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Abstract 

The preservation of biodiversity in the face of increasing human pressure is hindered by our limited knowledge 

of species occurrence, distribution, abundance, habitat requirements, and threats. Efficient and sensitive methods 

are needed to obtain this information, particularly for rare, cryptic, and elusive species. One promising technique 

for the above is environmental DNA (eDNA), which can improve our ability to detect and quantify biodiversity, 

while overcoming some of the challenges of labour-intensive traditional surveys. The use of eDNA in ecology 

and conservation has increased rapidly without a corresponding increase in understanding its strengths and 

limitations. Imperfect detection, abundance quantification, taxonomic assignment, eDNA temporal and spatial 

dynamics, data analysis and interpretation, and assessing ecological status are all potential issues. Careful 

evaluation of the technical complexities and challenges involved in eDNA is essential. Therefore, it is important 

to assess the scope and relevance of eDNA-based studies and identify critical considerations before using this 

approach. 
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Introduction 

1.1 Environmental DNA 

Environmental DNA (eDNA) refers to the genetic signature that living organisms leave in aquatic 

or sediment environments. This genetic material can include whole cells, extracellular DNA, or 

even entire organisms (Barnes et al., 2021; Ficetola et al., 2008). eDNA is retrievable from an 

environment, where a small portion can be amplified and sequenced. The resulting sequence can 

then be utilized to identify various species existing in that environment (Deiner et al., 2017). eDNA 

can be isolated from various sources such as including roots, leaves, pollen, fruit, cells, skin, blood, 

mucus, saliva, sperm, eggs, feces, urine, and the decaying remains of larger animals (Barnes & 

Turner, 2016; Bohmann et al., 2014; Taberlet, Coissac, Pompanon, et al., 2012).  

 

Despite being a relatively new surveying method, eDNA analysis has demonstrated significant 

promise in environmental monitoring. Unlike traditional taxonomic identification procedures that 

often involve capturing live or dead animals, eDNA only requires the genetic traces left behind by 

an organism, thereby minimizing habitat destruction and disruption. While eDNA may not provide 

population quality information, such as sex ratios, it can effectively detect endangered, invasive, 

elusive, and rare species (Deiner et al., 2017; Goldberg et al., 2016).  

 

Recent advances in eDNA research methods now allow for the examination of entire communities 

from a single sample. While metabarcoding has a long history in microbiology, it is only beginning 

to gain momentum in the evaluation of macro-organisms (Deiner et al., 2017; Coissac et al., 2012; 

Creer et al., 2016) Contamination during metabarcoding of an ecosystem may lead to inaccurate 

results such as false positives or false negatives, despite the method's ability to detect both macro 

and microorganisms on a large scale (Ficetola et al., 2016; Hering et al., 2018). In general, eDNA 

metabarcoding offers several benefits compared to traditional methods, such as improved 

accuracy, faster identification, and lower costs. Nevertheless, to fully utilize its potential in 

ecological research, standardization and unification are necessary, which should include both 

taxonomy and molecular approaches (Coissac et al., 2012; Cristescu, 2014; Yu et al., 2012).  
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Literature Review 

1.2 eDNA Extraction and Analysis 

The methods for studying eDNA vary significantly among published studies, posing a challenge 

for comparing results between them. The uniqueness of each species being studied and the location 

of the research make it challenging to establish a standardized approach (Hering et al., 2018) The 

widespread use of metabarcoding in biodiversity research and assessment has the potential to 

establish some level of standardization in methodologies (Cristescu, 2014).   

Following workflow summarizes various methods, from sample collection up to data study. 

Fig. 1.2 Workflow of eDNA study 

 

1.2.1 Collection Methods 

To extract eDNA from water samples, the most used methods are filtration, ethanol precipitation, 

and centrifugation. Each approach has its own advantages and disadvantages, and the optimal 

method should be selected based on the research objectives and the properties of the samples being 

analysed. Filtering is the most employed technique for enriching eDNA in water samples. It holds 

great potential for obtaining a higher yield of eDNA as it can process large volumes of water, 

usually between 0.1 to 1 litre, as compared to other methods. The choice of filter material and pore 

size can significantly impact eDNA collection, with pore diameters ranging from 0.02 to 0.4 μm 

appearing to be the most effective at capturing macro-organism eDNA (Barnes et al., 2014) If the 

water sample has an excessive number of suspended particles, small pore filter papers can become 
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blocked easily. Filtering is the most widely utilized method for concentrating eDNA in water 

samples, as it has the potential to process large volumes of water, generally ranging from 0.1 to 1 

litre, compared to other approaches. The selection of filter material and pore size can significantly 

influence eDNA yield, with pore diameters ranging from 0.02 to 0.4 μm being most effective in 

capturing macro-organism eDNA.   

Ethanol precipitation is a commonly used method for extracting eDNA from small water samples, 

typically around 15 ml in volume (Deiner et al., 2015; Doi et al., 2015) This method is particularly 

advantageous for research conducted in challenging environments such as high altitudes or jungles, 

where access to electricity and specialized equipment may be limited. Unlike other methods, it 

requires fewer instruments and is capable of instantly recovering any eDNA present in water 

samples. However, it is important to note that the yield of eDNA recovery through this method 

may be limited by sample volume, in contrast to the ethanol precipitation method (Yamamoto et 

al., 2016). If the eDNA level of the desired species is elevated, then the use of ethanol precipitation 

might be a suitable option (Doi et al., 2015)  

Centrifugation is a viable method for directly extracting eDNA from water samples as well 

(Klymus et al., 2015; Takahara et al., 2013) Although not commonly used, this method's simplicity 

could be beneficial when testing many samples. Nevertheless, the amount of sample water that can 

be centrifuged depends on the centrifuge device, which may only allow small quantities.  

Irrespective of the methodology employed, handling of water samples should be cautious until 

eDNA is extracted. The decay of eDNA takes place gradually, and its breakdown speed amplifies 

with elevated temperatures (Tsuji et al., 2017). Therefore, it is essential to extract or preserve the 

eDNA from the collected water sample promptly, preferably under conditions of low temperature.               
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Table 1.2.1 Procedures for extracting eDNA from varying volumes of aquatic samples. 

                                                                                                                                       

 

1.2.2 Commonly Employed Extraction Methods 

Standardization of eDNA extraction methods is yet to be achieved, which leads to a significant 

influence of the filter-based eDNA extraction method on eDNA detection (Deiner et al., 2015; 

Yamamoto et al., 2016) For the extraction and purification of eDNA, commercial DNA extraction 

kits or liquid phase separation techniques are commonly utilized. 

Ficetola et al. (2008) popularized the use of commercial DNA extraction kits for the extraction 

and purification of eDNA. Since then, the method has been adopted by many researchers due to 

its experimental simplicity and higher recovery efficiency. 

However, it is important to note that the choice of DNA extraction kit should be carefully 

considered for each study based on the conditions and/or purpose of the research. This is because 

 

For 15ml of Sample 

 

1.5ml of CH3COOHNa + 

33ml EtOH absolute 

 

Centrifuge at 5500g, 35 min, 6°C 

 

Discard the supernatant 

 

 

Pellet is subjected to Classical DNA 

extraction (Ficetola et al., 2008) 

 

 

For 1-2 litre of Sample 

 

Membrane Filtration 

 

2ml EtOH absolute 

 

Centrifuge 

 

Discard the supernatant 

 

Pellet is subjected to classical DNA extraction 

(Laramie et al., 2015) 
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the kit's performance is determined by the combination of eDNA collecting method and the 

inhibitory content of the sample. 

Different commercial kits have varying protocols and efficiencies for extracting and purifying 

eDNA, and therefore, the selection of the appropriate kit is crucial for obtaining reliable and 

accurate results. It is recommended that researchers evaluate the efficacy of different kits and 

choose the most suitable one based on their specific experimental conditions. 

In 2013, liquid phase separation techniques were initially employed, utilizing 

cetyltrimethylammonium bromide (CTAB) and phenol-chloroform-isoamyl alcohol (PCI) (Turner 

et al., 2014). These techniques showed that PCI recovered a higher amount of DNA from 

membrane filters in comparison to commercial DNA extraction kits (Deiner et al., 2015; Renshaw 

et al., 2015). 

Despite the higher yield, the use of hazardous compounds in PCI necessitates careful reagent 

handling and proper waste disposal. As such, caution should be exercised when using this method. 

 

1.2.3 Widely Used Detection Method 

There exist two main categories of eDNA detection: (1) species-targeted detection, and (2) eDNA 

metabarcoding (Thomsen & Willerslev, 2015; Tsuji et al., 2019a) The most frequently utilized 

technique is species-specific detection, which can detect endangered or invasive species with great 

accuracy. Meanwhile, eDNA metabarcoding is employed to monitor aquatic and sediment biota 

since it can detect all organisms in the sample (Jerde & Mahon, 2015).  

The detection of a specific species is typically accomplished through PCR, which utilizes primers 

that are specific to that species to amplify and identify small fragments of DNA (usually 80-200 

base pairs) (Bohmann et al., 2014). Mitochondrial DNA (mtDNA) is frequently utilized as a 

genetic marker in these studies because of its high mutation rate, large number of copies per cell, 

and extensive representation in genetic databases (Goldberg et al., 2016; Handley, 2015). The main 

target regions of mtDNA include cytochrome b (Cytb), cytochrome c oxidase subunit 1 (COI), D-
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loop, 12S ribosomal RNA (12S), 16S ribosomal RNA (16S), as well as the internal transcribed 

spacer (ITS) region of nuclear DNA.  

The detection of the DNA of the target species is primarily accomplished through one of three 

methods: (1) electrophoresis of PCR amplicons on a gel; (2) real-time quantitative PCR; or (3) 

digital PCR. 

eDNA metabarcoding involves the use of universal primers that amplify a small section of DNA 

with sufficient sequence diversity to accurately identify species within a specific population (Miya 

et al., 2015). These amplified DNA fragments are subsequently analysed through high-throughput 

sequencing (HTS) of the target barcoding region from eDNA samples of different species. 

Bioinformatics methods are then employed to match each obtained DNA sequence to a recognized 

taxonomic group. 

 

1.2.4 Data Analysis Methods 

A series of software are used to transform raw sequence data into an OTU-table, which contains 

Operational Taxonomic Units as rows and samples as columns. This process, called the 

bioinformatics component of the metabarcoding method, involves five phases: (1) Demultiplexing 

samples, (2) Reads joining, (3) Quality filtering, (4) OTU clustering, and (5) Taxonomic 

assignment. Different software can handle one or more of these steps. They can be called 

successively via command-line or bash scripts to form an analytic pipeline. MOTHUR, 

USEARCH, QIIME, OBI Tools, and VSEARCH are toolkits designed for eDNA metabarcoding 

data analysis. Additionally, SLIM, an open-source web application, can be utilized to process 

metabarcoding data starting from raw sequences and producing an annotated OTU table (Dufresne 

et al., 2019)  
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1.3 Direct PCR System 

Direct PCR is a technique that enables the amplification of DNA without the need for prior 

purification or quantification. This approach involves directly amplifying crude DNA samples, 

which can save time and resources in the preparation of DNA templates for PCR analysis 

(Bergkessel & Guthrie, 2013). The reduction of pre-PCR procedures from days to hours enables 

efficient processing of large-scale samples and lowers extraction expenses. Nevertheless, the 

limited success rate of the method is attributed to inhibitory compounds and low DNA yield. As a 

result, there are only a few direct PCR techniques developed, despite their advantages (Rogers & 

Parkes, 1999). While liquid phase separation methods have been utilized for eDNA extraction in 

some reports (Tsuji et al., 2019), a direct PCR method for eDNA has not been documented yet. 
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2.1. Aim of The Project 

The objective of this project is rapid extraction of eDNA from Estuarian sample by both NaOH 

based and kit based eDNA methodology. 

2.2. Objectives 

▪ Implications of two different types of eDNA extraction methodology (NaOH based and kit 

based) and to avoid hazardous chemicals while extraction.  

▪ Performing PCR amplification using various PCR primers to amplify eDNA. 
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3.1 Equipment Used 

3.1.1 NaOH Based Method  

HDPE bottle, Filtration Unit, Filter Paper, Syringe, Micropipettes, Tips, Centrifuge Tubes, 

Centrifuge, Water bath, Qubit Fluorometric Quantification, Thermal Cycler, Gel Electrophoresis 

Unit. 

3.1.2 Kit Based Method  

NucleoSpin eDNA Water commercial kit (MACHEREY-NAGEL, n.d.), Water collection tank, 

Filtration Unit, Filter Paper, Syringe, Micropipettes, Tips, Microcentrifuge Tubes, centrifuge, 

Qubit Fluorometric Quantification, Thermal Cycler, Gel Electrophoresis unit.  

3.2 Reagents Used 

Sodium Hydroxide (NaOH), Ethanol, EDTA, Tris HCl, Triton-X-100, Tween20, Distilled Water, 

Taq Polymerase (supplied with 10x buffer containing MgCl2), dNTPs mix, Agarose, TAE buffer. 

3.3 Sample Collection  

3.3.1 For NaOH based Method 

In November 2022, 3 Litre of Estuarian water subsamples were collected from the Mandovi River, 

(15.501737, 73.875426) Panjim, Goa, using a 100 mL measuring cylinder. Subsamples were 

homogenized by compiling them in a 5 L HDPE bottle. Before collecting samples all the 

equipment were washed with 10% of HCl. After being collected, the samples were promptly 

transported to the laboratory where they underwent filtration. To filter the samples, 1 litre aliquots 

were extracted from the 3-liter samples and vacuum filtered through a membrane filter.  
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3.3.2 For Kit based Method 

In March 2023, 3 litre of water subsamples were collected from Zuari River, (15.403304, 

73.926831sss) Ponda, Goa, by using 100 mL of measuring cylinder. Subsamples were 

homogenized by compiling them in a 5 L HDPE bottle. Before collecting samples all the 

equipment were washed with 10% of HCl. After being collected, the samples were promptly 

transported to the laboratory where they underwent filtration. To filter the samples, 1 litre aliquots 

were extracted from the 3-liter samples and vacuum filtered through a membrane filter.  

 

 

Fig3.3.2.1 Sampling Site. Station 1: Mandovi Estuary, Station 2: Zuari Estuary 

 

 



14 
 

3.4 Sample Filtration  

3.4.1 For NaOH Based Method  

Nitrocellulose mixed ester membrane filters with a pore size of 0.2 μm and a diameter of 47 mm 

wer used to filter 1 L estuarian samples in triplicate. The filtration cup was mounted with the filter 

and secured to a filtration unit that was connected to a vacuum pump. Prior to filtration, all supplies 

were sterilized with 10% bleach. The isolated eDNA was immediately obtained from the 

membranes. As a negative control, 1 litre of Milli Q water was also filtered. 

3.4.2 For Kit Based Method 

Glass Fibre Filter papers (diameter of 47 mm) were used to filter 1 L estuarian water samples in 

duplicate. The filtration cup was mounted with the filter and secured to a filtration unit that was 

connected to a vacuum pump. Prior to filtration, all supplies were sterilized with 10% bleach. The 

isolated eDNA was immediately obtained from the membranes. 

3.5 eDNA Extraction Protocol 

3.5.1 NaOH Based Extraction Protocol 

After completing the filtration process, the filter paper was carefully rolled with flame-sterilized 

forceps and placed into a 15-mL microcentrifuge tube containing 5 mL of NaOH-ethanol solution 

(Table 3.5.1.1). The tube was then heated to 80°C for 10 minutes in a water bath. Using sterile 

forceps, the membrane filter was gently extracted and transferred into a 1 mL sterile syringe. Any 

remaining liquid was expelled by compressing the membrane filter, and the extracted liquid was 

added to the 15-mL tube. The tube was subsequently centrifuged for 10 minutes at 10,000 RPM 

and the supernatant was removed. To solubilize the denatured DNA, 100 μL of elution buffer 

(Table 3.5.1.2) was added and the sample was stored at -20°C.  
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Fig 3.5.1 Schematic illustration of extraction technique. 

 

Table 3.5.1.1 NaOH-EtOH based eDNA extraction reagents (Vingataramin & Frost, 2015). 

Reagents Volume (mL) Concentration 

NaOH 2 M 5.5 240 mM 

Ethanol 96% 35 74% 

EDTA 0.025 M 5 2.7 mM 

Final Volume 45.5  
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Table 3.5.1.2 Tris-EDTA based elution buffer (Vingataramin & Frost, 2015). 

Reagents Volume (mL) Concentration 

Tris-HCl, 0.5 M, pH 8 5 50 mM 

EDTA 0.5 M 0.01 0.1 mM 

Tritin-x-100 0.5 1% 

sTween20 0.25 0.5% 

Mili Q Water 44.25  

Final Volume 50.01  

 

 

3.5.2 Kit Based Extraction Protocol 

eDNA was extracted using Nucleospin kit by following the instruction mentioned in the manual. 

3.6 PCR Amplification 

The extracted eDNA was amplified by conducting a PCR reaction using a thermal cycler to 

amplify the 16S, ITS2, and rbcL genes. 

The 16S rRNA gene encodes the RNA of the small subunit of the ribosome in bacteria, and is 

present in all bacterial cells as well as in eukaryotes. Studies on 16S rRNA sequences from multiple 

organisms indicate that certain regions of the molecule undergo rapid genetic changes, allowing 

for differentiation between different species within the same genus (16s rRNA - n.d.). 

The ITS2 region within the nuclear ribosomal DNA is considered a promising DNA barcode 

option due to its advantageous traits. These include the presence of conserved areas that allow for 
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the creation of universal primers, straightforward amplification, and ample variability that enables 

the differentiation of closely related species (Yao et al., 2010). 

The rbcL gene serves as a DNA barcode for plant species, as it is a universal and easily amplified 

coding region located in chloroplast DNA (cpDNA). Compared to other barcodes in cpDNA, the 

rbcL gene has a lower mutation rate and high similarity between species, making it a superior 

option. This gene allows for detailed examination of intraspecies genetic and phylogenetic 

variations due to its advantageous characteristics (Nurhasanah et al., 2019). 

Reaction mixture of PCR was prepared as Table 3.6.1 and the used parameters were in Table 3.6.2. 

For ensuring accurate amplification and appropriate fragment size, all PCR amplicons were 

subjected to electrophoresis and then observed under UV light. 

Table 3.6.1 Reagents of PCR reaction mixture 

 

 

Reagents 

Volume (uL) 

16s rbcL ITS2 

Sterile Mili Q Water 32.7 33.8 34.8 

10X Taq buffer 5.0 5.0 5.0 

dNTPs mix 4.0 4.0 4.0 

Forward primer 0.7 1.3 1.1 

Reverse primer 0.7 1.9 1.1 

Template DNA 6 3 3 

Taq polymerase 1.0 1.0 1.0 

Total 50 50 50 
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Table 3.6.2 PCR parameters used for amplification 

Parameters 

16s rbcL, ITS2 

Temp, Time 
No. of 

cycle 
Temp, Time 

No. 

of 

cycle 

Initial denaturation 95°C, 5 min 1 94°C, 5 min 1 

Denaturation 95°C, 1 min 
 

35 

94°C, 30 sec 
 

40 

Annealing 55°C, 1 min 56°C, 30 sec 

Extension 72°C, 1 min 72°C, 45 sec 

Final extension 72°C, 10 min 1 72°C, 10 min 1 

 

3.7 Gel Electrophoresis 

To assess the quantity and quality of PCR amplicons, agarose gel electrophoresis was employed. 

A 0.7% gel was made by dissolving 0.35 g of agarose in 50 mL of 1x Tris-acetate-EDTA (TAE) 

buffer. 5-10 uL of the amplicons were loaded onto the gel and electrophoresed for 0.5 hours at 

room temperature, under a constant voltage of 100 V. 
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4.1 Extracted eDNA 

For further studies eDNA quantification is required. One of the best methods to detect the eDNA 

is the Qubit Fluorometer. The triplicate eDNA was stored in three different tubes. For measuring 

the eDNA a mixture of buffer and dye were needed.  

Table 4.1.1 Reagents mixture for eDNA quantification. 

Reagents Volume (uL) 1X 

Buffer 199 

Dye 1 

Total 200 

 

Qubit 2.0 was used for analysis of the extracted DNA samples. It has a specific Qubit tube which 

should have the reaction mixture and can be inserted inside the Fluorometer. Each of these tubes 

required 200 uL of reaction mixture. So, for 5 uL of sample 195 uL of reagent mixture is needed. 

Table 4.1.2 Reaction mixture for eDNA quantification. 

Reagents Volume (uL) 

Reagent mixture 195 

Sample (eDNA) 5 
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4.2 Readings of Qubit Fluorometer 

4.2.1 In NaOH based Method 

The samples are labelled as Sample 1, Sample 2, Sample 3. The concentration of eDNA is provided 

in Table 4.2.1.1. 

Table 4.2.1.1 eDNA concentration in triplicate samples. 

Sample eDNA concentration (ng/uL) 

Sample 1 19.10 

Sample 2 7.09 

Sample 3 1.25 

 

4.2.2 In Kit based Method 

The samples are labelled as Sample 1, Sample 2. The concentration of eDNA is provided in Table 

4.2.1.2. Kit based method provides lower concentration of eDNA as compared to NaOH based 

method due to too many purification stages each of which may have led to the loss of some amount 

of eDNA. 

Table 4.2.2.1 eDNA concentration in duplicate samples. 

Sample eDNA concentration (ng/uL) 

Sample 1 6.24 

Sample 2 9.84 
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Fig 4.2.1 Comparison of NaOH based and Kit based Method of eDNA Extraction. 

4.3 PCR Amplification and Gel Electrophoresis 

Triplicate NaOH based Method and Duplicate Kit based Method samples were amplified 

separately in PCR for several times using different parameters of PCR using three different primers 

– 16s, ITS2, rbcL. The PCR products show no bands when run in gel electrophoresis. 

4.4 Discussion 

The NaOH-based eDNA extraction method resulted in a higher concentration of eDNA compared 

to the kit-based method. This could be attributed to the kit-based method involving multiple 

purification steps, which could potentially result in a loss of DNA.  

The extracted eDNA concentration is quite enough for PCR amplification studies but the PCR 

products of the sample show no bands in the gel electrophoresis. The probable reason for that is 

the presence of PCR inhibitors. PCR inhibitors are a diverse group of chemical substances with 

varying properties. A single sample can contain multiple inhibitory substances, and the same 
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inhibitors can be present in different samples. Inorganic and organic substances, both in dissolved 

or solid forms, can act as PCR inhibitors. Calcium ions are an example of an inorganic substance 

that can inhibit PCR. However, organic compounds are more commonly known to have inhibitory 

effects on PCR, such as bile salts, urea, phenol, ethanol, polysaccharides, sodium dodecyl sulphate 

(SDS), humic acids, tannic acid, melanin, and various proteins, including collagen, myoglobin, 

haemoglobin, lactoferrin, immunoglobin G (IgG), and proteinases (Schrader et al., 2012). 
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CHAPTER 5 

Future Prospective  
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5.1 Future Prospectives 

The future prospectives of this analysis are 

▪ Modification of PCR parameters to obtain bands 

▪ Preparation of library from PCR amplicons 

▪ Library sequencing 

▪ Barcoding and Metabarcoding analysis 
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