in the laboratory	
References /	Satyanarayana, T., Johri, B. and Anil, T., Microorganisms in	
Readings	Environmental Management, Springer Publishers.	
	Prince, R. C., Bioremediation of Marine Oil Spills. In:	
	Handbook of Hydrocarbon and Lipid Microbiology, Springer	
	Publishers.	
	Judith, S.W., Marine Pollution: What Everyone Needs To	
	Know. Oxford University Press.	
	Munn, C., Marine Microbiology: Ecology and Applications,	
	Garland Science, Taylor and Francis Group, N.Y.	
	King, R. B., Sheldon, J. K. and Long, G. M. (1997) Practical	
	Environmental Bioremediation: The Field Guide, Lewis	
	Publishers.	
	Kennish, M. J. (1996) Practical Handbook of Estuarine and	
	Marine Pollution. CRC Press, Francis and Taylor.	
	Naik, M. and Dubey, S. K., Marine Pollution and Microbial	
	Remediation, Springer Publications.	
Learning	1) Students will learn to apply different bioremediation	
Outcomes	approaches using marine microorganisms to deal with pollutants	
	and xenobiotics.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 316 Title of the Course: MARINE MICROBIAL SCREENING FOR SECONDARY METABOLITES Number of Credits: 1

Effective from Academic Year: 2020-21

Prerequisites	It is necessary that students should have a working knowledge	
	of the techniques used for sampling and analysis of marine	
	samples.	
Objective:	The course develops the techniques involved in processing of	
	marine samples for bioprospecting.	
Content:		
1.	Sampling, isolation and screening for marine microbes from	24 H
	marine waters/sediments, marine organisms	
	(bivalves/seaweeds/squid) for:	
1.1	Pigments	
1.2	Antibiotics	
1.3	Plant growth hormones	
1.4	Siderophores	
Pedagogy:	Experiments in the laboratory	
References/	Kennish, M. J., Practical Handbook of Estuarine and Marine	
Readings	Pollution, CRC Press.	
Keaungs		
	Goldman, E. and Green, L. H., Practical Handbook of	
	Microbiology, CRC Press.	
	Kennish, M. J., Practical Handbook of Marine Science, CRC	
	Press.	
	Chaney, R. C., Sampling and Preparation of Marine Sediments,	
	Foundation Engineering Handbook, Springer Publishers.	
	Wolton, A. G., Methods For Sampling and Analysis of Marine	
	Sediments and Dredged Material, Volume 1, Ocean Dumping	
	Report, Department of Fisheries and the Environment.	
	Bull, A. T., Microbial Diversity and Bioprospecting. ASM Press.	
	Reddy, S. M., Charya, M. A. S. and Girisham, S., Microbial	
	Diversity: Exploration and Bioprospecting, Scientific Publishers.	
	Thomas, T. R., Kavlekar, D. P., Lokabharathi, P. A. (2010)	
	Marine drugs from sponge-microbe association : a review. Marine	
	Drugs, 8: 1417-1468.	
	Borkar, S., Bioprospects of Coastal Eubacteria, Springer	
	Publishers.	
Learning	Skills in designing and conducting experiments in the marine	
outcomes	environment for bioprospecting purposes.	
outcomes	environment for oroprospecting purposes.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 317 Title of the Course: MICROBIOLOGICAL ANALYSIS IN FISHERIES - Practical Number of Credits: 1 Effective from Academic Year: 2020-21

Knowledge of fishes, and microbial diversity.	
Provides hands-on experience in the fish anatomy and its	
associated microbial flora, including human pathogens.	
	24 H
Sampling techniques for microbiological investigation of	
moribund fish.	
Methods for examination and analyzing fish for health	
certification/diagnosis of disease condition, techniques for sample	
collection and processing for bacteriological agents	
Isolation and identification of various human bacterial pathogens	
from fish samples (Enterobacteriaceae and Vibrio).	
Experiments in the laboratory.	
Woo, P. and Bruno, D. Fish Diseases and Disorders, Vol 3: Viral,	
Bacterial and Fungal Infections, CABI Publishers.	
Noga, E. C., Fish Disease: Diagnosis and Treatment. Wiley-	
Blackwell Publishers.	
Leatherland, J. F. and Wook, P. K. T., Fish Diseases and	
Disorders, CABI Publishers.	
Apply the tools and techniques of microbiology to specifically	
assess the microbiological quality of fishes in terms of associated	
disease or as carrier for human pathogens.	
	Provides hands-on experience in the fish anatomy and its associated microbial flora, including human pathogens. Sampling techniques for microbiological investigation of moribund fish. Methods for examination and analyzing fish for health certification/diagnosis of disease condition, techniques for sample collection and processing for bacteriological agents Isolation and identification of various human bacterial pathogens from fish samples (<i>Enterobacteriaceae</i> and <i>Vibrio</i>). Experiments in the laboratory. Woo, P. and Bruno, D. Fish Diseases and Disorders, Vol 3: Viral, Bacterial and Fungal Infections, CABI Publishers. Noga, E. C., Fish Disease: Diagnosis and Treatment. Wiley- Blackwell Publishers. Leatherland, J. F. and Wook, P. K. T., Fish Diseases and Disorders, CABI Publishers.

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 318 Title of the Course: MICROBIAL OCEANOGRAPHIC METHODS - Practical Number of Credits: 1 Effective from Academic Year: 2020-21

Prerequisites	Basic understanding of the marine environments.	
Objective	Enable the students to identify microbes and understand their	
Ŭ	role in the marine environment.	
Content		24 H
1.	Use of fluorochromes for enumeration of bacteria from the	
	marine environment using epifluorescence microscopy.	
2.	Enumeration of live and dead marine microbes using	
	microscopy	
3.	Microscopic observation of cellular components using	
	fluorochromes	
4.	Estimation of primary productivity using light and dark method.	
5.	Determination of dissolved organic carbon from seawater.	
6.	Determination of hydrolytic enzymes from	
	plankton/seawater/sediments	
Pedagogy:	Laboratory experiments/ Field trips	
References/	Colin Munn (2011). Marine Microbiology Ecology &	
Readings	Applications. Taylor Francis Group.	
0	A Manual of Chemical and Biological Methods for Seawater	
	Analysis, 1984 – Parsons, T. R., Maita, Y. and Lalli, C. M.;	
	Pergamon Press, Oxford.	
	A practical handbook of seawater analysis, 1972 - Strickland,	
	J.D.H, and Parsons, T.R., Fisheries Board of Canada bulletin.	
	(2nd edition).	
	Jeffrey, S.W and Vesk, M., Introduction to Marine	
	Phytoplankton and Their Pigment Signatures. In: Phytoplankton	
	Pigments in Oceanography. UNESCO Publishing, Paris.	
Learning	Knowledge on how to study microbes in the ocean using	
Outcomes	different sampling strategies, techniques and instrumentation.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 319 Title of the Course: FIELD TRIP/ STUDY TOUR Number of Credits: 1 Effective from Academic Year: 2020-21

Duono guigitog	Ve avuladas about esimpliala avueslatad institutas and industrias in	
Prerequisites	Knowledge about microbiology-related institutes and industries in Goa.	
Objective:	To provide knowledge about the on-going research in various national research institutes, and the functioning of marine microbiology/oceanography related industries and industrial processes.	
Content:		24 H
1.	Visit to national research institutes: National Centre for Polar and Ocean Research [NCPOR], National Institute of Oceanography [NIO] and ICAR – Central Coastal Agricultural Research Institute [ICAR – CCARI].	
2.	Visit to industries	
3.	Report writing based on the visits	
4.	Presentation and group discussion based on the visits	
Pedagogy:	Visits to research institutes and industries. Demonstration of equipment available with respective laboratories, interaction with personnel working in the field of microbiology in the respective institutes.	
References/ Readings	As suggested by the demonstrator to the participating students.	
- ·		
Learning Outcomes	Exposure to research being carried out in the field of marine microbiology/oceanography in research institutes and industries using/or related to the applications of microbial principles.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 320 Title of the Course: TRAINING IN AN INSTITUTE/INDUSTRY/UNIVERSITY Number of Credits: 1 Effective from Academic Year: 2020-21

		1
Prerequisites	Knowledge about the basic techniques in microbiology.	
Objective:	To provide hands-on experience in the application of	
-	microbiological techniques in research	
	institutes/industries/universities. To experience the workings of	
	microbiology-related departments in commercial industries.	
Content:		24 H
	The student shall be required to	
	1. Undertake training for a minimum period of 10 working days or	
	its equivalent.	
	2. Submit to the School of Earth, Ocean and Atmospheric Sciences	
	(SEOAS), Goa University, a certificate of attendance signed by the	
	Training Coordinator of the respective Institute/ Industry/University.	
	3. Submit to the SEOAS, a Report of the work undertaken.	
	4. Make a Presentation of the work carried out, to the Marine	
	Microbiology faculty, for evaluation.	
Pedagogy:	Short-term internship (minimum 10 days) at an	
	institute/industry/university	
References/	As suggested by the demonstrator to the participating students.	
Readings	As suggested by the demonstrator to the participating students.	
Learning	Apply the tools and techniques of microbiology to a range of	
Outcomes	situations.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 401 Title of the Course: POLAR MICROBIOLOGY Number of Credits: 3 Effective from Academic Year: 2020-21

D		
Prerequisites	An in-depth understanding of the concepts of marine	
	microbiology is necessary.	
Objective:	This course highlights the unique characteristics of polar	
	environments (the Arctic, Antarctic and the Southern Ocean),	
	with emphasis on their microbial ecology, diversity, community	
	interactions, and response to climate change.	
Content:		
1.	Polar environments (Arctic region, Antarctic region and the	12 L
	Southern Ocean), polar econiches (dry valleys, ornithogenic soils,	
	permafrost, cryoconites, sea ice, glaciers, lakes); microbial	
	ecology, strategies to isolate and characterize polar	
	microorganisms.	
2.	Microbial diversity and factors influencing microorganisms in	12 L
	polar environments: Archaea – <i>Thaumarchaeota;</i> Bacteria –	
	Glaciecola psychrophila, Pseudoalteromonas haloplanktis,	
	Marinomonas primoryensis; cyanobacteria – Oscillatoria; fungi	
	and yeast - Glaciozyma psychrophila, and diatoms -	
	<i>Fragilariopsis cylindrus</i> ; cellular, structural and physiological	
	characteristics, community interactions and food webs,	
	geochemical cycling.	
	Biotechnological importance of polar microorganisms:	
	psychroenzymes, anti-freeze proteins, novel antibiotics and other	
	bioactive compounds.	
	bloactive compounds.	
3.	The effects of global warming and ocean acidification on polar	12 L
	ecosystems. Melting of glaciers, freshening of Arctic waters,	
	intrusion of Atlantic waters into the Arctic region. Effects of iron	
	fertilization on productivity and carbon export in the High-	
	Nutrient-Low-Chlorophyll (HNLC) regions of the Southern	
	Ocean and its impact on the Antarctic region.	
	Ocean and its impact on the Antarctic region.	
Pedagogy:	Lectures/tutorials/assignments/self-study/case-studies	
I caugogy.	Locaros, atomas, assignments, son study case studies	
References/	Bathmann, U. (2005) Ecological and biogeochemical response of	
Readings	Antarctic ecosystems to iron fertilization and implications on	
ivuuiigo	global carbon cycle, Ocean and Polar Research, 27(2): 231-235.	
	Bej, A. K., Aislabie, J. and Atlas, R. M., Polar Microbiology: The	
	ecology, biodiversity and bioremediation potential of	
	microorganisms in extremely cold environments, CRC Press.	

	D'Amico, S., Collins, T., Marx, J. C., Feller, G., Gerday, C. (2006) Psychrophilic microorganisms: challenges for life, EMBO Reports, 7(4): 385-389.	
	Duarte, C. M., Impacts of global warming on polar ecosystems, Fundacion BBVA.	
	Margesin, R., Miteva, V. (2011) Diversity and ecology of psychrophilic microorganisms, Research in Microbiology, 162: 346-361. Miller, R. V. and Whyte, L. G., Polar Microbiology: Life in a	
	Deep Freeze, ASM Press, Washington, DC.Smetacek, V., Nicol, S. (2005) Polar ocean ecosystems in a changing world, Nature Insight Reviews, 437: 362-368.	
Learning Outcomes	 Explain the uniqueness of the polar environment. Apply the concepts learned to understand the sensitivity of polar environments to climate change. 	

Program: M.Sc. Marine Microbiology Course Code: MMO 402 Title of the Course: DEEP SEA MICROBIOLOGY Number of Credits: 4 Effective from Academic Year: 2020-21

· · · · · · · · · · · · · · · · · · ·		
Prerequisites	It is required that students have a basic knowledge of marine	
	environment- different coastal habitats, pelagic waters and also	
	about some oceanographic processes such as tides, gyres, El Nino	
	Southern Oscillation.	
Objective	This course develops concepts in microbiology of the various	
-	habitats in deep marine environment, their role in the ecology of	
	that environment.	
Content:		
1.	The deep sea environment Basic and in-depth conceptualization	12 L
	of deep marine subsurface; dark ocean biosphere/aphotic pelagic	
	ocean habitats beneath the ocean water column, such as marine	
	sediments, oceanic crust, abyssopelagic/abyssal, hadal plains and	
	hydrothermal vents. Types of deep sea habitats and resident	
	microbiota: marine trenches, ridges, deep permafrost sediments,	
	Antarctic Ocean and Southern Ocean deep environments;	
	piezophilic/ barophilic microorganisms in the deep sea.	
2.		12 L
2.	Sampling aquinment Deen see sampling aquinment:	
2.1	Sampling equipment Deep sea sampling equipment:	
	submersibles, remotely operated underwater vehicles Techniques	
	for collecting water and sediment samples, corers: gravity, piston	
	and multiple corers (MUC), giant box corer (GBC); drilling	
	techniques, MEBO sea floor drill rig.	
2.2	Culturing of deep sea microbes Introduction to anaerobic and	
	pressure culture chambers/systems; techniques for isolation and	
	culturing deep sea microorganisms under in situ and simulated	
	deep sea conditions.	
3.	Deep sea ecosystems: Hydrothermal vents - Metals at	12 L
	hydrothermal vents, food webs, chemosynthesis, microbial	
	communities – archaea, bacteria; and fungi; diversity of higher	
	organisms including the tube worm <i>Riftia pachyptila</i> , sponges,	
	corals; Cold seeps.	
	*	
4.		12 L
4.1	Marine deposits Sapropel, carbonates, phosphorite, ancient halite,	
	metallic nodules, marine basalts.	
4.2	Biogeochemical cycling, enzymes and energetic Nutrient	
	cycling, oxidation of complex organic matter to carbon dioxide via	
	Fe (III) oxide reduction or fermentation; <i>Nitrosopumilus</i>	
	maritimus.	1

Pedagogy:	Lectures/tutorials/assignments/self-study/Moodle/Videos	
References/	Munn, C. Marine Microbiology: Ecology and Applications,	
Readings:	Garland Science, Taylor and Francis Group, N.Y.	
	Jorgensen, B. B., Boetius, A. (2007) Feast and Famine: microbial life in the deep sea bed. Nature Reviews Microbiology, 5: 770-781.	
	Nakagawa, S., Takai, K. (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbial Ecology, 68: 1-84.	
	Karl, D. M., The Microbiology of Deep-Sea Hydrothermal Vents, CRC Press.	
	Sharma, R. (2017) Deep-Sea Mining Resource Potential, Technical and Environmental Considerations. Springer International Publishing.	
	Kallmeyer, J., Wagner, D. (2012) Microbial Life of the Deep Biosphere. De Gruyter. eISBN: 9783110300130	
	Orcutt, B.N., Sylvan, J.B., Knab, N.J., Edwards, K.J. (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiology and Molecular Biology Reviews, 75: 361- 422.	
	Seibold, E., Berger, W. (2017) The Sea Floor An Introduction to Marine Geology. 4 th Edition. Springer International Publishing.	
Learning outcomes	 Explain marine environment and various oceanographic processes, variation in microorganisms in different habitats, different marine deposits. Explain microbial loop, biogeochemical cycling, biological carbon pump and its role in global climate change. 	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 403 Title of the Course: CORAL MICROBIOLOGY Number of Credits: 3 Effective from Academic Year: 2020-21

Duono guiaitog	It is manipul that students have a basis by surlades of sources their	[
Prerequisites	It is required that students have a basic knowledge of corals- their atmusture classification and coolegy	
Objectives	structure, classification and ecology This course focuses on the various characteristics of coral	
Objective:		
	ecosystems including the physico-chemical variables, evolution,	
C. A. A.	survival strategies and associated microbial diversity.	
Content:		10 1
1.	Introduction of Corals	12 L
1.1	Coral reef biology	
	Types of corals, composition, ecology, structure- anatomy and	
	physiology.	
1.0	Types of coral reefs and their global distribution.	
1.2	Factors affecting coral reefs	
	Abiotic factors - pH, temperature, salinity, sedimentation, wave	
	action, weather conditions, nutrient availability, pollution, aerial	
	exposure, light	
	Biological factors – competitors, disease, predators, symbiotic	
	relationships, nutrient flux,	
1.2	Natural and human disturbances to reefs and their impacts.	
1.3	Importance of coral reefs	
	Fisheries and marine products associated with coral reefs.	
	Ecological importance of coral reefs. Cultivation and	
	conservation of corals.	
	Law and policy for conservation and management of corals in	
	India	
		10.1
2.	Microbial interaction with coral communities	12 L
2.1	Coral evolution and development	
	Subsidence theory, Glacial Control Theory, Stand Still Theory,	
	Cycle of Erosion theory.	
	Coral communities and trophic structure. Primary producers	
	(zooxanthellae, turf algae, coralline algae, endolithic algae,	
	phytoplankton, benthic diatoms), consumers, food webs,	
	productivity in coral reefs	
2.2	Coral and microbiome dynamics.	
	Internal nutrient cycling, Adaptive bleaching hypothesis, Coral	
	probiotic hypothesis, Rosenberg's hologenome hypothesis	
	Symbiotic associations: Algal-coral associations, bacterial	
	symbiosis, Multi-partner symbiosis.	
3.	Diagnosis and recovery of diseased/damaged corals	12 L
3.1	Microbial causative agents associated with coral diseases	

	Bacterial infections (Black band disease, Yellow band disease,	
	White band disease, White plague, White patch disease, Lethal	
	Orange Disease, bacterial bleaching);	
	Fungal infections (Aspergillosis); Viral infections;	
	Protozoic infections (Brown band disease, Skeletal eroding band).	
	Non-biotic stressors - thermal bleaching, ocean acidification.	
	Growth anomalies.	
3.2	Coral disease spread assessment, treatment and recovery	
	Coral disease survey and monitoring protocols. Disease response	
	plan. Outbreak management. Use of antibiotics and anti-oxidants	
	for treating diseased corals. Phage therapy. Coral Restoration and	
	Health Consortium (CRHC).	
Pedagogy:	Lectures/tutorials/assignments/self-study/case-studies	
References/	C. Sheppard, S. Davy, G. Pilling, N. Graham. 2018. The Biology	
Readings	of Coral Reefs, 2nd Edition. Oxford University Press. Doi:	
	10.1093/oso/9780198787341.001.0001	
	M. J. H. van Oppen, L. L. Blackal 2019. Coral microbiome	
	dynamics, functions and design in a changing world. Nature	
	Reviews Microbiology. Doi: 10.1038/ s41579-019-0223-4	
	M. J. H. van Oppen et al. 2015. Building coral reef resilience	
	through assisted evolution. PNAS. Doi:	
	-	
	10.1073/pnas.1422301112	
	L.L. Richardson 1998. Coral diseases: what is really known?	
	TREE vol. 13, no. 11.	
	C. D. Harvell et al. 2007. Coral disease, environmental drivers,	
	and the balance between coral and microbial associates.	
	Oceanography. Doi: 10.5670/oceanog.2007.91	
	Laurie J. Raymundo, Courtney S. Couch and C. Drew Harvell.	
	Coral Disease Handbook Guidelines for Assessment, Monitoring	
	& Management.	
	L. J. Chakravarti, M. J. H. van Oppen 2018. Experimental	
	Evolution in Coral Photosymbionts as a Tool to Increase Thermal	
	Tolerance. Frontiers in Marine Science.	
	doi: 10.3389/fmars.2018.00227	
	T. D. Ainsworth et al. 2007. Coral Disease Diagnostics: What's	
	between a Plague and a Band? Applied and Environmental	
	Microbiology. doi:10.1128/AEM.02172-06	
	M. Contardi et al. 2020. Treatment of coral Wounds by combining	
	an Antiseptic Bilayer film and an injectable Antioxidant	
	Biopolymer. Scientific Reports. Doi:10.1038/s41598-020-57980-	
	1	
. .		
Learning	1. The biology and biodiversity of corals	
outcomes	2. Thorough understanding of coral microbiome dynamics	
	3. Ecology of microbial infections and recovery of corals	
		-

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 404 Title of the Course: BIOINFORMATICS DATABASES Number of Credits: 2 Effective from Academic Year: 2020-21

D	Knowledge of molecular taxonomy.	
Prerequisites: Objectives:	This course will introduce students to various databases used for analysis of molecular data and evolution-related concepts under bioinformatics. This will provide students with theoretical knowledge of use of common computational tools and databases that facilitate investigation of molecular biology.	
Content:		
1	Introduction to Bioinformatics data and databases:	6 L
	Types of Biological data:- Genomic DNA, Complementary DNA, Recombinant DNA, Expressed sequence tags, Sequence Tagged Sites, Genomic survey sequences; Primary/Genomic Databases:- GenBank, EMBL, DDBJ; Composite Databases:-NRDB, OWL, UniProt;	
	Bioinformatics Resources:- NCBI, EBI, ExPASy, RCSB.	
	Multiple sequence alignment and phylogenetic tree building.	
2	Genome Databases:	6 L
	Viral genome database:-ICTVdb; Bacterial Genomes database:- Ensembl Bacteria, Microbial Genome Database-MBGD; Genome Browsers:- Ensembl, VEGA genome browser, NCBI-NCBI map viewer, KEGG, MIPS, UCSC Genome Browser; Eukaryotic genomes with special reference to model organisms:- Yeast (SGD) Phylogenetic database – eggnog, HOGENOM, OrthoDB.	
3	Protein Sequence Databases:	4 L
	Swiss-Prot, TrEMBL, UniProt, UniProtKB, UniParc, UniRef, UniMES; Sequence motifs Databases:- Prosite, ProDom, Pfam, InterPro, Gene Ontology; Polymorphism and mutation database- introduction to BioMuta, dbSNP- Database of short Genetic Variation	
4	Structure and derived databases:	8 L
	Primary structure databases:- PDB, NDB, MMDB; Secondary structure databases:-Structural Classification of Proteins – SCOP, Class Architecture Topology Homology –CATH, Families of Structurally Similar Proteins –FSSP, Catalytic Site Atlas –CSA;	

Molecular functions / Enzymatic catalysis databases:- KEGG ENZYME database;	
Protein-Protein interaction database:- STRING, BioGRID, MINT;	
Chemical Structure database:- Pubchem, DrugBank, ChEMBL;	
Gene Expression database:- GEO, SAGE.	
Lectures/tutorials/assignments/self-study/Moodle/Videos	
Lesk, A.M., 2005, Introduction to bioinformatics, Oxford University Press	
Jean-Michel, C., 2005, Bioinformatics: a beginner's guide, Wiley Dreamtech India	
Shanmughavel, P., 2005, Principles of bioinformatics, Jaipur Pointer Publishers	
Jeremy, J.R., 2004, Bioinformatics: an introduction, Springer India	
Rastogi, C., 2004, Bioinformatics: concepts, skills & applications, New Delhi CBS Publishers	
Mount, D., 2000, Bioinformatics: sequence and genome analysis, New York Cold Spring Harbor Laboratory Press	
Baxevanis, A., 2001, Bioinformatics: a practical guide t the analysis of genes and proteins, New York John Wiley & Sons	
Srinivas, V.R., 2005, Bioinformatics: a modern approach, New Delhi Prentice Hall of India	
Ignacimuthu, S., 2008, Basic Bioinformatics, New Delhi Narosa Publishing House	
Khan, I.A., 2005, Elementary Bioinformatics, Hyderabad Pharma Book Syndicate	
Describe properties of important bioinformatics databases. Apply the knowledge to perform text- and sequence-based searches. Apply the knowledge to perform multiple sequence alignment. Use bioinformatics tools in research.	
	Protein-Protein interaction database:- STRING, BioGRID, MINT; Chemical Structure database:- GEO, SAGE. Lectures/tutorials/assignments/self-study/Moodle/Videos Lesk, A.M., 2005, Introduction to bioinformatics, Oxford University Press Jean-Michel, C., 2005, Bioinformatics: a beginner's guide, Wiley Dreamtech India Shanmughavel, P., 2005, Principles of bioinformatics, Jaipur Pointer Publishers Jeremy, J.R., 2004, Bioinformatics: an introduction, Springer India Rastogi, C., 2004, Bioinformatics: concepts, skills & applications, New Delhi CBS Publishers Mount, D., 2000, Bioinformatics: a practical guide t the analysis of genes and proteins, New York John Wiley & Sons Srinivas, V.R., 2005, Bioinformatics: a modern approach, New Delhi Prentice Hall of India Ignacimuthu, S., 2008, Basic Bioinformatics, New Delhi Narosa Publishing House Khan, I.A., 2005, Elementary Bioinformatics, Hyderabad Pharma Book Syndicate

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 405 Title of the Course: MARINE PHYTOPLANKTON Number of Credits: 2 Effective from Academic Year: 2020-21

Prerequisites	Knowledge of marine ecology	
Objective:	This course will introduce students to the biology of marine	
, , , , , , , , , , , , , , , , , , ,	photosynthetic phytoplankton, identifying and classifying	
	phytoplankton from marine and estuarine habitats and	
	recognizing its role in ocean biogeochemical cycles, harmful	
	algal blooms, commercial products derived from phytoplankton	
	and climate change effects on phytoplankton.	
Content		
1.	Phytoplankton evolution, diversity and ecology	12 L
1.1	Evolution of phytoplankton	
	Introduction to phytoplankton. Energy and elemental	
	requirements for life, Chloroplasts and endosymbiosis,	
	Phytoplankton evolution through geological time	
1.2	Phytoplankton classification and diversity	
	Major organelles and structural variations, morphological	
	adaptations, Division of phytoplankton based on size,	
	Phytoplankton groups (marine diatoms, dinoflagellates,	
	microflagellates), Prokaryotic algae (cyanobacteria),	
	Chlorophytes, Heterokontophytes (emphasis on diatoms),	
	Prymnesiophytes, Dinophytes, Cryptophytes, Raphidophytes,	
	Rhodophytes, Distribution and abundance of phytoplankton,	
	Measuring diversity and remote sensing,	
1.3	Phytoplankton nutrition, physiology and ecological	
	significance	
	Biogeographic zones of distribution, Nutrient requirements	
	(N,P,Si), Margalef mandala, Photoautotrophic production, Light	
	acclimation and adaptation, adaptation to other physical and	
	biological factors, Grazing defences (morphological features-	
	colony formation, silica shell; changes in life-cycle/behaviour –	
	escape response; physiological - bioluminescence, toxin/	
	infochemical production), Marine food webs, Marine primary	
	productivity, Role in biogeochemical cycles, (Biological carbon	
	pump, Microbial loops), Phytoplankton and zooplankton	
	interaction, Phytoplankton-bacteria interactions	
2.	Phytoplankton genomics, commercial value, phytoplankton	12 L
	blooms	
2.1	Phytoplankton genomics	
	Genetic diversity, Whole-genome sequences and	
	transcriptomics, Environmental genomics (the meta-omics),	

	Genetic manipulations of phytoplankton, Barcoding and other	
	tools, Transgenic phytoplankton and its applications	
2.2	Applications of Phytoplankton	
	CO ₂ sequestation in climate change, DMS production, Biofuels	
	and other commercial products made from algae; Aquaculture,	
	secondary metabolites	
2.3	Phytoplankton blooms and climate change	
	Ocean fertilization, Climate change effects on phytoplankton,	
	Harmful algal blooms and toxin production, characterisation and	
	causes of bloom formation - Red tides, Spring bloom,	
	occurrences (some examples), solutions for bloom occurrence	
Pedagogy:	Lectures/tutorials/assignments/self-study/Moodle/Videos	
Reading/	Falkowski, PG and Knoll, AG (Editors). Evolution of Primary	
References	Producers in the Sea, Elsevier Academic Press (2007).	
	Kumar S.V., Misquitta R.W., Reddy V.S., Rao B.J. and Rajam	
	M.V. (2004). Genetic transformation of the green alga <i>Chlamydomonas reinhardtii</i> by <i>Agrobacterium tumefaciens</i> .	
	Plant Science (Shannon, Ireland) 166, 731-738.	
	Lewin K.W.J.C. 1962. Physiology and Biochemistry of Algae.	
	Margalef, R. (1978). Life-forms of phytoplankton as survival	
	alternatives in an unstable environment. Oceanol. Acta, 1(4): 439-509.	
	Parsons, T.R., M. Takahashi and B. Hargrave (II Ed.), 1977.	
	Biological Oceanography Processes. Pergamon Press Oxford.	
	Phillips J.D.H Quantitative aquatic biological indicators, 1980 Applied Science Publishers.	
	Raymont, J.E.G., Plankton and productivity in the oceans (Vol. 1 & 2), 1983 –Pergamon Press.	
Learning	1) The biology and biodiversity of marine phytoplankton	
outcomes	2) The role phytoplankton play in the biological carbon pump as	
	well as in the cycles of other important elements 3) Ecology of harmful algal bloom formation and toxin	
	3) Ecology of harmful algal bloom formation and toxin production	
	4) Commercial products derived from algae including biofuels	
	5) The predicted effects of climate change on phytoplankton	
	abundance and distributions	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 406 Title of the Course: MARINE EXTREMOPHILIC MICROORGANISMS Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites	Basic knowledge of extreme marine environments and their defining features is necessary.	
Objective:	This course develops concepts relating to the ability of organisms to thrive in extreme marine ecosystems, their adaptations and biotechnological potential.	
Content:		
1.	Concept of extremophiles versus conventional microbial forms and archaea.	1 L
2.	Extreme marine econiches: marine trenches and ridges, submarine vents, deep sea basins and Antarctic sea ice and lakes.	2 L
3.	Key Molecular components, Unique Physiological features, Adaptation strategies, significance in biogeochemical cycles of the following:	
3.1	Anaerobes: Anaerobranca horikoshi, Methanobacterium thermoautotrophicus. Barophiles/ Peizophiles: Colwellia, Photobacterium.	7 L
3.2	Cryophiles/Psychrophiles and Thermophiles: <i>Polaromonas</i> , <i>Shewanella</i> , <i>Desulphovibrio</i> , <i>Bacillus infernus</i> , <i>Aquifex</i> , <i>Geobacillus</i> , <i>Rhodothermus</i> .	8 L
3.3	Oligotrophs, Osmophiles, Halophiles and Xerophiles: <i>Caulobacter, Pelagibacter; Rhodotorula; Marinococcus,</i> <i>Wallemia.</i>	6 L
3.4	Alkaliphiles, Acidophiles: Ferroplasma, Rhodotorula.	4 L
3.5	Radiophiles, Metallophiles & Xenobiotic utilizers: <i>Deinococcus, Geobacter, Pseudomonas.</i>	6 L
3.6	Biotechnological potential of extremophiles.	2 L
Pedagogy:	Lectures/tutorials/assignments/self-study	
References/ Readings	Brock, T. D., Thermophilic Microorganisms and Life at High Temperatures, Springer, New York.	
	Horikoshi, K. and Grant, W. D., Extremophiles – Microbial Life in Extreme Environments, Wiley, New York.	
	Rainey, F. A., Oren, A. (2006) Extremophile microorganisms and the methods to handle them. Methods in Microbiology, 35:1-25.	
	Satyanarayana, T., Raghukumar, C., Shivaji, S. (2005) Extremophilic microbes: diversity and perspectives. Current Science, 89(1): 78-90.	

Ventosa, A., Nieto, J. J., Oren, A. (1998) Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62: 504-544.	
Apply the concepts learned to understand the occurrence and ecology of marine extremoniales	
	halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62: 504-544.

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 407 Title of the Course: MARINE MICROBIAL PROSPECTING AND TECHNOLOGY Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites	It is necessary that students should have a working knowledge	
1	of the relevance of marine environments as a source of bio-	
	active compounds.	
Objective:	The course explores the role of the marine environment as a	
Ū	source of novel compounds having various potential	
	applications in biotechnology, the range of strategies employed	
	to detect and study them, and the regulatory frameworks that	
	are in place to regulate their usage. Relevant case studies are	
	discussed to understand these concepts.	
Content:		
1.	Bioprospecting: Concept of exploiting marine microbial	12 L
	resource and their cellular components from marine	
	environment and marine invertebrates.	
2.	Sampling and search strategies for novel targets under:	
	enzymes, therapeutics, antimicrobials and biofuels.	
3.	Legal framework for collection and conservation of marine	
	niches and microbes. Convention on Biological Diversity, Rio	
	(1992/1994). Bioethics and Biosafety, Quarantine regulations,	
	Biopiracy, Cartegena & Montreal, FAO International Treaty	
	(2001-2004), Bonn Declaration on Access and Benefit-sharing	
	(ABS).	
4	Conventional and high throughput screening strategy:	12 L
4.1A	Conventional: Plating, Enrichment, Extinction culturing;	
	Micro manipulations, Optical tweezers, Microautoradiography.	
4.1B	Novel: Function based screens (proteomics and metabolomics),	
	Sequence based screens (genomics), substrate induced gene	
	expression screens (SIGEX) catabolic gene expression screens.	
	Metagenomics, Microarrays, Combinatory chemistry,	
	combinatory biosynthesis and biochemistry assays. Data bases,	
	Natural product libraries.	
4.2	Deposition of microbes and biomolecules:	
	Culture collection/ Repository, deposition of sequences of	
_	nucleic acids, proteins and structures of biomolecules.	1.0.7
5.	Case studies on marine products and process development	12 L
	using microbes: archaea, cyanobacteria and proteobacteria;	
	microbial products; MEOR and such others.	
Pedagogy:	Lectures/tutorials/assignments/self-study	
		
References/	Kennish, M. J., Practical Handbook of Estuarine and Marine	
Readings	Pollution, CRC Press.	

	Goldman, E. and Green, L. H., Practical Handbook of	
	Microbiology, CRC Press.	
	Kennish, M. J., Practical Handbook of Marine Science, CRC	
	Press.	
	Chaney, R. C., Sampling and Preparation of Marine Sediments,	
	Foundation Engineering Handbook, Springer Publishers.	
	Wolton, A. G., Methods For Sampling and Analysis of Marine	
	Sediments and Dredged Material, Volume 1, Ocean Dumping	
	Report, Department of Fisheries and the Environment.	
	Bull, A. T., Microbial Diversity and Bioprospecting. ASM Press.	
	Reddy, S. M., Charya, M. A. S. and Girisham, S., Microbial	
	Diversity: Exploration and Bioprospecting, Scientific Publishers.	
	Thomas, T. R., Kavlekar, D. P., Lokabharathi, P. A. (2010)	
	Marine drugs from sponge-microbe association : a review. Marine	
	Drugs, 8: 1417-1468.	
	Borkar, S., Bioprospects of Coastal Eubacteria, Springer	
	Publishers.	
Learning	1. Apply the knowledge gained to designing and understanding	
outcomes	bioprospecting studies	
	2. Explain the legal frameworks in place for the regulation of	
	trade linked to marine bioprospecting.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 408 Title of the Course: MARINE ENVIRONMENT AND PUBLIC HEALTH Number of Credits: 3 Effective from Academic Year: 2020-21

Prerequisites	It is required that students have basic knowledge about marine	
	environments, climate change, pollutants in marine environment.	
Objective:	This course develops the concepts of the effects of marine	
	pollution and , climate change on human health, the challenges	
	for monitoring and control of pollution, long-term strategies in	
	public health management; advances in disease control in the	
	marine environment.	
Content:		
1.		12 L
1.1	Environmental variables related to marine, coastal and aquatic	
	ecosystems; Water quality and sediment characteristics; Climate	
	change and impact on human health – migration of Vibrio,	
	flooding of coastlines; influence of El Nino Southern Oscillation	
	on cholera outbreaks; disaster management (outline);	
	Understanding marine ecosystem and human health with DPSIR	
	model.	
1.2	Overview of marine and coastal pollution; effects on the biota and	
	environment. Water pollution - microbial changes induced by	
	inorganic and organic pollutants, industrial effluents and domestic	
	sewage. Effects on aquaculture systems and fisheries. Challenges	
	for monitoring and control of pollution and overfishing;	
	Standards for various types of water.	
2.		12 L
2.1	Biological indicators and indices of water quality; Microbial	
	indicator systems – Fecal Indicator Bacteria (FIB), uses and	
	limitation of FIB, development of ideal indicator systems	
	(Clostridium, Cryptosporidium, adenoviruses, Bacteroides,	
	Coliphages) – status, uses and limitation. Sanitation in	
	aquaculture systems.	
2.2	Human pathogens - autochthonous and allochthonous pathogens,	
	pathogen distribution; bacterial pathogens and diseases	
	transmitted through marine and coastal water, faecal	
	contamination, Vibrio, Wound sepsis, entero-viruses. Disease	
	monitoring and surveillance.	
2.3	Algal blooms and environmental microflora, their effect on fish	
	production and human health, mechanical, chemical and	
	biological control of algal blooms, microbial toxins.	
	<u> </u>	
2		1 7 T
3.		12 L

3.1	Disinguations there are at a function of the same through the light mater	
5.1	Bioinvasion; transport of pathogens through ballast water -	
	impact, monitoring, rules and regulations, quarantine,	
	certification and import risk analysis.	
3.2	Application of health management protocols and biosecurity	
	principles in aquaculture; long-term strategies in health	
	management; Advances in disease control and management;	
	Principles of SPF/SPR. Biosecurity in aquaculture.	
Pedagogy:	Lectures/tutorials/assignments/self-study	
References/	1.Hester, R. E., Harrison, R. M., Marine Pollution and Human	
Readings	Health, Vol. 33, Issues in Environmental Science and	
0	Technology, Royal Society of Chemistry.	
	2.Belkin, S. and Colwell, R. R., Oceans and Health: Pathogens in	
	Marine Environment. Springer Publishers.	
	3.Noga E. J., Fish Disease: Diagnosis and Treatment, Wiley-	
	Blackwell Publishers.	
	4. Rheinheimer, G., Aquatic Microbiology, John Wiley	
	Publishers.	
	5.Clark, R. B., Frid, C., Attrill, M., Marine Pollution, Oxford	
	University Press.	
	6.Wedemeyer, G. A., Meyer, F. P. and Smith, L., Environmental	
	Stress and Fish Diseases, TFH Publications, Neptune, New	
	Jersey.	
	7.Buller, N. B. and Plumb, J. A., Bacteria from Fish and Other	
	Aquatic Animals: A Practical Identification Manual, CABI	
	Publishing.	
Learning	1) Understand the linkage between marine pollutants, climate	
Outcomes	change and their effects on marine biota and humans; the role of	
	Ballast water in spreading diseases globally; and management	
	strategies to deal with the same.	
	2) Applying long-term strategies in public health management	
	and understanding the advances in disease control in the marine	
	environment.	
	environment.	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 409 Title of the Course: MARINE MICROBIAL REMEDIATION Number of Credits: 2 Effective from Academic Year: 2020-21

Prerequisites	It is required that students have basic knowledge about marine	
1 i ei equisites	environment, marine pollutants and xenobiotics.	
Objective:	This course develops the concept of using marine microorganisms	
	as a tool for remediation of diverse pollutants.	
Content:		
1.	Concept of bioremediation, various bioremediation strategies	2 L
	including bio-augmentation, bio-stimulation, co-metabolism, use	
	of microbial consortia and genetically-modified microorganisms.	
2.	Bioremediation of metals mediated by marine microbes: Heavy	5 L
	metal resistant microbes from coastal waters, solar salterns,	
	marine sediments hydrothermal vent and marine microbes	
	associated with bivalves and sponges. Marine	
	bacteria/fungi/archaea which can be harnessed for bioremediation	
	technologies e.g. Efflux mechanism, intracellular	
	bioaccumulation, extracellular sequestration and surface	
	biosorption, bioprecipitation, biotransformation and redox	
	reaction, volatilization.	
	Bioremediation of hydrocarbons in marine environments, oil spill/	5 L
	tar ball management. Biodegradation – reactions, enzymes and	
	pathways. Biosurfactants (bioemulsifier), co-metabolism, bio-	
	augmentation, bio-stimulation.	
3.	Biodegradation of Complex Polysaccharide (CP)-containing algal	3 L
	waste by marine microorganisms: description and characteristics	
	of algal waste, CP-degrading enzymes – agarase, alginate lyase,	
	carragenase, cellulase, and their role in degradation of algal	
	waste.	
4.	Biodegradation of seafood waste by bacteria: description and	5 L
	characteristics of seafood waste, biodegradation of seafood waste	
	by microorganisms – calcium carbonate-solubilizing bacteria,	
	phosphate-solubilizing bacteria; the role of chitinase and protease	
	enzymes in seafood waste degradation, use of microbial consortia,	
	application of seafood waste for ethanol production.	
5.	Case studies with fish, prawn and crab waste.	4 L
3.	Bioremediation of xenobiotics and pollutants in hypersaline	4 L
	environments using Sulfate-Reducing Bacteria (SRB) and archaea: pollutants in hypersaline environments – metals,	
	xenobiotics, remediation strategies involving SRB, application in	
	remediation of industrial effluents.	
	Case studies with metals.	
Pedagogy:	Lectures/tutorials/assignments/self-study	
i cuagugy.	Lectures/tatorials/assignments/sen-stady	

References /	Satyanarayana, T., Johri, B. and Anil, T., Microorganisms in
Readings	Environmental Management, Springer Publishers.
	Prince, R. C., Bioremediation of Marine Oil Spills. In:
	Handbook of Hydrocarbon and Lipid Microbiology, Springer
	Publishers.
	Judith, S.W., Marine Pollution: What Everyone Needs To
	Know. Oxford University Press.
	Munn, C., Marine Microbiology: Ecology and Applications,
	Garland Science, Taylor and Francis Group, N.Y.
	King, R. B., Sheldon, J. K. and Long, G. M. (1997) Practical
	Environmental Bioremediation: The Field Guide, Lewis
	Publishers.
	Kennish, M. J. (1996) Practical Handbook of Estuarine and
	Marine Pollution. CRC Press, Francis and Taylor.
	Naik, M. and Dubey, S. K., Marine Pollution and Microbial
	Remediation, Springer Publications.
	Advances in Biological Sciences Research, Meena, S.N., Naik,
	M.M. (eds.), Elsevier.
Learning	1) Application of marine microorganisms towards pollution
Outcomes	abatement.

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 410 Title of the Course: OCEAN OBSERVATIONS AND TECHNIQUES Number of Credits: 3 Effective from Academic Year: 2020-21

		r
Prerequisites	Basic understanding of the marine environments.	
Objective	Introduce the students to analytical techniques and	
	instrumentations used for oceanographic and remote sensing	
	studies.	
Content		
1.	Platforms and instruments used in Oceanography	12 L
1.1	Marine environment domains, observation strategies, in situ	
	observation, Lagrangian and Eulerian measurements, remote	
	sensing. Indian oceanographic research vessels and their	
	facilities.	
1.2	Platform and Instruments: Gliders, Argo, floats, Mooring and	
	moored profilers, buoy, Acoustic Doppler Current Profiler,	
	XBT, Radar, Current Meters, Radars, Marine Magnetometer,	
	Echo Sounder, SONAR, Hydrophone and Geophone,	
	Multibeam bathymetry. Underwater robots and vehicles,	
	Submersible Incubation Device, Camera Systems. Animal	
	tagging, bio-telemetry, bio-logging.	
1.3	Samplers: Conductivity-Temperature-Depth (CTD) sensors,	
	Rosette sampler. Bongo paired Zooplankton Net, BIOMAPER,	
	Video Plankton Recorder, Zooplankton Sampler, Acoustic	
	Recording Package, Multiple Plankton Net. Grab sampler,	
	Gravity corer, Box corer, Piston corer, Hydraulically damped	
	gravity corer.	
2.	Techniques in Microbial Oceanography	12 L
2.1	Traditional methods. Use of microscopy for enumeration of	
	microbes. Microbial staining. Preservation methods. Tools to	
	study marine microbial diversity: flow cytometry, FlowCAM.	
	Methods to estimate primary production. Phytoplankton	
	pigments by fluorometry, spectrophotometry, HPLC. In vivo	
	fluorescence - Fluorescence induction and relaxation and Fast	
	Repetition Rate fluorometer. Respiration measurements of	
	planktons. Tracer technique- 13C and 15N. Isotope labelled	
	substrate uptake. Enzymatic assays.	
2.2	Respiration measurements of plankton. Respiratory quotient to	
	estimate carbon-flux. Community level physiological profiling	
	(CLPP). Fluorometric assessment of enzymatic activity using 4-	
	Methylumbelliferyl (MUF) substrate. Confocal laser scanning	
	microscopy for study of biofilms. Changes in redox potentials	
	using fluorescent stain.	
22		
2.3	Carbon measurement methods: CHNS elemental analyzer. Total	
2.5	Carbon measurement methods: CHNS elemental analyzer. Total inorganic carbon by Coulometer. Dissolved organic carbon using high temperature combustion method. Sediment traps	

	(Moored arrays/drifting traps). ²³⁴ Thorium as a tracer for POC	
	export estimates.	
2.4	Genomic and metagenomics approach. Environmental DNA.	
	Molecular probes	
	• • • • • • • • • • • • • • • • • • •	
3	Marine Bio-optics and Remote Sensing	12 L
3.1	Marine bio-optics. Electromagnetic radiation.	
	Photosynthetically active radiation. Optically active	
	components. Photosynthetically active radiation (PAR). Optical	
	properties. Ocean color. Chromophoric dissolved organic matter	
	(CDOM). Bio-optical instruments. Fundamentals of remote	
	sensing. Polar-orbiting and geosynchronous satellites. Spatial,	
	temporal and spectral resolution. Satellite sensors.	
3.2	Applications and societal benefits: Primary productivity, sea	
	surface temperature, salinity, wind speed and direction, Ocean	
	currents, ocean-atmosphere heat exchange, bloom dynamics,	
	biogeochemical cycles, assessment of carbon reservoirs and	
	fluxes, potential fishing zones, pelagic and migratory fish,	
	species conservation (e.g. whales, turtles), coastal	
	eutrophication and pollution, Environmental Impact Assessment	
	(EIA), natural and man-made hazards, ocean color and climate	
	change.	
Pedagogy:	Lectures/tutorials/assignments/self-study/case-studies	
I caugogy.		
References/	Schiller, Andreas, Brassington, Gary B. (2011). Operational	
Readings	Oceanography in the 21st Century. Springer	
8-	Jeffrey, S.W and Vesk, M., Introduction to Marine	
	Phytoplankton and Their Pigment Signatures. In: Phytoplankton	
	Pigments in Oceanography. UNESCO Publishing, Paris.	
	Martin S. (2004). An Introduction to ocean remote sensing.	
	Cambridge University Press	
	Venkatesan et al (2018). Observing the oceans in real time.	
	Springer	
	Parsons, T. R., Maita, Y. and Lalli, C. M.; (1984). A Manual of	
	Chemical and Biological Methods for Seawater Analysis,	
	Pergamon Press, Oxford.	
	Strickland, J.D.H, and Parsons T.R., (1972). A practical	
	I handbook of apartistan analysis. Eishamaa Daand of Canada	
	handbook of seawater analysis, Fisheries Board of Canada	
	bulletin. (2nd edition).	
	bulletin. (2nd edition).Colin Munn (2011). Marine Microbiology Ecology &	
	bulletin. (2nd edition).	
T - · · · · ·	bulletin. (2nd edition). Colin Munn (2011). Marine Microbiology Ecology & Applications. Taylor Francis Group.	
Learning Outcomes	bulletin. (2nd edition).Colin Munn (2011). Marine Microbiology Ecology &	

Programme: M.Sc. (Marine Microbiology) Course Code: MMO 411 Title of the Course: FISHERY MICROBIOLOGY Number of Credits: 3 Effective from Academic Year: 2020-21

Duonoquigitog	Knowladaa of mionahial divansity	
Prerequisites	Knowledge of microbial diversity.	
Objective:	Develop the knowledge of fishes, fisheries, aquaculture in India.	
	Develop the concepts of various infectious diseases present in fishes and spread through fishes	
Content:	fishes and spread through fishes.	
	Introduction to Indian Fisheries	15 L
1.		15 L
	Type of fishes, shellfishes and other coastal aquatic and marine living resources present in Indian Ocean, Arabian Sea and Bay of	
1.1	Bengal, concept of aquaculture and marine culture of fishes. Use	
	of Probiotics in aquaculture. Concept of blue economy.	
	Microbiology of Raw fish and processed fish. Adverse effects of	
	microbial spoilage and PHFL on blue economy. Various methods	
	for processing of fishes; Biopreservation, food processing,	
1.2	fermentation and aquaculture; effect of heat, chilling, freezing	
	and chemical preservatives on bacteria, yeasts and fungi	
	associated with fishes.	
1.3	Quality control and regulations for microbial quality of fishes,	
	shellfish and marine living resources used for food and drugs.	
2.	Microbes associated with fish and shellfish	10 L
	Commensals and pathogens; Classification of diseases; Methods	IVL
	of disease prevention; Detailed study of bacteria pathogenic to	
2.1	finfish and shellfish with emphasis on morphology,	
	epidemiology, pathogenesis, treatment and control:	
	Flavobacterium, Edwardsiella, Vibrio, Aeromonas,	
2.2	Renibacterium, Yersinia, Mycobacterium.	
2.3	Viral infections of finfish.	
3	Marine toxins and Human bacterial pathogens	11 L
	Human bacterial pathogens associated with fishes and their	
3.1	products - Clostridium perfringens, Listeria spp., Plesiomonas,	
3.1	Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus and	
	common Enterobacteriaceae.	
	Marine toxins – Paralytic Shellfish Poisoning (PSP) Toxins,	
	Amnesic Shellfish Poisoning (ASP) Toxins, Diarrhetic Poisoning	
3.2	Toxins, Lipophilic Shellfish Toxins (LST), Neurotoxin Shellfish	
	Poisoning (NSP) Toxins, Venerupin shellfish poisoning,	
	Ciguatera toxins, tetradotoxins, Azaspiracids, Cyclic Imines and	
	their origin.	
Pedagogy:	Lectures/tutorials/assignments/self-study/case-studies	

References /	Fernandes, R., Microbiology Handbook: Fish and Seafood, RSC	
Readings	Publishing	
	Woo, P. and Bruno, D. Fish Diseases and Disorders, Vol 3: Viral,	
	Bacterial and Fungal Infections, CABI Publishers.	
	Roberts, R. J., Fish Pathology, Wiley-Blackwell Publishers.	
	Hoole, D., Buck, D., Burgess, P. and Welby, I., Diseases of Carps	
	and Other Cyprinid Fishes, Wiley-Blackwell Publishers.	
	Sindermann, C. J., Principle Diseases of Marine Fish and	
	Shellfish, Gulf Professional Publishing.	
	Noga, E. C., Fish Disease: Diagnosis and Treatment. Wiley-	
	Blackwell Publishers.	
	Leatherland, J. F. and Wook, P. K. T., Fish Diseases and	
	Disorders, CABI Publishers.	
	1. Knowledge of wide diversity of marine and coastal	
Learning	ecosystems in terms of fishes, shrimps, etc.	
outcomes	2. Apply the principles of microbiology to a range of	
	interactions between microorganisms and fishes	