
NoSQL Injection Query Detection in MongoDB Using
Supervised Learning-based Binary Classification Models

A Dissertation for
IMC 651 Project Work

Credits: 6
Submitted in partial fulfillment of Master’s Degree in

M.Sc. (Integrated) in Data Science

By

SHAUNAK SOMNATH PERNI
Seat No: (2105)
ABC ID: (678418387785)
PR No: (202100144)

MINAL NARESH SHIRODKAR
Seat No: (2108)
ABC ID: (706649472426)
PR No: (202100226)

Under the Supervision of

Shri. RAMDAS N. KARMALI

Goa Business School

GOA UNIVERSITY

APRIL 2024

GOA UNIVERSITY

GOA BUSINESS SCHOOL

CERTIFICATE OF EVALUATION

This is to certify that Mr. Shaunak Somnath Perni and Ms. Minal Naresh

Shiroadkar have been evaluated for the project work titled “NoSQL Injection

Query Detection in MongoDB Using Supervised Learning-based Binary

Classification Models” in partial fulfillment of Master’s Degree in

M.Sc. (Integrated) in Data Science

(Examiner 1) (Examiner 2)

Place: Goa University
Date: 8th May 2024 (Dean, Goa Business School)

i

COMPLETION CERTIFICATE
This is to certify that the dissertation report “NoSQL Injection Query Detection

in MongoDB Using Supervised Learning-based Binary Classification Models”

is a bonafide work carried out by Mr Shaunak Somnath Perni and Ms Minal

Naresh Shirodkar under my supervision in partial fulfillment of the

requirements for the award of the degree of M.Sc Integrated (Data Science) in

the Computer Science and Technology at the Goa Business School, Goa

University.

(Shri. Ramdas N. Karmali)
Date:

(Prof. Jyoti D. Pawar) Stamp
Date:
Place: Goa University

ii

DECLARATION BY STUDENTS
We hereby declare that the data presented in this Dissertation report entitled,

“NoSQL Injection Query Detection in MongoDB Using Supervised Learning-

based Binary Classification Models” is based on the results of investigations

carried out by us in Computer Science and Technology at the Goa Business

School, Goa University under the Supervision of Shri. Ramdas N. Karmali and

the same has not been submitted elsewhere for the award of a degree or diploma

by me. Further, We understand that Goa University or its authorities will not be

responsible for the correctness of observations / experimental or other findings

given the dissertation.

We hereby authorize the University authorities to upload this dissertation on the

dissertation repository or anywhere else as the UGC regulations demand and

make it available to any one as needed.

(Shaunak Somnath Perni)
Seat No: 2105

(Minal Naresh Shirodkar)
Seat No: 2108

Date:
Place: Goa University

iii

Acknowledgments
We extend our heartfelt gratitude to the individuals whose contributions were
instrumental in the completion of this research project.

We are deeply indebted to Mr. Ramdas Karmali for his invaluable guidance,
unwavering support, and scholarly mentorship throughout the duration of this
research project. His expertise and encouragement have been instrumental in
shaping the direction and outcomes of our study.

Furthermore, we extend our thanks to the following professors, Mr. Hanumant
Redkar, Mr. S. Baskar, Ms. Pradanya Bhagat, Mr. Swapnil Fadte and Mr. Jarret
Fernandes, for their collaborative spirit, technical assistance, and constructive
feedback. Their mentorship and guidance have been immensely beneficial in
navigating the complexities of our project journey as students. We also express
our gratitude to all those who provided support, encouragement, and
understanding during the course of this endeavor.

Without the collective efforts and contributions of these individuals, this project
would not have been possible.

Thank you.

iv

Table of Contents
1 Introduction...2

1.1 Database and Their Roles..2
1.1.1 Informational Assets..2

1.2 SQL... 3
1.2.1 Limitations...3

1.3 NoSQL...4
1.3.1 Types..5

1.4 Injection Attacks..5
1.4.1 Vulnerabilities..5
1.4.2 Cost and Damage...6

1.5 Traditional Security Methods..7
1.6 Using Trained Models...9

2 Literature Survey..10
2.1 Overview of SQL and NoSQL Injection Attacks....................................10
2.2 Existing Detection and Prevention Techniques..10

2.2.1 Traditional Techniques...11
2.2.2 Machine Learning and Deep Learning Techniques..........................12
2.2.3 Deep Learning Techniques...13
2.2.4 Datasets and Tools..13

2.3 Our Approach..13
3 Aims and Objectives...14

3.1 Research Questions..14
3.2 Problem Statements... 14
3.3 Project Stages...15

4 Data Collection...16
4.1 Initial Challenges...16
4.2 Setup for Data Collection..16
4.3 Data Collection Results...17
4.4 Pre-emptive Cleaning..17
4.5 Final Collected Dataset..19

5 Data Processing...20
5.1 Conversion to Tabular Data...20
5.2 Cleaning...20

5.2.1 Pass 1..21
5.2.2 Pass 1 - Filtering...22
5.2.3 Pass 2..23
5.2.4 Pass 2 - Filtering...24
5.2.5 Pass 3...25

5.3 Integration..25
5.4 Final Cleaned and Integrated Data..26

v

6 Data Exploration... 27
6.1 Descriptive Analysis..28

6.1.1 Text...28
6.1.2 Sampled Text..32
6.1.3 Numerical Features..33

6.1.3.a planningTimeMicros...34
6.1.3.b cpuNanos..35

6.1.4 Target Variable...36
6.1.4.a Label...36

6.2 Feature Engineering...37
6.2.1 Engineered Text Features...37

6.2.1.a Descriptive Statistics of Denamed..39
6.2.1.b Frequency Table..40

6.2.2 Engineered Numerical Features...41
6.2.3 Engineered Dummy Variables..42

6.2.3.a Descriptive Statistics of Dummy Features................................43
6.4 Significance Testing... 45

6.4.1 Testing Sequence..45
6.4.1.a Numerical..45
6.4.1.b Dummy... 45

6.4.2 Numerical Variable Significance Testing Results.............................46
6.4.2.a Overlapped KDE Plots..47

6.4.3 Dummy Variable Significance Testing Results................................50
6.4.4 Significance Results...50

6.5 Separability Analysis...51
6.5.1 Linear...51

6.5.1.a PCA...52
6.5.1.b LDA.. 53

6.5.2 Non-Linear...54
6.6 Exploration Findings...56

7 Model Formulation...58
7.1 Models... 58

7.1.1 Models Selected...58
7.1.2 Inclusion of FLAML Models...58

7.2 Dataset Configurations..59
7.2.1 Types..61

7.3 Vectorization..62
7.4 Model Results.. 62

8 Experimental Results.. 63
8.1 Model Performance per Dataset..63

8.1.1 Average Model Performance per Dataset...75
8.1.2 Best FLAML Model per Dataset..76

vi

9 Evaluation...77
9.1 Evaluation Criteria...77
9.2 Results...78

9.2.1 Distribution Plots of Dataset B1, D1’s Metric against A1...............79
9.3 Best Model per Dataset..81

10 Conclusions...82
10.1 Limitations...82
10.2 Final Conclusion..83
10.3 Future Work...85

Appendix..90
Appendix - 1 Sample Log Entry..90
Appendix - 2 Training Data Sample..92
Appendix - 3 Links..93

vii

Index of Tables
Table 1.5.1: Selected Recent SQL Injection Attacks...8
Table 4.2.1: Hardware Details for running MongoDB server............................16
Table 4.4.1: MongoDB Log Entry Codes..17
Table 4.5.1: MongoDB Log Entry Structure...19
Table 5.2.1: Data Structure for Cleaning Pass 1..21
Table 5.2.2: Data Structure for Open ATTR column...23
Table 5.2.3: Data Structure for Opened Command Column..............................25
Table 5.4.1: Data Structure after Cleaning...26
Table 6.1.1: Word Frequencies for Filter Variable...29
Table 6.1.2: Descriptive Statistics for planningTimeMicros..............................34
Table 6.1.3: Descriptive Statistics of Label..36
Table 6.2.1: Category of operators found in MongoDB found in Dataset.........38
Table 6.2.2: Word Frequencies in denamed...40
Table 6.2.3: Descriptive Statistics of Query Length..41
Table 6.3.1: Descriptive Statistics of Each Engineered Dummy Variable.........44
Table 6.4.1: Significance Tests result for each Dummy Variable.......................50
Table 6.5.1: Cluster Polygon Area Statistics..55
Table 6.6.1: Training Dataset Structure...57
Table 7.2.1: Category of variables per available position..................................60
Table 7.2.2: Dataset Configurations with enabled variable categories..............61
Table 8.1.1: Individual Model Performance per Dataset...................................70
Table 8.1.2: Average Model Performance per Dataset.......................................75
Table 8.1.3: Performance of Best FLAML Model per Dataset..........................76
Table 9.2.1: Significance Testing of each Confusion Matrix Metric.................78
Table A2: Sample Rows of Training Dataset……………………………….. ..92

viii

Table of Figures
Figure 6.1.1: Top 10 Word Frequencies for Filter Variable...............................28
Figure 6.1.2: Top 10 Word Frequencies for Filter Variable where Label = 0....32
Figure 6.1.3: Top 10 Word Frequencies for Filter Variable where Label = 1....32
Figure 6.1.4: KDE Distribution plot of planningTimeMicros...........................34
Figure 6.1.5: KDE Distribution plot of cpuNanos...35
Figure 6.1.6: Distribution Plot for Label..36
Figure 6.2.1: Word Frequencies in denamed Column..39
Figure 6.2.2: KDE plot of Query Length...41
Figure 6.3.1: Figure 6.9 Burnolli plots of Dummy Features..............................43
Figure 6.4.1: Overlapped KDE Plot of Query Length.......................................47
Figure 6.4.2: Overlapped KDE Plot of cpuNanos..48
Figure 6.4.3: Overlapped KDE Plot of planningTimeMicros............................49
Figure 6.5.1: PCA Projection Graph..52
Figure 6.5.2: LDA Projection Graph..53
Figure 6.5.3: t-SNE Projection Graph..54
Figure 6.5.4: t-SNE with class-specific cluster polygon graphs.........................55
Figure 8.1.1: Model Performance for Dataset A1..63
Figure 8.1.2: Model Performance for Dataset A2..64
Figure 8.1.3: Model Performance for Dataset B1..65
Figure 8.1.4: Model Performance for Dataset B2..66
Figure 8.1.5: Model Performance for Dataset C..67
Figure 8.1.6: Model Performance for Dataset D1..68
Figure 8.1.7: Model Performance for Dataset D2..69
Figure 8.1.8: Bar Plot of Average Model Performance per Dataset...................75
Figure 9.1: Overlapped Model Performance of A1 and B1...............................79
Figure 9.2: Overlapped Model Performance of A1 and D1...............................80
Figure A1: Log Entry Sample..91

ix

Terminology Used

Entity Abbreviation

Machine Learning ML

ML Operations MLOps

Database DB

Structured Query Language SQL

Not Only SQL NoSQL

Javascript Object Notation JSON

Kernel Density Estimation KDE

Support Vector Machine SVM

[a] Fast and Lightweight AutoML Library FLAML

Principle Component Analysis PCA

Linear Discriminant Analysis LDA

t-distributed Stochastic Neighbor
Embedding

t-SNE

x

Abstract
The project built upon work done in developing machine learning models in the
Cybersecurity field of injection query attack detection. Specifically, the project attempted to
create a classification model that was trained on a Log file of a MongoDB database that had
been attacked and attempted to identify queries that were malicious injection attack queries
that allowed an unauthorized operation on the database system or were benign.

The project collected data from a local MongoDB system where a mix of injection queries
and benign queries were sent to it. The system then produced a log file on which an analysis
was conducted. The log file was converted to a tabular format and significant variables were
identified and used to construct a training dataset.

Several configurations of the dataset were made i.e. subsets of the dataset where some
variables were omitted/added either to reflect the dataset used in previous works or to test
our hypothetical dataset configurations, 9 models were trained on each and their
performances were recorded. A MLOps library was also used to identify the best model for
each dataset.

A comparative study was then done with average model performance per dataset but it was
concluded that there was no significant difference between the Top 3 datasets’ average model
performance. However, a difference was noticed in each of the Top models created for each
dataset. Each one of the 3 datasets had an accuracy of 84% and a sensitivity of 88%.
However, 2 of the 3 datasets scored higher on precision and F1 scores with them being 88%
and 84.5% respectively.

1

1 Introduction

1.1 Database and Their Roles
In today's digital era, databases serve as the backbone of countless applications, holding vast
amounts of valuable information. These information assets were critical for businesses, educational
institutions, government agencies, and various other entities to manage and utilize effectively.
Databases facilitated the storage, retrieval, and manipulation of structured and unstructured data,
enabling seamless operations and informed decision-making.[1].

1.1.1 Informational Assets
The data stored within databases were often regarded as invaluable assets, representing the lifeblood
of modern organizations. From customer profiles and transaction histories to inventory records and
research findings, databases housed a wealth of information crucial for day-to-day operations and
strategic planning. Protecting these assets was paramount, as any compromise could lead to severe
consequences such as financial loss, reputational damage, and legal repercussions.

With the proliferation of online services and digital transactions, databases have become central
repositories for sensitive data, including personally identifiable information (PII), financial records,
and proprietary business data. Consequently, safeguarding databases against security threats was of
utmost importance to preserve the confidentiality, integrity, and availability of these information
assets.

2

https://www.zotero.org/google-docs/?L2sDP3

1.2 SQL

Structured Query Language (SQL) stood as the cornerstone of relational database
management systems (RDBMS), providing a standardized language for querying, updating,
and managing relational databases. Developed in the 1970s, SQL evolved into a powerful
tool for interacting with databases, offering a rich set of syntax and commands for
performing a wide range of operations.

Over the decades, SQL underwent significant advancements and refinements, with various
implementations and extensions tailored to specific database platforms. The development of
SQL was driven by the growing demands of businesses and organizations for efficient data
management solutions, leading to the introduction of features such as stored procedures,
triggers, and user-defined functions. [2], [3].

1.2.1 Limitations
Despite its widespread adoption and versatility, SQL is not without its limitations. One
notable challenge is its rigid schema structure, which necessitates predefined table structures
and relationships. This inherent inflexibility can pose challenges in scenarios where the data
model is dynamic or schema-less, hindering the scalability and adaptability of database
systems[4].

Moreover, SQL-based databases may struggle to handle the scale and complexity of modern data
requirements, particularly in scenarios involving unstructured or semi-structured data types. As
organizations grapple with the influx of big data and the need for real-time analytics, the limitations
of traditional SQL databases become increasingly apparent, paving the way for the emergence of
alternative approaches such as NoSQL[5]

3

https://www.zotero.org/google-docs/?iYjYFJ
https://www.zotero.org/google-docs/?gnpkfR
https://www.zotero.org/google-docs/?S8aLXq

1.3 NoSQL
The rise of big data, coupled with the proliferation of web and cloud-based applications, has
fueled the need for database systems capable of handling unprecedented volumes of data and
supporting high-performance, distributed architectures. In response to these evolving
requirements, NoSQL (Not Only SQL) databases have emerged as a compelling alternative
to traditional SQL-based systems[5].

NoSQL databases depart from the relational model of SQL databases, offering a schema-less
or flexible schema approach that accommodates diverse data types and structures. This
flexibility is particularly well-suited for applications with dynamic or rapidly changing data
schemas, such as social media platforms, IoT (Internet of Things) devices, and real-time
analytics systems.[6]

The development of NoSQL databases has been driven by the desire to overcome the
scalability and performance limitations inherent in SQL databases, especially when dealing
with massive datasets and high-concurrency workloads. By adopting distributed
architectures, horizontal scaling, and optimized data storage models, NoSQL databases offer
superior scalability, fault tolerance, and performance compared to their SQL counterparts.

4

https://www.zotero.org/google-docs/?SRsnSM
https://www.zotero.org/google-docs/?ngh4sJ

1.3.1 Types
NoSQL databases encompass a diverse range of data models and storage technologies, each
optimized for specific use cases and data processing requirements. Common types of
NoSQL databases include:

● Document-oriented databases: Store and retrieve data in the form of semi-structured
documents, typically using JSON or BSON formats. Examples include MongoDB,
Couchbase, and CouchDB.

● Key-value stores: Store data as key-value pairs, providing fast and efficient access to
individual records. Examples include Redis, Amazon DynamoDB, and Apache
Cassandra.

● Column-family stores: Organize data into columns rather than rows, enabling efficient
storage and retrieval of sparse, wide-column datasets. Examples include Apache
HBase, Apache Cassandra, and ScyllaDB.

● Graph databases: Model data as nodes, edges, and properties, allowing for the
representation and traversal of complex relationships between entities. Examples
include Neo4j, Amazon Neptune, and TigerGraph.[7]

1.4 Injection Attacks
Injection attacks represent a class of security threats that exploit vulnerabilities in software
applications to execute malicious code or commands. These attacks typically involve the
insertion of unauthorized or malicious input data into an application's input fields or
parameters, with the intent of manipulating its behavior or compromising its security[8], [9],
[4], [10].

1.4.1 Vulnerabilities
Injection attacks exploit weaknesses in input validation and sanitization mechanisms,
allowing attackers to bypass security controls and interact with databases or execute
arbitrary commands on the underlying systems Common types of injection attacks include
SQL injection (SQLi), NoSQL injection (NoSQLi), command injection, and LDAP injection,
among others.

5

https://www.zotero.org/google-docs/?1ch4L9
https://www.zotero.org/google-docs/?1ch4L9
https://www.zotero.org/google-docs/?rHwn01

1.4.2 Cost and Damage
The consequences of injection attacks can be severe, ranging from unauthorized access to
sensitive data and data manipulation to system compromise and service disruption. In
addition to the immediate impact on affected systems and users, injection attacks can also
have long-term repercussions, including financial losses, reputational damage, and regulatory
penalties.

6

1.5 Traditional Security Methods
Traditional security methods for SQL and NoSQL databases typically revolve around
implementing a combination of preventive and detective measures to safeguard against
potential vulnerabilities and attacks. These methods include:

● Input validation: Ensuring that user input is properly validated and sanitized to
prevent injection attacks. This involves validating input data against predefined rules
and sanitizing potentially dangerous characters or commands.

● Parameterized queries: Using parameterized queries or prepared statements to
separate SQL code from user input, thereby reducing the risk of SQL injection
attacks.

● Authentication and authorization: Implementing robust authentication and
authorization mechanisms to control access to database resources and prevent
unauthorized users from performing malicious actions.

● Database encryption: Encrypting sensitive data at rest and in transit to protect it from
unauthorized access or interception by attackers.

● Security patches and updates: Regularly applying security patches and updates to
database software and underlying operating systems to address known vulnerabilities
and security flaws[10], [11], [12].

But even with such measures, attacks were still experienced as recently as October 2023.

7

https://www.zotero.org/google-docs/?eRBvet

[13], [14], [15], [16]

Month and Year Target
Organization/Service Estimated Damage

October 2023 ICMR $80,000

October 2023 23andMe $54,000,000

May 2023 MoveIT $10,000,000,000

Table 1.5.1: Selected Recent SQL Injection Attacks

As observed, even with these measures, major injection attacks were still causing a
devastating amount of financial damage.

Hence, a motivation to use reactive models had been made, i.e., measures that could be
trained and automatically discover patterns in injection attacks rather than be mitigated
manually. Such types of measures are usually machine learning models or models that can
be trained against a known list of attack queries to identify them.

8

1.6 Using Trained Models
The increasing sophistication and diversity of cyber threats, including injection attacks
targeting both SQL and NoSQL databases, necessitate the adoption of advanced detection
and prevention techniques. Machine learning models offer a promising approach to
enhancing database security by leveraging the power of data-driven analytics and pattern
recognition to identify and mitigate potential threats.

Incorporating trained machine learning models into database security frameworks involves
several key steps:

● Data collection and preprocessing: Gathering relevant datasets containing examples of
benign and malicious database queries or interactions. Preprocessing involves
cleaning, transforming, and encoding the data to prepare it for model training.

● Feature engineering: Extracting informative features from the input data to capture
relevant patterns and characteristics associated with benign and malicious behavior.
These features may include query syntax, parameter values, user context, and
temporal or spatial patterns.

● Model training: Selecting appropriate machine learning algorithms and train them on
the labeled dataset to learn the underlying patterns and relationships between input
features and target labels (i.e., benign or malicious). Common algorithms for
classification tasks include logistic regression, decision trees, support vector
machines, and neural networks.

● Model evaluation and validation: Assessing the performance of trained models using
metrics such as accuracy, precision, recall, and F1-score. Validation techniques such
as cross-validation or holdout validation help ensure the generalization and robustness
of the models to unseen data.

● Integration and deployment: Incorporating trained models into existing database
security systems or intrusion detection frameworks to enable real-time monitoring
and analysis of database activity. This may involve deploying models as standalone
components or integrating them with database management systems (DBMS) or
network security appliances.

Trained Machine learning may provide a higher performance in militating, detecting or even
protecting systems from such attacks

9

2 Literature Survey

2.1 Overview of SQL and NoSQL Injection Attacks
SQL injection is one of the most serious security vulnerabilities in web applications that use
relational databases. As the use of web applications and online services has increased
significantly over the past two decades, addressing SQL injection vulnerabilities has become
paramount. SQL injection attacks can allow unauthorized access or modification of data
stored in databases, compromising the integrity and confidentiality of sensitive information
[10].

With the rise of NoSQL databases, such as MongoDB, for handling unstructured data and
meeting the demands of modern web applications, new security challenges have emerged.
Several studies [6, 12, 24, 25, 26, 27] have demonstrated that NoSQL databases are
vulnerable to injection attacks, similar to traditional SQL injection attacks on relational
databases. These attacks can potentially lead to unauthorized access and manipulation of
sensitive data stored in NoSQL databases.

2.2 Existing Detection and Prevention Techniques
Researchers have explored various techniques for detecting and preventing both SQL and
NoSQL injection attacks, ranging from traditional methods to advanced machine learning
and deep learning approaches.

10

2.2.1 Traditional Techniques
Several detection and prevention techniques have been proposed to address SQL injection
vulnerabilities. The paper by the anonymous authors [11] presents a comprehensive
literature survey on SQL injection detection and prevention techniques. They emphasize the
importance of securing data stored in databases, particularly in the era of cloud computing,
where data storage and access are widely distributed.

Rua et al. [17] investigate the impact of poor input validation on the security of server
databases. They propose a technique called CombinedDetect, which combines JavaScript
and PHP coding to detect and isolate malicious SQL queries before sending them to the
server. Their study highlights the risks posed by SQL injection attacks and the importance of
effective input validation and multiple detection methods.

For NoSQL injection attacks, studies [29, 30] have proposed traditional techniques involving
analyzing the structure of NoSQL queries, comparing the intended query structure with the
runtime query structure, and employing input validation techniques. While these techniques
have shown promise, they may struggle to detect unknown or zero-day attacks effectively.

11

2.2.2 Machine Learning and Deep Learning Techniques
With the limitations of traditional signature-based detection methods, there has been
growing interest in applying machine learning techniques for detecting SQL injection
attacks, including unknown or zero-day attacks [18, 19, 20, 21].

Hasan et al. [18] propose a machine learning-based heuristic algorithm for SQL injection
detection. They train and test 23 different machine learning classifiers on a dataset of SQL
statements, selecting the top five classifiers based on their detection accuracy and developing
a GUI application using these classifiers.

Hosam et al. [19] focus on machine learning techniques for SQL injection detection, defining
13 relevant features that can be extracted from user inputs and evaluating six different
machine learning algorithms. Their models achieve an accuracy of up to 99.6% and
demonstrate the ability to generalize well to unseen data.

For NoSQL injection attacks, researchers have explored the use of machine learning and
deep learning models. Studies such as [8, 9, 22, 23, 28] have employed various machine
learning and deep learning models, including Support Vector Machines (SVMs), Random
Forests, Neural Networks, and Deep Residual Networks (ResNets), for detecting NoSQL
injection attacks. These models have achieved promising results, with reported accuracies
ranging from 91.5% to 99.6%.

12

2.2.3 Deep Learning Techniques
In addition to traditional machine learning methods, deep learning techniques have also been
explored for SQL injection detection. Sangeeta et al. [22] propose a method for SQL
injection attack detection using ResNet, a deep residual neural network architecture. Their
approach tokenizes and vectorizes input queries, which are then trained using the ResNet
algorithm. The authors demonstrate that their ResNet-based model can effectively identify
different types of SQL injection attacks.

2.2.4 Datasets and Tools
To facilitate the development and evaluation of SQL and NoSQL injection detection models,
researchers have created datasets and tools. The MongoDB Injection Dataset [31] is a
comprehensive collection of MongoDB NoSQL injection attempts and vulnerabilities, which
can be used for training and testing machine learning models.

2.3 Our Approach
The proposed approach leverages supervised learning-based binary classification models,
which can distinguish between benign and malicious NoSQL queries.

By utilizing log files from MongoDB servers, the research aims to create a realistic and
representative dataset for training and evaluating the proposed model. This approach
addresses the need for practical and scalable solutions for detecting NoSQL injection attacks
in real-world scenarios.

The performance of the proposed model will be compared with previous works, particularly
those employing machine learning and deep learning techniques for SQL and NoSQL
injection detection. This comparison will provide insights into the effectiveness of the
proposed approach and its potential contributions to the field of database security,
encompassing both relational and NoSQL databases.
Through this research, the authors aim to develop a robust and efficient model for detecting
NoSQL injection attacks on MongoDB servers, contributing to the ongoing efforts to
enhance the security of databases and protect sensitive data from unauthorized access and
manipulation.

13

3 Aims and Objectives

3.1 Research Questions
The research questions this project attempted to answer were:

1. What are the significant variables to discriminate a injection query from a benign
query from a MongoDB log file?

2. Is it possible to create a model to classify MongoDB queries as malicious or benign
based on training data extracted from log files?

3. In continuation with previous works where models were trained with only raw query
text adding more variables to the dataset bring any significant change in the
performance of a random model trained on such data?

3.2 Problem Statements
The problem statements were as follows:

1. “Conduct a study of a MongoDB log file to discover significant features that can be
used to discriminate between a injection query and a benign query”

2. “Construct a Model to classify if a given MongoDB NoSQL query is a malicious
injection query that may execute an unauthorized operation on the server, or is it a
benign query”

3. “Conduct a Comparative Performance study of Classification Models trained in
different configurations of a dataset that has been processed from a MongoDB log
file”

14

3.3 Project Stages
The project took place in the following stages:

1. Data Collection:
Data on MongoDB log files was collected

2. Data Preprocessing:
The same collected data was cleaned for errors and missing data, integrated from the
various, and transformed into a common structured form for processing

3. Data Exploration:
The Data variables were explored, and a descriptive analysis and significance tests
were conducted. A Separability analysis was done to determine which model
algorithms can be used on the dataset. A final training dataset was formed

4. Model Formulation:
Dataset configurations were created and used as training data for different sets of
model algorithms and their performances recorded

5. Evalutaion and Testing:
Model Performance reports were tested and evaluated and conclusions were formed

15

4 Data Collection

4.1 Initial Challenges
Due to the unique requirements of this project, no datasets related to MongoDB logs were
found. Therefore, a labeled public training dataset of MongoDB queries was utilized, where
queries were labeled as Malicious and Benign via a boolean label.[31], using this dataset we
conducted our analysis.

4.2 Setup for Data Collection
To collect log-based data, we set up an empty MongoDB server on a local machine. The
database was intentionally left empty, with no collections or documents inserted, to study
the effect on a standard server. The specifications of the local machine are as follows

Table 4.2.1: Hardware Details for running MongoDB server

Operating System Fedora Linux 39 (Workstation Edition)

OS Type 64-Bit

Kernel-Version 6.5

Processor AMD Ryzen™ 7 5700U with Radeon™ Graphics × 16

Memory 8.0 GiB

Disk 1TB(HDD) + 256GB (SSD)

MongoDB Version 6.0.15

Mongosh 2.25

The Database was initialized with the following setting

db.setProfilingLevel(2,0.1)

According to the MongoDB manual[32], this sets the profiler at the highest level and records
all queries that take more than 0.1 microseconds to process. Subsequently, we fired 244
queries using a script provided by the dataset and collected the log files.

16

https://www.zotero.org/google-docs/?Wkipe6
https://www.zotero.org/google-docs/?A6pzjv

4.3 Data Collection Results
According to the MongoDB documentation, a standard log entry was a simple JSON object
with specific attributes related to the Log and Query and query processing[32].

At default settings on our system, the log file was generated at the following file on our
system

/var/log/mongodb/mongod.log

4.4 Pre-emptive Cleaning
Reading the generated log, we found several entries unrelated to the queries, but as part of
MongoDB's system health checks and other miscellaneous entries.

MongoDB produces the following Log entry types based on which component’s process was
executed[32]:
Table 4.4.1: MongoDB Log Entry Codes

ACCESS Messages related to access control and authentication.
COMMAND Messages related to database command execution.
CONTROL Messages related to control activities and initialization.
ELECTION Messages specifically related to replica set elections.
FTDC Messages related to diagnostic data collection, including server statistics.
GEO Messages related to parsing and verification of geospatial shapes.
INDEX Messages related to indexing operations, such as index creation.
INITSYNC Messages related to initial sync operation in replica sets.
JOURNAL Messages specifically related to storage journaling activities.
NETWORK Messages related to network activities, such as connection acceptance.
QUERY Messages related to queries and query planner activities.

RECOVERY
Messages related to
storage recovery activities.

REPL Messages related to replica sets, including initial sync and replication.
REPL_HB Messages specifically related to replica set heartbeats.
ROLLBACK Messages related to rollback operations in replication.
SHARDING Messages related to sharding activities, such as mongos startup.
STORAGE Messages related to storage activities, including fsync processes.

17

https://www.zotero.org/google-docs/?c9f6iG
https://www.zotero.org/google-docs/?JVDc5Q

TXN Messages related to multi-document transactions.
WRITE Messages related to write operations, such as updates.
WT Messages related to the WiredTiger storage engine.
WTBACKUP Messages related to backup operations by WiredTiger.
WTCHKPT Messages related to checkpoint operations by WiredTiger.
WTCMPCT Messages related to compaction operations by WiredTiger.
WTEVICT Messages related to eviction operations by WiredTiger.
WTHS Messages related to WiredTiger's history store.
WTRECOV Messages related to recovery operations by WiredTiger.
WTRTS Messages related to rollback to stable operations by WiredTiger.
WTSLVG Messages related to salvage operations by WiredTiger.
WTTIER Messages related to tiered storage operations by WiredTiger.
WTTS Messages related to timestamps used by WiredTiger.
WTTXN Messages related to transactions performed by WiredTiger.
WTVRFY Messages related to verification operations by WiredTiger.
WTWRTLOG Messages related to logging write operations by WiredTiger.
Unnamed
Components

Messages not associated with a named component, using the default log
level specified in the system settings.

For the scope of this project, it was found that only COMMAND log entries are to be
extracted from the log files as these entries contain log details of the sent queries.

18

4.5 Final Collected Dataset
The final collected dataset had the following variables in the JSON format

Table 4.5.1: MongoDB Log Entry Structure

{
 "t": <Datetime>, // timestamp
 "s": <String>, // severity
 "c": <String>, // component
 "id": <Integer>, // unique identifier
 "ctx": <String>, // context
 "msg": <String>, // message body
 "attr": <Object> // additional attributes (optional)
 "tags": <Array of strings> // tags (optional)
 "truncated": <Object> // truncation info (if truncated)
 "size": <Object> // original size of entry (if truncated)
}

[32]

19

https://www.zotero.org/google-docs/?2IXHoN

5 Data Processing

5.1 Conversion to Tabular Data
Using the pandas library[33] we expanded and converted the data into a tabular format.
However, we had to expand the data columns in several passes due to nested keys and values
in the JSON structure.

The outcome of this process was to give us a tabular format of the raw JSON data that can
be then processed by any processing algorithm

5.2 Cleaning
For each pass, we would also decide whether to omit or accept a variable for further passes.
This is because we observed some variables to be constant since we tested the queries on an
empty database.
These variables had to be omitted as they could not provide any insights since they were
constant.

20

https://www.zotero.org/google-docs/?d9WxLS

5.2.1 Pass 1

Table 5.2.1: Data Structure for Cleaning Pass 1

Variable Name Data Type Description

t DateTime Timestamp

s string
Short severity code

c string Full Component String

id string Unique Identifier for the
Log statement

ctx string The thread that caused the
long statement

msg string Log output message

attr Object Key value pairs containing
various attributes to the
query sent

Tags string[] MongoDB tags attributed to
the string

truncated Object Information if any attr key-
value pair has been
truncated

size Object Original Size of the log
entry if it was truncated

21

5.2.2 Pass 1 - Filtering
Out of the 10 variables initially considered, only "Attr" (Attributes) was selected. The "Attr"
column encompasses diverse information, including query type, targeted collection, sender's
IP and port, query duration, and more.

The other variables were rejected due to having no relationship to the query sent and only to
the log entry. Additionally, the "Timestamp" query was not considered as all queries were
processed at the same time due to the script firing the queries at the database, making the
variable a constant and not significant enough to be used.

22

5.2.3 Pass 2

Table 5.2.2: Data Structure for Open ATTR column

Variable Name Data Type Description[32]

ns string Namespace/Collection
where the query is executed

command Object Parameter and type of
Query sent to the database

remote string IP and port address of the
sender

protocol string Protocol of the user

plan summary string What Plan was taken up by
the system to execute the
query

planningTimeMicro int The time it took to create a
plan for the query in
microseconds

keyExamined int Amount of keys examined

docsExamined int Amount of Documents
Examined

nBatches int How many batches did it
take for the operation

cursorExhaustred bool Unknown

numYields int Unknown

nreturned int Number of results returned

queryFramework string The framework used for the
query

reslen int Unknown

Locks object Unknown

storage object Unknown

23

https://www.zotero.org/google-docs/?r52FBy

cpuNanos int CPU time to process query
in nanoseconds

durationMills int Duration of the query in
milliseconds

5.2.4 Pass 2 - Filtering
We decided to select only a few variables from this dataset as it was found that most
variables were constant in the table due to the artificial environment from which the data
was collected.
The variables that were decided to be taken due to having some degree of variance were:

● “command”: This column encapsulates crucial details of the query, such as the query
type, targeted collection, and the database aimed at.

● “planningTimeMicro”: This was the Planning time taken by the system to execute the
query

● “cpuNanos”: Similarly to planningTimeMicro, this represents the amount of time
taken by the CPU of the system to process the query

24

5.2.5 Pass 3
Upon the expansion of the Command column, we found the following variables
Table 5.2.3: Data Structure for Opened Command Column

Variable Name Data Type Description

find string This is the collection
argument to the “Find”
query

filter Object The filter used for the
“Find” query

lsid Object This contains the uuid of
the query sent

$db string Target Database

Only the “filter” variable (now filter_str) was deemed essential since it was the only variable
with some variance the rest of the variables were constant

5.3 Integration
Using the preprocessed data, the selected columns were now joined with the query dataset’s
“label” column. The join criteria were the “filter” column from our dataset and the “text”
key from the query dataset.

25

5.4 Final Cleaned and Integrated Data
The final cleaned raw data is as follows
Table 5.4.1: Data Structure after Cleaning

Name Data Type Description

filter_str Text This is the extracted raw filter
of the query sent

cpuNanos Float Time Taken by CPU to
process Query

planningTimeMicros Float Time Taken for MongoDB to
decide on a plan for the Query

Label Boolean The label set for queries
0 = Benign Query
1 = Malicious Query

26

6 Data Exploration
Using the cleaned dataset, we conducted a series of analyses on the data to gain insights.
Specifically, we conducted the following types of analysis:

1. Descriptive Analysis:
This involved analyzing the variables we have in the dataset. This includes
calculations of descriptive statistical metrics, visualizations of the distributions, etc.

2. Feature Engineering
We created new variables by using existing data to add more factors to the training
dataset.

3. Significance Test
This is where we tested the statistical significance of each variable when it comes to
training for the classification models. Only the variables that significantly passed the
tests were considered for the training dataset.

4. Separability Analysis
This involved the analysis of the type of separability our data has. The outcome of
this analysis affects the type of classification models we can use.

The outcome of this process was an output of a training dataset that can be used in any
machine-learning classification task of MongoDB injection queries.

27

6.1 Descriptive Analysis
Individual variables were descriptively analyzed, considering the three types of data formats:
Text, Boolean, and Numeric. The analysis was done differently for each of them to capture
their unique characteristics and distributions.

6.1.1 Text
For this, the variable “Filter” was analyzed this includes:

1. Word Frequency Analysis
2. Visualization of the Word Frequencies

To conduct the word frequency analysis, a string tokenizer was used. However, due to the
structure of MongoDB filters, a natural language tokenizer could not be used. Hence, for this
analysis, a custom-made tokenizer was developed and used.

Figure 6.1.1: Top 10 Word Frequencies for Filter Variable

28

Table 6.1.1: Word Frequencies for Filter Variable

Word Frequency
user 171
{} 18
password 145
username 44
$regex 37
^{} 4
$ne 30
$gt 27
hacker 19
&ne 4
alice 4
123456 12
^test 10
testuser 10
guest 24
john 11
qwerty 9
category 12
electronics 12
price 8
name 28
^S 4
selector 4
department 8
engineering 4
_id 4
1 4
John Doe 5
HR 4
salary 4
pass 6

29

admin 42
$username 1
$password 1
id 1
value 1
John 1
age 5
$where 4
this.age >= {} 1
test 31
type 8
roles 8
_admin 1
.*{}.* 1
$nin 1
$in 18
root 12
^{}$ 4
$options 5
i 5
$mod 1
this.password.length > 10 1
$size 12
this.age <= {} 1
$type 6
this.password.length <= 5 1
Alice 1
{}|admin 1
password123 4
testuser123 1
Bob 1

30

6.1.2 Sampled Text

We also divided the dataset into 2 samples and conducted a descriptive analysis. They were
divided according to the value of the “label” column, i.e., filter column rows for label = 0
and the same for label = 1. This allowed us to analyze the characteristics and frequencies of
the data separately for each label category.

Figure 6.1.2: Top 10 Word Frequencies for Filter Variable where Label = 0

Figure 6.1.3: Top 10 Word Frequencies for Filter Variable where Label = 1

31

6.1.3 Numerical Features
This is the analysis of the Numerical Features, i.e., planningTimeMicros and cpuNanos. This
includes:

1. Descriptive Statistical Metrics of the feature:
a. Mean
b. Median
c. Standard deviation
d. Minimum
e. Maximum
f. Quartiles

2. Visualization of the KDE plot for continuous features or Barplot for boolean:
a. KDE (Kernel Density Estimate) plot for continuous features to visualize their

distribution.

32

6.1.3.a planningTimeMicros

Figure 6.1.4: KDE Distribution plot of planningTimeMicros

Table 6.1.2: Descriptive Statistics for planningTimeMicros

Metric Value

Count 244

Mean 99642.1696

Standard Deviation 44007.5328

Min 49784

25% 71093

50% 88842

75% 114685.25

Max 378420.0

33

6.1.3.b cpuNanos

Figure 6.1.5: KDE Distribution plot of cpuNanos

Table 6.1.3.a.1: Descriptive Statistics of cpuNanos

Metric Value

Count 244

Mean 63.125

Standard Deviation 46.78816

Min 27.0

25% 41.75

50% 55.5

75% 67.0

Max 407.0

34

6.1.4 Target Variable

6.1.4.a Label
Figure 6.6 Distribution plot for Label

Figure 6.1.6: Distribution Plot for Label

Table 6.1.3: Descriptive Statistics of Label

Metric Value

Count 224

Unique 2

Top False

Frequency 120

0 120

1 104

35

6.2 Feature Engineering
To add more features to the same dataset, we found that we could calculate based on the
filter variable. We observed that we could create three types of features:

1. Text Features
Such features could be generated using some text operations such as omission of
words or text transformation

2. Numerical
These features were just the frequency counts or count of characters in the Text

3. Dummy
These features could indicate the presence of particular significant words in the text.

For each generated feature, we also conducted a descriptive analysis as done previously,
including calculating descriptive statistical metrics and visualizing their distributions.

6.2.1 Engineered Text Features

Upon inspection of the “filter” variable's word frequencies, we discovered that the highest
frequencies were held by words that were referencing a key/document. We believe that this
may cause some amount of noise to be produced as an injection query is malicious due to
the operations it conducts and not necessarily because of the column/key/document it has
targeted.

Hence, we wanted to further tokenize the filter to only include the following:

● Operators
● Instructions
● Keywords

We sourced the value of the conditions (i.e., the words that need to be considered by the
tokenizing operations) by referencing the MongoDB documentation and selecting the
corresponding words that are defined in the documentation.

The final list of words to be considered has been divided into several categories and has been
presented as follows. (Please note that only words that exist in our dataset have been
considered for this tokenizing algorithm. For a different dataset, a similar logic would have
to be used to generate the condition values and then conduct the tokenization.)

36

Words to be considered in the tokenization algorithm
Table 6.2.1: Category of operators found in MongoDB found in Dataset

Category Description[32] Words

Comparison Operators These are
Symbols/Operators which
allow basic logical
statements

<, =, <
$gt
$eq
$in
$nin
$ne

Where Operator This is the $where Operator
which allows the execution
of custom Javascript code

$where

Regex Operator These are operators that
execute Regular Expression
Operations

$regex
$elemSelect

Option Operator This is an extension to the
$regex Operator which
allows further
configurations

$option

Math Operator Operators who execute
mathematical operations

$mod

Size Operator Operators/keywords that
return the size of the
argument

$size
length

This Operator The “This” keyword this

This new transformed text column was named “Denamed”

37

https://www.zotero.org/google-docs/?wJdzEJ

6.2.1.a Descriptive Statistics of Denamed

Figure 6.2.1: Word Frequencies in denamed Column

38

6.2.1.b Frequency Table

Table 6.2.2: Word Frequencies in denamed

Word Frequency
{}' 18
$regex' 37
$ne' 30
$gt' 27
$where' 4
this' 4
$nin' 1
$in' 18
$options' 5
$mod' 1
length' 2
$size' 12
$type' 6
$elemMatch' 4
$eq' 8

39

6.2.2 Engineered Numerical Features
We were also interested in the size of the filter’s string, which could provide additional
insights into the complexity or length of the query being analyzed.

Figure 6.2.2: KDE plot of Query Length

Table 6.2.3: Descriptive Statistics of Query Length

Metric Value

Count 244

Mean 46.77

Standard Deviation 19.57

Min 2

25% 33

50% 43

75% 58

Max 105

40

6.2.3 Engineered Dummy Variables

Based on our observations from the Engineered Text Variables (i.e., the denamed column),
we decided to create dummy variables for each type of category of operator found in each
instance of the filter variable.

The following variables were created for each category with the boolean type:

Table 6.8 Variable names for each MongoDB Operator Category

Category Variable

Comparison Operators logicOperator

Where Operator whereDetected

Regex Operator regexDetected

Option Operator matcherOption

Math Operator MathOperator

Size Operator Size

This Operator thisPointer

41

6.2.3.a Descriptive Statistics of Dummy Features
from left to right, top to bottom
whereDetected, regexDetected, logicOperator, MathOperator, Size, thisPointer, matcherOperator,
label

6.3

42

Figure 6.3.1: Figure 6.9 Burnolli plots of Dummy Features

Table 6.3.1: Descriptive Statistics of Each Engineered Dummy Variable

Variable Count Unique Top Frequency

logicOperator 244 (0, 1) False 141

whereDetected 244 (0, 1) False 220

regexDetected 244 (0, 1) False 183

matcherOption 244 (0, 1) False 219

MathOperator 244 (0, 1) False 212

Size 244 (0, 1) False 208

thisPointer 244 (0, 1) False 220

43

6.4 Significance Testing
We conducted significance tests on each of the variables, both source data
(planningTimeMicros, cpuNanos) and engineered (queryLength, whereDetected, etc.). We
grouped the variables into 2 categories: Numerical and Dummy, and conducted different
sequences of tests accordingly.

6.4.1 Testing Sequence

6.4.1.a Numerical

In the numerical test sequence, we aimed to test the hypothesis that the numerical variable’s
sample means (where the samples are created by dividing the base dataset into 2 samples
depending on the value of “label”) are the same. Hence, both the T-Test or the Mann-
Whiteny Test were considered since we do not have any evidence to suggest that the
population that these samples come from is normally distributed or not. Therefore, we
applied the following tests in sequence:

1. Kologoromov-Simirinov Test for Normality
We applied the KS test to test the hypothesis if the data is normally distributed or not

2. T-Test and Mann-Whitney Test
These were applied to determine if the sample means are different, if they are then it
means the variable plays a significant role in differentiating an injection query from a
benign query, Depending on the KS test, if found true then the T-Test results were
held more significant or vice versa

3. Visualization of Sample
We also do an overlapped KDE plot of the sample distributions to gain other visual
insights

The Level of significance was taken at 1%

6.4.1.b Dummy
For the dummy variables, we applied the chi-square test. This test was used to test the
hypothesis that there is no association between the Dummy variables and the Label variable.
The Level of significance was taken at 10%

44

6.4.2 Numerical Variable Significance Testing Results
Test Results

Table 6.10 Significance Test Results of Each Numerical Feature

Variable KS P value T P Value MW P Value Significant?

querylength 0.097899 0.132023 0.178336 FALSE

cpuNanos 0.025985 0.024056 0.011228 FALSE

planningTimeMicros 0.001472 0.002851 0.006628 TRUE

Interpretation

We find that:
● QueryLength is normally distributed, and the means of the samples are not

significantly different according to the T-Test.
● cpuNanos is normally distributed, and the means of the samples are not significantly

different according to the T-Test.
● planningTimeMicros is not normally distributed, but the means of the samples are

significantly different according to the Mann-Whitney Test.

45

6.4.2.a Overlapped KDE Plots
queryLength

Figure 6.4.1: Overlapped KDE Plot of Query Length

46

cpuNanos

Figure 6.4.2: Overlapped KDE Plot of cpuNanos

47

planningTimeMicros

Figure 6.4.3: Overlapped KDE Plot of planningTimeMicros

48

6.4.3 Dummy Variable Significance Testing Results
Significant Test Results
Table 6.4.1: Significance Tests result for each Dummy Variable

Variable Chi-sq P-value Significance
whereDetected 0.09651 TRUE
regexDetected 0.05834 TRUE
logicOperator 0.01289 TRUE
MathOperator 0.5806 FALSE
Size 0.1100 FALSE
thisPointer 0.0965 TRUE
matcherOption 0.0481 TRUE

Interpretation

We find that:
● MathOperator and Size are the only Variables that are not associated with the label

variable

6.4.4 Significance Results
After conducting the Significant test we have now created a more filtered dataset with the
most significant variables taken

● filter
● dename
● planningTimeMicros
● whereDetected
● regexDetected
● logicOperator
● matcherOption
● otherOperator

49

6.5 Separability Analysis
The Separability analysis was conducted. This analysis was done to test if the data was
Linearly Separable or non-linearly Separable[34]. To determine this, some transformations
were applied to the data and visualized. If there were significant distinct groups in the data
of each sample, it was inferred that the data was separable, depending on which
transformation algorithm was applied. It was classified as either linearly or non-linearly
separable.

6.5.1 Linear
For this test, the PCA and LDA algorithms were applied and visualized[35]. The PCA
algorithm separated the groups along a vector, where the clusters of data were separated
along the cardinal axis.
[36]

However, if this failed, the LDA analysis was applied. LDA applies the PCA transformation
but also transforms the cardinal axis perpendicular to the vector.[37]

50

https://www.zotero.org/google-docs/?4CQWlt
https://www.zotero.org/google-docs/?7o34tQ
https://www.zotero.org/google-docs/?W3hmTc
https://www.zotero.org/google-docs/?8kcgmW

6.5.1.a PCA

Figure 6.5.1: PCA Projection Graph

51

6.5.1.b LDA

Figure 6.5.2: LDA Projection Graph

As observed in both PCA and LDA projections, a very strong overlap of the clusters of
different classes was seen, albeit there is a distinct group of Malicious query data points.
However, the size of these distinct groups is not satisfactorily significant enough for this
data. Hence, it was concluded that the data is not linearly separable.

52

6.5.2 Non-Linear
For this, the t-SNE Algorithm was applied. Upon transformation, the k-means algorithm was
applied to determine the clusters and plot the cluster polygons to determine how much
overlap of data is there.

t-SNE plot

Figure 6.5.3: t-SNE Projection Graph

53

K-means
We applied k-means and manually iterated the number of clusters until it was not possible to
create a 3-vertex polygon. This number was found to be 8 clusters per sample. The plots then
overlapped over each other.

Figure 6.5.4: t-SNE with class-specific cluster polygon graphs
We then analyzed the overlapped areas of the clusters
Table 6.5.1: Cluster Polygon Area Statistics

Variable Metric
Total Area of Clusters 15685.5647
Overlapping Area 2890.6762
Percentage of Overlapping 18.43%
Percentage of No Overlap 81.57%
Total Clusters 16

We concluded that the data is non-linearly separable up to 81.57%, with 18.43% being
ambiguous.

54

6.6 Exploration Findings
With the results of the data exploration, the final training dataset for the models was
constructed. It was found that the data is both linearly and non-linearly separable. When it
comes to linearly separable data, it can separate more confidently for malicious queries, but
it is ambiguous for benign queries.

The following table (Table 6.6.1) is the final training dataset for the model training
Table 6.6.1: Training Dataset Structure

Code Feature Name Type Description

Filter filter_str Text The filter used in the query

DN denamed Text The filter used in the query
but with the variable names
and values remove

PTM planningTimeMicro Float The amount of time taken
by MongoDB to create a
plan for the query

WD whereDetected Bool If a $where operator is
detected in the filter

RD regexDetected Bool If a $regex operator is
detected in the filter

LO logicOperator Bool If a logic operator is
detected in the filter

MO matcherOption Bool If a $option operator is
detected in the filter

TP thisPointer Bool Presence of the “this”
keywor

Label Label Bool The target variables
Where 0 = benign
1 = Malicious

55

7 Model Formulation

7.1 Models
We then started to train and test the models based on the training dataset that had been
constructed in the previous stages.

7.1.1 Models Selected
The following classification models have been selected to be used for the experiment

● SVM[38]
○ Linear Kernel
○ Sigmoid Kernel
○ Polynomial Kernel
○ RBF Kernel

● Decision Tree[39]
○ Gradient Boosting
○ Random Forrest
○ Adaboost
○ Bagging

● Naive Bayes Classifier
● Logistic Regression
● K Nearest Neighbors

These models would be used to determine the average performance each dataset gives for a
random classifier

7.1.2 Inclusion of FLAML Models
FLAML[40] is a Python library that automatically determines the best model for a given
dataset using this library we determine the best model for each dataset

56

https://www.zotero.org/google-docs/?3ObzEC
https://www.zotero.org/google-docs/?gS9Qym
https://www.zotero.org/google-docs/?1suqVG

7.2 Dataset Configurations
We also wanted to test the difference in performance between different types of data
available to the model. Hence, we categorized sets of variables into different categories
depending on when they are available to the model. To further explain the concept, we
introduced the concept of the model’s “position”.

The model’s “position” can be in one of two points:
● Front of the database system:

○ The model is only able to be run on query-based data such as the properties of
the query’s filter and length.

○ A use case for such a model would be the detection of a malicious injection
query before it reaches the database.

● Back of the database:
○ The model has access to the query sent and its properties as well as other

execution-based properties from the log.
○ A use case for such a model would be to identify malicious injection queries in

the log files of a database.

57

With this insight, we categorized the feature variables into several categories based on the
position they are available in:

Table 7.2.1: Category of variables per available position

Position Category CODE Feature Name

Front and Back Query Filter Raw QFR filter_str

Query Filter
Structure

QFS denamed

(Front and Back)

Calculated when
Processing

Query Filter
Properties

QFP whereDetected

regexDetected

logicOperator

matcherOption

thisPointer

Back Only Query
Post
Execution Data

QPX planningTimeMicros

58

7.2.1 Types
Using different types of combinations of categories, we created the following configurations
of the training dataset. The white cell with a checkmark () 🗹 indicates which categories of
variables were allotted to each dataset.
Table 7.2.2: Dataset Configurations with enabled variable categories

Dataset QFR QFS QFP QPX

A1 🗹

A2 🗹

B1 🗹 🗹

B2 🗹 🗹

C 🗹

D1 🗹 🗹 🗹

D2 🗹 🗹 🗹

59

7.3 Vectorization
Before inputting the data into the models, some datasets contained text data, requiring
conversion into numerical data.

We needed to use a vectorization algorithm to convert the text data. We had a choice
between TF-IDF vectorization or count vectorization.

After referencing a comparative study[41] we decided that using the Count Vectorization
algorithm for our project was the best approach.

The Count Vectorization algorithm would convert each filter instance into a vector, where
each dimension represents a unique word. For the tokenization of the text data into words for
the algorithm to process, we used our developed tokenizer.

7.4 Model Results
To analyze the model’s performance, we stored the confusion matrix results of each model.
Confusion matrix metrics such as accuracy, precision, recall, and F1 score would then be
calculated based on these results.

60

https://www.zotero.org/google-docs/?cWXJJT

8 Experimental Results

8.1 Model Performance per Dataset

61

Figure 8.1.1: Model Performance for Dataset A1

Figure 8.1.2: Model Performance for Dataset A2

62

Figure 8.1.3: Model Performance for Dataset B1

63

Figure 8.1.4: Model Performance for Dataset B2

64

Figure 8.1.5: Model Performance for Dataset C

65

Figure 8.1.6: Model Performance for Dataset D1

66

Figure 8.1.7: Model Performance for Dataset D2

67

Table 8.1.1: Individual Model Performance per Dataset

Dataset Model Split Accuracy Precision Recall F1 Score
A1 Linear SVM Validation 76.67% 65.96% 86.11% 74.70%

A1 Polynomial SVM Validation 64.44% 53.23% 91.67% 67.35%

A1 RBF SVM Validation 71.11% 59.62% 86.11% 70.45%

A1 Sigmoid SVM Validation 68.89% 59.52% 69.44% 64.10%

A1 Logistic Regression Validation 73.33% 63.04% 80.56% 70.73%

A1 Random Forrest Validation 75.56% 66.67% 77.78% 71.79%

A1 Gradient Boost Validation 80.00% 75.00% 75.00% 75.00%

A1 KNN Validation 66.67% 56.25% 75.00% 64.29%

A1 Decision Tree Validation 78.89% 74.29% 72.22% 73.24%

A1 Bagging Validation 75.56% 67.50% 75.00% 71.05%

A1 Ada Boost Validation 77.78% 71.05% 75.00% 72.97%

A1 Naive Bayes Validation 70.00% 58.82% 83.33% 68.97%

A2 Linear SVM Validation 65.56% 56.41% 61.11% 58.67%

A2 Polynomial SVM Validation 67.78% 58.97% 63.89% 61.33%

A2 RBF SVM Validation 67.78% 58.97% 63.89% 61.33%

A2 Sigmoid SVM Validation 63.33% 54.29% 52.78% 53.52%

A2 Logistic Regression Validation 65.56% 56.41% 61.11% 58.67%

A2 Random Forrest Validation 67.78% 58.97% 63.89% 61.33%

A2 Gradient Boost Validation 67.78% 58.97% 63.89% 61.33%

A2 KNN Validation 67.78% 58.54% 66.67% 62.34%

A2 Decision Tree Validation 67.78% 58.97% 63.89% 61.33%

A2 Bagging Validation 61.11% 51.02% 69.44% 58.82%

A2 Ada Boost Validation 66.67% 57.50% 63.89% 60.53%

A2 Naive Bayes Validation 43.33% 39.13% 75.00% 51.43%

B1 Linear SVM Validation 78.89% 70.73% 80.56% 75.32%

B1 Polynomial SVM Validation 65.56% 54.24% 88.89% 67.37%

B1 RBF SVM Validation 71.11% 60.42% 80.56% 69.05%

B1 Sigmoid SVM Validation 64.44% 55.00% 61.11% 57.89%

B1 Logistic Regression Validation 72.22% 62.22% 77.78% 69.14%

B1 Random Forrest Validation 72.22% 63.41% 72.22% 67.53%

B1 Gradient Boost Validation 80.00% 75.00% 75.00% 75.00%

68

B1 KNN Validation 61.11% 50.91% 77.78% 61.54%

B1 Decision Tree Validation 77.78% 75.00% 66.67% 70.59%

B1 Bagging Validation 74.44% 67.57% 69.44% 68.49%

B1 Ada Boost Validation 76.67% 70.27% 72.22% 71.23%

B1 Naive Bayes Validation 68.89% 58.33% 77.78% 66.67%

B2 Linear SVM Validation 65.56% 56.41% 61.11% 58.67%

B2 Polynomial SVM Validation 64.44% 56.25% 50.00% 52.94%

B2 RBF SVM Validation 67.78% 58.97% 63.89% 61.33%

B2 Sigmoid SVM Validation 54.44% 44.19% 52.78% 48.10%

B2 Logistic Regression Validation 63.33% 54.29% 52.78% 53.52%

B2 Random Forrest Validation 67.78% 58.97% 63.89% 61.33%

B2 Gradient Boost Validation 67.78% 58.97% 63.89% 61.33%

B2 KNN Validation 67.78% 58.97% 63.89% 61.33%

B2 Decision Tree Validation 67.78% 58.97% 63.89% 61.33%

B2 Bagging Validation 67.78% 61.29% 52.78% 56.72%

B2 Ada Boost Validation 66.67% 57.50% 63.89% 60.53%

B2 Naive Bayes Validation 43.33% 39.13% 75.00% 51.43%

C Linear SVM Validation 56.67% 46.67% 58.33% 51.85%

C Polynomial SVM Validation 56.67% 46.67% 58.33% 51.85%

C RBF SVM Validation 56.67% 46.67% 58.33% 51.85%

C Sigmoid SVM Validation 56.67% 46.67% 58.33% 51.85%

C Logistic Regression Validation 56.67% 46.67% 58.33% 51.85%

C Random Forrest Validation 56.67% 46.67% 58.33% 51.85%

C Gradient Boost Validation 56.67% 46.67% 58.33% 51.85%

C KNN Validation 56.67% 46.67% 58.33% 51.85%

C Decision Tree Validation 56.67% 46.67% 58.33% 51.85%

C Bagging Validation 56.67% 46.67% 58.33% 51.85%

C Ada Boost Validation 56.67% 46.67% 58.33% 51.85%

C Naive Bayes Validation 42.22% 36.67% 61.11% 45.83%

D1 Linear SVM Validation 78.89% 70.73% 80.56% 75.32%

D1 Polynomial SVM Validation 65.56% 54.24% 88.89% 67.37%

D1 RBF SVM Validation 71.11% 60.42% 80.56% 69.05%

D1 Sigmoid SVM Validation 64.44% 55.00% 61.11% 57.89%

D1 Logistic Regression Validation 72.22% 62.22% 77.78% 69.14%

69

D1 Random Forrest Validation 72.22% 61.70% 80.56% 69.88%

D1 Gradient Boost Validation 73.33% 64.29% 75.00% 69.23%

D1 KNN Validation 64.44% 53.57% 83.33% 65.22%

D1 Decision Tree Validation 66.67% 58.33% 58.33% 58.33%

D1 Bagging Validation 71.11% 60.00% 83.33% 69.77%

D1 Ada Boost Validation 65.56% 55.10% 75.00% 63.53%

D1 Naive Bayes Validation 68.89% 58.33% 77.78% 66.67%

D2 Linear SVM Validation 65.56% 56.41% 61.11% 58.67%

D2 Polynomial SVM Validation 64.44% 56.25% 50.00% 52.94%

D2 RBF SVM Validation 67.78% 58.97% 63.89% 61.33%

D2 Sigmoid SVM Validation 54.44% 44.19% 52.78% 48.10%

D2 Logistic Regression Validation 66.67% 57.50% 63.89% 60.53%

D2 Random Forrest Validation 66.67% 58.33% 58.33% 58.33%

D2 Gradient Boost Validation 72.22% 67.74% 58.33% 62.69%

D2 KNN Validation 63.33% 54.55% 50.00% 52.17%

D2 Decision Tree Validation 65.56% 58.06% 50.00% 53.73%

D2 Bagging Validation 70.00% 63.64% 58.33% 60.87%

D2 Ada Boost Validation 66.67% 59.38% 52.78% 55.88%

D2 Naive Bayes Validation 43.33% 39.13% 75.00% 51.43%

A1 Linear SVM Test 68.89% 60.71% 85.00% 70.83%

A1 Polynomial SVM Test 57.78% 51.35% 95.00% 66.67%

A1 RBF SVM Test 68.89% 60.00% 90.00% 72.00%

A1 Sigmoid SVM Test 71.11% 65.22% 75.00% 69.77%

A1 Logistic Regression Test 68.89% 60.71% 85.00% 70.83%

A1 Random Forrest Test 73.33% 65.38% 85.00% 73.91%

A1 Gradient Boost Test 77.78% 75.00% 75.00% 75.00%

A1 KNN Test 62.22% 55.56% 75.00% 63.83%

A1 Decision Tree Test 77.78% 75.00% 75.00% 75.00%

A1 Bagging Test 73.33% 68.18% 75.00% 71.43%

A1 Ada Boost Test 73.33% 65.38% 85.00% 73.91%

A1 Naive Bayes Test 68.89% 60.00% 90.00% 72.00%

A2 Linear SVM Test 60.00% 55.00% 55.00% 55.00%

A2 Polynomial SVM Test 62.22% 57.89% 55.00% 56.41%

A2 RBF SVM Test 64.44% 60.00% 60.00% 60.00%

70

A2 Sigmoid SVM Test 64.44% 61.11% 55.00% 57.89%

A2 Logistic Regression Test 60.00% 55.00% 55.00% 55.00%

A2 Random Forrest Test 62.22% 57.89% 55.00% 56.41%

A2 Gradient Boost Test 62.22% 57.89% 55.00% 56.41%

A2 KNN Test 64.44% 60.00% 60.00% 60.00%

A2 Decision Tree Test 62.22% 57.89% 55.00% 56.41%

A2 Bagging Test 64.44% 59.09% 65.00% 61.90%

A2 Ada Boost Test 57.78% 52.38% 55.00% 53.66%

A2 Naive Bayes Test 46.67% 44.44% 80.00% 57.14%

B1 Linear SVM Test 68.89% 61.54% 80.00% 69.57%

B1 Polynomial SVM Test 64.44% 55.88% 95.00% 70.37%

B1 RBF SVM Test 66.67% 58.06% 90.00% 70.59%

B1 Sigmoid SVM Test 71.11% 65.22% 75.00% 69.77%

B1 Logistic Regression Test 71.11% 62.96% 85.00% 72.34%

B1 Random Forrest Test 71.11% 64.00% 80.00% 71.11%

B1 Gradient Boost Test 80.00% 76.19% 80.00% 78.05%

B1 KNN Test 62.22% 56.00% 70.00% 62.22%

B1 Decision Tree Test 80.00% 78.95% 75.00% 76.92%

B1 Bagging Test 77.78% 72.73% 80.00% 76.19%

B1 Ada Boost Test 77.78% 72.73% 80.00% 76.19%

B1 Naive Bayes Test 68.89% 60.00% 90.00% 72.00%

B2 Linear SVM Test 60.00% 55.00% 55.00% 55.00%

B2 Polynomial SVM Test 60.00% 58.33% 35.00% 43.75%

B2 RBF SVM Test 64.44% 60.00% 60.00% 60.00%

B2 Sigmoid SVM Test 68.89% 63.64% 70.00% 66.67%

B2 Logistic Regression Test 66.67% 63.16% 60.00% 61.54%

B2 Random Forrest Test 62.22% 57.89% 55.00% 56.41%

B2 Gradient Boost Test 64.44% 60.00% 60.00% 60.00%

B2 KNN Test 62.22% 57.89% 55.00% 56.41%

B2 Decision Tree Test 62.22% 57.89% 55.00% 56.41%

B2 Bagging Test 57.78% 53.33% 40.00% 45.71%

B2 Ada Boost Test 60.00% 54.55% 60.00% 57.14%

B2 Naive Bayes Test 46.67% 44.44% 80.00% 57.14%

C Linear SVM Test 64.44% 61.11% 55.00% 57.89%

71

C Polynomial SVM Test 64.44% 61.11% 55.00% 57.89%

C RBF SVM Test 66.67% 63.16% 60.00% 61.54%

C Sigmoid SVM Test 64.44% 61.11% 55.00% 57.89%

C Logistic Regression Test 66.67% 63.16% 60.00% 61.54%

C Random Forrest Test 66.67% 63.16% 60.00% 61.54%

C Gradient Boost Test 64.44% 61.11% 55.00% 57.89%

C KNN Test 64.44% 61.11% 55.00% 57.89%

C Decision Tree Test 64.44% 61.11% 55.00% 57.89%

C Bagging Test 64.44% 61.11% 55.00% 57.89%

C Ada Boost Test 66.67% 63.16% 60.00% 61.54%

C Naive Bayes Test 37.78% 37.50% 60.00% 46.15%

D1 Linear SVM Test 68.89% 61.54% 80.00% 69.57%

D1 Polynomial SVM Test 64.44% 55.88% 95.00% 70.37%

D1 RBF SVM Test 66.67% 58.06% 90.00% 70.59%

D1 Sigmoid SVM Test 71.11% 65.22% 75.00% 69.77%

D1 Logistic Regression Test 71.11% 62.96% 85.00% 72.34%

D1 Random Forrest Test 71.11% 62.96% 85.00% 72.34%

D1 Gradient Boost Test 80.00% 76.19% 80.00% 78.05%

D1 KNN Test 71.11% 64.00% 80.00% 71.11%

D1 Decision Tree Test 75.56% 73.68% 70.00% 71.79%

D1 Bagging Test 73.33% 64.29% 90.00% 75.00%

D1 Ada Boost Test 64.44% 57.14% 80.00% 66.67%

D1 Naive Bayes Test 68.89% 60.00% 90.00% 72.00%

D2 Linear SVM Test 60.00% 55.00% 55.00% 55.00%

D2 Polynomial SVM Test 62.22% 61.54% 40.00% 48.48%

D2 RBF SVM Test 64.44% 60.00% 60.00% 60.00%

D2 Sigmoid SVM Test 68.89% 63.64% 70.00% 66.67%

D2 Logistic Regression Test 68.89% 65.00% 65.00% 65.00%

D2 Random Forrest Test 71.11% 73.33% 55.00% 62.86%

D2 Gradient Boost Test 73.33% 68.18% 75.00% 71.43%

D2 KNN Test 66.67% 66.67% 50.00% 57.14%

D2 Decision Tree Test 73.33% 72.22% 65.00% 68.42%

D2 Bagging Test 64.44% 62.50% 50.00% 55.56%

D2 Ada Boost Test 62.22% 55.56% 75.00% 63.83%

72

D2 Naive Bayes Test 46.67% 44.44% 80.00% 57.14%

73

8.1.1 Average Model Performance per Dataset

Figure 8.1.8: Bar Plot of Average Model Performance per Dataset

Table 8.1.2: Average Model Performance per Dataset

Dataset Accuracy Precision Recall F1 Score
A1 0.7019 0.6354 0.8250 0.7127

A2 0.6093 0.5655 0.5875 0.5719

B1 0.7167 0.6535 0.8167 0.7211

B2 0.6130 0.5718 0.5708 0.5635

C 0.6296 0.5983 0.5708 0.5813

D1 0.7056 0.6349 0.8333 0.7163

D2 0.6519 0.6234 0.6167 0.6096

We find that the Top 3 Datasets are A1, B1, and D1 with a Metrics Score Range of 0.7019 -
0.8333

74

8.1.2 Best FLAML Model per Dataset

Table 8.1.3: Performance of Best FLAML Model per Dataset

Dataset Model Accuracy Precision Recall F1

A1 xgboost 0.8400 0.8800 0.8148 0.8462

A2 xgboost 0.5650 0.6800 0.5528 0.6099

B1 xgboost 0.8400 0.8800 0.8148 0.8462

B2 extra_tree 0.6150 0.6800 0.6018 0.6385

C rf 0.6600 0.7200 0.6429 0.6792

D1 xgboost 0.8450 0.8400 0.8485 0.8442

D2 xgboost 0.6550 0.7600 0.6281 0.6878

75

9 Evaluation

9.1 Evaluation Criteria
We evaluated the models to determine:

1. Which dataset had significantly the best performance?
2. From the dataset found in the previous evaluation, which model performed the best?
3. Whether our constructed datasets had performed better than the datasets made in

previous works.
We are attempting to discover if our constructed datasets have performed better than the
datasets made in previous works

Here, A1 represented the dataset similar to the ones used in previous works[28], [8], [9] and
A2, B1, B2, C, D1, and D2 represented the datasets we wanted to test.

To simplify the evaluation, we only considered the Top 3 datasets A1, B1, and D1.

Since we wanted to compare with A1, therefore we only considered B1 and D1 and used
them in the T-Test/Mann-Whitney Test.

To compare the significance of the difference in performances, we applied either a T-Test or
a Mann-Whitney Test with the Null Hypothesis being that the means of the sample were not
different from each other. We conducted a one-tailed test, i.e., we wanted to see if the
difference in performance was greater than A1.

If a difference was found, then we could say that any random classifier trained on this dataset
could significantly perform better than any random classifier trained on A1.

After determining which dataset had performed the best, we then used the FLAML results to
determine the best model for this dataset.

76

https://www.zotero.org/google-docs/?qmqSiE

9.2 Results
Average Dataset Performance Compared with Dataset A1 Significance Test

Table 9.2.1: Significance Testing of each Confusion Matrix Metric

Dataset Metric T Test MW Test Significance
B1 Accuracy 0.545 0.704 FALSE

B1 Precision 0.569 0.795 FALSE

B1 Recall 0.884 0.976 FALSE

B1 F1 Score 0.523 0.707 FALSE

D1 Accuracy 0.862 0.953 FALSE

D1 Precision 0.984 0.839 FALSE

D1 Recall 0.891 0.859 FALSE

D1 F1 Score 0.843 0.750 FALSE

We noticed that for all metrics, both the T-Test and Mann-Whitney test failed at the 1%
significance level. Hence, we could conclude that a random classifier trained on any of these
datasets did not have a statistically significant difference in performance.

77

9.2.1 Distribution Plots of Dataset B1, D1’s Metric against A1

Figure 9.1: Overlapped Model Performance of A1 and B1

78

Figure 9.2 Model Performance for Dataset D1

Figure 9.2: Overlapped Model Performance of A1 and D1

79

9.3 Best Model per Dataset
Since the average performance of each dataset has been confirmed to not be significantly
different for the top-performing datasets, we now only looked at the maximum performance
achieved per dataset.

We only considered the top 3 performing datasets, namely A1, B1, and D1.

Table 9.2 Top Model Performance for Dataset A1 B1 and D1
Dataset Model Accuracy Precision Recall F1

A1 xgboost 0.8400 0.8800 0.8148 0.8462

B1 xgboost 0.8400 0.8800 0.8148 0.8462

D1 xgboost 0.8450 0.8400 0.8485 0.8442

We found that XGBoost, a Gaussian Ensemble method for decision trees, performed best
amongst all models according to FLAML.
Comparing Individual Metrics per Dataset we find that

Table 9.3 Top Model Performance Per Metric over A1 B1 and D1
Dataset Best Dataset Value

Accuracy D1 84.5%

Precision A1,B1 88.00%

Recall D1 84.85%

F1 - Score A1,B1 84.62%

We found that XGBoost trained on dataset D1 had the best accuracy among all of the models
and had the highest recall score. However, XGBoost trained on either dataset A1 or B1 had
the best Precision and F1 score.

80

10 Conclusions
By consolidating all evaluations and results we have now formed our conclusions

We would like to inform about the limitations of the project before presenting our
conclusions

10.1 Limitations
Our project encountered several limitations, including:

● Dataset Records are 244
With only 244 records, our dataset's size was relatively small, potentially affecting the
robustness of our models.

● Artificial Dataset
The dataset we generated through individual queries may not fully reflect real-world
scenarios, introducing potential biases.

● Too many Features dropped
Due to the artificial nature of the dataset, we had to remove many variables during
cleaning and exploration, potentially discarding important features.

● Only “Find” queries
The query dataset used for generating log files consisted exclusively of "find" queries,
limiting the model's applicability to this specific type of query.

81

10.2 Final Conclusion
Our conclusions are as follows, categorized according to our research questions:

1. We confirmed the feasibility of constructing models based on MongoDB log file
data.

a. The best models achieved an accuracy of 84.50%, precision of 88.00%, recall
of 84.85%, and F1 score of 84.62%.

2. Our analysis revealed various types of data in MongoDB log files, including raw
query text and machine statistics.

a. The log files of MongoDB provide various types of data such as
i. The Raw Text of the Query sent and the filter and conditions

ii. Statistics of the Machine after processing the query
b. The significant variables found in the dataset were

i. The Text data of the filter that was used in the “find” query
ii. The planning time in Microseconds is used to plan the execution of the

query
c. We engineered more features based on the text data of the filters these

included
i. Dummy Variables which indicate the presence of particular operators

present in the filter
ii. The length of the filter sent

iii. Out of these variables, some of the Dummy Variables were deemed
significant enough to be used for the training dataset

d. A Separability analysis concluded that:
i. The data is not, visually, significant enough to be linearly separable

however it is noted that some malicious injection queries do form
distinct groups. However, both benign and malicious queries are mixed
and are not separable

ii. The data is separable non-linearly, however, we have noticed clusters of
data being completely overlapped. We have noticed around 81.57% of
the data forms distinct groups

82

3. We formulated models and conducted a comparative study
a. Out of the top 3 dataset configurations we found no significant difference in

the average performance of a random classifier
b. With the comparison of top models per top 3 datasets, we found that the top

model for all 3 was XGBoost
c. Comparing individual performance metrics we found that

i. The Model trained and tested on dataset D1 had the highest accuracy of
84.5% and a recall value of 88% compared to Datasets A1, B1 which
had an accuracy of only 84% and recall of 81.48%. This suggests that
the Model trained on D1 had the highest accuracies and a higher
number of malicious queries correctly identified.

ii. The Model trained on datasets A1, and B1 had the highest precision of
88.00% and an F1 score of 84.62% compared to dataset D1 which had
a precision of 84.00% and an F1 score of 84.42%. This suggests that
the Model trained on Datasets A1, and B1 had a higher number of true
positive malicious queries identified and a balance of true positive
malicious queries better than Models trained on Dataset D1

83

10.3 Future Work
A Future researcher in this topic may explore the following topics to extend work in this field

● Exploratory Data analysis of a Real-life MongoDB log file or any NoSQL/SQL
database system log file to identify significant variables to classify injection queries

● Using a similar study as the above construction of subsets of training datasets to
compare the performance of the average classification model when some variables are
omitted/added

● Application of such models in a real database system operation

In conclusion, our project demonstrates the potential for using machine learning models to
detect injection queries in MongoDB log files. While we encountered limitations, such as
dataset size and artificiality, our findings provide valuable insights into model performance
and feature importance. Further research and refinement could enhance the applicability and
effectiveness of such models in real-world scenarios.

84

References
[1] D. Barbucha, N. T. Nguyen, and J. Batubara, New Trends in Intelligent Information and

Database Systems, vol. 598. 2015. doi: 10.1007/978-3-319-16211-9.
[2] D. D. Chamberlin, “Early History of SQL,” IEEE Ann. Hist. Comput., vol. 34, no. 4,

pp. 78–82, Oct. 2012, doi: 10.1109/MAHC.2012.61.
[3] D. R. Deutsch, “The SQL StandarD: How it Happened,” IEEE Ann. Hist. Comput., vol.

35, no. 2, pp. 72–75, Apr. 2013, doi: 10.1109/MAHC.2013.30.
[4] J. Clarke-Salt, SQL Injection Attacks and Defense. Elsevier, 2009.
[5] A.-G. Babucea, “SQL OR NoSQL DATABASES? CRITICAL DIFFERENCES,” no. 1.
[6] A. Ron, A. Shulman-Peleg, and E. Bronshtein, “No SQL, No Injection? Examining

NoSQL Security.” arXiv, Jun. 12, 2015. doi: 10.48550/arXiv.1506.04082.
[7] C. Strauch, “NoSQL Databases.” Accessed: May 03, 2024. [Online]. Available:

https://scholar.googleusercontent.com/scholar?
q=cache:p6ttZi1mFaAJ:scholar.google.com/
+nosql+databases+christof+strauch&hl=en&as_sdt=0,5

[8] H. I. Mejia-Cabrera, D. Paico-Chileno, J. H. Valdera-Contreras, V. A. Tuesta-Monteza,
and M. G. Forero, “Automatic Detection of Injection Attacks by Machine Learning in
NoSQL Databases,” in Pattern Recognition, E. Roman-Rangel, Á. F. Kuri-Morales, J. F.
Martínez-Trinidad, J. A. Carrasco-Ochoa, and J. A. Olvera-López, Eds., Cham:
Springer International Publishing, 2021, pp. 23–32. doi: 10.1007/978-3-030-77004-
4_3.

[9] M. R. Ul Islam, Md. S. Islam, Z. Ahmed, A. Iqbal, and R. Shahriyar, “Automatic
Detection of NoSQL Injection Using Supervised Learning,” in 2019 IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC), Jul. 2019, pp. 760–769.
doi: 10.1109/COMPSAC.2019.00113.

[10] J. Hu, W. Zhao, and Y. Cui, “A Survey on SQL Injection Attacks, Detection and
Prevention,” in Proceedings of the 2020 12th International Conference on Machine
Learning and Computing, in ICMLC ’20. New York, NY, USA: Association for
Computing Machinery, May 2020, pp. 483–488. doi: 10.1145/3383972.3384028.

[11] “LsSQLIDP : Literature survey on SQL injection detection and prevention techniques:
Journal of Statistics and Management Systems: Vol 22, No 2.” Accessed: May 02, 2024.
[Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/09720510.2019.1580904

[12] M. Shachi, N. Shourav, A. S. Sajid Ahmed, A. Brishty, and N. Sakib, “A Survey on
Detection and Prevention of SQL and NoSQL Injection Attack on Server-side
Applications,” Int. J. Comput. Appl., vol. 183, pp. 1–7, Jun. 2021, doi:
10.5120/ijca2021921396.

[13] Y. Divinsky, “CVE-2023-34362: MOVEIt Transfer zero-day vulnerability exploited in
the wild,” Vulcan Cyber. Accessed: May 03, 2024. [Online]. Available:
https://vulcan.io/blog/cve-2023-34362-moveit-transfer-zero-day-vulnerability-
exploited-in-the-wild/

[14] “MOVEit transfer data breaches Deep Dive | ORX News.” Accessed: May 03, 2024.

85

https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up

[Online]. Available: https://orx.org/resource/moveit-transfer-data-breaches
[15] “23andMe data theft, MGM’s $100 million ransomware loss and the Azure VM

breach.” Accessed: May 03, 2024. [Online]. Available:
https://www.infosecinstitute.com/resources/news/23andme-data-theft-mgms-$100-
million-ransomware-loss-and-the-azure-vm-breach/

[16] “ICMR Data Leak Due to ‘Cybersecurity Vulnerability’; Logs Under Scanner, Security
Audit Suggested | Exclusive,” News18. Accessed: May 03, 2024. [Online]. Available:
https://www.news18.com/india/icmr-data-leak-cybersecurity-security-audit-
8709609.html

[17] M. Rua, Thiyab, D. Musab, A. Ali, F. Abdulqader, and Abdulqader, “THE IMPACT OF
SQL INJECTION ATTACKS ON THE SECURITY OF DATABASES,” Apr. 2017.

[18] M. Hasan, Z. Balbahaith, and M. Tarique, “Detection of SQL Injection Attacks: A
Machine Learning Approach,” in 2019 International Conference on Electrical and
Computing Technologies and Applications (ICECTA), Nov. 2019, pp. 1–6. doi:
10.1109/ICECTA48151.2019.8959617.

[19] E. Hosam, H. Hosny, W. Ashraf, and A. S. Kaseb, “SQL Injection Detection Using
Machine Learning Techniques,” in 2021 8th International Conference on Soft
Computing & Machine Intelligence (ISCMI), Nov. 2021, pp. 15–20. doi:
10.1109/ISCMI53840.2021.9654820.

[20] K. Ross, “SQL Injection Detection Using Machine Learning Techniques and Multiple
Data Sources,” Masters Proj., Apr. 2018, doi: https://doi.org/10.31979/etd.zknb-4z36.

[21] P. Roy, R. Kumar, and P. Rani, “SQL Injection Attack Detection by Machine Learning
Classifier,” in 2022 International Conference on Applied Artificial Intelligence and
Computing (ICAAIC), May 2022, pp. 394–400. doi:
10.1109/ICAAIC53929.2022.9792964.

[22] Sangeeta, S. Nagasundari, and P. B. Honnavali, “SQL Injection Attack Detection using
ResNet,” in 2019 10th International Conference on Computing, Communication and
Networking Technologies (ICCCNT), Jul. 2019, pp. 1–7. doi:
10.1109/ICCCNT45670.2019.8944874.

[23] A. S. Sajid Ahmed, M. Shachi, and N. Shourav, “A Hybrid Approach to Detect Injection
Attacks on Server-side Applications using Data Mining Techniques,” 2022. doi:
10.13140/RG.2.2.27421.18407.

[24] D. Van Landuyt, V. Wijshoff, and W. Joosen, “A study of NoSQL query injection in
Neo4j,” Comput. Secur., vol. 137, p. 103590, Feb. 2024, doi:
10.1016/j.cose.2023.103590.

[25] A. M. Weeratunga, “Identification of NoSQL Injection Vulnerabilities in MongoDB
based Web Applications,” Thesis, 2021. Accessed: May 02, 2024. [Online]. Available:
https://dl.ucsc.cmb.ac.lk/jspui/handle/123456789/4474

[26] V. Sachdeva and S. Gupta, “Basic NOSQL Injection Analysis And Detection On
MongoDB,” in 2018 International Conference on Advanced Computation and
Telecommunication (ICACAT), Dec. 2018, pp. 1–5. doi:
10.1109/ICACAT.2018.8933707.

[27] S. Joseph and K. P. Jevitha, “An Automata Based Approach for the Prevention of
NoSQL Injections,” in Security in Computing and Communications, J. H. Abawajy, S.

86

https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up

Mukherjea, S. M. Thampi, and A. Ruiz-Martínez, Eds., Cham: Springer International
Publishing, 2015, pp. 538–546. doi: 10.1007/978-3-319-22915-7_49.

[28] S. Praveen, A. Dcouth, and A. S. Mahesh, “NoSQL Injection Detection Using
Supervised Text Classification,” in 2022 2nd International Conference on Intelligent
Technologies (CONIT), Jun. 2022, pp. 1–5. doi: 10.1109/CONIT55038.2022.9848017.

[29] A. M. Eassa, M. Elhoseny, H. M. El-Bakry, and A. S. Salama, “NoSQL Injection
Attack Detection in Web Applications Using RESTful Service,” Program. Comput.
Softw., vol. 44, no. 6, pp. 435–444, Nov. 2018, doi: 10.1134/S036176881901002X.

[30] A. M., O. H., H. M., and A. S., “NoSQL Racket: A Testing Tool for Detecting NoSQL
Injection Attacks in Web Applications,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 11,
2017, doi: 10.14569/IJACSA.2017.081178.

[31] R. D l , A. H v , P. B. Honnavalli, and N. S , “The MongoDB injection dataset: A․ ․ ․ ․ ․
comprehensive collection of MongoDB - NoSQL injection attempts and
vulnerabilities,” Data Brief, vol. 54, p. 110289, Jun. 2024, doi:
10.1016/j.dib.2024.110289.

[32] “What is MongoDB? - MongoDB Manual v6.0.” Accessed: May 02, 2024. [Online].
Available: https://www.mongodb.com/docs/v6.0/

[33] “pandas - Python Data Analysis Library.” Accessed: May 02, 2024. [Online]. Available:
https://pandas.pydata.org/

[34] S. Arora, W. Hu, and P. K. Kothari, “An Analysis of the t-SNE Algorithm for Data
Visualization,” in Proceedings of the 31st Conference On Learning Theory, PMLR,
Jul. 2018, pp. 1455–1462. Accessed: May 02, 2024. [Online]. Available:
https://proceedings.mlr.press/v75/arora18a.html

[35] T. ArchanaH. and D. Sachin, “Dimensionality Reduction and Classification through
PCA and LDA,” Int. J. Comput. Appl., vol. 122, no. 17, pp. 4–8, Jul. 2015, doi:
10.5120/21790-5104.

[36] A. Maćkiewicz and W. Ratajczak, “Principal components analysis (PCA),” Comput.
Geosci., vol. 19, no. 3, pp. 303–342, Mar. 1993, doi: 10.1016/0098-3004(93)90090-R.

[37] “Linear Discriminant Analysis | SpringerLink.” Accessed: May 02, 2024. [Online].
Available: https://link.springer.com/chapter/10.1007/978-1-4419-9878-1_4

[38] S. Suthaharan, “Support Vector Machine,” in Machine Learning Models and
Algorithms for Big Data Classification: Thinking with Examples for Effective Learning,
S. Suthaharan, Ed., Boston, MA: Springer US, 2016, pp. 207–235. doi: 10.1007/978-1-
4899-7641-3_9.

[39] S. Suthaharan, “Decision Tree Learning,” in Machine Learning Models and Algorithms
for Big Data Classification: Thinking with Examples for Effective Learning, S.
Suthaharan, Ed., Boston, MA: Springer US, 2016, pp. 237–269. doi: 10.1007/978-1-
4899-7641-3_10.

[40] “AutoML & Tuning | FLAML.” Accessed: May 02, 2024. [Online]. Available:
https://microsoft.github.io//FLAML/

[41] “Study and Comparision of Vectorization Techniques Used in Text Classification | IEEE
Conference Publication | IEEE Xplore.” Accessed: May 02, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9984608

87

https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up
https://www.zotero.org/google-docs/?Kz42up

Appendix

Appendix - 1 Sample Log Entry

{
 "t": {
 "$date": "2024-04-04T20:37:10.296+05:30"
 },
 "s": "I",
 "c": "COMMAND",
 "id": 51803,
 "ctx": "conn10",
 "msg": "Slow query",
 "attr": {
 "type": "command",
 "ns": "test_database.test_collection",
 "command": {
 "find": "test_collection",
 "filter": {
 "user": "{}",
 "password": "{}"
 },
 "lsid": {
 "id": {
 "$uuid": "e5e23d7e-5367-4829-a104-ca369c49d4dc"
 }
 },
 "$db": "test_database"
 },
 "planSummary": "EOF",
 "planningTimeMicros": 83,
 "keysExamined": 0,
 "docsExamined": 0,
 "nBatches": 1,
 "cursorExhausted": true,
 "numYields": 0,
 "nreturned": 0,
 "queryFramework": "classic",

88

 "reslen": 118,
 "locks": {
 "FeatureCompatibilityVersion": {
 "acquireCount": {
 "r": 1
 }
 },
 "Global": {
 "acquireCount": {
 "r": 1
 }
 }
 },
 "storage": {},
 "cpuNanos": 176371,
 "remote": "127.0.0.1:47038",
 "protocol": "op_msg",
 "durationMillis": 0
 }
}

Figure A10.3.1: Log Entry Sample

89

Appendix - 2 Training Data Sample

Table A2: Sample Rows of Training Dataset

Filter DN WD RD LO TP MO PTM label
{'username': {'$ne': '{}'}} {'': {'$ne': '{}'}} 0 0 1 0 0 42 1
{'username': {'$ne': '{}'}} {'': {'$ne': '{}'}} 0 0 1 0 0 42 1
{'username': {'$gt': '{}'}} {'': {'$gt': '{}'}} 0 0 1 0 0 46 1
{'username': {'$gt': '{}'}} {'': {'$gt': '{}'}} 0 0 1 0 0 46 1

90

Appendix - 3 Links

Repository - https://github.com/ShaunakPerniUniGoa/NoSQLInjectionDetection

91

https://github.com/ShaunakPerniUniGoa/NoSQLInjectionDetection

	1 Introduction
	1.1 Database and Their Roles
	1.1.1 Informational Assets

	1.2 SQL
	1.2.1 Limitations

	1.3 NoSQL
	1.3.1 Types

	1.4 Injection Attacks
	1.4.1 Vulnerabilities
	1.4.2 Cost and Damage

	1.5 Traditional Security Methods
	1.6 Using Trained Models

	2 Literature Survey
	2.1 Overview of SQL and NoSQL Injection Attacks
	2.2 Existing Detection and Prevention Techniques
	2.2.1 Traditional Techniques
	2.2.2 Machine Learning and Deep Learning Techniques
	2.2.3 Deep Learning Techniques
	2.2.4 Datasets and Tools

	2.3 Our Approach

	3 Aims and Objectives
	3.1 Research Questions
	3.2 Problem Statements
	3.3 Project Stages

	4 Data Collection
	4.1 Initial Challenges
	4.2 Setup for Data Collection
	4.3 Data Collection Results
	4.4 Pre-emptive Cleaning
	4.5 Final Collected Dataset

	5 Data Processing
	5.1 Conversion to Tabular Data
	5.2 Cleaning
	5.2.1 Pass 1
	5.2.2 Pass 1 - Filtering
	5.2.3 Pass 2
	5.2.4 Pass 2 - Filtering
	5.2.5 Pass 3

	5.3 Integration
	5.4 Final Cleaned and Integrated Data

	6 Data Exploration
	6.1 Descriptive Analysis
	6.1.1 Text
	6.1.2 Sampled Text
	6.1.3 Numerical Features
	6.1.3.a planningTimeMicros
	6.1.3.b cpuNanos

	6.1.4 Target Variable
	6.1.4.a Label

	6.2 Feature Engineering
	6.2.1 Engineered Text Features
	6.2.1.a Descriptive Statistics of Denamed
	6.2.1.b Frequency Table

	6.2.2 Engineered Numerical Features
	6.2.3 Engineered Dummy Variables
	6.2.3.a Descriptive Statistics of Dummy Features

	6.4 Significance Testing
	6.4.1 Testing Sequence
	6.4.1.a Numerical
	6.4.1.b Dummy

	6.4.2 Numerical Variable Significance Testing Results
	6.4.2.a Overlapped KDE Plots

	6.4.3 Dummy Variable Significance Testing Results
	6.4.4 Significance Results

	6.5 Separability Analysis
	6.5.1 Linear
	6.5.1.a PCA
	6.5.1.b LDA

	6.5.2 Non-Linear

	6.6 Exploration Findings

	7 Model Formulation
	7.1 Models
	7.1.1 Models Selected
	7.1.2 Inclusion of FLAML Models

	7.2 Dataset Configurations
	7.2.1 Types

	7.3 Vectorization
	7.4 Model Results

	8 Experimental Results
	8.1 Model Performance per Dataset
	8.1.1 Average Model Performance per Dataset
	8.1.2 Best FLAML Model per Dataset

	9 Evaluation
	9.1 Evaluation Criteria
	9.2 Results
	9.2.1 Distribution Plots of Dataset B1, D1’s Metric against A1

	9.3 Best Model per Dataset

	10 Conclusions
	10.1 Limitations
	10.2 Final Conclusion
	10.3 Future Work

