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PREFACE

The investigation of extremophiles, particularly bacteria thriving in frigid landscapes of

Antarctica, represents a frontier of scientific possibilities. The focus of this dissertation lies in the

identification and characterization of polysaccharide-degrading bacteria indigenous to Antarctica.

Polysaccharides serve as vital substrates for energy and carbon recycling in polar ecosystems.

Understanding the enzymatic capabilities and metabolic pathways of bacteria specialized in

polysaccharide degradation in this extreme environment is crucial for elucidating their ecological

significance and exploring potential biotechnological applications. This dissertation endeavours

to employ meticulous scientific methodologies to isolate, characterize, and identify

polysaccharide-degrading bacteria native to Antarctica. By integrating classical microbiological

techniques, molecular biology tools, and bioinformatics analysis, this study aims to unravel the

taxonomic diversity of bacteria in extreme cold conditions of Antarctica. This research seeks to

contribute substantially to our understanding of microbial ecology in polar regions and unlock

the biotechnological potential inherent in these unique bacterial communities.
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ABSTRACT

Antarctic microbial communities provide a unique source of cold-adapted enzymes with

potential applications in biotechnology. In cold environmental conditions, bacteria that degrade

polysaccharides are essential for the breakdown of organic materials. This work aims to isolate

and describe bacteria that break down polysaccharides from the Antarctic environment.

Polysaccharide degradation activity was determined in bacterial isolates and molecular

identification studies were performed. The diversity of bacteria that break down polysaccharides

in the Antarctic environment and their capacity to produce enzymes in frigid temperatures were

investigated in this study. The results advance our knowledge of cold-adapted enzymatic activity

and its possible applications.
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1. INTRODUCTION
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1. INTRODUCTION

1.1 BACKGROUND

Antarctica also known as the southernmost continent is completely covered with ice throughout

the year. It is the fifth-largest in size and is said to be the coldest, driest and windiest place on

Earth. (Cowan et al., 2014 and Luis et al., 2013).

Most Antarctic regions are still poorly studied, except those in the arid deserts of the McMurdo

Dry Valleys and the Transantarctic region of Victoria Land (Thompson et al., 2020).

Schirmacher Oasis stands out as a notable plateau region in East Antarctica. This area is

characterized by the presence of over a hundred freshwater lakes. These lakes serve as valuable

indicators, preserving evidence of climatic variations and the deglaciation history since the Last

Glacial Maximum, which occurred approximately 19 to 24 thousand years ago. There are three

types of lakes present in Schirmacher Oasis- (i) Epishelf lakes(E), (ii) Landlocked lakes(L), and

(iii) Proglacial lakes(P). Epishelf lakes are associated with ice shelves and are connected to the

ocean waters. Landlocked lakes are inland bodies of water without any direct connection to the

ocean. Proglacial lakes are formed near the terminus of glaciers and are influenced by glacial

dynamics. Each type of lake in Antarctica has unique characteristics based on its location,

formation processes, and hydrological connections (Ravindra et al., 2021).

Extremophiles are organisms known to survive in extremely harsh conditions such as low or high

temperatures, high pressure, high acidity and high salinity (Rampelotto, 2013).

Psychrophiles also called, cold-loving organisms thrive well at lower temperatures. They can be

either facultative or obligatory. Facultative psychrophiles are capable of thriving in cold

environments, but their growth is not strictly limited to low temperatures only. Their optimum

temperatures for survival range from 20-30°C showing maximum growth around
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30-35°C (Puhakka et al., 2002). Obligate psychrophiles are microorganisms that exclusively

flourish in cold environments. Their optimal growth is at temperatures ranging from 15-18°C

(Kushner, 1976).

Colwellia psychrerythraea is identified as an obligate psychrophile, characterized as a Gram-

negative bacteria. Its ideal growth temperature ranges from -1°C to 10°C and is motile even at

temperatures as low as -10°C (Mudge et al. 2021). The initial cultivated psychrotolerant

representative, identified as strain TUM19329T, was isolated from an Antarctic Lake (Shimada et

al., 2021).

Microbial degradation of complex organic matter by psychrophiles plays an important role in the

global carbon cycle. Polysaccharides can have a long life as they are not easily degradable due to

their complex structure (Sichert et al., 2021).

Phylum Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes are responsible for the

degradation of various polysaccharides. Planococcus, Marinobacter, Bacillus, Salinibacterium,

and Alcaligenes sp. are also known to degrade a wide range of polysaccharides such as cellulose,

pectin, alginate, chitin, xylene etc. (Vishnupriya et al.,2023).

Bacteria with the ability to degrade agar were isolated from the surfaces of macroalgae in King

George Island, Antarctica. A total of 30 pigmented, agarolytic bacteria were identified from the

Antarctic macroalgae. The agarolytic isolates were classified within several genera, including

Algibacter, Arthrobacter, Brachybacterium, Cellulophaga, Citricoccus, Labedella,

Microbacterium, Micrococcus, Salinibacterium, Sanguibacter, and Zobellia (Alvarado et al.,

2017).
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Psychrophilic bacteria provide cold-adapted enzymes that offer significant economic advantages

due to their higher productivity, opening up numerous biotechnological applications across

various industries such as food and feed, cheese ripening, detergents and cleaning, bio-bleaching

in the paper and pulp sector, as well as pharmaceutical, medical, and domestic applications

(Cavicchioli et al., 2011).

Enzymes produced by polysaccharide-degrading psychrophilic microbes have garnered attention

for various applications across industries, pharmaceuticals, medicine, and the food and feed

sector ( Yadav, A. N., et al., 2019).
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1.2 AIM AND OBJECTIVES: -

Aim:-To Isolate Polysaccharide Degrading Bacteria from Schirmacher Oasis,

Antarctica.

Objectives: -

1. Screening of polysaccharide-degrading bacteria from Antarctica.

2. Determining the psychrophilic nature of the bacterial isolates.

3. Identification of selected polysaccharide-degrading bacteria.
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1.3 RESEARCH HYPOTHESIS: -

This hypothesis proposes that extreme cold conditions of Antarctica have been selected for the

identification of novel bacterial strains for the study of specific adaptations of these bacteria to

degrade complex polysaccharides. The study primarily focuses on CAZymes activity at low

temperatures. This research would involve isolating and identifying bacteria from Antarctic Lake

samples, followed by testing their ability to degrade various polysaccharides. By comparing

these results to bacteria from temperate zones, researchers can determine if there's a significant

difference in polysaccharide degradation potential and the applications of the same.
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1.4 SCOPE: -

The scope of this study is to screen for novel psychrophilic polysaccharide-degrading bacteria

from Antarctica. This study focuses on the identification of polysaccharide-degrading bacteria

from Antarctica and their biochemical characterization. Molecular identification studies of

selected strains showing utilization of polysaccharides with promising future potential

biotechnological applications in various industries such as cosmetic, pharmaceutical, paper pulp,

and food etc.
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CHAPTER - II
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2. LITERATURE REVIEW: -

Freshwater lakes in Antarctica, comprise less than 5% of the area occupied by the Antarctic

landmass. They form closed ecosystems with simple trophic structures. Many of these lakes

originated from epipelagic ponds that avoid freezing at the bottom during harsh Antarctic winters.

In Antarctica's Don Juan, an oligotrophic lake contains the presence of microorganisms like

Bacillus, Micrococcus, and Corynebacterium. Researchers have also reported the presence of

yeasts such as Candida and Cryptococcus (Matondkar et al., 1983).

"Schirmacher Oasis" is an area on East Antarctica's Princess Astrid Coast. It is located between

latitudes 70° 44' 33"S and 70° 46' 30"S and longitudes 11° 22' 40"E and 11° 54' 00" E

(Dharwadkar et al., 2018). The polar ice sheet borders this region on the south, while an ice shelf

borders it on the north. It encompasses erosional landforms such as valleys, hills, and roche

moutonnee, showcasing typical glacial features like polishing and striations. Depositional

landforms such as terraces, moraines, and patterned ground are also seen in the area.

Proteases, amylases, lipases, alginate lyases etc. are examples of enzymes that are used in many

biotechnological processes (Zhang et al., 2010). Enzymes participating in the breakdown of

polysaccharides, including alginates, agar-agar, and agarose, have been identified in diverse

mesophilic bacterial genera. Alteromonas, Bacillus, Flavobacterium and Pseudomonas sp.

belong to this category. It has been reported that Flavobacterium can hydrolyze alginate and agar.

Notably, it was recently discovered that the Antarctic Flavobacterium sp. known as INACH002

is an agarase-producing strain. This strain is closely related to Flavobacterium faecale and

Flavobacterium algicola (Lavín et al., 2016).

Using a combination of culturable methods, Terminal Restriction Fragment Length

Polymorphism (T-RFLP), and 16S rRNA gene clone libraries, the bacterial diversity within three
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different depths (18–22 cm, 60–64 cm, and 100–104 cm) of a 136-cm sediment core extracted

from an Antarctic freshwater lake was evaluated. Using culture-independent molecular

techniques based on small subunit rRNA, investigations into microbial ecology within freshwater

sediments revealed five major phylogenetic groups in the 18 cm library: namely

Gammaproteobacteria (62.1%), Betaproteobacteria (6.8%), Bacteroidetes (28.8%), Firmicutes

(0.8%), and Actinobacteria (1.5%), as determined by BLAST analysis (Shivaji et al., 2011).

The Bacteroidetes phylum is also known for its proficiency in degrading diverse complex

carbohydrates, contributing to its dominance in various environments. Polysaccharide

degradation in many environmental species within this phylum is closely associated with the

type IX secretion system (T9SS), exclusive to Bacteroidetes. This system is utilized for secreting

specific enzymes and is intricately connected to gliding motility (McKee et al., 2021).

In the vicinity of Syowa Station on East Ongul Island in the Antarctic, ice-free regions host

numerous small freshwater lakes that are oligotrophic. Strain 107-E2T was isolated from this area,

and exhibits growth between 5-25°C. The pH range for its growth was found to be between 6.0 -

9.0. Furthermore, a freshwater lake in Skarvsnes, Antarctica yielded the isolation of a novel

bacteria, Lysobacter oligotrophicus (Fukuda et al., 2013). This bacteria is also known to thrive

well in oligotrophic environments. Over a 12-month study period, the phytoplankton

productivity and biomass in Crooked Lake and Lake Druzhby, two large freshwater lakes in

eastern Antarctica, were assessed. Despite Crooked Lake being sampled at a single site and Lake

Druzhby featuring a more detailed investigation due to its complex structure, both lakes

exhibited ultra-oligotrophic conditions, with concentrations of chlorophyll consistently below 1

µg/L (Henshaw et al., 2002).
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In Kongsfjorden (Arctic), bacterial isolates demonstrated a notable capacity for producing cold-

active extracellular enzymes, encompassing amylase, pectinase, alginate lyase, xylanase, and

carboxymethyl (CM)-cellulase. This study revealed that 52% of the bacterial isolates exhibited

positive extracellular enzyme activities at 4°C, emphasizing their cold-adapted enzymatic

capabilities. Additionally, 41% of the isolates maintained such activities at 20°C, further

highlighting their versatility in enzyme production across different temperatures (Jain et al.,

2017).

Tsomgo Lake in Sikkim, located in the Eastern Himalayas, exhibit Proteobacteria as the

predominant taxa. Its CAZymes (Carbohydrate Active enzymes) are involved in carbohydrate

degradation, and they encompass Glycoside Hydrolases (GHs), Polysaccharide Lyases (PLs),

Carbohydrate Esterases (CEs), Glycosyl Transferases (GTs), protein with noncatalytic

Carbohydrate-Binding Modules (CBMs), and enzymes with Auxiliary Activities (Rai et al.,

2021). Microbes like C. psychrerythraea, Psychrobacter cryohalolentis K5, Psychrobacter

arcticus, and Desulfotalea psychrophila produce psychrophilic CAZymes with diverse

applications. These enzymes not only play a role in carbohydrate metabolism but also exhibit

applications as antioxidants, antimicrobials, and photo-protectants (Pantanella et al., 2006).

Fourteen cultivable psychrophilic bacteria from Antarctica samples, including certain

Pseudomonas species like the N25 strain, demonstrate potential for biohydrogen production

(Alvarado-Cuevas et al., 2015).

Cellulolytic bacteria isolated from Stain House Lake in Antarctica specifically isolates CMAA

1184 and CMAA 1185, demonstrated significant cellulase activity. These bacteria belong to

Bacillus sp. 16S ribosomal RNA gene subclade and produce cold-active cellulase. The high

cellulase levels, along with psychrotolerant and pH-adaptive features, warrant further
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investigation into their role in cellulose breakdown and potential as organic matter degraders in

extreme freshwater environments (Melo et al., 2014).

All isolates from lakes of Stornes Peninsula were identified as psychrophilic, revealing three

novel species within the Pseudomonas genus: Pseudomonas antarctica sp. nov., Pseudomonas

meridiana sp. nov., and Pseudomonas proteolytica sp. nov. These classifications were

established through phenotypic and chemotaxonomic characteristics. These species help in

synthesizing cryoprotectors by psychrophilic and psychrotolerant microorganisms and are known

to have many applications in agriculture, cosmetics, and medicine (Chauhan et al., 2015).
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3. MATERIALS AND METHODS: -

3.1 Revival of samples: -

Samples were collected from freshwater lakes in Schirmacher Oasis, Antarctica during the

42nd ISEA (Nov 22-Feb 23). Various samples collected from different Antarctic lakes were

revived on respective R2A agar and M9 plates supplemented with 1% polysaccharide by

streaking. The samples were incubated at 4◦C for two months. Revived samples were re-streaked

on ABM plates for faster growth (Harmesh et al., 2012).

3.2 Growth on different polysaccharide media: -

For screening of different multiple polysaccharide degrading bacteria, isolated colonies were

streaked on multiple plates for detection of their ability to degrade multiple polysaccharides.

Modified R2A and M9 media supplemented with 1% polysaccharide as the sole carbon source

were used to check the polysaccharide degrading ability of the various bacterial isolates.

(Monge et al., 2020). Gel rite was used as a gelling agent and as a substitute for agar to detect

polysaccharide degrading activity of all polysaccharides except agarose (Lin et al., 1984).

All streaked plates of different media were incubated at 4◦C. After three months of incubation, all

plates were checked by flooding the plates using different dyes such as Lugol’s iodine for agar-

degrading bacteria (Kwon et al., 2020) , Phenol red or 10% cetyl pyridinium chloride for

carrageenan degrading bacteria (Chauhan et al., 2016), 0.1% Congo red for xylene and

carboxymethyl-cellulose degrading bacteria (Sazci et al., 1986), and 5N HCl for pectin-

degrading bacteria (Jain et al., 2017).
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3.3 Determining the psychrophilic nature of bacterial isolates: -

For the determination of obligatory psychrophiles, all cultures were streaked in triplicates of two

sets of each. One set was incubated at 4◦C and another one was incubated at 22◦C. After one

month of incubation period bacterial growth was observed.

3.4 Identification of the isolated bacterial cultures: -

3.4.1 Gram staining:-

Gram staining was performed to initially characterize and identify bacterial species by analyzing

the composition of their cell walls.

On a clean slide, a bacterial smear of overnight grown culture was prepared. This was followed

by air-drying and heat fixation of the culture. The Gram staining protocol was followed and the

slide was examined under a 100X objective lens with oil immersion (Gephardt et al.,1981).

3.4.2 DNA isolation of the selected strains: -

Bacterial Genomic DNA was isolated using MB505 HiPurA® Bacterial Genomic DNA

Purification Kit. The isolated DNA was then run on 0.7% Low EEO Agarose gel. The bands

obtained were checked using a UV transilluminator, and the isolated DNA concentration was

determined using a Qubit® 2.0 Fluorometer.

3.4.3 PCR (Polymerase Chain Reaction): -

A PCR reaction to amplify the 16S rRNA gene of the selected bacterial isolates was performed.

“27F and 1492R” primers were used to amplify genomic DNA.



27

The following parameters were used for the PCR reaction.

Table 2: - PCR parameters for 30-cycle reaction

Sr. No. Parameters Temperature Time No. of Cycles

1. Initial Denaturation 95◦C 2 minutes 1

2. Denaturation 95◦C 30 second

30
3. Annealing 51.9◦C 30 second

4. Extension 72◦C 1 minute 33 second

5. Final extension 72◦C 8 minutes 1

1. Concentration of L49A template DNA: -

Table 3.1 = PCR reaction mixture components for L49A DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 38

Sr.

No.

Primer name Primers Sequence References

1. 27F 5' AGAGTTTGATCCTGGCTCAG 3' (Dos Santos et al.,

2019).
2. 1492R 5' TACGGTTACCTTGTTACGACTT 3'

Table 1: - Primer sequence of forward and reverse primer
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2. 10X Taq buffer 5

3. dNTPs (10mM) 1

4. Template DNA (~50ng) 3

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50

2. Concentration of P7B template DNA: -

Table 3.2 = PCR components for P7B DNA

Sr. No. PCR Components Volume(µL)

1. Sterile Nuclease Free water 36

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template(~50ng) 5

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50
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3. Concentration of L6C template DNA: -

Table 3.3 = PCR components for L6C DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 40.3

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template(~50ng) 0.7

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50

4. Concentration of L5D template DNA: -

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 40.5

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template (~50ng) 0.5

5. Forward Primer 1

Table 3.4 = PCR components for L5D DNA
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5. Concentration of L6E template DNA: -

Table 3.5 = PCR components for L6E DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 32

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template (~50ng) 9

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50

6. Concentration of L49F template DNA: -

Table 3.6= PCR components for L49F DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 31

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50
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2. 10X Taq buffer 5

3. dNTPs 10Mm 1

4. Template (~50ng) 10

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50

7. Concentration of L49G template DNA: -

Table 3.7 = PCR components for L49G DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 40

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template (~50ng) 1

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50
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8. Concentration of L5H template DNA: -

Table 3.8 = PCR components for L5H DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 39.5

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template (~50ng) 1.5

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50

9. Concentration of L27I template DNA: -

Table 3.9 = PCR components for L27I DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 40

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template(~50ng) 1

5. Forward Primer 1



33

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50

10. Concentration of L32J template DNA: -

Table 3.10 = PCR components for L32J DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 39.5

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template(~50ng) 1.5

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50

11. Concentration of L27K template DNA: -

Table 3.11 = PCR components for L27K DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 39
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2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template (~50ng) 2

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50

12. Concentration of L32L template DNA: -

Table 3.12 = PCR components for L32L DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 39

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template (~50ng) 2

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50
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13. Concentration of P7M template DNA: -

Table 3.13 = PCR components for P7M DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 40

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template (~50ng) 1

5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50

14. Concentration of L49N template DNA: -

Table 3.14 = PCR components for L49N DNA

Sr. No. PCR Components Volume (µL)

1. Sterile Nuclease Free water 39

2. 10X Taq buffer 5

3. dNTPs 10mM 1

4. Template (~50ng) 2
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5. Forward Primer 1

6. Reverse Primer 1

7. Taq DNA Polymerase 1

8. Total Volume 50

3.4.4 Biochemical Identification: -

The carbohydrate utilization test was conducted using the HiCarboTM Kit from HiMedia Pvt.

Ltd., comprising parts A, B, and C. Following the manufacturer’s standard methodology, 50µL

of 5-day grown bacterial culture was inoculated into the wells of the kit containing different

carbohydrates. Colour changes were observed and noted after an incubation period of 5 days.

The guidance provided by the KB009 kit was utilized to interpret the results.
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4. ANALYSIS AND CONCLUSION:-

4.1 Revival of samples: 14 colonies were isolated in ABM and R2A media plates at 4°C
colony morphology was observed and colony characteristics were mentioned in Table 4.

Sr.
No.

Lake Margin Colour Elevation Texture Shape

1. L49N Entire Orange Umbonate Shiny Round

2. L5H Entire Dark
Yellow

Raised Shiny Round

3. P7B Entire Lime
Yellow

Raised Shiny Round

4. L49A Entire Whitish Convex Shiny Round

5. L32J Lobate Creamish Flat Slimy Filamentous

6. L27O Entire Pinkish Convex Dry Round

7. L6C Entire Creamish Convex Mucoid Round

8. L32L Entire Creamish Convex Shiny Pinpoint
Round

9. L49F Entire Light
Yellow

Pulvinate Smoothy Round

10. P7M Entire Light
Yellow

Flat Shiny Punctiform

11. L27I Entire Pinkish Umbonate Translucent Round

12. L49G Entire Yellowish Pulvinate Shiny Round

13. L27K Entire Dark
Yellow

Raised Shiny Round

14. L6E Entire Yellow Pulvinate Shiny Round

15. L5D Entire Creamish Flat Mucoid Round

Table 4: - Colony morphology characteristics of isolates
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L49N L49F

L27I P7M

L6E
E

L32J

Figure 1.1:- Diagram showing isolated colonies of various Polysaccharide-degrading

bacteria from Antarctica
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L32L L5D

P7B L49A

L6C L49G

Figure 1.2:- Diagram showing isolated colonies of various Polysaccharide-degrading

bacteria from Antarctica



42

4.2 Gram staining:-

Gram staining technique was performed for all the isolates, revealing their Gram character.

Bacteria that appear purple after undergoing the Gram staining process are classified as Gram-

L5H L27O

L27K

Figure 1.3: - Diagram showing isolated colonies of various Polysaccharide-degrading

bacteria from Antarctica
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positive, whereas those that appear pink are categorized as Gram-negative (Bartholomew et al.,

1952). The Gram characteristics are mentioned in table 5.

Sr. No. Colony Gram Characteristics

1. L49F Negative, Rod Shape

2. L5H Negative, Rod Shape

3. L27K Negative, Rod Shape

4. L6E Negative, Rod Shape

5. L49G Positive, Rod Shape

6. L49N Negative, Rod Shape

7. L5D Negative, Rod Shape

8. L32L Positive, Rod Shape

9. L49A Negative, Rod Shape

10. L27I Negative, Rod Shape

11. L27O Positive

12. P7M Positive, Rod Shape

13. P7B Negative, Cocci

14. L6C Negative, Rod Shape

15. L32J Negative, Rod Shape

Table 5: - Gram characteristics of isolates.
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L49N L27K

L6C L5D

L27O L49A

Figure 2.1: - Microscopic images depicting Gram character of isolates
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P7B L5H

L32J L49F

L6E L27I

Figure 2.2: - Microscopic images depicting Gram character of isolates
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L49G L32L

P7M

Figure 2.3: - Microscopic images depicting Gram character of isolates
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4.3 Polysaccharide-degrading capability of bacteria isolated from Antarctica:-

After a three-month incubation period at 4°C, bacterial colony growth was observed on different

media as mentioned in Table 6 and screening for polysaccharide degradation was carried out by

flooding the plates with respective dyes as mentioned above.

Sr. No Colony M9
Agar

M9
Pectin

M9
Xylene

M9
CMC

M9
Carrageenan

M9
Alginate

1. L49F + + + + + -

2. L5H + + + + + -

3. L27K + + + - + +

4. L6E + + + + + +

5. L49G + + - - - +

6. L49N + + + - + +

7. L5D + + + - - +

8. L32L + + + - - -

9. L49A + + + + + +

10. L27I + + + - + +

11. L27O + + + - + +

12. P7M + - + - + +

13. P7B + + + - + +

14. L6C + + + + + -

15. L32J + + + - - +

Table 6: - Growth of isolates on different polysaccharide
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L49G L49G

L49F L49F

Figure 3.1: - Colony on M9-agar media plate before and after flooding Lugol’s iodine.

L5D

P7B

L5D

P7M

L27I

P7M

L27I

P7B
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4.4 Determining the psychrophilic nature of bacterial isolates: -

After an incubation period of one month, several cultures demonstrated faster growth at 22°C,

while one culture (L6C strain) exhibited faster growth at 4°C. The culture exhibiting faster

growth at 4°C can be classified as an obligatory psychrophile, whereas the cultures showing

faster growth at 22°C can be categorized as psychrotolerant.

Figure 3.2: - Colony on M9-agar media plate before and after flooding Lugol’s iodine
and M9-alginate media plate before and after flooding 10% CPC.

L49A

L49F

L49A

L49F

L49N L49NL5H L5H

L27K

L27I

L27K

L27I

L32J L6E L32J L6E
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4.5 DNA isolation and PCR amplification: -

Genomic DNA of the bacterial isolates was successfully carried out and the bands obtained were

observed using a UV transilluminator.

1 2 3 4 5 6 7 8 Lane1:-L49N

Lane2:-L27K

Lane3:-L5D

Lane4:-L5H

Lane5:-L32J

Lane6:-L49G

Lane7:-L27O

Lane8:-L27I

Figure 5.1: - Genomic DNA Bands on 0.7% agarose gel

4°C 22°C

Figure 4: - L6C colony growth at 4°C and 22°C
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1 2 3 4 5 6

1 2 3 4 5

Lane 1:- P7M

Lane 2:- P7B

Lane 3:- L5D

Lane 4:- L32L

Lane 5:- L49A

Lane 6:- L49G

Figure 5.2: - Genomic DNA Bands on 0.7% agarose gel

Lane 1:- L49A

Lane 2:- P7B

Lane 3:- L6E

Lane 4:- L6C

Lane 5:- L5D

Figure 5.3: - Genomic DNA Bands on 0.7% agarose gel
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1 2 3 4

DNA yield was found to be low for L49A, L6E, L49F and P7B. The probable reasons could be,

incomplete lysis of cells and high GC content etc (Eriksson et al., 2017).

Lane 1:- L49A

Lane 2:- L6E

Lane 3:- L49F

Lane 4:- P7B

Figure 5.4: - Genomic DNA Bands on 0.7% agarose gel
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Following the isolation of genomic DNA, amplification of DNA bands was carried out using the

forward primer "27F" and the reverse primer "1492R". The resulting amplified fragment had an

approximate length of 1.5kb and a 500 bp DNA ladder was used for comparing desired amplified

DNA band length.

1 2 3 4 5 6 7 8 9

3000bp

1500bp

Lane 1:- 500 bp DNA
Ladder

Lane 2:- L32J

Lane 3:- L27K

Lane 4:- L27I

Lane 5:- L32L

Lane 6:- L5H

Lane 7:- L49N

Lane 8:- P7M

Lane 9:- L49G

Figure 6.1: - 1.5kb Amplified fragment of Genomic DNA on 0.7% agarose gel
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1 2 3 4 5 6 7

3000 bp

1500 bp

Lane 1:- L49A

Lane 2:- P7B

Lane 3:- L6C

Lane 4:- L5D

Lane 5:- L6E

Lane 6:- L49F

Lane 7:- 500 bp
DNA Ladder

Figure 6.2: - 1.5 kb Amplified fragment of Genomic DNA on 0.7% agarose gel
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4.6 Molecular identification:-

NCBI Nucleotide Blast analysis of the 16S rRNA gene sequencing following bacterial strains
showing homology with the following species.

Sr. No. Bacterial strains Suggested Homology

1. L49A Arthobacter sp.

2. P7B Brachybacterium sp.

3. L6C Crayobacterium sp.

4. L5D Pseudomonas sp.

5. L49F Mycobacterium sp.

6. L5H Sphingomonas sp.

7. L27I Pseudomonas sp.

8. L32J Pseudomonas sp.

9. L27K Sphingomonas sp.

10. L32L Nocardia sp.

11. P7M Bravibacterium sp.

12. L49N Pseudomonas sp.

Table 7: - Blast analysis of 16S rRNA gene sequencing
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4.7 Carbohydrate utilization test: -

A carbohydrate utilization test was carried out by using the HicarboTM Kit and the carbohydrate

utilization by bacteria was confirmed by observing the wells for the colour change. The bacterial

strain given a positive test for carbohydrate utilization indicated as ‘+’ and negative test indicated

as ‘-’ and the intermediate result indicated as ‘v’.

L49F L6C

L5D L49N

Figure 7: - HiCarboTM Kit after inoculation of bacterial culture showing colour change.
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Sr.

No.

Test L49F L6C L5D L49N

1 Lactose utilization V - V V

2 Xylose utilization - + V V

3 Maltose utilization - + V V

4 Fructose utilization + + V V

5 Dextrose utilization - + V V

6 Galactose utilization + + V V

7 Raffinose utilization + + - V

8 Trehalose utilization V + V V

9 Malibiose utilization + + V V

10 Sucrose utilization + + V V

11 L- Arabinose utilization + + V V

12 Mannose utilization - + - V

13 Inulin utilization V - - -

14 Sodium gluconate utilization V + - -

15 Glycerol utilization V V V -

16 Salicin utilization V + - -

17 Dulcitol utilization + - - -

18 Inositol utilization V V + -

19 Sorbitol utilization V - + -

20 Mannitol utilization V - + -

21 Adonitol utilization - - - -

22 Arabitol utilization + - V -

23 Erythritol utilization - - - -

24 Alpha – Methyl – D

glucoside utilization

+ - - -

25 Rhamnose utilization V + V -

26 Cellobiose utilization - + V V

27 Melezitose utilization - - V V

Table 8: - Utilization of various carbohydrates for growth by bacterial isolates
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4.8 CONCLUSION: -

In conclusion, this research has offered significant insights into the capability of 14 bacterial

strains isolated from Antarctica to degrade polysaccharides. Utilizing dye-based plate assays, we

examined the Agarolytic and Alginolytic activity of bacterial isolates.

28 Alpha – Methyl – D

Mannoside utilization

- - V -

29 Xylitol utilization - - V -

30 ONPG activity + - - -

31 Esculin hydrolysis + + - +

32 D –Arabinose utilization + + V -

33 Citrate utilization + - + +

34 Malonate utilization + - + +

35 Sorbose utilization - - - V

36 Control - - - -
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FUTURE PROSPECTS
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Future Prospects: -

1. Whole Genome Sequencing of Psychrophilic strains.

2. Molecular identification of Yeast strains.

3. Bio-prospecting of potential polysaccharide degrading strains.
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APPENDIX: -

1. R2A AGAR COMPOSITION: - Dissolve 18.1 g of R2A agar in 1 L of distilled water
and the pH of the media is 7.2.

Serial
No.

Ingredients Quantity (gL-1)

1. Yeast extract 0.5

2. Protease peptone 0.5

3. Casein hydrolysate 0.5

4. Glucose 0.5

5. Soluble starch 0.5

6. Sodium pyruvate 0.3

7. Dipotassium hydrogen phosphate 0.3

8. Magnesium-sulphate anhydrous 0.024

9. Agar-agar 15.0

2. ABM media composition:- The pH of the media is 6.9.

Sr.
No.

Component Quantity (w/v)

1. Yeast extract 0.1%

2. Peptone 0.5%

3. Agar-agar 2%
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3. M9 media composition(5X):- Dissolve 56.4 g of media in 1 L of distilled water.

Sr.
No.

Ingredients Quantity(gL-1)

1. Disodium hydrogen phosphate 33.90

2. Potassium dihydrogen phosphate 15

3. Sodium chloride 2.5

4. Ammonium chloride 5

4. Instruments: -

 pH meter (pH 700, Eutech Instruments, Thermo Fisher Scientific, India)

 Autoclave

 Laminar Air Flow

 Hot air oven (i-therm AI-7981)

 Refrigerator

 Incubator shaker (HALLY INSTRUMENTSTM)

 Weighing balance (Shimadzu ATX224)

 Thermal cycler (SureCycler 800)
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