	 examples of various projects. Objectives of EIA implementation and follow up. Tools of EM & performance review. Environmental auditing. Evaluation of EIA effectiveness and performance. Module 4: EIA of Mining Potential sites, brief description of the project, identification, nature of mineral, Quality and quantity, resource available, geology, types of mining, carrying capacity, Blasting - Rules and Guidelines, Dust and noise pollution, transportation, Biodiversity assessment, Impact on human settlement, Restoration, 	10 hours
	reclamation and mitigation measures, hydrology, safety and prevention measures.	
Pedagogy:	Lectures/assignments/workshops and discussion/presentations.	
References/ Readings	 Glasson, J., Therivl. R & Chadwick, A. (2005). Introduction to Environmental Impact Assessment. Published by Routledge. Taylor and Francis Group. New York Arts, J., & Morrison-Saunders, A. (Eds.). (2012). Assessing impact: handbook of EIA and SEA follow-up. Routledge. Taylor and Francis Group. New York Abaza, H., Bisset, R., Sadler, B., (2004). Environmental Impact Assessment and Strategic Environmental Assessment: towards an Integrated approach. UNEP. Therivel, R., & Wood, G. (Eds.). (2017). Methods of environmental and social impact assessment. Routledge. Taylor and Francis Group. New York. Morris, P., & Therivel, R. (Eds.). (2001). Methods of environmental impact assessment (Vol. 2). Taylor & Francis. New York 	
Learning Outcomes	On completion of the course, the student will be able to apply various methods to assess the impacts of developmental projects on various aspects of environment with special reference to mining.	

Title of the Course: Lab Course in Environmental Science

The of the Course. Lab Course in Environmental Science				
Course Code: ESC	D-302 Number of Credits: 03			
Total Contact Ho	urs: 72 Effective from AY: 2022-23			
Prerequisites	Graduates in any discipline with science subjects at the 10+2 level.			
for the course:				
Objectives:	 To introduce students to basic instruments in chemistry lab, significance of calibration of glassware/ use of analytical grade reagents/ general reagents, use of analytical balance, basic laboratory practices, safety in laboratory. To understand the concentration of various pollutants including trace metals 			

	in the water/soil/air. The analyses of BOD and COD are us	ed to understand	
	the impact organic pollution on water bodies.		
Content:	Section –I		
	Module 1 (Any 6 experiments, 3 hours each)	18 hours	
	1. Demonstration of instruments (colorimeter, pH meter,		
	conductivity meter, Karl Fischer titrator,		
	2. Calibration of glass electrode and conductivity meter.		
	3. Determination of pH and conductivity of surface, ground		
	and sea water		
	4. Determination of alkalinity and acidity of surface, ground and sea water sample using titrimetric analysis.		
	5. Estimation of total solids, dissolved solids, suspended		
	solids of river/lake/pond water sample.		
	6. Estimation of total residual chlorine of water samples.		
	7. Estimation of sulfate in water samples (tap water) by		
	turbidimetry.		
	Module 2 (Any 6 experiments, 3 hours each)	18 hours	
	1. Determination of pH and conductivity of soil samples.		
	2. Determination of moisture content of soil samples.		
	3. Estimation of hardness of water samples by		
	complexometric method		
	4. Determination of chemical oxygen demand in given water		
	sample		
	5. Determination of nitrite in water sample using colorimetry.6. Determination of chromium in water sample by		
	colorimetry.		
	7. Determination of elements (Fe/Mn/Zn/Pb/Cd etc) in air		
	using high volume sampler		
	Section –II		
	Module -3:		
	1. Determination of dissolved oxygen in coastal waters. (4 hrs;	 	
	Ref.1)	18 hours	
	2. Estimation of dissolved oxygen in polluted water (6 hrs.		
	Ref. 2, 3)		
	3. Determination of biochemical oxygen demand in coastal		
	waters (4 hrs; Ref. 1)4. Estimation of hydrogen sulfide in coastal waters (4 hrs. Ref.		
	4. Estimation of hydrogen sunde in coastal waters (4 hrs. Ker. 3)		
	Module 4:		
	1. Determination of chemical oxygen demand in coastal		
	waters by KMnO ₄ method (4 hrs; Ref. 2)	18 hours	

	2 Dra concentration of see water by colvent extraction method
	2. Pre-concentration of sea water by solvent extraction method for analysis of trace metals by AAS (6 bras Baf 5 6 7)
	for analysis of trace metals by AAS (6 hrs; Ref 5,6,7)
	3. Estimation of Cu & Pb in coastal waters by AAS method (8
	hrs; Ref 5, 6, 7).
Delesson	
Pedagogy:	Pre-lab and post-lab assignments or a combination of some of
	these. Sessions shall be interactive in nature to enable peer
D	group learning.
References/	Section – I
Readings	1. Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (2002).
	Chemistry for environmental engineering and science
	(5th ed). McGraw-Hill Education.
	2. Dey, A. K. (2018). Environmental Chemistry (9th ed).
	New Age International Publishers.
	3. Jeffery, G. H., Bassett, J., Mendham, J., & Denney, R. C.
	(1989). Vogel's Textbook of quantitative chemical
	analysis. (5th ed). Longman Scientific and Technical,
	U.K. A Maara L.W. & Maara E. A. (2012) Environmental
	4. Moore, J. W., & Moore, F. A. (2012). <i>Environmental</i>
	Chemistry: (1st ed). Academic Press.
	5. Lakshmi, G. S. (2010). Environmental Science: A
	practical manual. (1st ed). BS publications
	6. Rattan, S. (2011). Experimental in Applied Chemistry.
	(3rd ed). S.K Kataria & Sons. 7. Mitra, S., Patnaik, P., & Kebbekus, B. (2019).
	7. Mitra, S., Patnaik, P., & Kebbekus, B. (2019). Environmental chemical analysis: Laboratory
	Experiments in Environmental Chemistry (2nd ed). CRC
	Press.
	8. Henrie, S. A. (2015). Green Chemistry: Laboratory
	manual for General Chemistry (1st ed). CRC Press Taylor
	& Francis Group.
	a Francis Group.
	Section – II
	1. Martin, D. F. (1972). <i>Marine chemistry</i> , 1. Academic
	Press.
	2. Standard methods for the examination of water and waste
	water analysis. 22^{nd} Edition.
	3. Rice, E. W., & Bridgewater, L. (2012). American Public
	Health Association.
	4. Grasskhoff, E. K. M., & Krembling, K. (1983). <i>Methods</i>
	of Seawater analysis. Verlag Chemie, Weinneim.
	5. Strickland, J. D. H., & Parsons, T. R. (1972). A practical
	hand book of seawater analysis [Fisheries Board of
	Canada bulletin] (2nd ed).
	6. Riley, J. P., & Skirrow, G. (1975). Analytical chemistry
	of seawater. In <i>Chemical oceanography</i> , 3. Academic
	or seawater. In chemical oceanography, J. Academic

	Press.
	7. Allen, S. E., Grimshaw, H. M., Parkinson, J. A.,
	Quarmby, C., & Roberts, J. D. (1976). (eds) Chapman S.
	B, Chapter 8. Chemical analysis. In Methods in plant
	Ecology. Blackwell Scientific Publications.
Learning	1. Students will be in a position to know the basic
Outcomes	environmental chemical processes.
	2. Students will be able to explain the origin and harmful
	effects of toxic chemicals in the environment.
	3. Student will be in position to use different techniques for
	qualitative and quantitative estimation of environmental
	samples.
	4. The results of analyses of different pollutants in sea water
	can be used to set the limits of their discharge.
	5. These concentrations will be compared with the daily
	intake of, or exposure to a pollutant by organism/man and
	it can lead to acceptable concentration of pollutant in
	organism.
	6. These studies would help to regulate the release of a
	particular pollutant in the marine environment.

Title of the Course: Marine Pollution

Course Code: ESO-303 **Total Contact Hours:** 36 Number of Credits: 03 Effective from AY: 2022-23

Prerequisites for the course:	Graduates in any discipline with science subjects at 10+2 level	
Objectives:	 To identify the type of materials added to the sea and their sources. What effect these additions to the sea and animal living there. What implications these effects have for human health and What is being done to reduce the undesirable effects. 	
Content:	Module 1: Introduction Introduction to Environment, Objectives of environment, Marine pollution definition, Some questions, Categories of additions, Nature of inputs, and Sources of inputs. Gross chemical composition of seawater, Sources of dissolved and particulate matter in the sea, Geochemical balance and residence times of elements in seawater	06 hours
	Module 2: Organic wastes Biochemical oxygen demand, the dilution factor, Settlement, Oxygen budget, Consequences of organic discharges into Thames and Mersey estuaries. Decomposition of organic matter in oxic	10 hours