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Chapter 1

Introduction

The Bose-Einstein condensate (BEC) is a state of matter that arises from the pure quantum behavior of

bosonic particles at ultra-low temperatures(10−9 Kelvin). This state was proposed by Satyendra Nath

Bose and Albert Einstein in the 1920s [1]. After 75 years it was experimentally realized in the laboratory

by Eric Cornell, Carl Wieman, and co-workers at JILA on 5 June 1995 using sophisticated techniques of

laser cooling and trapping [2].

When non-interacting bosonic particles such as He−4, Rb−87, Na−23 atoms or T lCuCl3 molecules

are cooled below critical temperature TC , they lose their individuality and merge into a single macroscopic

quantum state, forming a BEC. The critical temperature is given by

Tc =
2πh̄2

mkB

� n

2.613

� 2
3

(1.1)

where Tc is the Critical Temperature, h̄ is the reduced Plank’s constant, m is the mass of the boson, kB

is the Boltzman Constant and n is the number density of bosons.

Below this temperature, a large number of particles occupy the same quantum state, and they behave

coherently. Here the wave functions of the individual particles overlap with each other forming a giant

matter wave. Due to this collective behavior and large wavefunction, particles flow with zero viscosity

and this phase is called Superfluid (SF).

Optical lattices are periodic potentials formed by the interference of laser beams, which trap ultra-cold

atoms in a periodic array of potential minima via AC-Stark shift. In the simplest form, the optical lattice

is a standing wave formed by the interference of two or more monochromatic laser beams traveling in

opposite directions. See Fig. 1.2. The potential felt by cold atoms in a 3D optical lattice is of the form

V (x, y, z) = V0


sin2(kx) + sin2(ky) + sin2(kz)

�
(1.2)

where V0 is the maximum trapping potential, and it depends on laser intensity and frequency. k = 2π
λ
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CHAPTER 1. INTRODUCTION

Figure 1.1: Velocity-distribution of a dilute gas of Rubidium atoms near BEC transition. Temperature T
reduces from the left panel to the right. Left: just before the appearance of a Bose–Einstein condensate
(T > TC). Center: just after the appearance of the condensate(T ≈ TC). Right: after further evaporation,
leaving a sample of nearly pure condensate(T < TC). [2]

is the wave vector with λ as the wavelength of the laser beam. Here 6 counter-propagating laser beams

will be required. Such lattice systems allow for precise control over the motion of the atoms, provide a

disorder-free environment and lattice dimensionality can be changed easily. This creates a neat platform

for studying interacting quantum many-body problems.

Figure 1.2: Schematic diagram of (a) 2d and (b) 3d optical lattices. Grey regions dipict the potential
minimas felt by the ultracold atoms. It is made by interfering two and three pairs of counter propagating
lasers. [3]
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The model which best describes bosonic atoms loaded onto optical lattice is Bose Hubbard (BH)

model. It is given by Hamiltonian

H = −J
X

<i,j>

(âi
†âj + âj

†âi) +
U

2

X

i

n̂i(n̂i − 1)− µ
X

i

n̂i (1.3)

The first term represents hopping of bosons between nearest-neighbor pairs of sites ⟨i, j⟩ with ampli-

tude J , â†i (âi) is the boson creation (annihilation) operator at site i. U and n̂i = â†i âi are respectively

on-site repulsive strength and number operator at site i. µ is the chemical potential. In optical lattices,

U/J ratio can be changed as

U

J
=

√
8π

4

as
a

exp

 
2

r
V0

Er

!
(1.4)

where as is the s-wave scattering amplitude of atoms. a = λ
2 denotes the lattice constant with λ as the

laser wavelength. V0 is the potential depth felt by bosons and Er is the recol energy felt by the atoms.

V0 can be varied by changing the laser intensity.

When the potential is deep, and the interactions between the atoms are strong, resulting the system

to be in a Mott insulator (MI) state. In this state, each lattice site is occupied by a fixed number of

atoms. However, when the lattice potential is low, and the interactions between the atoms are weak, the

system can undergo a transition to a superfluid (SF) state, where the atoms become delocalized over the

lattice and exhibit quantum coherence.

Variety of analytical[4], semi-analytical[5] and numerical techniques[6, 7, 8, 9, 10] have been employed

to study BH model and its variants like in-homogeneous BH model, Extended BH model, Spin-1 BH

model etc. Cluster Mean Field Theory (CMFT) is a simple extension of traditional single site mean

field theory[11, 12, 13]. It captures some of the fluctuations neglected in single site mean field theory at

the cost of increased Hilbert state and computational power. This theory can be applied to do non-zero

temperature calculations in straightforward manner.

1.1 Literature Review

In a seminal paper by D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller [5] titled Cold

Bosonic Atoms in Optical Latticesthey gave a proposal for converting weakly interacting BEC to MI,

a strongly correlated quantum state was given. It was shown that the dynamics of the bosonic atoms on

the optical lattices realizes a Bose-Hubbard model. The BHM predicts phase transition from a superfluid

(SF) phase to a Mott insulator (MI) by increasing ratio of the on site interaction U (repulsion of atoms)

to the tunneling matrix element J [14]. It optical lattices this ratio can be varied by changing the laser

intensity. With increasing depth of the optical potential the atomic wave function becomes more and

more localized and the on site interaction increases, while at the same time the tunneling matrix element
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1.1. LITERATURE REVIEW CHAPTER 1. INTRODUCTION

is reduced. A signature of a MI phase is integer occupation number (density) ρ =< n̂i >. They used

mean field theory (MFT) in the and found the critical values of the MI-SF transition, that are U/zJ = 5.8

with z = 2d the number of nearest neighbors. This parameter regime is accessible by varying V0 in the

regime of a few tens of recoil energies ER. An example of Sodium was taken where ER/h̄ = 2π× 8.9 kHz

for a red detuned laser with λ = 985 nm, and the critical values for the first MI phase in 1D, 2D, and 3D

are given by Vx0 = 10.8, Vx,y0 = 14.4 and Vx,y,z0 = 16.5ER.

Soon after this Group led by Griner and I.Bloch realized this phase transition in Optical Lattices[3]

for the first time. The paper was tited as Quantum phase transition from a superfluid to a Mott

insulator in a gas of ultracold atoms. They put forward that for a system at a temperature of abso-

lute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic

quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body

system when the relative strength of two competing energy terms is varied across a critical value. They

observed a quantum phase transition in a Bose-Einstein condensate with repulsive interactions, held in a

three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition

is observed from a superfluid to a Mott insulator phase. To illustrate this, atomic gas of bosonic at

low enough temperatures is taken such that it forms BEC. The BEC is superfluid and is described by a

wavefunction that has long range phase coherence [15]. This is then subjected to a lattice potential in

which the bosons can move from one lattice site to the next only by tunnel coupling. It is then observed

that if the lattice potential is turned on smoothly, the system remains in the superfluid phase as long as

the atom-atom interactions are small compared to the tunnel coupling. In the opposite limit, when the

repulsive atom-atom interactions are large compared to the tunnel coupling, the total energy is minimized

when each lattice site is filled with the same number of atoms. The competition between two terms in

the underlying hamiltonian (here between kinetic and interaction energy) is fundamental to quantum

phase transitions and inherently different from normal phase transitions, which are usually driven by

the competition between inner energy and entropy. The experimental setup consisted of spin polarized

samples of laser-cooled atoms in the (F = 2,mF = 2) state, which were transferred into a cigar-shaped

magnetic trapping potential with trapping frequencies of nradial = 240 Hz and naxial = 24 Hz. Here

F denotes the total angular momentum and mF the magnetic quantum number of the state. Forced

radio-frequency evaporation was used to create Bose-Einstein condensates with up to 2x105 atoms and

no discernible thermal component. In order to form the three-dimensional lattice potential, three optical

standing waves are aligned orthogonal to each other, with their crossing point positioned at the centre

of the Bose-Einstein condensate. The resulting three-dimensional optical potential [16] for the atoms is

then proportional to the sum of the intensities of the three standing waves, which leads to a simple cubic

type geometry of the lattice: V (x, y, z) = V0


sin2(kx) + sin2(ky) + sin2(kz)

�
.
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A theory for Multi-site Mean Field Theory or commonly nown as Cluster Mean Field Theory was

given by T. McIntosh, P. Pisarski, R. J. Gooding, and E. Zaremba in their paper Multisite mean-field

theory for cold bosonic atoms in optical lattices[11]. Through this theory inter-site correlations

which allow for fluctuations of various physical variables could be captured, at least to some extent, by

dividing the system into clusters of arbitrary size and using mean-field theory to decouple the clusters.

The approach here is based on partitioning the lattice into small clusters which are decoupled by means

of a mean-field approximation. This approximation invokes local superfluid order parameters defined for

each of the boundary sites of the cluster.

The ability of bosons to hop in pairs in optical lattices has been theoretically realised by Xiang-

Fa Zhou, Yong-Sheng Zhang, and Guang-Can Guo [10]. This study tries to bring an analogy between

Bardeen-Cooper-Schrieffer (BCS) [17] superconductivity and Bose-Einstein condensation (BEC) of tightly

bound pairs. This was done by realising a state dependent optical lattice. One can change the intensity

of the laser beams, thus the relative well depth of the lattice can be adjusted. In addition variation of

θ leads to change in the separation of the two lattice potentials. Therefore in such deep optical lattices

Hamiltonian resembles that of the traditional Bose-Hubbard model except that the kinetic term is re-

placed with the pairing hopping of bosonic atoms in the lattices. It is also to be noted that competition

between PSF-SF leads to a 1st order PSF(SF)-MI transition.

A perturbative approach to study bosons at Finite T to obtain simple analytical expressions for the

occupation number and number fluctuations was done in 2004 by Plimak, L. I., Olsen, M. K. and Fleis-

chhauer, M in their study titled Occupation number and fluctuations in the finite-temperature

Bose-Hubbard model[4].

The Boson-Hubbard Model in 2 Dimension under the effect of Thermal FLuctuations (i.e Finite Tem-

perature) was studied by K. W. Mahmud, E. N. Duchon, Y. Kato, N. Kawashima, R. T. Scalettar, and

N. Trivedi in their paper titled Finite temperature study of bosons in a two dimensional optical

lattice[8]. It was observed that in addition to the usual ground state SF and MI phases of the Bose

Hubbard model, a new third phase had arisen which was the Normal Bose Liquid (NBL). It was reported

that at higher temperature, regions develop which have incommensurate filling but also superfluid order

parameter ψ = 0. This is called as Normal Bose Liquid (NBL) phase.

After the experimental observation of effective multibody interactions [18, 19], A team of Researchers,

A. Safavi-Naini, J. von Stecher, B. Capogrosso Sansone, and Seth T. Rittenhouse in their paper First-

Order Phase Transitions in Optical Lattices with Tunable Three-Body Onsite Interaction[6]

have shown that the density two Mott lobe disappears and the system displays first-order phase tran-
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sitions separating the ρ = 1 from the ρ = 3 lobes and the ρ = 1 and ρ = 3 Mott insulator from the

superfluid in Optical Lattices with a tunable three-body interaction. The mechanism to control this on-

site interaction is by an external rf pulse that couples the triply occupied state with a three-body bound

state associated with an excited hyperfine state. This local three-body interaction then, only affects triply

occupied sites leading to a modified BH Hamiltonian. In the region |W | > U , ρ = 2 MI lobe disappears

and it was thought that a direct first-order phase transition at finite hopping occurs between the ρ = 1

and ρ = 3 MI lobes.

However, later in a paper titled Anamolous pairing of bosons : Effect of multibody interac-

tions in an optical lattice by Manpreet Singh, Sebastian Greschner, Tapan Mishra were able to show

that an unconventional pairing of bosons occurs due to the competing repulsive two-body and attractive

three body interactions[7]. They showed this competition leads to a formation of PSF phase in between

the ρ = 1 MI and ρ = 3 MI lobes as opposed to a direct first order jump as proposed in [6]. For any

0 < t ≪ U,W between the MI-1 and MI-3 lobes, an intermediate region of pair superfluid is found. This

pair SF phase was called as Anomolous Pair SF(PSF) phase.

The effect of Finite temperatures in Optical lattices with Three-body interactions has been reported

by T.K. Kopeć and M.W. Szymański[9]. It was observed that Finite temperature smears the lobes and

the effect is seen to be stronger for higher temperatures.

Recently, In a paper titled Two-body repulsive bound pairs in a multibody interacting Bose-

Hubbard model Suman Mondal, Augustine Kshetrimayum and Tapan Mishra were able to show that

PSF phase can be realsied even with an onsite 4-body interactions[13]. With U2 > 0, U3 < 0 and U4 > 0

they were able to show that there is a formation of PSF phase in the region between the ρ = 1 MI

and ρ = 3 MI lobes. By considering this two-body repulsion along with large three-body attraction and

four-body repulsion they showed that bosons prefer to move in pairs. Also this pair formation was found

to be not limited to ρ = 1 MI and ρ = 3 MI lobes but rather could be manifested between ρ = 2 MI and

ρ = 4 MI lobes by employing a 5-body interaction. Along with this it was confirmed that for these set of

multi-body interactions the PSF phase survives the thermal fluctuations.

1.2 Motivation

Ultracold atoms trapped in Optical lattice provide a neat platform to study interacting quantum phase

transitions. Prominent example of such quantum phase transition is the SF to MI transition occurring in

case of bosonic atoms trapped in optical lattice. This transition was predicted by solving Bose Hubbard

model and was verified experimentally. By applying external RF pulses or radiations various two and

three body interactions can be tuned in the optical lattice system. With three body attractive interaction,

6



1.3. OBJECTIVES CHAPTER 1. INTRODUCTION

an anomalous pairing of bosons is predicted by use of DMRG and Cluster mean field theory. In such

case two bosons pair up to hop through the lattice. All the predictions of this pair SF phase occurring

in BH model with attractive three body interaction is at zero temperature.Cluster mean field theory is a

simple numerical technique able to predict SF and MI phases qualitatively. This theory can be extended

to do non zero temperature calculations. This serves as motivation of this report.

1.3 Objectives

The objectives are as follows

• To apply Cluster Mean Field Theory to BH model for studying SF-MI transition at zero tempera-

ture.

• To employ CMFT method to characterise and study PSF phase occurring due to attractive three

body interactions in BH model.

• To study the effects of thermal fluctuations on the SF, MI and PSF phases.

7



Chapter 2

Model and Method

Here model and method for solving the model is discussed.

2.1 Model

With three-body interaction, the Bose-Hubbard Model in Eq. 1.3 is modified as

H = −J
X

<i,j>

(âi
†âj +H.C) +

U

2

X

i

n̂i(n̂i − 1) +W
X

i

δni,3 (2.1)

where W is the on-site three-body interaction. δni,3 is a function which is one if ni = 3, or else is

zero. The Hamiltonian in Eq. 2.1 cannot be solved exactly. One can apply Cluster Mean Field Theory

to solve this model qualitatively. The method for solving is as follows.

2.2 Cluster Mean Field Theory

The entire lattice is divided into clusters of NC number of sites. In this report cluster of four sites is

considered. Hopping of bosons inside the cluster is treated exactly. And hopping of bosons outside the

cluster is approximated by standard mean field decoupling. i.e. âi = ψi + δâi, where ψi = ⟨âi⟩ is the SF

order parameter and δâi is fluctuation over it. Using this and neglecting the terms which are quadratic

in fluctuations we get

â†i âj ≃ ⟨â†i ⟩âj + â†i ⟨âj⟩ − ⟨â†i ⟩⟨âj⟩ (2.2)

â†i âj ≃ ψ∗
i âj + â†iψj − ψ∗

i ψj (2.3)
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Figure 2.1: Illustration of a 4-site 2d cluster. The dashed arrows represent interaction outside the cluster
which is approximated using mean field decoupling. Solid arrows represent hopping inside the cluster
treated exactly.

We assume SF order parameter to be real. With this the Hamiltonian of 4 site cluster becomes

HCluster =− J

4X

<i,j>

(â†i âj + â†j âi) +
U

2

4X

i

ni(ni − 1) +W

4X

i

δni,3 − µ

4X

i

ni

− 2J

4X

i

(âi
†ψj + âiψj − ψiψj) (2.4)

The first term represents hopping within the cluster. Second and third terms are on site two and

three body interactions. Fourth term controls density of bosons on a site inside cluster. Fifth term is

the mean field decoupled hopping. It represents hopping of bosons from a cluster to the sites in another

neighbouring cluster. See Fig. 2.1.

.

Within this CMFT approach considered in Eq 2.4, it is difficult to determine a parameter describing

the pairing of bosons. Therefore, second-order terms in tunneling in the Hamiltonian can be included.

In the limit J << U within second-order perturbation theory effective two particle hopping amplitude is

Jeff = J2

U−W . Such second-order tunneling terms is explicitly included in the CMFT approach in order

to describe PSF phase. With this the Cluster Hamiltonian becomes

9
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HCluster =− J

4X

<i,j>

(â†i âj + â†j âi) +
U

2

4X

i

ni(ni − 1) +W

4X

i

δni,3 − µ

4X

i

ni

− 2J

4X

i

(âi
†ψj + âiψj − ψiψj)

− Jeff

4X

i

(â2i
†
ϕj + â2iϕj − ϕiϕj) (2.5)

where ϕi =< â2i > is the PSF order parameter.

In this study energy scaling is done by setting U = 1. So, J ,W and µ are dimensionless. We consider

that bosons are trapped in a 2D optical lattice and sysyem is homogeneous. i.e ψi = ψ and ϕi = ϕ.

Cluster Hamiltonian in Eq. 2.5 is solved self-consistently according to the Flow-Chart in Fig. 2.2.

Brief explanation of each step is given below.

1. For U , W , µ and temperature T guess initial values of ψ = ψi and ϕ = ϕi.

2. Using this values of ψi and ϕi construct Hamiltonian matrix by operating Hamiltonian in Eq. 2.5

on to number basis |n1, n2, n3, n4⟩. Here ni = 0, 1, 2, . . . , nmax. Value of nmax is truncated such

that it does not affect Free energy of the system. In our case we choose nmax = 6 as we work below

ρ = 4. The Hamiltonian matrix has dimensions 74 x 74.

3. Diagonalize Hamiltonian matrix to obtain Eigen Energies Eα and Eigen vectors |α⟩.

4. Using these Eigen Energies and Eigenstes calculate Partition function Z =
P

α e−βEα . Here β =

1/kBT .

5. Calculate new order parameters ψnew = ⟨â⟩T and ϕnew = ⟨â⟩T . Where ⟨Ô⟩T represents thermal

average of operator Ô such that

⟨Ô⟩T =
X

α

e−βEα⟨α|Ô|α⟩
Z

(2.6)

6. If ψi ̸= ψnew and ϕi ̸= ϕnew set ψi = ψnew and ϕi = ϕnew and repeat the above procedure from

step-2 until they converge.

This convergence guarantees convergence of the Free energy F = −kBT ln(Z). After convergence

following quantites are calcualted. Boson density

ρ = ⟨n̂i⟩T (2.7)
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comressibility

κ =
δρ

δµ
(2.8)

and thermodynamic Entropy

S = −kB
X

α

Pαln(Pα) (2.9)

where Pα = e−βEα

Z is the probability to occupy |α⟩ sate.

SF,PSF, MI and NBL phases are characterised by using ψ, ϕ, ρ and κ. Table shows the characterisa-

tion.

Parameter/Phases SF PSF MI NBL

ψ ̸= 0 = 0 = 0 = 0
ϕ ̸= 0 ̸= 0 = 0 = 0
ρ Non-Integer Non-Integer Integer Non-Integer
κ ̸= 0 ̸= 0 = 0 ̸= 0

Table 2.1: Characterisation of different phases of BH model
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For U,W,μ,T, guess
an initial value for set
of order parameters
like ψi and φi.

Construct Hamiltonian
Matrix H=<n|H|n> from
the given set of
parameters

Diagonalize this Matrix
to obtain Eigen
Energies Eα and Eigen
Vectors |α>

From these, then calculate
partition function Z, and
ψnew=<a>T and
φnew=<a2>T

If ψi ≠ ψnew and φi ≠ φnew,
then repaet the above
procedure by setting ψi =
ψnew and φi = φnew

If ψi = ψnew and φi = φnew

then proceed to calculate
rest of the quantities

Figure 2.2: Flowchart depicting self-consistent CMFT calculations.
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Chapter 3

Results

Results of CMFT calculations of BH models are presented here. First we concentrate on T = 0 case

to emphasise role of quantum fluctuations on BH model. After clear understanding of zero temperature

phases and phase transitions, nonzero temperature results are shown.

3.1 W = 0 and T = 0 case

At zero temperature and with no three-body interaction SF order parameters and boson densities are

plotted in Fig. 3.1(a) and Fig. 3.1(b) respectively. For J = 0.072 (depicted by Yellow up triangles) SF

order parameter is non zero for for all the values of µ representing SF phase throughout for J = 0.072.

Boson density ρ increases with increase in µ. For J = 0.040 (depicted by Red squares) ψ is non zero

except between µ = 0.25 and µ = 0.6. For the same µ values ρ is pinned to integer value 1. This

represents ρ = 1 MI phase. With decrease in J to 0.008 we see that ψ is zero between µ = 0.0500 to

µ = 0.9,µ = 1.1 to µ = 1.75 and from µ = 2.15 to µ = 2.85. At same µ values ρ is pinned to 1,2 and 3

depicting ρ = 1 MI, ρ = 2 MI and ρ = 3 MI. As value of J decreases, the on-site repulsion U between

bosons dominate over the tunneling of bosons. Due to this increasing repulsive interaction, bosons avaoid

hopping to their nearest sites and system undergoes a phase transition from SF to interaction driven MI.

Collecting the µ values for which ψ = 0, ψ ̸= 0 and ρ = integer as well as non-integer, J − µ phase

diagram is plotted in Fig.3.2(a) and Fig.3.2(b) . White dots represent the SF-MI phase boundary. The

color-map depicts the numerical value of ψ and ρ in (a) and (b). We can see that for low values of

J , ψ is mostly zero with ρ being integer. This is because the repulsive interaction U dominates over

boson tunneling amplitude J and the atoms are highly localised. (dark blue indicates zero value for ψ).

However, as the tunneling amplitude J increases bosons are able to tunnel freely from one site to another

and overcome the repulsion U to remain in SF phase.

13
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Figure 3.1: Graph of ψ and ρ against µ depicting SF-MI Transition for W=0 at T=0

Figure 3.2: J − µ phase diagram for W = 0 and T = 0.

3.2 W ̸= 0 and T = 0 case

Now To understand the role of three-body interaction W we plot ψ,ϕ and ρ against µ for differ-

ent attractive three-body interaction strengths W = 0,−0.5,−1.0 and −2.0 at fixing J = 0.01 in

Fig. 3.3(a),Fig. 3.3(b),Fig. 3.3(c) and Fig. 3.3(d) respectively. We see that at W = 0, ψ is zero for

µ = 0.05 to µ = 0.9, µ = 1.1 to µ = 1.85 and µ = 2.15 to µ = 2.8. For the same values we observe that ρ

14
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is pinned to integer values 1,2 and 3 respectively. This represents MI phases. Rest is the SF phase where

ψ ̸= 0. For W=-0.5 similar plots as in Fig. 3.3(a) are obtained wherein we see the three mott phases.

But as W=-1.0 we see that ψ ̸= 0 from mu = 0.91 to mu = 1.13 where we see that there is no ρ = 2

phase and hence there is dissapearence of Mott-2 lobe for this attractive repulsion. As we increase W to

W=-2.0 we observe that ψ = 0 everywhere and ϕ, which is the pair super-fluid order parameter is non

zero for µ = 0.499 to µ = 0.501. For these values ρ is non-integer, hence we assume this to be the PSF

phase. There is no rho = 2 phase since bosons prefer hopping in pairs.

Figure 3.3: ψ,ϕ, and ρ plotted against µ for W = 0,−0.5,−1 and −2 for fixed J = 0.01

To understand the effect tunneling parameter J on PSF phase we plot ψ,ϕ and ρ for J=0.01, 0.04

and 0.075 at W=-2.0 against µ in Fig. 3.4(a),(b),(c). For J=0.01 we see that ψ is zero for most values of

µ and, ϕ is non zero for µ = 0.499 to µ = 0.501. At these µ values ρ is non-integer and increases from 1

to 3. As we increase the J to J=0.04 we see that ψ is nonzero from µ = 0.45 to µ = 0.6. This means that

as tunneling parameter is increased, bosons again can hop individually. Further increase in J to J=0.075

makes ψ non-zero everywhere up to mu = 1.15, after which system goes in density 3 MI. Since ψ is non

zero before µ = 1.15 we see no ρ = 1 and ρ = 2 phases. This is because J is high enough to overcome

inter-body interactions.

We plot the J − µ phase diagram for W = −2.0 in Fig. 3.5. Here the white dots represent the

phase boundary. The color map depicts numerical value of ψ in Fig.3.5(a) and numerical value of ϕ in

Fig.3.5(b). We can see here that compared to W=0.0 case, ρ = 3 MI is enlarged and it engulfs ρ = 2

phase. Enlarged phase diagram of MI(ρ = 1)-PSF-MI(ρ = 3) is shown in Fig.3.5(b). Here we see PSF

phase sandwiched between ρ = 1 MI and ρ = 3 MI. This was reported in [7].
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3.3. W = 0 AND T > 0 CASE CHAPTER 3. RESULTS

Figure 3.4: ψ,ϕ, and ρ plotted against µ for W = −2 for different J

After understanding SF, PSF and MI phase at zero temperature we present the non-zero temperature

calculation results in next section.

3.3 W = 0 and T > 0 case

First we study the effect of thermal fluctuations on SF and MI phases of simple BH model, i.e. W = 0.

At Temperature T=0.0,T=0.05 and T=0.1 ψ, ρ and Entropy S are plotted against µ for fixed J=0.016

in Fig. 3.6(a),(b),(c), respectively. At T=0.0 we have already seen that ψ is non zero over three ranges

of µ. As we increase the temperature to T=0.05 ψ value is seen to decrease, i.e. superfluidity is reduced.

Particularly, SF phase with ρ < 1 entirely vanishes. For µ = 0.75 to µ = 0.9 we see that ψ = 0 but

the Entropy S is not zero. And hence this is not a Mott Phase but rather a Normal Bose Liquid phase.

Similarly another NBL phase is observed from µ = 1.15 to µ = 1.25 between the ρ = 1 and ρ = 2 phase.

ρ assumes non integer values in this µ range further confirming its not Mott insulator phase but rather

NBL phase.

At T=0.1, ψ is almost zero everywhere until µ = 2.75, after system goes in SF phase. From µ = 0 to

µ = 2.75, Entropy is non zero everywhere along with ψ = 0, this shows a characteristics of NBL phase.

Also ρ is non integer for this range. After µ = 2.75 ψ is non zero, hence we characterize it as SF with

non integer ρ values.
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Figure 3.5: j − µ phase diagram of MI-PSF-SF phase with W = −2 and T = 0

We plot another J − µ phase diagram for W=0 case with different T with ψ numerical value as color

map in Fig. 3.7. White dots represent the phase boundary. Whenever ψ = 0 system is in NBL or MI

phase. With increase in temperature we can see that superfluidity decreases. The SF region sandwitched

between two MI phases is suppressed dominantly with the temperature. The MI/NBL region is seen to

be enlarged.

To differentiate between MI and NBL phase, values of compressibilty κ are depicted in Fig.3.8. The

color map represents numerical value of κ. The Fig.3.8(a) is similar to that of 3.2. Fig.3.8(b) and Fig.3.8(c)

depicts T=0.05 and T=0.1 case. For T=0.05 case, in between the Mott phases we see emergence of NBL

phase, wherein ψ = 0 (Fig.3.7) but κ shows large values. For T=0.1 case, thermal fluctuations kill the

MI phases and reduce the SF region keeping bosons in NBL phase.

Similar to the last figure Fig.3.8, we plot a J−µ phase diagram but this time the color map represents

the numerical value of Entropy S. At T=0.05 Similar to compressibilty κ, Entropy is non zero in between

the Mott phases wherein ψ = 0, hence we get a confirmation that there is NBL phase in between the

Mott phase. And as J is increased we see that ψ ̸= 0 (Fig.3.7) and Entropy S reduces. At T=0.1 we

have non-zero entropy when J is small or ψ = 0 indicating vanishing of Mott Phase, again similar to our
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Figure 3.6: ψ, ρ and Entropy S plotted against µ at different temperatures at fixed J = 0.016.

compressibily κ result. As this J is increased again there is transition from NBL to SF phase characterised

by ψ ̸= 0 (Fig.3.7).

To study the effect thermal fluctuations on SF phase which is sandwiched between ρ = 1 and ρ = 3 MI

phases for W = 0 we plot Fig. 3.10 and Fig. 3.11. When T << J there is no effect on the SF nature. As

T starts increasing, super fluidity starts decreasing and smoothly vanishes to become NBL. The critical

temperature for this transition is seen to increase with increase in hopping amplitude J . The plot of TC

against J values shows that TC ∝ J . SF nature is due to the strength of hopping amplitude J . When

thermal energy becomes comparable to J , bosons start loosing its SF nature. In case of Pair SF phase

studied earlier, the PSF nature is due to strength of Jeff . It is a smaller quantity compared to J . Due to

this, the Pair SF phase could be destroyed by feeble thermal fluctuations which are comparable to Jeff .

Note that if the cluster size is increased, the obtained critical temperatures will be more accurate but

the trend show is expected to be same.

3.4 W ̸= 0 and T > 0 case

To understand effect of thermal fluctuation on PSF phase we plot ψ,ϕ, ρ and Entropy S at T=0.0,T=0.001,T=0.01

against µ going from 0.48 to 0.52 at J=0.015 and W = −2.0 in Fig. 3.12. At T=0.001 both ψ and ϕ

are zero everywhere but the Entropy S is non-zero for µ = 0.496 to µ = 0.0.504, hence for this µ range
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Figure 3.7: J − µ phase diagram with W = 0 at different T depicting MI, NBL and SF phases. Color
map is with ψ values. White dots represents the MI/NBL-SF phase boundary.

where PSF phase has turned into NBL phase. Before µ = 0.496, ρ is pinned to integer value of 1 and

after µ = 0.504, ρ is pinned to integer value 3, thus we can say that there is an NBL phase in between the

Mott-1 and Mott-3 phase and no PSF phase at T=0.001. At T=0.01 it is observed that ψ and ϕ are zero

everywhere, hence no SF or PSF phase. But over this µ range Entropy is non zero everywhere, hence it

is entirely an NBL phase .i.e. NBL phase broadens with ρ assuming non integer values. The breaking

of PSF can be explained from the fact that since the pairing in PSF atoms is not due to attractive

interaction it can be easily broken with a slight thermal fluctuation.

We collect all the J and µ values to plot a J −µ phase diagram at T=0.001 and T=0.01 in Fig. 3.13.

The color map represents the numerical value of compressibilty κ. At T=0.001 κ is non zero for a range

of µ initially for small J, but as J is increased the NBL boundary increases but κ decreases. κ is zero

everywhere else with ρ = 1 and ρ = 3 on either side of the NBL phase. At T=0.01 compressibility

is non zero everywhere and hence there is no Mott phase. ALong with psi and phi being zero we can

say the NBL has entirely engulfed the Mott phase and we have a region of that consist of only NBL.

Compressibilty is high around µ = 0.5 and slowly decreases as we move away from this center.
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Figure 3.8: J − µ phase diagram with W = 0 at different T depicting MI, NBL and SF phases. Color
map is with compressibility κ values. White dots represents the MI/NBL-SF phase boundary.

Similar figure to Fig.3.13 is plotted in Fig. 3.14 but in place of compressibilty κ, here the color map

represents the numerical value of Entropy S. At T=0.001, Entropy is non zero for a range of mu between

0.495 to 0.505. And since ψ and ϕ both are zero we assume this region to NBL phase. Everywhere else

Entropy is zero hence we say it is Mott Insulator phase characterised by ρ = 1 and ρ = 3 on either

side of the NBL phase. This is in agreement with our compressibilty result. For T=0.01, this time the

Entropy is non zero everywhere, hence no Mott Phase but rather whole region is just NBL with ψ = 0

and ρ = 0 for these parameters. Entropy also like compressibilty is high around µ = 0.5 and decreases

away from this value. With both Compressibilty and entropy results fully agreeing with each other we

can say that there is no PSF phase observed at Finite T of T=0.001 and T=0.01 because the pairing

in PSF atoms is not due to attractive interaction it can be easily broken with a slight thermal fluctuation.
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Figure 3.9: J − µ phase diagram with W = 0 at different T depicting MI, NBL and SF phases. Color
map is with Entropy S values. White dots represents the MI/NBL-SF phase boundary.

We plot a graph of ψ,ϕ and ρ vs T/Jeff for J=0.015 and µ=0.5. For this µ, ψ = 0.0 everywhere

but initially for smaller T, ϕ is non zero with ρ around 2, but as T is increased, ϕ begins to decrease

slowly and at T/Jeff=12, ϕ becomes zero along with ρ shooting way above 2. This is a crucial Graph

to understand the critical value of Thermal Fluctuation T needed for termination of PSF phase for a

particular J value. From the figure we understand that the ratio of T to Tunneling element Jeff has to

be equal to 12 for the PSF phase to vanish .i.e the critical temperature TC needed to terminate PSF is

Tc = 12Jeff
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Figure 3.10: SF order parameter plotted against T/J at fixed boson density ρ = 1.5 for different values
of J

Figure 3.11: Critical Temperature TC for SF-NBL phase transition for different J values. Boson desity
is fixed to ρ = 1.5.
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Figure 3.12: ψ, ϕ, ρ and S plotted against µ for three different temperatures. J is fixed to 0.015
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Figure 3.13: J−µ phase diagram with W = −2 at different T depicting MI, NBL and PSF phases. Color
map is with compressibility κ values.
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Figure 3.14: J−µ phase diagram with W = −2 at different T depicting MI, NBL and PSF phases. Color
map is with Entropy S values.
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Figure 3.15: Critical Temperature For J=0.015 µ=0.5
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Chapter 4

Conclusion

Bose Hubbard model with and without three body interactions was studied using Cluster Mean Field

Theory. These calculations were done at zero and non-zero temperatures and several interesting results

were obtained. By changing the J/U ratio this model predicts SF-MI phase transition. It has been

experimentally verified for the Bosonic atoms loaded in Optical Lattice. With inclusion of attractive

hard core three body interaction W , Mott-3 lobe enlarges and an anomalous PSF phase is seen between

MI-1 and MI-3 phase. Bosons hop here as pairs. Such repulsively bound pair of atoms has been realised

in optical lattice systems[20] in deep MI phase. To study the effect of thermal fluctuations on this PSF

phase, first BH model without three body interactions was studied. It was seen that with increase in

temperature the SF phase sandwiched between two Mott phases appears fragile towards the thermal

fluctuations. The critical temperatures need to destroy SF nature here was seen to be proportional to the

hopping amplitude. Such behaviour was seen through Monte-Carlo studies too[8]. The PSF phase is seen

to exist between MI-1 and MI-3 phase at very small values of J . Due to this, slight thermal fluctuations

can destroy the repulsively bound anomalous PSF phase. Overall, studies done here have given J−µ−T

phase diagrams which are or primary importance in Optical lattice systems.

Future aspects of this work will be to study the role of attractive three body interaction strength with

temperature on the MI phases. Effect of disorder can also be studied in this framework.
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