Programme: M. Sc. Part-I (Chemistry)Course Code: ICO-401Title of the Course: Topics in Inorganic Chemistry & Environmental ChemistryNumber of Credits: 03Effective from AY: 2018-19

Prerequisites for the course:	Student should have studied the courses in chemistry at F.Y. B.Sc., S.Y.B.Sc. and T.Y.BSc. levels and / or CHIC-401 course so as to have basic knowledge of Inorganic / environmental chemistry.	No. of lectures
Course Objectives:	 To provide fundamental aspects of transition & inner transition metals & their compounds. To provide knowledge of main group elements of the periodic table & their compounds To introduce various global phenomenon's of atmosphere & environment, follow directive of the Supreme Court in 1993 to introduced environmental education at all levels, have a fair knowledge on the various global activities to justify permissible or adverse, so that future generation are not adversely affected. 	
Course Outcomes:	 Students should be in position to understand fundamentals / usefulness of transition & inner transition metals. Students should be in position to understand chemistry main group elements. Students shall be aware of the maintenance of healthy living atmosphere on the globe. 	
Content:	SECTION-I	
	 Chemistry of transition & inner transition elements Transition elements: IUPAC definition of transition elements, occurrence, physical & chemical properties, noble character, metal oxides & oxido complexes, examples of metal-metal bonded clusters. Inner transition elements: Lanthanides, occurrence, properties, oxidation states, electronic structure, colour and spectra, magnetic properties, lanthanide contraction, compounds of lanthanides. Actinoid chemistry, general trends. 	<mark>9 hr</mark>
	 Main group elements and their compounds Boron group: Compounds of boron:- borazine and boron nitride, synthesis, properties, structure & bonding. Borates: classification, structures & examples. Carbon group: Allotropes of carbon including C₆₀, intercalation compounds of graphite, carbides. Compounds of silicon: silicates, zeolites & silicones. Nitrogen group:- Introduction: oxides & oxyacids of nitrogen. 2.4 Oxygen group: oxyacids & oxohalides of S, S₄N₄ ring compounds: synthesis, properties, structure & bonding. 	9 hr

	SECTION-II	
	1. Atmosphere	<mark>2 hr</mark>
	Structure and properties of the atmosphere, composition of	
	atmosphere and vertical temperature behaviour, lapse rate and	
	temperature inversion.	
		7 1
	2. Air Pollution Classification of air pollutants and photochemical reactions in the atmosphere	7 hr
	Common air pollutants (e.g. CO, NOx, SO ₂ , hydrocarbons and	
	particulates) (a) sources (b) physiological and environmental effect (c)	
	monitoring, d) various remedial & technological measures to curb pollution.	
	Air quality standards.	
	3. Water pollution	5 hr
	Importance of buffer & buffer index in waste water treatments.	
	C hemical, physical & biological characteristics of water pollution, specific &	
	non-specific characterization of water. DO, BOD, COD, and chlorine	
	demand, typical water treatment & waste water treatment (Municipal).	
	4. Treatment of Industrial wastes	2 hr
	Electroplating industry, fertilizer industry and pharmaceuticals industries.	2 111
	5. Biogeochemical cycles: Carbon and Nitrogen cycles nature	2 hr
Pedagogy:	Mainly lectures / tutorials. Seminars / assignments / presentations / self-study	
	or a combination of some of these could also be used to some extent.	
Text books /	1. P.W. Atkins, T. Overton, J. Rourke, M. Weller, & F. Armstrong, <i>Shriver</i>	
reference	& Atkins Inorganic Chemistry, Oxford publications, 2009, 5 th Ed.	
books	2. J. E. Huheey, E. A. Kieter, R. L. Kieter & O. K. Medhi, Inorganic	
	Chemistry: Principles of Structure & Reactivity, Pearson, 2011, 4th Ed.	
	3. F. A. Cotton, G. Wilkinson & P. L. Gauss, Basic Inorganic	
	Chemistry, Wiley, 2008 (reprint), 3rd Ed.	
	4. N.N. Greenwood and A. Earnshaw, <i>Chemistry of the Elements</i> , Pergamon	
	Press, Exetr, Great Britain. 1984.	
	5. J.D. Lee, <i>Concise Inorganic Chemistry</i> , Wiley, 2008, 5 th Ed. 6. A.V. Salker, <i>Environmental Chemistry: Pollution and Remedial</i>	
	Perspective, Narosa Publication, 2017.	
	7. A.K. De, <i>Environmental Chemistry</i> , New Age, 2006.	
	8. A.C. Stern, R.W. Boubel, <i>Fundamentals of Air Pollution</i> , D. Bruce turner	
	& D.L.Fox, Academic Press, 1984.	
	9. R.A. Horne, Chemistry of Our Environment", John Wiley, N.Y. (1978).	
	10. C.N. Sawyer & P.J. Macarty, Chemistry for Environmental Engineering,	
	Mc Graw Hill, 1978.	
	12. L.L. Ciaccio, <i>Water and Water Pollution Hand Book</i> ", Marcel Dekker,	
	1973. 13. J.C. Lamb, Water Quality and its Control, John Wiley & Sons, N.Y.,	
	13. J.C. Lamb, water Quality and its Control, John whey & Sons, N.T., 1985.	
	1/00.	