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Abstract 
The  project  built  upon  work  done  in  developing  machine  learning  models  in  the 
Cybersecurity field of injection query attack detection. Specifically, the project attempted to 
create a classification model that was trained on a Log file of a MongoDB database that had 
been attacked and attempted to identify queries that were malicious injection attack queries 
that allowed an unauthorized operation on the database system or were benign.

The project collected data from a local MongoDB system where a mix of injection queries 
and benign queries were sent to it. The system then produced a log file on which an analysis 
was conducted. The log file was converted to a tabular format and significant variables were 
identified and used to construct a training dataset.

Several  configurations  of  the  dataset  were  made i.e.  subsets  of  the  dataset  where  some 
variables were omitted/added either to reflect the dataset used in previous works or to test 
our  hypothetical  dataset  configurations,  9  models  were  trained  on  each  and  their 
performances were recorded. A MLOps library was also used to identify the best model for 
each dataset.

A comparative study was then done with average model performance per dataset but it was 
concluded that there was no significant difference between the Top 3 datasets’ average model 
performance. However, a difference was noticed in each of the Top models created for each 
dataset.  Each one  of  the  3  datasets  had  an  accuracy of  84% and a  sensitivity  of  88%. 
However, 2 of the 3 datasets scored higher on precision and F1 scores with them being 88% 
and 84.5% respectively.
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1 Introduction

1.1 Database and Their Roles
In  today's  digital  era,  databases  serve  as  the  backbone  of  countless  applications,  holding  vast 
amounts of valuable information. These information assets were critical for businesses, educational 
institutions,  government  agencies,  and  various  other  entities  to  manage  and  utilize  effectively. 
Databases facilitated the storage, retrieval, and manipulation of structured and unstructured data, 
enabling seamless operations and informed decision-making.[1].

1.1.1 Informational Assets
The data stored within databases were often regarded as invaluable assets, representing the lifeblood 
of modern organizations. From customer profiles and transaction histories to inventory records and 
research findings, databases housed a wealth of information crucial for day-to-day operations and 
strategic planning. Protecting these assets was paramount, as any compromise could lead to severe 
consequences such as financial loss, reputational damage, and legal repercussions.

With the proliferation of online services and digital transactions, databases have become central 
repositories for sensitive data, including personally identifiable information (PII), financial records, 
and proprietary business data. Consequently, safeguarding databases against security threats was of 
utmost importance to preserve the confidentiality, integrity, and availability of these information 
assets.
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1.2 SQL

Structured  Query  Language  (SQL)  stood  as  the  cornerstone  of  relational  database 
management systems (RDBMS), providing a standardized language for querying, updating, 
and managing relational databases. Developed in the 1970s, SQL evolved into a powerful 
tool  for  interacting  with  databases,  offering  a  rich  set  of  syntax  and  commands  for 
performing a wide range of operations.

Over the decades, SQL underwent significant advancements and refinements, with various 
implementations and extensions tailored to specific database platforms. The development of 
SQL was driven by the growing demands of businesses and organizations for efficient data 
management solutions, leading to the introduction of features such as stored procedures, 
triggers, and user-defined functions. [2], [3].

1.2.1 Limitations
Despite  its  widespread adoption and versatility,  SQL is  not  without  its  limitations.  One 
notable challenge is its rigid schema structure, which necessitates predefined table structures 
and relationships. This inherent inflexibility can pose challenges in scenarios where the data 
model  is  dynamic or  schema-less,  hindering the scalability  and adaptability  of  database 
systems[4].

Moreover, SQL-based databases may struggle to handle the scale and complexity of modern data 
requirements,  particularly  in  scenarios  involving unstructured  or  semi-structured  data  types.  As 
organizations grapple with the influx of big data and the need for real-time analytics, the limitations 
of traditional SQL databases become increasingly apparent, paving the way for the emergence of 
alternative approaches such as NoSQL[5]
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1.3 NoSQL
The rise of big data, coupled with the proliferation of web and cloud-based applications, has 
fueled the need for database systems capable of handling unprecedented volumes of data and 
supporting  high-performance,  distributed  architectures.  In  response  to  these  evolving 
requirements, NoSQL (Not Only SQL) databases have emerged as a compelling alternative 
to traditional SQL-based systems[5].

NoSQL databases depart from the relational model of SQL databases, offering a schema-less 
or  flexible  schema approach  that  accommodates  diverse  data  types  and  structures.  This 
flexibility is particularly well-suited for applications with dynamic or rapidly changing data 
schemas, such as social media platforms, IoT (Internet of Things) devices, and real-time 
analytics systems.[6]

The  development  of  NoSQL databases  has  been  driven  by  the  desire  to  overcome  the 
scalability and performance limitations inherent in SQL databases, especially when dealing 
with  massive  datasets  and  high-concurrency  workloads.  By  adopting  distributed 
architectures, horizontal scaling, and optimized data storage models, NoSQL databases offer 
superior scalability, fault tolerance, and performance compared to their SQL counterparts.

4
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1.3.1 Types
NoSQL databases encompass a diverse range of data models and storage technologies, each 
optimized  for  specific  use  cases  and  data  processing  requirements.  Common  types  of 
NoSQL databases include:

● Document-oriented databases: Store and retrieve data in the form of semi-structured 
documents, typically using JSON or BSON formats. Examples include MongoDB, 
Couchbase, and CouchDB.

● Key-value stores: Store data as key-value pairs, providing fast and efficient access to 
individual  records.  Examples  include  Redis,  Amazon  DynamoDB,  and  Apache 
Cassandra.

● Column-family stores: Organize data into columns rather than rows, enabling efficient 
storage  and  retrieval  of  sparse,  wide-column  datasets.  Examples  include  Apache 
HBase, Apache Cassandra, and ScyllaDB.

● Graph  databases:  Model  data  as  nodes,  edges,  and  properties,  allowing  for  the 
representation  and  traversal  of  complex  relationships  between  entities.  Examples 
include Neo4j, Amazon Neptune, and TigerGraph.[7]

1.4 Injection Attacks
Injection attacks represent a class of security threats that exploit vulnerabilities in software 
applications to execute malicious code or commands. These attacks typically involve the 
insertion  of  unauthorized  or  malicious  input  data  into  an  application's  input  fields  or 
parameters, with the intent of manipulating its behavior or compromising its security[8], [9], 
[4], [10].

1.4.1 Vulnerabilities
Injection  attacks  exploit  weaknesses  in  input  validation  and  sanitization  mechanisms, 
allowing  attackers  to  bypass  security  controls  and  interact  with  databases  or  execute 
arbitrary commands on the underlying systems Common types of injection attacks include 
SQL injection (SQLi), NoSQL injection (NoSQLi), command injection, and LDAP injection, 
among others.

5
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1.4.2 Cost and Damage
The consequences of injection attacks can be severe, ranging from unauthorized access to 
sensitive  data  and  data  manipulation  to  system  compromise  and  service  disruption.  In 
addition to the immediate impact on affected systems and users, injection attacks can also 
have long-term repercussions, including financial losses, reputational damage, and regulatory 
penalties.
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1.5 Traditional Security Methods
Traditional  security  methods  for  SQL  and  NoSQL  databases  typically  revolve  around 
implementing  a  combination  of  preventive  and  detective  measures  to  safeguard  against 
potential vulnerabilities and attacks. These methods include:

● Input  validation:  Ensuring  that  user  input  is  properly  validated  and  sanitized  to 
prevent injection attacks. This involves validating input data against predefined rules 
and sanitizing potentially dangerous characters or commands.

● Parameterized  queries:  Using  parameterized  queries  or  prepared  statements  to 
separate  SQL code  from user  input,  thereby  reducing  the  risk  of  SQL injection 
attacks.

● Authentication  and  authorization:  Implementing  robust  authentication  and 
authorization  mechanisms  to  control  access  to  database  resources  and  prevent 
unauthorized users from performing malicious actions.

● Database encryption: Encrypting sensitive data at rest and in transit to protect it from 
unauthorized access or interception by attackers.

● Security  patches and updates:  Regularly applying security  patches and updates  to 
database software and underlying operating systems to address known vulnerabilities 
and security flaws[10], [11], [12].

But even with such measures, attacks were still experienced as recently as October 2023.
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[13], [14], [15], [16]

Month and Year Target 
Organization/Service Estimated Damage

October 2023 ICMR $80,000

October 2023 23andMe $54,000,000

May 2023 MoveIT  $10,000,000,000

Table 1.5.1: Selected Recent SQL Injection Attacks

As  observed,  even  with  these  measures,  major  injection  attacks  were  still  causing  a 
devastating amount of financial damage.

Hence, a motivation to use reactive models had been made, i.e.,  measures that could be 
trained  and  automatically  discover  patterns  in  injection  attacks  rather  than  be  mitigated 
manually. Such types of measures are usually machine learning models or models that can 
be trained against a known list of attack queries to identify them.
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1.6 Using Trained Models
The  increasing  sophistication  and  diversity  of  cyber  threats,  including  injection  attacks 
targeting both SQL and NoSQL databases, necessitate the adoption of advanced detection 
and  prevention  techniques.  Machine  learning  models  offer  a  promising  approach  to 
enhancing database security by leveraging the power of data-driven analytics and pattern 
recognition to identify and mitigate potential threats.

Incorporating trained machine learning models into database security frameworks involves 
several key steps:

● Data collection and preprocessing: Gathering relevant datasets containing examples of 
benign  and  malicious  database  queries  or  interactions.  Preprocessing  involves 
cleaning, transforming, and encoding the data to prepare it for model training.

● Feature engineering: Extracting informative features from the input data to capture 
relevant patterns and characteristics associated with benign and malicious behavior. 
These  features  may  include  query  syntax,  parameter  values,  user  context,  and 
temporal or spatial patterns.

● Model training: Selecting appropriate machine learning algorithms and train them on 
the labeled dataset to learn the underlying patterns and relationships between input 
features  and  target  labels  (i.e.,  benign  or  malicious).  Common  algorithms  for 
classification  tasks  include  logistic  regression,  decision  trees,  support  vector 
machines, and neural networks.

● Model evaluation and validation: Assessing the performance of trained models using 
metrics such as accuracy, precision, recall, and F1-score. Validation techniques such 
as cross-validation or holdout validation help ensure the generalization and robustness 
of the models to unseen data.

● Integration  and  deployment:  Incorporating  trained  models  into  existing  database 
security systems or intrusion detection frameworks to enable real-time monitoring 
and analysis of database activity. This may involve deploying models as standalone 
components  or  integrating  them  with  database  management  systems  (DBMS)  or 
network security appliances.

Trained Machine learning may provide a higher performance in militating, detecting or even 
protecting systems from such attacks

9



2 Literature Survey

2.1 Overview of SQL and NoSQL Injection Attacks
SQL injection is one of the most serious security vulnerabilities in web applications that use 
relational  databases.  As  the  use  of  web  applications  and  online  services  has  increased 
significantly over the past two decades, addressing SQL injection vulnerabilities has become 
paramount.  SQL injection attacks can allow unauthorized access or modification of data 
stored in databases, compromising the integrity and confidentiality of sensitive information 
[10].

With the rise of NoSQL databases, such as MongoDB, for handling unstructured data and 
meeting the demands of modern web applications, new security challenges have emerged. 
Several  studies  [6,  12,  24,  25,  26,  27]  have  demonstrated  that  NoSQL  databases  are 
vulnerable  to  injection attacks,  similar  to  traditional  SQL injection attacks  on relational 
databases. These attacks can potentially lead to unauthorized access and manipulation of 
sensitive data stored in NoSQL databases.

2.2 Existing Detection and Prevention Techniques
Researchers have explored various techniques for detecting and preventing both SQL and 
NoSQL injection attacks, ranging from traditional methods to advanced machine learning 
and deep learning approaches.
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2.2.1 Traditional Techniques
Several detection and prevention techniques have been proposed to address SQL injection 
vulnerabilities.  The  paper  by  the  anonymous  authors  [11]  presents  a  comprehensive 
literature survey on SQL injection detection and prevention techniques. They emphasize the 
importance of securing data stored in databases, particularly in the era of cloud computing, 
where data storage and access are widely distributed.

Rua et  al.  [17] investigate the impact  of  poor input  validation on the security of  server 
databases. They propose a technique called CombinedDetect,  which combines JavaScript 
and PHP coding to detect and isolate malicious SQL queries before sending them to the 
server. Their study highlights the risks posed by SQL injection attacks and the importance of 
effective input validation and multiple detection methods.

For NoSQL injection attacks, studies [29, 30] have proposed traditional techniques involving 
analyzing the structure of NoSQL queries, comparing the intended query structure with the 
runtime query structure, and employing input validation techniques. While these techniques 
have shown promise, they may struggle to detect unknown or zero-day attacks effectively.
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2.2.2 Machine Learning and Deep Learning Techniques
With  the  limitations  of  traditional  signature-based  detection  methods,  there  has  been 
growing  interest  in  applying  machine  learning  techniques  for  detecting  SQL  injection 
attacks, including unknown or zero-day attacks [18, 19, 20, 21].

Hasan et al. [18] propose a machine learning-based heuristic algorithm for SQL injection 
detection. They train and test 23 different machine learning classifiers on a dataset of SQL 
statements, selecting the top five classifiers based on their detection accuracy and developing 
a GUI application using these classifiers.

Hosam et al. [19] focus on machine learning techniques for SQL injection detection, defining 
13  relevant  features  that  can  be  extracted  from user  inputs  and  evaluating  six  different 
machine  learning  algorithms.  Their  models  achieve  an  accuracy  of  up  to  99.6%  and 
demonstrate the ability to generalize well to unseen data.

For NoSQL injection attacks, researchers have explored the use of machine learning and 
deep learning models. Studies such as [8, 9, 22, 23, 28] have employed various machine 
learning and deep learning models, including Support Vector Machines (SVMs), Random 
Forests,  Neural Networks, and Deep Residual Networks (ResNets),  for detecting NoSQL 
injection attacks. These models have achieved promising results, with reported accuracies 
ranging from 91.5% to 99.6%.
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2.2.3 Deep Learning Techniques
In addition to traditional machine learning methods, deep learning techniques have also been 
explored  for  SQL  injection  detection.  Sangeeta  et  al.  [22]  propose  a  method  for  SQL 
injection attack detection using ResNet, a deep residual neural network architecture. Their 
approach tokenizes and vectorizes input queries, which are then trained using the ResNet 
algorithm. The authors demonstrate that their ResNet-based model can effectively identify 
different types of SQL injection attacks.

2.2.4 Datasets and Tools
To facilitate the development and evaluation of SQL and NoSQL injection detection models, 
researchers  have  created  datasets  and  tools.  The  MongoDB  Injection  Dataset  [31]  is  a 
comprehensive collection of MongoDB NoSQL injection attempts and vulnerabilities, which 
can be used for training and testing machine learning models.

2.3 Our Approach
The proposed approach leverages supervised learning-based binary classification models, 
which can distinguish between benign and malicious NoSQL queries.

By utilizing log files from MongoDB servers, the research aims to create a realistic and 
representative  dataset  for  training  and  evaluating  the  proposed  model.  This  approach 
addresses the need for practical and scalable solutions for detecting NoSQL injection attacks 
in real-world scenarios.

The performance of the proposed model will be compared with previous works, particularly 
those  employing  machine  learning  and  deep  learning  techniques  for  SQL  and  NoSQL 
injection  detection.  This  comparison  will  provide  insights  into  the  effectiveness  of  the 
proposed  approach  and  its  potential  contributions  to  the  field  of  database  security, 
encompassing both relational and NoSQL databases.
Through this research, the authors aim to develop a robust and efficient model for detecting 
NoSQL  injection  attacks  on  MongoDB  servers,  contributing  to  the  ongoing  efforts  to 
enhance the security of databases and protect sensitive data from unauthorized access and 
manipulation.
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3 Aims and Objectives

3.1 Research Questions
The research questions this project attempted to answer were:

1. What are the significant variables to discriminate a injection query from a benign 
query from a MongoDB log file?

2. Is it possible to create a model to classify MongoDB queries as malicious or benign 
based on training data extracted from log files?

3. In continuation with previous works where models were trained with only raw query 
text  adding  more  variables  to  the  dataset  bring  any  significant  change  in  the 
performance of a random model trained on such data?

3.2 Problem Statements
The problem statements were as follows:

1. “Conduct a study of a MongoDB log file to discover significant features that can be 
used to discriminate between a injection query and a benign query”

2. “Construct a Model to classify if a given MongoDB NoSQL query is a malicious 
injection query that may execute an unauthorized operation on the server, or is it a 
benign query”

3. “Conduct  a  Comparative  Performance  study  of  Classification  Models  trained  in 
different configurations of a dataset that has been processed from a MongoDB log 
file”
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3.3 Project Stages
The project took place in the following stages:

1. Data Collection:
Data on MongoDB log files was collected 

2. Data Preprocessing:
The same collected data was cleaned for errors and missing data, integrated from the 
various, and transformed into a common structured form for processing

3. Data Exploration:
The Data variables were explored, and a descriptive analysis and significance tests 
were  conducted.  A  Separability  analysis  was  done  to  determine  which  model 
algorithms can be used on the dataset. A final training dataset was formed

4. Model Formulation:
Dataset configurations were created and used as training data for different sets of 
model algorithms and their performances recorded

5. Evalutaion and Testing:
Model Performance reports were tested and evaluated and conclusions were formed 
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4 Data Collection

4.1 Initial Challenges
Due to the unique requirements of this project, no datasets related to MongoDB logs were 
found. Therefore, a labeled public training dataset of MongoDB queries was utilized, where 
queries were labeled as Malicious and Benign via a boolean label.[31], using this dataset we 
conducted our analysis.

4.2 Setup for Data Collection
To collect log-based data, we set up an empty MongoDB server on a local machine. The 
database was intentionally left empty, with no collections or documents inserted, to study 
the effect on a standard server. The specifications of the local machine are as follows

Table 4.2.1: Hardware Details for running MongoDB server

Operating System Fedora Linux 39 (Workstation Edition)

OS Type 64-Bit

Kernel-Version 6.5

Processor AMD Ryzen™ 7 5700U with Radeon™ Graphics × 16

Memory 8.0 GiB

Disk 1TB(HDD) + 256GB (SSD)

MongoDB Version 6.0.15

Mongosh 2.25

The Database was initialized with the following setting

db.setProfilingLevel(2,0.1)

According to the MongoDB manual[32], this sets the profiler at the highest level and records 
all  queries that take more than 0.1 microseconds to process.  Subsequently, we fired 244 
queries using a script provided by the dataset and collected the log files.
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4.3 Data Collection Results
According to the MongoDB documentation, a standard log entry was a simple JSON object 
with  specific  attributes  related  to  the  Log  and  Query  and  query  processing[32].

At default settings on our system, the log file was generated at the following file on our 
system

/var/log/mongodb/mongod.log

4.4 Pre-emptive Cleaning
Reading the generated log, we found several entries unrelated to the queries, but as part of 
MongoDB's system health checks and other miscellaneous entries. 

MongoDB produces the following Log entry types based on which component’s process was 
executed[32]:
Table 4.4.1: MongoDB Log Entry Codes

ACCESS Messages related to access control and authentication.
COMMAND Messages related to database command execution.
CONTROL Messages related to control activities and initialization.
ELECTION Messages specifically related to replica set elections.
FTDC Messages related to diagnostic data collection, including server statistics.
GEO Messages related to parsing and verification of geospatial shapes.
INDEX Messages related to indexing operations, such as index creation.
INITSYNC Messages related to initial sync operation in replica sets.
JOURNAL Messages specifically related to storage journaling activities.
NETWORK Messages related to network activities, such as connection acceptance.
QUERY Messages related to queries and query planner activities.

RECOVERY
Messages related to 
storage recovery activities.

REPL Messages related to replica sets, including initial sync and replication.
REPL_HB Messages specifically related to replica set heartbeats.
ROLLBACK Messages related to rollback operations in replication.
SHARDING Messages related to sharding activities, such as mongos startup.
STORAGE Messages related to storage activities, including fsync processes.
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TXN Messages related to multi-document transactions.
WRITE Messages related to write operations, such as updates.
WT Messages related to the WiredTiger storage engine.
WTBACKUP Messages related to backup operations by WiredTiger.
WTCHKPT Messages related to checkpoint operations by WiredTiger.
WTCMPCT Messages related to compaction operations by WiredTiger.
WTEVICT Messages related to eviction operations by WiredTiger.
WTHS Messages related to WiredTiger's history store.
WTRECOV Messages related to recovery operations by WiredTiger.
WTRTS Messages related to rollback to stable operations by WiredTiger.
WTSLVG Messages related to salvage operations by WiredTiger.
WTTIER Messages related to tiered storage operations by WiredTiger.
WTTS Messages related to timestamps used by WiredTiger.
WTTXN Messages related to transactions performed by WiredTiger.
WTVRFY Messages related to verification operations by WiredTiger.
WTWRTLOG Messages related to logging write operations by WiredTiger.
Unnamed 
Components

Messages not associated with a named component, using the default log 
level specified in the system settings.

For the scope of  this  project,  it  was found that  only COMMAND log entries are to be 
extracted from the log files as these entries contain log details of the sent queries.
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4.5 Final Collected Dataset
The final collected dataset had the following variables in the JSON format

Table 4.5.1: MongoDB Log Entry Structure

{
 "t": <Datetime>, // timestamp
 "s": <String>, // severity
 "c": <String>, // component
 "id": <Integer>, // unique identifier
 "ctx": <String>, // context
 "msg": <String>, // message body
 "attr": <Object> // additional attributes (optional)
 "tags": <Array of strings> // tags (optional)
 "truncated": <Object> // truncation info (if truncated)
 "size": <Object> // original size of entry (if truncated)
}

[32]

19

https://www.zotero.org/google-docs/?2IXHoN


5 Data Processing

5.1 Conversion to Tabular Data
Using the pandas library[33] we expanded and converted the data into a tabular format. 
However, we had to expand the data columns in several passes due to nested keys and values 
in the JSON structure.

The outcome of this process was to give us a tabular format of the raw JSON data that can 
be then processed by any processing algorithm 

5.2 Cleaning
For each pass, we would also decide whether to omit or accept a variable for further passes. 
This is because we observed some variables to be constant since we tested the queries on an 
empty  database.
These variables had to be omitted as they could not provide any insights since they were 
constant.
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5.2.1 Pass 1

Table 5.2.1: Data Structure for Cleaning Pass 1

Variable Name Data Type Description

t DateTime Timestamp

s string
Short severity code

c string Full Component String

id string Unique  Identifier  for  the 
Log statement

ctx string The thread that caused the 
long statement

msg string Log output message

attr Object Key value pairs  containing 
various  attributes  to  the 
query sent

Tags string[] MongoDB tags attributed to 
the string

truncated Object Information if any attr key-
value  pair  has  been 
truncated

size Object Original  Size  of  the  log 
entry if it was truncated
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5.2.2 Pass 1 - Filtering
Out of the 10 variables initially considered, only "Attr" (Attributes) was selected. The "Attr" 
column encompasses diverse information, including query type, targeted collection, sender's 
IP and port, query duration, and more.

The other variables were rejected due to having no relationship to the query sent and only to 
the log entry. Additionally, the "Timestamp" query was not considered as all queries were 
processed at the same time due to the script firing the queries at the database, making the 
variable a constant and not significant enough to be used.
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5.2.3 Pass 2

Table 5.2.2: Data Structure for Open ATTR column

Variable Name Data Type Description[32]

ns string Namespace/Collection 
where the query is executed

command Object Parameter  and  type  of 
Query sent to the database 

remote string IP and port  address of  the 
sender

protocol string Protocol of the user

plan summary string What Plan was taken up by 
the  system  to  execute  the 
query

planningTimeMicro int The time it took to create a 
plan  for  the  query  in 
microseconds

keyExamined int Amount of keys examined

docsExamined int Amount  of  Documents 
Examined

nBatches int How  many  batches  did  it 
take for the operation

cursorExhaustred bool Unknown

numYields int Unknown

nreturned int Number of results returned

queryFramework string The framework used for the 
query

reslen int Unknown

Locks object Unknown

storage object Unknown
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cpuNanos int CPU time to process query 
in nanoseconds

durationMills int Duration  of  the  query  in 
milliseconds

5.2.4 Pass 2 - Filtering
We decided to select only a few variables from this dataset as it was found that most 
variables were constant in the table due to the artificial environment from which the data 
was collected.
The variables that were decided to be taken due to having some degree of variance were:

● “command”: This column encapsulates crucial details of the query, such as the query 
type, targeted collection, and the database aimed at.

● “planningTimeMicro”: This was the Planning time taken by the system to execute the 
query

● “cpuNanos”: Similarly to planningTimeMicro, this represents the amount of time 
taken by the CPU of the system to process the query 
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5.2.5  Pass 3
Upon the expansion of the Command column, we found the following variables
Table 5.2.3: Data Structure for Opened Command Column

Variable Name Data Type Description

find string This  is  the  collection 
argument  to  the  “Find” 
query 

filter Object The  filter  used  for  the 
“Find” query

lsid Object This  contains  the  uuid  of 
the query sent

$db string Target Database

Only the “filter” variable (now filter_str) was deemed essential since it was the only variable 
with some variance the rest of the variables were constant

5.3 Integration
Using the preprocessed data, the selected columns were now joined with the query dataset’s 
“label” column. The join criteria were the “filter” column from our dataset and the “text” 
key from the query dataset.
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5.4 Final Cleaned and Integrated Data
The final cleaned raw data is as follows
Table 5.4.1: Data Structure after Cleaning

Name Data Type Description

filter_str Text This is the extracted raw filter 
of the query sent

cpuNanos Float Time  Taken  by  CPU  to 
process Query

planningTimeMicros Float Time Taken for MongoDB to 
decide on a plan for the Query

Label Boolean The  label  set  for  queries
0  =  Benign  Query
1 = Malicious Query
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6 Data Exploration
Using the cleaned dataset, we conducted a series of analyses on the data to gain insights. 
Specifically, we conducted the following types of analysis:

1. Descriptive  Analysis:
This  involved  analyzing  the  variables  we  have  in  the  dataset.  This  includes 
calculations of descriptive statistical metrics, visualizations of the distributions, etc.

2. Feature  Engineering
We created new variables by using existing data to add more factors to the training 
dataset.

3. Significance  Test
This is where we tested the statistical significance of each variable when it comes to 
training for the classification models. Only the variables that significantly passed the 
tests were considered for the training dataset.

4. Separability  Analysis
This involved the analysis of the type of separability our data has. The outcome of 
this analysis affects the type of classification models we can use.

The outcome of this process was an output of a training dataset that can be used in any 
machine-learning classification task of MongoDB injection queries.
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6.1 Descriptive Analysis
Individual variables were descriptively analyzed, considering the three types of data formats: 
Text, Boolean, and Numeric. The analysis was done differently for each of them to capture 
their unique characteristics and distributions.

6.1.1 Text
For this, the variable “Filter” was analyzed this includes:

1. Word Frequency Analysis
2. Visualization of the Word Frequencies 

To conduct the word frequency analysis, a string tokenizer was used. However, due to the 
structure of MongoDB filters, a natural language tokenizer could not be used. Hence, for this 
analysis, a custom-made tokenizer was developed and used. 

Figure 6.1.1: Top 10 Word Frequencies for Filter Variable
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Table 6.1.1: Word Frequencies for Filter Variable

Word Frequency
user 171
{} 18
password 145
username 44
$regex 37
^{} 4
$ne 30
$gt 27
hacker 19
&ne 4
alice 4
123456 12
^test 10
testuser 10
guest 24
john 11
qwerty 9
category 12
electronics 12
price 8
name 28
^S 4
selector 4
department 8
engineering 4
_id 4
1 4
John Doe 5
HR 4
salary 4
pass 6
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admin 42
$username 1
$password 1
id 1
value 1
John 1
age 5
$where 4
this.age >= {} 1
test 31
type 8
roles 8
_admin 1
.*{}.* 1
$nin 1
$in 18
root 12
^{}$ 4
$options 5
i 5
$mod 1
this.password.length > 10 1
$size 12
this.age <= {} 1
$type 6
this.password.length <= 5 1
Alice 1
{}|admin 1
password123 4
testuser123 1
Bob 1
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6.1.2 Sampled Text

We also divided the dataset into 2 samples and conducted a descriptive analysis. They were 
divided according to the value of the “label” column, i.e., filter column rows for label = 0 
and the same for label = 1. This allowed us to analyze the characteristics and frequencies of 
the data separately for each label category.

Figure 6.1.2:  Top 10 Word Frequencies for Filter Variable where Label = 0

Figure 6.1.3: Top 10 Word Frequencies for Filter Variable where Label = 1
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6.1.3 Numerical Features
This is the analysis of the Numerical Features, i.e., planningTimeMicros and cpuNanos. This 
includes:

1. Descriptive Statistical Metrics of the feature:
a. Mean
b. Median
c. Standard deviation
d. Minimum
e. Maximum
f. Quartiles

2. Visualization of the KDE plot for continuous features or Barplot for boolean:
a. KDE (Kernel Density Estimate) plot for continuous features to visualize their 

distribution.
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6.1.3.a planningTimeMicros

Figure 6.1.4: KDE Distribution plot of planningTimeMicros

Table 6.1.2: Descriptive Statistics for planningTimeMicros

Metric Value

Count 244

Mean 99642.1696

Standard Deviation 44007.5328

Min 49784

25% 71093

50% 88842

75% 114685.25

Max 378420.0
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6.1.3.b cpuNanos

Figure 6.1.5: KDE Distribution plot of cpuNanos

Table 6.1.3.a.1: Descriptive Statistics of cpuNanos

Metric Value

Count 244

Mean 63.125

Standard Deviation 46.78816

Min 27.0

25% 41.75

50% 55.5

75% 67.0

Max 407.0
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6.1.4 Target Variable

6.1.4.a Label
Figure 6.6 Distribution plot for Label

Figure 6.1.6: Distribution Plot for Label

Table 6.1.3: Descriptive Statistics of Label

Metric Value

Count 224

Unique 2

Top False

Frequency 120

0 120

1 104
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6.2 Feature Engineering
To add more features to the same dataset, we found that we could calculate based on the 
filter variable. We observed that we could create three types of features:

1. Text  Features
Such features could be generated using some text operations such as omission of 
words or text transformation

2. Numerical
These features were just the frequency counts or count of characters in the Text

3. Dummy
These features could indicate the presence of particular significant words in the text.

For each generated feature, we also conducted a descriptive analysis as done previously, 
including calculating descriptive statistical metrics and visualizing their distributions.

6.2.1 Engineered Text Features

Upon inspection of the “filter” variable's word frequencies, we discovered that the highest 
frequencies were held by words that were referencing a key/document. We believe that this 
may cause some amount of noise to be produced as an injection query is malicious due to 
the operations it conducts and not necessarily because of the column/key/document it has 
targeted.

Hence, we wanted to further tokenize the filter to only include the following:

● Operators
● Instructions
● Keywords

We sourced the value of the conditions (i.e., the words that need to be considered by the 
tokenizing  operations)  by  referencing  the  MongoDB  documentation  and  selecting  the 
corresponding words that are defined in the documentation.

The final list of words to be considered has been divided into several categories and has been 
presented  as  follows.  (Please  note  that  only  words  that  exist  in  our  dataset  have  been 
considered for this tokenizing algorithm. For a different dataset, a similar logic would have 
to be used to generate the condition values and then conduct the tokenization.)
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Words to be considered in the tokenization algorithm
Table 6.2.1: Category of operators found in MongoDB found in Dataset

Category Description[32] Words

Comparison Operators These are                         
Symbols/Operators   which 
allow basic logical 
statements

<, =, <
$gt
$eq
$in
$nin
$ne

Where Operator This is the $where Operator 
which allows the execution 
of custom Javascript code

$where

Regex Operator These  are  operators  that 
execute Regular Expression 
Operations

$regex
$elemSelect

Option Operator This is an extension to the 
$regex  Operator  which 
allows  further 
configurations

$option

Math Operator Operators  who  execute 
mathematical operations

$mod

Size Operator Operators/keywords  that 
return  the  size  of  the 
argument

$size
length

This Operator The “This” keyword this

This new transformed text column was named “Denamed”
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6.2.1.a Descriptive Statistics of Denamed

Figure 6.2.1: Word Frequencies in denamed Column
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6.2.1.b Frequency Table

Table 6.2.2: Word Frequencies in denamed

Word Frequency
{}' 18
$regex' 37
$ne' 30
$gt' 27
$where' 4
this' 4
$nin' 1
$in' 18
$options' 5
$mod' 1
length' 2
$size' 12
$type' 6
$elemMatch' 4
$eq' 8
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6.2.2 Engineered Numerical Features
We were also interested in the size of the filter’s string, which could provide additional 
insights into the complexity or length of the query being analyzed.

Figure 6.2.2: KDE plot of Query Length  

Table 6.2.3: Descriptive Statistics of Query Length

Metric Value

Count 244

Mean 46.77

Standard Deviation 19.57

Min 2

25% 33

50% 43

75% 58

Max 105
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6.2.3 Engineered Dummy Variables

Based on our observations from the Engineered Text Variables (i.e., the denamed column), 
we decided to create dummy variables for each type of category of operator found in each 
instance of the filter variable.

The following variables were created for each category with the boolean type: 

Table 6.8 Variable names for each MongoDB Operator Category

Category Variable

Comparison Operators logicOperator

Where Operator whereDetected

Regex Operator regexDetected

Option Operator matcherOption

Math Operator MathOperator

Size Operator Size

This Operator thisPointer
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6.2.3.a Descriptive Statistics of Dummy Features
from left to right, top to bottom 
whereDetected,  regexDetected,  logicOperator,  MathOperator,  Size,  thisPointer,  matcherOperator, 
label

6.3
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Table 6.3.1:  Descriptive Statistics of Each Engineered Dummy Variable 

Variable Count Unique Top Frequency

logicOperator 244 ( 0, 1 ) False 141

whereDetected 244 ( 0, 1 ) False 220

regexDetected 244 ( 0, 1 ) False 183

matcherOption 244 ( 0, 1 ) False 219

MathOperator 244 ( 0, 1 ) False 212

Size 244 ( 0, 1 ) False 208

thisPointer 244 ( 0, 1 ) False 220
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6.4 Significance Testing
We  conducted  significance  tests  on  each  of  the  variables,  both  source  data 
(planningTimeMicros, cpuNanos) and engineered (queryLength, whereDetected, etc.). We 
grouped the variables into 2 categories: Numerical and Dummy, and conducted different 
sequences of tests accordingly.

6.4.1 Testing Sequence

6.4.1.a Numerical

In the numerical test sequence, we aimed to test the hypothesis that the numerical variable’s 
sample means (where the samples are created by dividing the base dataset into 2 samples 
depending on the  value  of  “label”)  are  the  same.  Hence,  both  the  T-Test  or  the  Mann-
Whiteny  Test  were  considered  since  we  do  not  have  any  evidence  to  suggest  that  the 
population  that  these  samples  come from is  normally  distributed  or  not.  Therefore,  we 
applied the following tests in sequence:

1. Kologoromov-Simirinov  Test  for  Normality
We applied the KS test to test the hypothesis if the data is normally distributed or not

2. T-Test  and  Mann-Whitney  Test 
These were applied to determine if the sample means are different, if they are then it  
means the variable plays a significant role in differentiating an injection query from a 
benign query, Depending on the KS test, if found true then the T-Test results were 
held more significant or vice versa

3. Visualization  of  Sample
We also do an overlapped KDE plot of the sample distributions to gain other visual 
insights 

The Level of significance was taken at 1%

6.4.1.b Dummy
For the dummy variables,  we applied the chi-square test.  This  test  was used to test  the 
hypothesis that there is no association between the Dummy variables and the Label variable.
The Level of significance was taken at 10%
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6.4.2 Numerical Variable Significance Testing Results
Test Results

Table 6.10 Significance Test Results of Each Numerical Feature

Variable KS P value T P Value MW P Value Significant?

querylength 0.097899 0.132023 0.178336 FALSE

cpuNanos 0.025985 0.024056 0.011228 FALSE

planningTimeMicros 0.001472 0.002851 0.006628 TRUE

Interpretation

We find that:
● QueryLength is normally distributed, and the means of the samples are not 

significantly different according to the T-Test.
● cpuNanos is normally distributed, and the means of the samples are not significantly 

different according to the T-Test.
● planningTimeMicros is not normally distributed, but the means of the samples are 

significantly different according to the Mann-Whitney Test.
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6.4.2.a Overlapped KDE Plots
queryLength

Figure 6.4.1: Overlapped KDE Plot of Query Length 
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cpuNanos

Figure 6.4.2: Overlapped KDE Plot of cpuNanos
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planningTimeMicros

Figure 6.4.3: Overlapped KDE Plot of planningTimeMicros
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6.4.3 Dummy Variable Significance Testing Results
Significant Test Results
Table 6.4.1: Significance Tests result for each Dummy Variable

Variable Chi-sq P-value Significance
whereDetected 0.09651 TRUE
regexDetected 0.05834 TRUE
logicOperator 0.01289 TRUE
MathOperator 0.5806 FALSE
Size 0.1100 FALSE
thisPointer 0.0965 TRUE
matcherOption 0.0481 TRUE

Interpretation

We find that:
● MathOperator and Size are the only Variables that are not associated with the label 

variable

6.4.4 Significance Results
After conducting the Significant test we have now created a more filtered dataset with the 
most significant variables taken

● filter
● dename
● planningTimeMicros
● whereDetected
● regexDetected
● logicOperator
● matcherOption
● otherOperator
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6.5 Separability Analysis
The Separability analysis was conducted. This analysis was done to test  if  the data was 
Linearly Separable or non-linearly Separable[34].  To determine this, some transformations 
were applied to the data and visualized. If there were significant distinct groups in the data 
of  each  sample,  it  was  inferred  that  the  data  was  separable,  depending  on  which 
transformation algorithm was applied.  It  was  classified as  either  linearly  or  non-linearly 
separable.

6.5.1 Linear
For  this  test,  the  PCA and LDA algorithms were  applied  and visualized[35].  The PCA 
algorithm separated the groups along a vector, where the clusters of data were separated 
along the cardinal axis.
[36]

However, if this failed, the LDA analysis was applied. LDA applies the PCA transformation 
but also transforms the cardinal axis perpendicular to the vector.[37]
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6.5.1.a PCA

Figure 6.5.1: PCA Projection Graph
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6.5.1.b LDA

Figure 6.5.2: LDA Projection Graph

As observed in both PCA and LDA projections, a very strong overlap of the clusters of 
different classes was seen, albeit there is a distinct group of Malicious query data points. 
However, the size of these distinct groups is not satisfactorily significant enough for this 
data. Hence, it was concluded that the data is not linearly separable.

52



6.5.2 Non-Linear
For this, the t-SNE Algorithm was applied. Upon transformation, the k-means algorithm was 
applied to  determine the  clusters  and plot  the  cluster  polygons to  determine how much 
overlap of data is there.

t-SNE plot

Figure 6.5.3: t-SNE Projection Graph
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K-means
We applied k-means and manually iterated the number of clusters until it was not possible to 
create a 3-vertex polygon. This number was found to be 8 clusters per sample. The plots then 
overlapped over each other.

Figure 6.5.4: t-SNE with class-specific cluster polygon graphs
We then analyzed the overlapped areas of the clusters
Table 6.5.1: Cluster Polygon Area Statistics

Variable Metric
Total Area of Clusters 15685.5647
Overlapping Area 2890.6762
Percentage of Overlapping 18.43%
Percentage of No Overlap 81.57%
Total Clusters 16

We concluded that  the data is  non-linearly separable up to 81.57%, with 18.43% being 
ambiguous.
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6.6 Exploration Findings
With  the  results  of  the  data  exploration,  the  final  training  dataset  for  the  models  was 
constructed. It was found that the data is both linearly and non-linearly separable. When it 
comes to linearly separable data, it can separate more confidently for malicious queries, but 
it is ambiguous for benign queries.

The following table (Table 6.6.1) is the final training dataset for the model training
Table 6.6.1: Training Dataset Structure

Code Feature Name Type Description

Filter filter_str Text The filter used in the query

DN denamed Text The filter used in the query 
but with the variable names 
and values remove

PTM planningTimeMicro Float The  amount  of  time  taken 
by  MongoDB  to  create  a 
plan for the query

WD whereDetected Bool If  a  $where  operator  is 
detected in the filter

RD regexDetected Bool If  a  $regex  operator  is 
detected in the filter

LO logicOperator Bool If  a  logic  operator  is 
detected in the filter

MO matcherOption Bool If  a  $option  operator  is 
detected in the filter

TP thisPointer Bool Presence  of  the  “this” 
keywor

Label Label Bool The  target  variables
Where 0 = benign
1 = Malicious
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7 Model Formulation

7.1 Models
We then started to train and test the models based on the training dataset that had been 
constructed in the previous stages.

7.1.1 Models Selected
The following classification models have been selected to be used for the experiment

● SVM[38]
○ Linear Kernel
○ Sigmoid Kernel
○ Polynomial Kernel
○ RBF Kernel

● Decision Tree[39]
○ Gradient Boosting
○ Random Forrest
○ Adaboost
○ Bagging

● Naive Bayes Classifier
● Logistic Regression
● K Nearest Neighbors

These models would be used to determine the average performance each dataset gives for a 
random classifier 

7.1.2 Inclusion of FLAML Models
FLAML[40] is a Python library that automatically determines the best model for a given 
dataset using this library we determine the best model for each dataset
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7.2 Dataset Configurations
We  also  wanted  to  test  the  difference  in  performance  between  different  types  of  data 
available  to  the  model.  Hence,  we categorized sets  of  variables  into  different  categories 
depending on when they are available to the model.  To further  explain the concept,  we 
introduced the concept of the model’s “position”.

The model’s “position” can be in one of two points:
● Front of the database system:

○ The model is only able to be run on query-based data such as the properties of 
the query’s filter and length.

○ A use case for such a model would be the detection of a malicious injection 
query before it reaches the database.

● Back of the database:
○ The model has access to the query sent and its properties as well as other 

execution-based properties from the log.
○ A use case for such a model would be to identify malicious injection queries in 

the log files of a database.
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With this insight, we categorized the feature variables into several categories based on the 
position they are available in:

Table 7.2.1: Category of variables per available position

Position Category CODE Feature Name

Front and Back Query Filter Raw QFR filter_str

Query Filter 
Structure

QFS denamed

(Front and Back)

Calculated when 
Processing

Query Filter 
Properties

QFP whereDetected

regexDetected

logicOperator

matcherOption

thisPointer

Back Only Query
Post
Execution Data

QPX planningTimeMicros
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7.2.1 Types
Using different types of combinations of categories, we created the following configurations 
of the training dataset. The white cell with a checkmark ( )  🗹 indicates which categories of 
variables were allotted to each dataset.
Table 7.2.2: Dataset Configurations with enabled variable categories

Dataset QFR QFS QFP QPX

A1 🗹

A2 🗹

B1 🗹 🗹

B2 🗹 🗹

C 🗹

D1 🗹 🗹 🗹

D2 🗹 🗹 🗹
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7.3 Vectorization
Before  inputting  the  data  into  the  models,  some datasets  contained  text  data,  requiring 
conversion  into  numerical  data.

We needed  to  use  a  vectorization  algorithm to  convert  the  text  data.  We had  a  choice 
between TF-IDF vectorization or count vectorization.

After referencing a comparative study[41] we decided that using the Count Vectorization 
algorithm for our project was the best approach.

The Count Vectorization algorithm would convert each filter instance into a vector, where 
each dimension represents a unique word. For the tokenization of the text data into words for 
the algorithm to process, we used our developed tokenizer.

7.4 Model Results
To analyze the model’s performance, we stored the confusion matrix results of each model. 
Confusion matrix metrics such as accuracy, precision, recall, and F1 score would then be 
calculated based on these results.
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8 Experimental Results

8.1 Model Performance per Dataset
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Figure 8.1.1: Model Performance for Dataset A1



Figure 8.1.2: Model Performance for Dataset A2
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Figure 8.1.3: Model Performance for Dataset B1
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Figure 8.1.4: Model Performance for Dataset B2
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Figure 8.1.5: Model Performance for Dataset  C
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Figure 8.1.6: Model Performance for Dataset D1
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Figure 8.1.7: Model Performance for Dataset D2
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Table 8.1.1: Individual Model Performance per Dataset 

Dataset Model Split Accuracy Precision Recall F1 Score
A1 Linear SVM Validation 76.67% 65.96% 86.11% 74.70%

A1 Polynomial SVM Validation 64.44% 53.23% 91.67% 67.35%

A1 RBF SVM Validation 71.11% 59.62% 86.11% 70.45%

A1 Sigmoid SVM Validation 68.89% 59.52% 69.44% 64.10%

A1 Logistic Regression Validation 73.33% 63.04% 80.56% 70.73%

A1 Random Forrest Validation 75.56% 66.67% 77.78% 71.79%

A1 Gradient Boost Validation 80.00% 75.00% 75.00% 75.00%

A1 KNN Validation 66.67% 56.25% 75.00% 64.29%

A1 Decision Tree Validation 78.89% 74.29% 72.22% 73.24%

A1 Bagging Validation 75.56% 67.50% 75.00% 71.05%

A1 Ada Boost Validation 77.78% 71.05% 75.00% 72.97%

A1 Naive Bayes Validation 70.00% 58.82% 83.33% 68.97%

A2 Linear SVM Validation 65.56% 56.41% 61.11% 58.67%

A2 Polynomial SVM Validation 67.78% 58.97% 63.89% 61.33%

A2 RBF SVM Validation 67.78% 58.97% 63.89% 61.33%

A2 Sigmoid SVM Validation 63.33% 54.29% 52.78% 53.52%

A2 Logistic Regression Validation 65.56% 56.41% 61.11% 58.67%

A2 Random Forrest Validation 67.78% 58.97% 63.89% 61.33%

A2 Gradient Boost Validation 67.78% 58.97% 63.89% 61.33%

A2 KNN Validation 67.78% 58.54% 66.67% 62.34%

A2 Decision Tree Validation 67.78% 58.97% 63.89% 61.33%

A2 Bagging Validation 61.11% 51.02% 69.44% 58.82%

A2 Ada Boost Validation 66.67% 57.50% 63.89% 60.53%

A2 Naive Bayes Validation 43.33% 39.13% 75.00% 51.43%

B1 Linear SVM Validation 78.89% 70.73% 80.56% 75.32%

B1 Polynomial SVM Validation 65.56% 54.24% 88.89% 67.37%

B1 RBF SVM Validation 71.11% 60.42% 80.56% 69.05%

B1 Sigmoid SVM Validation 64.44% 55.00% 61.11% 57.89%

B1 Logistic Regression Validation 72.22% 62.22% 77.78% 69.14%

B1 Random Forrest Validation 72.22% 63.41% 72.22% 67.53%

B1 Gradient Boost Validation 80.00% 75.00% 75.00% 75.00%
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B1 KNN Validation 61.11% 50.91% 77.78% 61.54%

B1 Decision Tree Validation 77.78% 75.00% 66.67% 70.59%

B1 Bagging Validation 74.44% 67.57% 69.44% 68.49%

B1 Ada Boost Validation 76.67% 70.27% 72.22% 71.23%

B1 Naive Bayes Validation 68.89% 58.33% 77.78% 66.67%

B2 Linear SVM Validation 65.56% 56.41% 61.11% 58.67%

B2 Polynomial SVM Validation 64.44% 56.25% 50.00% 52.94%

B2 RBF SVM Validation 67.78% 58.97% 63.89% 61.33%

B2 Sigmoid SVM Validation 54.44% 44.19% 52.78% 48.10%

B2 Logistic Regression Validation 63.33% 54.29% 52.78% 53.52%

B2 Random Forrest Validation 67.78% 58.97% 63.89% 61.33%

B2 Gradient Boost Validation 67.78% 58.97% 63.89% 61.33%

B2 KNN Validation 67.78% 58.97% 63.89% 61.33%

B2 Decision Tree Validation 67.78% 58.97% 63.89% 61.33%

B2 Bagging Validation 67.78% 61.29% 52.78% 56.72%

B2 Ada Boost Validation 66.67% 57.50% 63.89% 60.53%

B2 Naive Bayes Validation 43.33% 39.13% 75.00% 51.43%

C Linear SVM Validation 56.67% 46.67% 58.33% 51.85%

C Polynomial SVM Validation 56.67% 46.67% 58.33% 51.85%

C RBF SVM Validation 56.67% 46.67% 58.33% 51.85%

C Sigmoid SVM Validation 56.67% 46.67% 58.33% 51.85%

C Logistic Regression Validation 56.67% 46.67% 58.33% 51.85%

C Random Forrest Validation 56.67% 46.67% 58.33% 51.85%

C Gradient Boost Validation 56.67% 46.67% 58.33% 51.85%

C KNN Validation 56.67% 46.67% 58.33% 51.85%

C Decision Tree Validation 56.67% 46.67% 58.33% 51.85%

C Bagging Validation 56.67% 46.67% 58.33% 51.85%

C Ada Boost Validation 56.67% 46.67% 58.33% 51.85%

C Naive Bayes Validation 42.22% 36.67% 61.11% 45.83%

D1 Linear SVM Validation 78.89% 70.73% 80.56% 75.32%

D1 Polynomial SVM Validation 65.56% 54.24% 88.89% 67.37%

D1 RBF SVM Validation 71.11% 60.42% 80.56% 69.05%

D1 Sigmoid SVM Validation 64.44% 55.00% 61.11% 57.89%

D1 Logistic Regression Validation 72.22% 62.22% 77.78% 69.14%
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D1 Random Forrest Validation 72.22% 61.70% 80.56% 69.88%

D1 Gradient Boost Validation 73.33% 64.29% 75.00% 69.23%

D1 KNN Validation 64.44% 53.57% 83.33% 65.22%

D1 Decision Tree Validation 66.67% 58.33% 58.33% 58.33%

D1 Bagging Validation 71.11% 60.00% 83.33% 69.77%

D1 Ada Boost Validation 65.56% 55.10% 75.00% 63.53%

D1 Naive Bayes Validation 68.89% 58.33% 77.78% 66.67%

D2 Linear SVM Validation 65.56% 56.41% 61.11% 58.67%

D2 Polynomial SVM Validation 64.44% 56.25% 50.00% 52.94%

D2 RBF SVM Validation 67.78% 58.97% 63.89% 61.33%

D2 Sigmoid SVM Validation 54.44% 44.19% 52.78% 48.10%

D2 Logistic Regression Validation 66.67% 57.50% 63.89% 60.53%

D2 Random Forrest Validation 66.67% 58.33% 58.33% 58.33%

D2 Gradient Boost Validation 72.22% 67.74% 58.33% 62.69%

D2 KNN Validation 63.33% 54.55% 50.00% 52.17%

D2 Decision Tree Validation 65.56% 58.06% 50.00% 53.73%

D2 Bagging Validation 70.00% 63.64% 58.33% 60.87%

D2 Ada Boost Validation 66.67% 59.38% 52.78% 55.88%

D2 Naive Bayes Validation 43.33% 39.13% 75.00% 51.43%

A1 Linear SVM Test 68.89% 60.71% 85.00% 70.83%

A1 Polynomial SVM Test 57.78% 51.35% 95.00% 66.67%

A1 RBF SVM Test 68.89% 60.00% 90.00% 72.00%

A1 Sigmoid SVM Test 71.11% 65.22% 75.00% 69.77%

A1 Logistic Regression Test 68.89% 60.71% 85.00% 70.83%

A1 Random Forrest Test 73.33% 65.38% 85.00% 73.91%

A1 Gradient Boost Test 77.78% 75.00% 75.00% 75.00%

A1 KNN Test 62.22% 55.56% 75.00% 63.83%

A1 Decision Tree Test 77.78% 75.00% 75.00% 75.00%

A1 Bagging Test 73.33% 68.18% 75.00% 71.43%

A1 Ada Boost Test 73.33% 65.38% 85.00% 73.91%

A1 Naive Bayes Test 68.89% 60.00% 90.00% 72.00%

A2 Linear SVM Test 60.00% 55.00% 55.00% 55.00%

A2 Polynomial SVM Test 62.22% 57.89% 55.00% 56.41%

A2 RBF SVM Test 64.44% 60.00% 60.00% 60.00%
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A2 Sigmoid SVM Test 64.44% 61.11% 55.00% 57.89%

A2 Logistic Regression Test 60.00% 55.00% 55.00% 55.00%

A2 Random Forrest Test 62.22% 57.89% 55.00% 56.41%

A2 Gradient Boost Test 62.22% 57.89% 55.00% 56.41%

A2 KNN Test 64.44% 60.00% 60.00% 60.00%

A2 Decision Tree Test 62.22% 57.89% 55.00% 56.41%

A2 Bagging Test 64.44% 59.09% 65.00% 61.90%

A2 Ada Boost Test 57.78% 52.38% 55.00% 53.66%

A2 Naive Bayes Test 46.67% 44.44% 80.00% 57.14%

B1 Linear SVM Test 68.89% 61.54% 80.00% 69.57%

B1 Polynomial SVM Test 64.44% 55.88% 95.00% 70.37%

B1 RBF SVM Test 66.67% 58.06% 90.00% 70.59%

B1 Sigmoid SVM Test 71.11% 65.22% 75.00% 69.77%

B1 Logistic Regression Test 71.11% 62.96% 85.00% 72.34%

B1 Random Forrest Test 71.11% 64.00% 80.00% 71.11%

B1 Gradient Boost Test 80.00% 76.19% 80.00% 78.05%

B1 KNN Test 62.22% 56.00% 70.00% 62.22%

B1 Decision Tree Test 80.00% 78.95% 75.00% 76.92%

B1 Bagging Test 77.78% 72.73% 80.00% 76.19%

B1 Ada Boost Test 77.78% 72.73% 80.00% 76.19%

B1 Naive Bayes Test 68.89% 60.00% 90.00% 72.00%

B2 Linear SVM Test 60.00% 55.00% 55.00% 55.00%

B2 Polynomial SVM Test 60.00% 58.33% 35.00% 43.75%

B2 RBF SVM Test 64.44% 60.00% 60.00% 60.00%

B2 Sigmoid SVM Test 68.89% 63.64% 70.00% 66.67%

B2 Logistic Regression Test 66.67% 63.16% 60.00% 61.54%

B2 Random Forrest Test 62.22% 57.89% 55.00% 56.41%

B2 Gradient Boost Test 64.44% 60.00% 60.00% 60.00%

B2 KNN Test 62.22% 57.89% 55.00% 56.41%

B2 Decision Tree Test 62.22% 57.89% 55.00% 56.41%

B2 Bagging Test 57.78% 53.33% 40.00% 45.71%

B2 Ada Boost Test 60.00% 54.55% 60.00% 57.14%

B2 Naive Bayes Test 46.67% 44.44% 80.00% 57.14%

C Linear SVM Test 64.44% 61.11% 55.00% 57.89%

71



C Polynomial SVM Test 64.44% 61.11% 55.00% 57.89%

C RBF SVM Test 66.67% 63.16% 60.00% 61.54%

C Sigmoid SVM Test 64.44% 61.11% 55.00% 57.89%

C Logistic Regression Test 66.67% 63.16% 60.00% 61.54%

C Random Forrest Test 66.67% 63.16% 60.00% 61.54%

C Gradient Boost Test 64.44% 61.11% 55.00% 57.89%

C KNN Test 64.44% 61.11% 55.00% 57.89%

C Decision Tree Test 64.44% 61.11% 55.00% 57.89%

C Bagging Test 64.44% 61.11% 55.00% 57.89%

C Ada Boost Test 66.67% 63.16% 60.00% 61.54%

C Naive Bayes Test 37.78% 37.50% 60.00% 46.15%

D1 Linear SVM Test 68.89% 61.54% 80.00% 69.57%

D1 Polynomial SVM Test 64.44% 55.88% 95.00% 70.37%

D1 RBF SVM Test 66.67% 58.06% 90.00% 70.59%

D1 Sigmoid SVM Test 71.11% 65.22% 75.00% 69.77%

D1 Logistic Regression Test 71.11% 62.96% 85.00% 72.34%

D1 Random Forrest Test 71.11% 62.96% 85.00% 72.34%

D1 Gradient Boost Test 80.00% 76.19% 80.00% 78.05%

D1 KNN Test 71.11% 64.00% 80.00% 71.11%

D1 Decision Tree Test 75.56% 73.68% 70.00% 71.79%

D1 Bagging Test 73.33% 64.29% 90.00% 75.00%

D1 Ada Boost Test 64.44% 57.14% 80.00% 66.67%

D1 Naive Bayes Test 68.89% 60.00% 90.00% 72.00%

D2 Linear SVM Test 60.00% 55.00% 55.00% 55.00%

D2 Polynomial SVM Test 62.22% 61.54% 40.00% 48.48%

D2 RBF SVM Test 64.44% 60.00% 60.00% 60.00%

D2 Sigmoid SVM Test 68.89% 63.64% 70.00% 66.67%

D2 Logistic Regression Test 68.89% 65.00% 65.00% 65.00%

D2 Random Forrest Test 71.11% 73.33% 55.00% 62.86%

D2 Gradient Boost Test 73.33% 68.18% 75.00% 71.43%

D2 KNN Test 66.67% 66.67% 50.00% 57.14%

D2 Decision Tree Test 73.33% 72.22% 65.00% 68.42%

D2 Bagging Test 64.44% 62.50% 50.00% 55.56%

D2 Ada Boost Test 62.22% 55.56% 75.00% 63.83%
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D2 Naive Bayes Test 46.67% 44.44% 80.00% 57.14%
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8.1.1 Average Model Performance per Dataset

Figure 8.1.8: Bar Plot of Average Model Performance per Dataset

Table 8.1.2: Average Model Performance per Dataset

Dataset Accuracy Precision Recall F1 Score
A1 0.7019 0.6354 0.8250 0.7127

A2 0.6093 0.5655 0.5875 0.5719

B1 0.7167 0.6535 0.8167 0.7211

B2 0.6130 0.5718 0.5708 0.5635

C 0.6296 0.5983 0.5708 0.5813

D1 0.7056 0.6349 0.8333 0.7163

D2 0.6519 0.6234 0.6167 0.6096

We find that the Top 3 Datasets are A1, B1, and D1 with a Metrics Score Range of 0.7019 - 
0.8333
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8.1.2 Best FLAML Model per Dataset

Table 8.1.3: Performance of Best FLAML Model per Dataset

Dataset Model Accuracy Precision Recall F1

A1 xgboost 0.8400 0.8800 0.8148 0.8462

A2 xgboost 0.5650 0.6800 0.5528 0.6099

B1 xgboost 0.8400 0.8800 0.8148 0.8462

B2 extra_tree 0.6150 0.6800 0.6018 0.6385

C rf 0.6600 0.7200 0.6429 0.6792

D1 xgboost 0.8450 0.8400 0.8485 0.8442

D2 xgboost 0.6550 0.7600 0.6281 0.6878
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9 Evaluation

9.1 Evaluation Criteria
We evaluated the models to determine:

1. Which dataset had significantly the best performance?
2. From the dataset found in the previous evaluation, which model performed the best?
3. Whether our constructed datasets had performed better  than the datasets made in 

previous works.
We are attempting to discover if our constructed datasets have performed better than the 
datasets made in previous works

Here, A1 represented the dataset similar to the ones used in previous works[28], [8], [9] and 
A2, B1, B2, C, D1, and D2 represented the datasets we wanted to test.

To simplify the evaluation, we only considered the Top 3 datasets A1, B1, and D1.

Since we wanted to compare with A1, therefore we only considered B1 and D1 and used 
them in the T-Test/Mann-Whitney Test.

To compare the significance of the difference in performances, we applied either a T-Test or 
a Mann-Whitney Test with the Null Hypothesis being that the means of the sample were not 
different  from each other.  We conducted a  one-tailed test,  i.e.,  we wanted to  see  if  the 
difference in performance was greater than A1.

If a difference was found, then we could say that any random classifier trained on this dataset 
could significantly perform better than any random classifier trained on A1.

After determining which dataset had performed the best, we then used the FLAML results to 
determine the best model for this dataset.
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9.2 Results
Average Dataset Performance Compared with Dataset A1 Significance Test

Table 9.2.1: Significance Testing of each Confusion Matrix Metric

Dataset Metric T Test MW Test Significance
B1 Accuracy 0.545 0.704 FALSE

B1 Precision 0.569 0.795 FALSE

B1 Recall 0.884 0.976 FALSE

B1 F1 Score 0.523 0.707 FALSE

D1 Accuracy 0.862 0.953 FALSE

D1 Precision 0.984 0.839 FALSE

D1 Recall 0.891 0.859 FALSE

D1 F1 Score 0.843 0.750 FALSE

We noticed that for all metrics, both the T-Test and Mann-Whitney test failed at the 1% 
significance level. Hence, we could conclude that a random classifier trained on any of these 
datasets did not have a statistically significant difference in performance.
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9.2.1 Distribution Plots of Dataset B1, D1’s Metric against A1

Figure 9.1: Overlapped Model Performance of A1 and B1

78



Figure 9.2  Model Performance for Dataset D1

Figure 9.2: Overlapped Model Performance of A1 and D1
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9.3 Best Model per Dataset
Since the average performance of each dataset has been confirmed to not be significantly 
different for the top-performing datasets, we now only looked at the maximum performance 
achieved per dataset.

We only considered the top 3 performing datasets, namely A1, B1, and D1.

Table 9.2 Top Model Performance for Dataset A1 B1 and D1
Dataset Model Accuracy Precision Recall F1

A1 xgboost 0.8400 0.8800 0.8148 0.8462

B1 xgboost 0.8400 0.8800 0.8148 0.8462

D1 xgboost 0.8450 0.8400 0.8485 0.8442

We found that XGBoost, a Gaussian Ensemble method for decision trees, performed best 
amongst all models according to FLAML.
Comparing Individual Metrics per Dataset we find that
 

Table 9.3 Top Model Performance Per Metric over A1 B1 and D1
Dataset Best Dataset Value

Accuracy D1 84.5%

Precision A1,B1 88.00%

Recall D1 84.85%

F1 - Score A1,B1 84.62%

We found that XGBoost trained on dataset D1 had the best accuracy among all of the models 
and had the highest recall score. However, XGBoost trained on either dataset A1 or B1 had 
the best Precision and F1 score.

80



10 Conclusions
By  consolidating  all  evaluations  and  results  we  have  now  formed  our  conclusions 

We  would  like  to  inform  about  the  limitations  of  the  project  before  presenting  our 
conclusions

10.1 Limitations
Our project encountered several limitations, including:

● Dataset Records are 244 
With only 244 records, our dataset's size was relatively small, potentially affecting the 
robustness of our models.

● Artificial Dataset 
The dataset we generated through individual queries may not fully reflect real-world 
scenarios, introducing potential biases.

● Too many Features dropped
Due to the artificial nature of the dataset, we had to remove many variables during 
cleaning and exploration, potentially discarding important features.

● Only “Find” queries
The query dataset used for generating log files consisted exclusively of "find" queries, 
limiting the model's applicability to this specific type of query.
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10.2 Final Conclusion
Our conclusions are as follows, categorized according to our research questions:

1.  We confirmed the feasibility of constructing models based on MongoDB log file 
data.

a. The best models achieved an accuracy of 84.50%, precision of 88.00%, recall 
of 84.85%, and F1 score of 84.62%.

2. Our analysis  revealed various types of  data in MongoDB log files,  including raw 
query text and machine statistics.

a. The log files of MongoDB provide various types of data such as
i. The Raw Text of the Query sent and the filter and conditions

ii. Statistics of the Machine after processing the query
b. The significant variables found in the dataset were

i. The Text data of the filter that was used in the “find” query
ii. The planning time in Microseconds is used to plan the execution of the 

query
c. We  engineered  more  features  based  on  the  text  data  of  the  filters  these 

included
i. Dummy Variables which indicate the presence of particular operators 

present in the filter
ii. The length of the filter sent

iii. Out of these variables,  some of the Dummy Variables were deemed 
significant enough to be used for the training dataset

d. A Separability analysis concluded that:
i. The data is  not,  visually,  significant  enough to be linearly separable 

however  it  is  noted  that  some  malicious  injection  queries  do  form 
distinct groups. However, both benign and malicious queries are mixed 
and are not separable 

ii. The data is separable non-linearly, however, we have noticed clusters of 
data being completely overlapped. We have noticed around 81.57% of 
the data forms distinct groups
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3. We formulated models and conducted a comparative study
a. Out of the top 3 dataset configurations we found no significant difference in 

the average performance of a random classifier
b. With the comparison of top models per top 3 datasets, we found that the top 

model for all 3 was XGBoost
c.  Comparing individual performance metrics we found that

i. The Model trained and tested on dataset D1 had the highest accuracy of 
84.5% and a recall value of 88% compared to Datasets A1, B1 which 
had an accuracy of only 84% and recall of 81.48%. This suggests that 
the  Model  trained  on  D1  had  the  highest  accuracies  and  a  higher 
number of malicious queries correctly identified.

ii. The Model trained on datasets A1, and B1 had the highest precision of 
88.00% and an F1 score of 84.62% compared to dataset D1 which had 
a precision of 84.00% and an F1 score of 84.42%. This suggests that 
the Model trained on Datasets A1, and B1 had a higher number of true 
positive  malicious  queries  identified  and  a  balance  of  true  positive 
malicious queries better than Models trained on Dataset D1
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10.3 Future Work
A Future researcher in this topic may explore the following topics to extend work in this field

● Exploratory  Data  analysis  of  a  Real-life  MongoDB log  file  or  any  NoSQL/SQL 
database system log file to identify significant variables to classify injection queries

● Using a similar study as the above construction of subsets of training datasets to 
compare the performance of the average classification model when some variables are 
omitted/added

● Application of such models in a real database system operation

In conclusion, our project demonstrates the potential for using machine learning models to 
detect injection queries in MongoDB log files. While we encountered limitations, such as 
dataset size and artificiality, our findings provide valuable insights into model performance 
and feature importance. Further research and refinement could enhance the applicability and 
effectiveness of such models in real-world scenarios.
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Appendix

Appendix - 1 Sample Log Entry

{
  "t": {
    "$date": "2024-04-04T20:37:10.296+05:30"
  },
  "s": "I",
  "c": "COMMAND",
  "id": 51803,
  "ctx": "conn10",
  "msg": "Slow query",
  "attr": {
    "type": "command",
    "ns": "test_database.test_collection",
    "command": {
      "find": "test_collection",
      "filter": {
        "user": "{}",
        "password": "{}"
      },
      "lsid": {
        "id": {
          "$uuid": "e5e23d7e-5367-4829-a104-ca369c49d4dc"
        }
      },
      "$db": "test_database"
    },
    "planSummary": "EOF",
    "planningTimeMicros": 83,
    "keysExamined": 0,
    "docsExamined": 0,
    "nBatches": 1,
    "cursorExhausted": true,
    "numYields": 0,
    "nreturned": 0,
    "queryFramework": "classic",

88



    "reslen": 118,
    "locks": {
      "FeatureCompatibilityVersion": {
        "acquireCount": {
          "r": 1
        }
      },
      "Global": {
        "acquireCount": {
          "r": 1
        }
      }
    },
    "storage": {},
    "cpuNanos": 176371,
    "remote": "127.0.0.1:47038",
    "protocol": "op_msg",
    "durationMillis": 0
  }
}

Figure A10.3.1: Log Entry Sample
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Appendix - 2 Training Data Sample

Table A2: Sample Rows of Training Dataset

Filter DN WD RD LO TP MO PTM label
{'username': {'$ne': '{}'}} {'': {'$ne': '{}'}} 0 0 1 0 0 42 1
{'username': {'$ne': '{}'}} {'': {'$ne': '{}'}} 0 0 1 0 0 42 1
{'username': {'$gt': '{}'}} {'': {'$gt': '{}'}} 0 0 1 0 0 46 1
{'username': {'$gt': '{}'}} {'': {'$gt': '{}'}} 0 0 1 0 0 46 1
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Appendix - 3 Links

Repository - https://github.com/ShaunakPerniUniGoa/NoSQLInjectionDetection

91

https://github.com/ShaunakPerniUniGoa/NoSQLInjectionDetection

	1 Introduction
	1.1 Database and Their Roles
	1.1.1 Informational Assets

	1.2 SQL
	1.2.1 Limitations

	1.3 NoSQL
	1.3.1 Types

	1.4 Injection Attacks
	1.4.1 Vulnerabilities
	1.4.2 Cost and Damage

	1.5 Traditional Security Methods
	1.6 Using Trained Models

	2 Literature Survey
	2.1 Overview of SQL and NoSQL Injection Attacks
	2.2 Existing Detection and Prevention Techniques
	2.2.1 Traditional Techniques
	2.2.2 Machine Learning and Deep Learning Techniques
	2.2.3 Deep Learning Techniques
	2.2.4 Datasets and Tools

	2.3 Our Approach

	3 Aims and Objectives
	3.1 Research Questions
	3.2 Problem Statements
	3.3 Project Stages

	4 Data Collection
	4.1 Initial Challenges
	4.2 Setup for Data Collection
	4.3 Data Collection Results
	4.4 Pre-emptive Cleaning
	4.5 Final Collected Dataset

	5 Data Processing
	5.1 Conversion to Tabular Data
	5.2 Cleaning
	5.2.1 Pass 1
	5.2.2 Pass 1 - Filtering
	5.2.3 Pass 2
	5.2.4 Pass 2 - Filtering
	5.2.5 Pass 3

	5.3 Integration
	5.4 Final Cleaned and Integrated Data

	6 Data Exploration
	6.1 Descriptive Analysis
	6.1.1 Text
	6.1.2 Sampled Text
	6.1.3 Numerical Features
	6.1.3.a planningTimeMicros
	6.1.3.b cpuNanos

	6.1.4 Target Variable
	6.1.4.a Label


	6.2 Feature Engineering
	6.2.1 Engineered Text Features
	6.2.1.a Descriptive Statistics of Denamed
	6.2.1.b Frequency Table

	6.2.2 Engineered Numerical Features
	6.2.3 Engineered Dummy Variables
	6.2.3.a Descriptive Statistics of Dummy Features


	6.4 Significance Testing
	6.4.1 Testing Sequence
	6.4.1.a Numerical
	6.4.1.b Dummy

	6.4.2 Numerical Variable Significance Testing Results
	6.4.2.a Overlapped KDE Plots

	6.4.3 Dummy Variable Significance Testing Results
	6.4.4 Significance Results

	6.5 Separability Analysis
	6.5.1 Linear
	6.5.1.a PCA
	6.5.1.b LDA

	6.5.2 Non-Linear

	6.6 Exploration Findings

	7 Model Formulation
	7.1 Models
	7.1.1 Models Selected
	7.1.2 Inclusion of FLAML Models

	7.2 Dataset Configurations
	7.2.1 Types

	7.3 Vectorization
	7.4 Model Results

	8 Experimental Results
	8.1 Model Performance per Dataset
	8.1.1 Average Model Performance per Dataset
	8.1.2 Best FLAML Model per Dataset


	9 Evaluation
	9.1 Evaluation Criteria
	9.2 Results
	9.2.1 Distribution Plots of Dataset B1, D1’s Metric against A1

	9.3 Best Model per Dataset

	10 Conclusions
	10.1 Limitations
	10.2 Final Conclusion
	10.3 Future Work


