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Chapter 1

Introduction

The existence of a variety of intriguing phenomena with potential applications in

spintronic devices has led to a great deal of interest in magnetism in systems with

noncollinear magnetic structures in recent years.1,2 As a result, antiferromagnetic

spintronics is a rapidly growing �eld since it o�ers a number of bene�ts over the ferro-

magnets now in use.3,4 Insensitivity to external magnetic �eld perturbations, produc-

tion of no stray �elds, presence of rapid spin dynamics necessary for data preservation,

and high-density memory integration are all characteristics of antiferromagnets.2,5�9

Noncollinear chiral antiferromagnets have garnered the greatest attention among

the numerous diverse antiferromagnetic10,11 or synthetic antiferromagnetic materi-

als12,13, thanks to their exceptional structural, magnetic, and electrotransport fea-

tures. Some of these substances belong under the category of magnetic topological

substances, which show how magnetic and electronic states of matter interact and

serve as a crucial backdrop for revealing a variety of exotic phenomenon. The large

anomalous Hall e�ect (AHE)14,15, topological Hall e�ect (THE)16�19, spin Hall ef-

1
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fect (SHE)20, magneto-optical Kerr e�ect21, skyrmionic lattice22, thermoelectric ef-

fect23,24, and so on are all produced by the kagome lattice, in which atoms are arranged

in star-like formation, which causes geometrical frustration.

Due to their possible magnetic topological features, a number of kagome inter-

metallics have been extensively researched. For example, YMn6Sn6 is a rare-earth-

based kagome system showing several competing magnetic orders and large THE25,

Co3Sn2S2 is a magnetic Weyl semimetal showing giant anomalous Hall e�ect in ad-

dition to chiral anomaly26, Mn3Ge and Mn3Sn are time-reversal symmetry-broken

Weyl semimetals, and despite being antiferromagnets, show large anomalous Hall ef-

fect induced by the nonzero k-space Berry curvature27,28, Fe3Sn2 which is a kagome

ferromagnet generates skyrmionic bubbles in addition to the giant anomalous Hall ef-

fect29,30 and Gd3Ru4Al12 possess a low-temperature skyrmion lattice induced by the

magnetic frustration31.

1.1 The Mn3X Family of Compounds

Noncollinear antiferromagnets (AFMs) based on Mn3X (X = Sn,Ge,Ga,Rh, Ir, P t)

have attracted interest because, in contrast to the extensively studied collinear AFMs,

these noncollinear AFMs exhibit signi�cant anomalous Hall, anomalous Nernst, and

magneto-optical Kerr e�ects at room temperature.

It has also been demonstrated that these noncollinear AFMs are home to a vari-

ety of exotic phenomena, including magnetic Weyl fermions, cluster octupole moment

ordering, spin polarised current, and the magnetic spin Hall e�ect. These intrigu-
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ing results imply that the Berry curvature produced by the chiral spin structure has

a signi�cant impact on the charge and spin transport parameters. This makes the

Mn3X-based AFMs appealing for spintronics applications in addition to having po-

tential for fundamental research.32

X = Ga,Ge, Sn are examples of Mn3X compounds that crystallize with the

hexagonal D019 structure. Theoretically, nonvanishing Berry curvature was pre-

dicted to cause Mn3Sn and Mn3Ge to exhibit large anomalous Hall e�ect, but band-

structure computations show that these compounds exhibit a Weyl semimetal state

with many Weyl points near the Fermi level. These theoretical calculations led to

the discovery that Mn3Sn and Mn3Ge single crystals display substantial anomalous

Nernst e�ect and large anomalous Hall e�ect, both of which are of the same order of

magnitude as in ferromagnetic materials.9

It is not anticipated that antiferromagnets with no net magnetization will exhibit

the anomalous Hall e�ect, which is widely known to scale with the magnetization of a

ferromagnet. However, the non-vanishing Berry curvature of the chiral spin structure

in the non-collinear triangular antiferromagnet hexagonal Mn3Ge and Mn3Sn results

in a signi�cant anomalous Hall e�ect. Theoretical models predict that the same spin

structure also gives rise to a strong spin Hall e�ect. The chiral triangular antiferro-

magnet cubic Mn3Ir, on the other hand, only exhibits a signi�cant spin Hall e�ect

and no signs of an anomalous Hall e�ect.33

Tetragonally deformed cubic Mn3Pt structures have been found to exhibit an in-
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trinsically anomalous Hall e�ect. In epitaxially formed, face-centered cubic Mn3Ir

thin �lms, uncompensated Mn spins dominate the electrical transport behaviour,

which results in a small anomalous Hall e�ect and negative magnetoresistance.34 Epi-

taxial thin �lms of this material have been discovered to have a facet-dependent spin

Hall e�ect (SHE), which results from a combination of spin-orbit coupling and sym-

metry breaking from the chiral antiferromagnetic structure. It has also been predicted

to exhibit an intrinsic anomalous Hall e�ect . Large anomalous Hall e�ect have been

experimentally seen in highly ordered bulk samples of Mn3Sn and Mn3Ge, both of

which have demonstrated potential for anomalous Hall e�ect applications.35

These compounds are interesting candidates for straintronic applications due to

their strong piezomagnetism, large anomalous Hall e�ect, and metallic conductivity.

In comparison toMn3Sn,Mn3Gemay have even more signi�cant piezomagnetic char-

acteristics.36 Large coercivity and abnormal Hall resistivity were observed in Mn3Ga

�lms, which were attributed to the frustrated spin structure of D019.37

1.2 Mn3Sn

A prime example of a material having a triangle spin structure is the antiferromagnetic

semimetal Mn3Sn, which is extensively discussed in the context of Weyl physics. The

structure of the material's electronic bands, which strongly contribute to anomalous

magneto-transport, is of special interest.38�43

Mn3Sn o�ers a wide range of technological options for AFM spintronics at room

temperature because of its exceptional magnetic, structural, and electrotransport ca-
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pabilities.2 Around room temperature, a sizable anomalous Hall e�ect with a trian-

gular AFM spin arrangement is seen. A large anomalous Hall e�ect at room tem-

perature27, a large anomalous Nernst e�ect at room temperature39, a large magneto-

optical Kerr e�ect44, magnetic and magnetic inverse spin Hall e�ects45, and magnetic

Weyl fermions40 are examples of anomalous transport properties, while an angular-

dependent Hall e�ect shows that the evolution of DWs with the magnetic �eld and

magnetic anisotropy in Mn3Sn also plays a signi�cant role.46,47

Since an antiferromagnet has no net magnetization, there should not be any

anomalous Hall e�ect in a zero applied �eld. The antiferromagnet Mn3Sn has been

demonstrated to have a signi�cant anomalous Hall conductivity27 of the same order

of magnitude as for ferromagnetic conductors. Before the discovery of Mn3Sn, the

anomalous Hall e�ect in antiferromagnets had not been observed.47 Mn3Sn's com-

plex physical properties may be inseparable from its unique structure. In the following

subsections, we look at its crystal and magnetic structure and the properties that arise

as a consequence.

1.2.1 Crystal Structure

Hexagonal D019 compounds belong to P63/mmc (#194) space group.48 In the case

of the Mn3X family, the six Mn atoms are located at the 6h Wycko� positions

(x, 2x, 1/4). Stacked in an ABAB sequence along the c-axis (at each z = 1/4 and

z = 3/4 layers), the atoms form a kagome lattice, stabilized by the DM interaction,

with triangles of Mn atoms along the edges of hexagons that host Sn atoms at their

center, at 2c Wycko� position (1/3, 2/3, 1/4).27,47,49,50 Previous studies of Mn3Sn
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have found the lattice parameters to be a = 5.67Å and c = 4.53Å.51 Each Mn atom

has a spin magnetic moment of ≈ 3.0µB per atom.50

Geometric frustration of Mn atomic moments in this con�guration results in a non-

collinear AF structure with chiral 120° inverse triangular spin structure below (TN =

420K).27,52�54 Weak ferromagnetism is also present as a result of small distortions in

the lattice and the o�-stoichiometry of the system.27,53 The low-temperature mag-

netic structure depends greatly on the elemental ratio of the Mn and Sn, annealing

temperature and crystal growth techniques, with some studies reporting a helical spin

structure and others a spin-glass state below 50K.48,55�57

Figure 1.1: Crystal and Magnetic Structure of Mn3Sn (taken from58)

1.2.2 Magnetic Structure

Mn3Sn is a non-collinear antiferromagnet (AFM) with a Néel temperature (TN) of

420K, as shown by powder neutron di�raction.55,59 A geometrical frustration that

results in an inverse triangular spin structure at 300K and a very small net ferromag-

netic moment of 0.002 µB/Mn atom is present in each of the structure's ab planes,
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which are each made up of a slightly distorted kagome lattice of Mn moments each

of 3µB. There is a minor deviation from the standard 120° structure, but all Mn

moments lie on the ab plane and form a chiral spin texture with an opposing vector

chirality. This roughly cancels the magnetic moment. Only one of the three moments

in each Mn triangle in this inverse triangular con�guration is parallel to the local

easy-axis, thus this arrangement possesses orthorhombic symmetry.55

As a result, it is believed that the weak ferromagnetic moment originated from

the canting of the other two spins towards the local easy-axis. At T1 = 270K, another

magnetic transition takes place. Two models for the spin ordering have been put up:

the spin con�guration is spiral below T1 and triangular above T1. The appearance of

satellite re�ections surrounding the fundamentals and the transfer of intensity from

the fundamentals to the satellites serve as evidence that the interlayer ferromagnetic

coupling is replaced by some sort of moment modulation along the c-axis direction

below around 270 K.53

The triangular structure has typically been described as undergoing a long-period

helical modulation that is virtually independent of temperature down to 4.2K.50 Com-

position and heat treatment have a signi�cant impact on T1. The magnetic order of

Mn3Sn on a polycrystalline sample examined at low temperatures showed glassy

ferromagnetism below Tf = 31.8K. Mn3Sn single crystals subjected to a thorough

neutron di�raction concludes that the compound is predominately AFM with weak

ferromagnetism (WFM) between T1 and TN .51,53
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The Dzyaloshinskii-Moriya interaction results in the triangular antiferromagnetic

con�guration, and the WFM is the result of the distortion of the equilateral triangle

and the non-stoichiometry of the compound in which a few Sn atoms have been

substituted by Mn atoms.50,59,60 The inverse triangular spin state is reported to be

maintained in as-grown crystals over a large temperature range (T) between TN and

50K. Due to spin canting in the direction of the c axis, a cluster glass phase with a

signi�cant c-axis ferromagnetic component manifests at low temperatures.58

1.3 Transition Metals Doped into the Mn3Sn System

Recent research on Mn3Sn has looked into how transition metals like Fe and Cr dop-

ing a�ect the material's characteristics. Studying the impact of Fe doping on Mn3Sn

led to the discovery of induced ferromagnetism and a shift in magnetic anisotropy

below a speci�c temperature. At low temperatures, Fe doping also caused a metal-

insulator transition and a rise in resistivity. Low-temperature topological Hall e�ect

was caused by the magnetocrystalline anisotropy and competing magnetic interac-

tions, which led to nontrivial spin texture. The topological characteristics of Mn3Sn

were signi�cantly altered even at low concentrations of Fe doping.61

The study focusing on Cr doping showed that the antiferromagnetic structure of

Mn3Sn can be altered by tilting it out-of-plane, resulting in increased net moment,

magnetocrystalline anisotropy energy, and Dzyaloshinskii-Moriya interaction perpen-

dicular to the kagome plane. In AFM systems, this led to the coexistence of in-plane

and out-of-plane exchange bias. The �ndings demonstrated that extra Cr doping

increased the exchange bias �eld by more than ten times when compared to pure
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Mn3Sn, which produced perpendicular exchange bias. This �nding of a signi�cant

exchange bias in an AFM system with a frustrated kagome structure opens up new

avenues for research into how symmetry breaking and DMI are related.62

The other study on Cr doping found that low-concentration Cr doping signif-

icantly increases the anomalous Hall conductivity, especially for modulation-doped

samples at low temperature, which is attributed to the change in Fermi level caused

by Cr doping, but does not signi�cantly alter the structural or magnetic properties

of Mn3Sn.32

In the present work, we have tried to investigate the e�ect ofNi substitution on the

structural, magnetic and transport properties ofMn3Sn. We report our investigations

on the room temperature structure as well as the temperature dependent magnetic

(5K to 390K) and transport properties (30K to 450K) of the Mn3−xNixSn alloys.



Chapter 2

Experimental Methods

In this chapter, we �rst present detailed calculations of the stoichiometric weights of

the constituent elements used to prepare the Mn3−xNixSn alloys. The chapter then

goes on to describe the two methods used to synthesize the alloys, i.e., the solid state

reaction method and the arc melting method. Next, the working principles of the

various characterization techniques, that is, x-ray di�raction, DC magnetization and

four probe resistivity measurements are described.

2.1 Sample Preparation

Mn3Sn contains Mn and Sn atoms in the ratio 3 : 1, or 75 : 25. According to liter-

ature51, Mn3Sn hexagonal phase (P63/mmc) is only stable in the o�-stoichiometric

con�guration of Mn3+δSn. Therefore to compensate for the mass loss and to take

care of the high vapour pressure of manganese, an excess amount (0.65% by weight) of

manganese over the stoichiometric amount was taken. Next, according to theMn−Sn

binary phase diagram (�g. 2.1), a stable single phase Mn3Sn alloy forms when the

Sn concentration lies between 24 and 26. Thus to create a de�cit of Sn, the ratio of

10
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75 : 25 is modi�ed to 75 : 24, or 3 : 0.96. Hence the stoichiometry of elements in a

single formula unit chosen for this study has the general formula, Mn(3−x)NixSn0.96,

with x = 0, 0.1, 0.15, 0.2, 0.25.

Figure 2.1: Binary Phase Diagram of Mn-Sn

Polycrystalline alloys of Mn(3−x)NixSn0.96 were synthesized by arc melting the

stoichiometric amounts of high purity constituent elements i.e. manganese (mol.

wt. 54.938g/mol)(Alfa Aesar, manganese pieces, irregular, 99.9%), tin (mol. wt.

118.69g/mol) (Alfa Aesar, tin shot, 3mm, 99.99 +%) and nickel (mol. wt. 58.71g/mol)

(Alfa Aesar). The weight of each element in a single chemical unit is calculated by

multiplying the atomic weight by the stoichiometric number and then dividing it by

the molecular weight of of the compound.
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For example, in Mn2.9Ni0.1Sn0.96, the molecular weight of the compound is

Mol. wt. = 2.9× 54.938 + 0.96× 118.69 + 0.1× 58.71 = 283.8812 g

The weights of Mn, Sn, and Ni in this compound are therefore,

Amt of Mn =
2.9× 54.938

283.8812
= 0.6735 g

Amt of Sn =
0.96× 118.69

283.8812
= 0.4816 g

Amt of Ni =
0.1× 58.71

283.8812
= 0.0248 g

Stoichiometric weights of the constituent elements taken to prepare ∼ 1.2 g of

Mn3−xNixSn alloys are presented in table. 2.1.

Table 2.1: Calculation of Molecular weights of each element

Formula Unit Molecular Weight (g) Amt. of Mn (g) Amt. of Sn (g) Amt. of Ni (g)
Mn3Sn0.96 283.504 0.6976 0.4823 0

Mn2.9Ni0.1Sn0.96 283.8812 0.6735 0.4816 0.0248
Mn2.85Ni0.15Sn0.96 284.0698 0.6614 0.4813 0.0372
Mn2.8Ni0.2Sn0.96 284.2584 0.6494 0.4810 0.0496
Mn2.75Ni0.25Sn0.96 284.447 0.6374 0.4807 0.0619

For this, nickel pieces were cut from the block, and the weights of Mn and Sn

were back calculated to maintain stoichiometry. The required amount of manganese

was taken and put in metal cleaner and placed in an ultrasonicator (�g. 2.3a) for 15

minute intervals, 3-4 times, and cleaned intermittently with isopropyl alcohol. At the

end, it was again cleaned in acetone in the ultrasonicator for another 10-15 minutes.

Tin beads was �attened for holding the Mn and Ni pieces (see �g 2.2).
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(a) Manganese (b) Tin (c) Nickel

Figure 2.2: Initial preparation of Manganese, Tin and Nickel.

The samples were synthesized using the arc melting process, in argon atmosphere

using a Centorr arc furnace. For this, the constituent elements were placed in the

copper hearth, depending on the vapour pressure of the individual elements and the

chamber was evacuated to a pressure of 10−3 torr for about 5 minutes followed by

�lling the chamber with argon gas to a pressure slightly above atmospheric pressure

for about 3 minutes followed by �ushing. This process is repeated three times and

�nally the alloy constituents are melted by generating an arc by striking the electrode

on the copper hearth. To ensure a better homogeneity, the samples were melted mul-

tiple times by �ipping the sample bead. The arc current was kept at 60A for the �rst

melt, and 70-80A for subsequent melts (see �g. 2.3c and �g. 2.4).

The sample beads obtained from arc melting were �rst weighed to calculate weight

loss (see table 2.2), then cut into halves using a low speed diamond cutter (�g. 2.3b)

and sealed in separate quartz tubes under vacuum (10−5 bar) for annealing. The tubes

were placed in a Carbolite furnace (�g. 2.3d) and heated from room temperature to

800� for three days, before quenching in ice cold water.
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Table 2.2: Weight Loss of the Samples Synthesized using Arc Melting

Sample Weight Before (g) Weight After (g) Weight Loss %
Mn3Sn0.96 1.1923 1.1653 2.3

Mn2.9Ni0.1Sn0.96 1.1835 1.1530 2.6
Mn2.85Ni0.15Sn0.96 1.4484 1.4258 1.6
Mn2.8Ni0.2Sn0.96 1.3211 1.2851 2.8
Mn2.75Ni0.25Sn0.96 1.4113 1.3944 1.2

(a) Ultrasonicator (b) Low Speed Diamond Cutter

(c) Arc Furnace (d) Carbolite Furnace

Figure 2.3: Instruments used to prepare polycrystalline Mn3−xNixSn0.96 alloys
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Figure 2.4: Samples in Arc Furnace

For x-ray di�raction and magnetization studies, one of the annealed halves of each

sample was ground in an agate mortar and pestle to a �ne powder. For resistivity

studies, a thin slice of the other half was cut to obtain a thin, almost rectangular bar.

Further, in order to obtain single crystals from the polycrystalline alloys, smaller

pieces from Mn3Sn and Mn2.75Ni0.25Sn0.96 were sealed in smaller quartz tubes under

vacuum (10−5 bar) for a second annealing. The tubes were placed in a Carbolite

furnace and followed an annealing process as follows: heat from room temperature

1000� at a rate of 100� per hour and hold for 6 hours. Then the temperature

was lowered to 600�at a rate of 2� per hour, followed by air quenching to room

temperature.

Prior to this synthesis method, an attempt was made to prepare single crys-

tals using the self-�ux method, with chemical formula Mn(7−x)NixSn3, with x =

0, 0.1, 0.15, 0.2, 0.25, 0.3. The constituent elements were the same as used in the poly-

crystalline samples above, except that nickel powder was used instead of pieces. The

tin was �attened and cut into small pieces and then the elements were ground together
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in an agate mortar and pestle and then sealed in quartz tubes (10−5) bar. The tubes

were placed in a Carbolite furnace and were heated from room temperature to 1000�

at a rate of 100� per hour and held there for 6 hours. The temperature was then

brought down to 900� at the rate of 1.2� per hour and then air quenched to room

temperature.

2.2 Characterization Techniques

2.2.1 X-Ray Di�raction

X-rays are electromagnetic waves whose wavelengths range from 0.1Å to 100Å, which

is of the same order of magnitude as the lattice constants of crystals, and it is this

attribute which makes x-rays useful in the analysis of crystal structures. The method

of determining a crystal's atomic and/or molecular structure using x-rays is called

x-ray crystallography.63,64

The internal structure of the crystal causes the incident X-ray beam to di�ract.

Parallel atomic planes in the crystal specularly re�ect the incident waves, with each

plane re�ecting only a tiny fraction of the radiation. When there is constructive in-

terference from the re�ections from parallel planes, a di�raction pattern is produced

that depends on the crystal structure and wavelength.
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Figure 2.5: Schematic of X-Ray Di�raction (By Hydrargyrum - Own work, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?title=File:Bragg_

diffraction_2.svg&oldid=484440777)

Consider parallel lattice planes spaced d apart, as in �gure 2.5. The radiation is

incident in the plane of the paper. The path di�erence for rays re�ected from adjacent

planes is 2dsinθ where θ is measured from the plane. Constructive interference of the

radiation from successive planes occurs when the path di�erence is an integral number

n of wavelengths λ, leading to the Bragg condition, 2dsinθ = nλ. This is the Bragg

law, which can be satis�ed only for wavelength λ ≤ 2d. Although the re�ection from

each plane is specular, for only certain values of θ will the re�ections from all periodic

parallel planes add up in phase to give a strong re�ected beam. The beams show a

sharp peak in the intensity of the scattered x-rays. The density of electrons within the

crystal can be visualized in three dimensions by measuring the angles and intensities

of the di�racted beams. The mean positions of the atoms in the crystal, their chemical

bonds, their crystallographic disorder, and other details can all be inferred from this

electron density.

https://commons.wikimedia.org/w/index.php?title=File:Bragg_diffraction_2.svg&oldid=484440777
https://commons.wikimedia.org/w/index.php?title=File:Bragg_diffraction_2.svg&oldid=484440777
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Experimental Details

The sample beads that were air quenched were cooled to room temperature before

being ground to a �ne powder for x-ray di�raction studies. The powder of each

sample was placed on a glass slide that is used as a sample holder and spread out in

a circular motion to avoid any preferred orientations. X-ray di�raction patterns were

recorded using ecorded using Cu Kα radiation (λ = 1.5418 Å) on a Rigaku SmartLab

di�ractometer (see �g.2.6).

Figure 2.6: Rigaku Smartlab X-Ray Machine at MCL, Goa University

During a typical measurement, monochromatic x-rays generated from a rotating

anode x-ray generator are collimated to concentrate before being directed towards

the sample. When the x-ray beam hits an atom of the crystalline substance the
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electrons in the atom begin to oscillate with the same frequency as the incoming

beam and some of the incident photons are de�ected away. When the scattering of x-

ray photons occurs only due to transfer of momentum, that is there is no loss of energy

(elastic scattering) the x-rays carrying information about the electron distribution in

materials are used for di�raction experiments. Constructive interference patterns of

di�racted waves from di�erent atoms thus consists of sharp peaks (maxima) with the

same symmetry as in the distribution of atoms. A scan through the range of 20°

≤ 2θ ≤ 80° in steps of 0.02° allows to obtain all possible di�raction directions of the

lattice that are required to examine the phase formation and purity of the compounds

formed.

Re�nement of Data

X-ray di�raction patterns recorded for all Mn3−xNixSn alloys were �rst re�ned using

the Le Bail method was re�ned using the Le Bail Method and qualitatively analyzed

using Rietveld Re�nement technique, both in the FULLPROF Suite software. A few

details on both the methods is given below.

Le Bail Method Le Bail analysis is a powder di�raction pro�le �tting technique

used for crystallographic structural determination. The method is used to extract

intensities from powder di�raction data and is particularly useful for determining

atomic structure and re�ning the unit cell. The algorithm involves re�ning the unit

cell, the pro�le parameters, and the peak intensities to match the measured powder

di�raction pattern. The Le Bail method is based on least squares analysis and in-

volves �tting parameters such as the unit-cell parameters, peak width parameters,

peak shape parameters, and instrumental zero error. It is not necessary to know the
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structural factor and associated structural parameters, since they are not considered

in this type of analysis. Le Bail analysis is easily integrated into Rietveld analysis soft-

ware and is a part of a number of programs. It is a powerful tool for crystallographic

structural determination, allowing for the identi�cation of phase transitions in high

pressure and temperature experiments, and provides a quick method for re�ning the

unit cell, which allows better experimental planning.

Rietveld Re�nement Today's most used powder X-ray di�raction (XRD) re�ning

approach is based on a method Hugo Rietveld proposed in the 1960s.65 The Rietveld

approach uses experimental data to �t a computed pro�le (with all structural and in-

strumental characteristics). It makes use of the non-linear least squares method and

necessitates the accurate initial approximation of a large number of free parameters,

such as peak form, unit cell dimensions, and coordinates of every atom in the crystal

structure. Some parameters can still be reasonably re�ned while being conjectured.

By using powder x-ray di�raction patterns (PXRD), one can further re�ne the crystal

structure of a powder material. The quality of the data, the model's quality (including

initial approximations), and the user's experience strongly in�uence the re�nement's

performance.

Rietveld re�nement requires a crystal structure model and does not provide a

means of generating one on its own. However, it can be used to �nd structural details

missing from a partial or complete ab initio structure solution, such as unit cell di-

mensions, phase quantities, crystallite sizes/shapes, atomic coordinates/bond lengths,

micro strain in crystal lattice, texture, and vacancies.
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In order to calculate intensities of the peaks in the di�raction patterns recorded

for the samples, a hypothetical structural model adopting constraints imposed by the

crystallographic space group P63/mmc, corresponding fractional coordinates, atomic

site occupancies and roughly accurate lattice constants was generated. Parameters of

the model generated were iteratively re�ned using the Least-Square method based on

the minimization of the residual S between experimental and calculated patterns.

S =
∑
i

wi|yio − yic|2 (2.1)

where wi is a suitable weight given by

(wi)
−1 = σ2

i = σ2
ip + σ2

ib (2.2)

σ2
ip and σ2

ib represent the standard deviation associated with a peak and background

intensity (yib) respectively. (yio) represents the intensity observed in the ith step and

(yic) gives the sum of contributions from neighbouring Bragg re�ections. (yic) can be

calculated as

yic = s
∑
k

mkLk|Fk|2G(∆θik) + yib (2.3)

where the terms s, mk, Lk, Fk and G represent the scale factor, multiplicity factor,

Lorentz polarization coe�cient for the re�ection k, structure factor and re�ection

pro�le function. ∆θik = 2θi − 2θk, 2θk and yib represent the position of the calculated

Bragg peak and background intensity. |FK | depends upon position of each atom j
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within each Miller plane,

Fhkl =
∑
j

Njfje
2πi(hxj+kyj+lzj)e−B sin2θ

λ2 (2.4)

where Nj represents the site occupancy, B the temperature factor, fj the structural

factor and xj, yj, zj the coordinates of the jth atom. A good �t is characterized by

reliability factors,

Rp =

∑
|yio − yic|∑

yio
(2.5)

Rwp = [

∑
wi|yio − yic|2∑

wiy2io
]1/2 (2.6)

RBragg =

∑
||Iko − Ikc∑

Iko
(2.7)

Rexp = [
(N − P )∑

wiy2io
] (2.8)

χ2 =

∑
wi|yio − yic|2

(N − P )
(2.9)

Rp of the di�raction pattern (minimized during �tting procedures), Rwp (weighted

to emphasize intense peaks over background), RBragg (tries to modify the R for a

speci�c phase), Rexp (estimates the best value R for a data set) and reduced χ2

(Goodness of �t).

2.2.2 Magnetization as a Function of Temperature

The magnetization as a function of temperature for all the samples was recorded using

a `Superconducting Quantum Interference Device' or SQUID magnetometer. SQUID

magnetometer is a highly sensitive device widely used in materials science to study the

magnetic properties of materials. The fundamental phenomenon behind the device is
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the Josephson e�ect, wherein a supercurrent can penetrate through a thin insulating

barrier between two superconductors, called a Josephson Junction, shown in �g. 2.7.

It is a quantum tunnelling e�ect involving the coherent tunnelling of Cooper pairs

through the barrier.

Figure 2.7: Schematic of a Josephson Junction in a DC SQUID

The device consists of a superconducting loop containing one or more Josephson

junctions, which are made of two superconducting electrodes separated by a thin in-

sulating barrier. When a magnetic �eld is applied to the loop, the phase di�erence

between the two superconducting electrodes changes, resulting in a change in the cur-

rent �owing through the junction.

A DC SQUID is built with two Josephson junctions and a DC current is applied

to this device. The supercurrent through each Josephson junction depends on the

phase di�erence between the complex order parameters of the superconductors that

form the two halves of the ring. The �ux through the ring leads to asymmetric phase

di�erences across the two junctions which causes an interference pattern in the current

across the device. A bias current is applied that is greater than the critical current

of the junctions (the maximum current that can �ow without dissipation, i.e., volt-
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age) so that a voltage appears across the device which depends on the �ux in the ring.

The SQUID does not see �ux directly from the sample. A superconducting pickup

coil system is used to couple the �ux from the sample to the SQUID. Figure 2.8

shows a superconducting pickup coil with inductance LP and an input coil (also

superconducting) with inductance Li that couples to the SQUID.

Figure 2.8: Superconducting pickup coil system in SQUID

Figure 2.9: Cryogenic Laboratory SQUID Magnetometer at MCL, Goa University



CHAPTER 2. EXPERIMENTAL METHODS 25

Figure 2.10: Sample inserted into the sample rod

2.2.3 Resistivity

A material's electronic structure determines its electrical resistivity, which is indepen-

dent of its geometry. It is determined through a measurement of resistance, which

depends on sample geometry and size. Further, to investigate the transport properties

of the prepared alloys, a standard D.C. four probe setup in an Advanced Research

Systems Inc, Closed Cycle Refrigerator (CCR) was used. The electrical resistivity

was measured in zero applied magnetic �eld, in the temperature range between 30 K

and 450 K.

The resistivity apparatus consists of a sample holder with four equidistant copper

contacts. In the four probe arrangement, four collinear probes (probe size � sample

dimensions) make an electrical contact with the sample. The inner two probes measure

potential di�erence +V and -V, whereas the outer probes conduct current +I and -I.
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See �gure 2.11 for reference. From the measured potential di�erence and the known

source current, the resistivity of the sample can be determined.66 Rectangular bars

with dimensions in the millimetre range were cut from the sample and used for the

measurements.

Figure 2.11: Schematic of the Four Probe Arrangement

Using G-varnish as an adhesive the sample is mounted onto this holder which is

placed directly on the cold head of a He closed loop cycle refrigerator. G-varnish

provides a good thermal contact while electrically isolating the sample from the rest

of the sample holder. A colloidal solution of silver paint is used to make electrical

contact between the probes and the sample.

The entire system is �rst evacuated and cooled to low temperatures. 100mA

current is then passed using a Keithley 6221 DC and AC current source and the

voltage developed is measured using a Keithley 2182A nanovoltmeter, as a function

of temperature. The temperature of the sample was controlled using a Lakeshore 325

temperature controller. The data acquisition was carried in the cooling and warming

cycles in the temperature range of 30K to 450K. Figure 2.12 shows the DC resistivity

setup and �gure 2.13 shows the manner in which the sample is �xed to the four probes.



CHAPTER 2. EXPERIMENTAL METHODS 27

Figure 2.12: DC Resistivity Setup, SPAS Lab, Goa University

Figure 2.13: Sample mounted for resistivity studies

The resistance of the sample is calculated using Ohm's law, V = IR, and the

resistivity ρ of the samples is calculated from the dimensions of the rectangular bar

cut, according to the relation ρ = RA/l, A being the area of cross section and l being

its length.
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Results and Discussion

Polycrystalline samples of Mn3−xNixSn prepared using the arc melting techniques

were analyzed for the present study. First, the phase formation and purity of the

samples was analyzed using an X-ray di�ractometer. The temperature dependent

magnetic behavior of all prepared alloys was then characterized using a SQUID mag-

netometer. Finally, temperature dependent electrical resistivity behavior of all sam-

ples was obtained using the four probe resistivity method. The obtained data is

presented in this section.

3.1 X-Ray Di�raction Analysis

In order to check for phase formation and purity of the prepared Mn3−xNixSn

(x = 0, 0.1, 0.15, 0.2, 0.25) alloys, room temperature x-ray di�raction patterns

were recorded using Cu Kα (λ = 1.5418 Å) radiation on a Rigaku SmartLab X-ray

di�ractometer. A scan through the range of 20° ≤ 2θ ≤ 80° in steps of 0.02° allows

to obtain all possible di�raction directions of the lattice that are required to examine

the phase formation and purity of the compounds formed.

28
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All patterns were �rst �tted using the Le Bail method. Figure 3.1 illustrates the

Le Bail �tted pattern recorded for the Mn3Sn alloy.

Figure 3.1: Pro�le Fitting of Mn3Sn using Le Bail Method

Further, a qualitative analysis of all XRD patterns was carried out using Rietveld

re�nement technique in the FullProf Suite software. As seen in �gure 3.2, the pre-

pared Mn3Sn alloy consists of a Mn3Sn phase (97%) and a minor Mn2Sn phase

(3%). The crystallographic structure of the two phases were identi�ed as hexagonal

with the space group P63/mmc. The re�ned lattice parameters indicated in the �gure

(see �g. 3.4) show a fair agreement with those reported in literature.61 Theoretically,

the highest intensity peak should be (201) but in this case we observed the (002)
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peak to be the most intense one which could be only �tted by assigning the preferred

orientation factor. The Rietveld analysis also yields an o�-stoichiometric composition

of Mn3.026Sn0.96 for the prepared polycrystalline sample.

Figure 3.2: Rietveld Re�nement of Mn3Sn using FullProf Suite Software

Results from a similar analysis carried out on the Ni doped samples highlighted

in �g. 3.3 suggest that all prepared alloys contain a minor P63/mmc Mn2Sn phase

along with the desired hexagonal P63/mmc Mn3Sn phase. The Rietveld re�ned

parameters and phase fractions obtained from this analysis are summarized in tables

3.1 and 3.2.
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Figure 3.3: Rietveld Re�nement of Mn3−xNixSn0.96 using FullProf Suite Software, for
x = 0.1, 0.15, 0.2, 0.25

Table 3.1: Rietveld parameters

Parameter Mn3Sn0.96 Mn2.9Ni0.1Sn0.96 Mn2.85Ni0.15Sn0.96 Mn2.8Ni0.2Sn0.96 Mn2.75Ni0.25Sn0.96

χ2 1.38 1.77 2.50 1.55 1.83
Rp 35.9 36.1 31.0 81.4 33.8
Rwp 29.1 30.6 28.5 50.6 28.4
Rexp 24.8 23.0 18.0 40.6 21.0
RBragg 4.43 5.94 8.31 19.20 7.20

RF − factor 4.13 6.06 5.42 16.30 6.34

Table 3.2: Phase percentages

Phase Mn3Sn0.96 Mn2.9Ni0.1Sn0.96 Mn2.85Ni0.15Sn0.96 Mn2.8Ni0.2Sn0.96 Mn2.75Ni0.25Sn0.96

Mn3Sn 96.72 ± 0.80 93.80 ± 0.84 97.93 ± 0.78 88.47 ± 1.46 99.13 ± 0.78
Mn2Sn 3.28 ± 0.11 6.20 ± 0.14 2.07 ± 0.09 11.53 ± 0.66 0.87 ± 0.09

The graphical representation of lattice parameter variation as a function of the

nickel concentration in �g. 3.4 highlights a systematic decrease as the concentration

of Ni increases from x = 0 to x = 0.25. This decrease in lattice parameters with
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nickel substitution at the Mn site can be attributed to the larger atomic radius of

manganese atoms (140 pm empirical) as compared to that of nickel atoms (135 pm

empirical). The discontinuity observed for the x = 0.2 alloy is most likely due to the

presence of a larger Mn2Sn impurity phase.

Figure 3.4: Variation of lattice constants 'a' and 'c' with increasing Ni concentration

3.2 Magnetization

The magnetization as a function of temperature of all the samples were recorded using

a Cryogenic Laboratory SQUID magnetometer in the temperature range 5K to 390K,

in an applied magnetic �eld of 0.01T. For this, about 15mg of �ne powder of each of

the samples was packed in a capsule, which was then inserted into a straw attached

to the sample rod, was used for the measurements.
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In order to carry out these measurements, the sample is �rst cooled from room

temperature in zero applied magnetic �eld down to the lowest temperature (5K).

Then a magnetic �eld of 0.01T was applied and data was recorded while warming

to 390K. The data recorded during this cycle is referred to as the Zero Field Cooled

(ZFC) data. The sample is then cooled back to 5K in the same applied magnetic �eld

and no data was recorded. On reaching 5K, with the �eld of 0.01T still on, data was

recorded while warming the sample upto 390K. This is the �eld cooled warming or

FCW data.

Figure 3.5: M v/s T for Mn3Sn

The magnetization v/s temperature data recorded for the Mn3Sn alloy in �gure

3.5 is consistent with earlier magnetic and neutron di�raction studies. Mn3Sn is an
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antiferromagnet (AFM) with a Néel temperature TN above 400K. As the sample is

cooled, the compound undergoes a magnetic transition at T1 = 290K. This transition

corresponds to the magnetostructural phase transition from the triangular antiferro-

magnetic structure to the modulated phases.

After this change there is initially no di�erence between ZFC and FCW curves, im-

plying that the structure below T1 is still antiferromagnetic. As the temperature

decreases below T2 = 215K, the magnetization again increases. This transition can

be to the anisotropy change of double helix magnetic structures. With further de-

crease in temperature, a slight drop in magnetization observed around 40K in the ZFC

curve is indicative of the glassy ferromagnetic-like state reported for the alloy. The

discrepancy between ZFC and FCW data curves also con�rms the same. An analysis

of the low temperature glassy state would require further frequency dependent a.c.

susceptibility measurements.

A similar analysis of the temperature dependent magnetic properties measured for

the Ni doped samples is given in �gure 3.6.
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Figure 3.6: M v/s T for Mn3−xNixSn0.96, x = 0.1, 0.15, 0.2, 0.25

A comparison of the ZFC curves recorded for all samples in H = 0.01T, is presented

in �gure 3.7 indicated a monotonic decrease in all transition temperatures as the Ni

concentration increases from x = 0 to x = 0.25. This could possibly be due to the

distortion of the kagome lattice. Further analysis is in progress.



CHAPTER 3. RESULTS AND DISCUSSION 36

Figure 3.7: Transition Temperatures

3.3 Temperature Dependent Resistivity Measurements

Next, temperature dependent resistivity of all the samples was measured during cool-

ing and subsequent warming cycles in the temperature range of 30K to 450K. For

this, rectangular bars with dimensions in the millimetre range were cut from the sam-

ple and used. A comparison of the resistivity data with the corresponding zero �eld

cooled magnetization curves is presented in �gure 3.8.
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Figure 3.8: Resistivity data for Mn3−xNixSn, x = 0.1, 0.15, 0.2, 0.25

As seen in the �gure, the Mn3Sn alloy exhibits an overall metallic behaviour

below TN . A small kink at T1 signals the transition from the noncollinear antifer-

romagnetic to a spiral magnetic state. Results from a similar study carried out on

the Ni doped alloys highlight clear anomalies at temperatures corresponding to the

di�erent magnetic transitions in the ZFC magnetization curves. Therefore, in order

to have a deeper understanding of the temperature dependent magnetic and transport

properties exhibited in these alloys, a thorough study involving magnetization as a

function of �eld and �eld dependent Hall resistivity measurements are essential.
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