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ABSTRACT

We present the results of quasi 1-dimensional Bose Hubbard Model by accommo-

dating Ring exchange hopping in a bi-ladder where the nearest neighbour hop-

ping is allowed considering the Bosons to be spinless. Using the combination of

Cluster Mean Field Theory and Density Matrix renormalization Group this model

was studied in hard-core and soft-core limit. In the hardcore limit we observed

decrease in the superfluidity, with increasing K strength, eventually transition-

ing into normal Bose liquid and ρ = 0.5 insulator. The phase separation which

was predicted in this limit was not observed. In the soft-core limit, as the strength

of K increases, the superfluid region shrinks and Mott Insulator phase region in-

creases. In addition, insulating phases for ρ = 1.5 is also observed.
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Chapter 1

Introduction

Based on Bose’s quantum statistics theories for photons, Einstein predicted Bose-

Einstein condensation (BEC) in bosonic gases in 1925. The fundamental concept

of BEC implies that a macroscopic number of particles occupy the lowest energy

state below a critical temperature. The de-Broglie wavelength increases as the

temperature, T, decreases and approaches the inter-particle mean separation at

the critical point. It scales like T−1/2. At this stage, particle wave functions are

sufficiently overlapped, forming a Bose-Einstein condensate. The critical tempera-

ture Tc below which the condensate is formed is given by

Tc =
2πℏ2

mkB

( n

2.613

) 2
3

(1.1)

where ℏ is the reduced Plank’s constant, m is the mass of the boson, kB is the

Boltzman Constant and n is the number density of bosons. The extremely low

temperature required was major hurdle in realizing the BEC. As the critical tem-

perature Tc is proportional to m
−1 and n2/3, to increase Tc, high boson densities

or lighter bosons were desired. But, with the very high densities as temperature

decreases the transition to solid occurs before the formation of BEC. An example

of this is 4He, where transition to superfluid was observed where the boson flows

without any resistance. Despite the strong interactions in this system, London
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1.1. OPTICAL LATTICES CHAPTER 1. INTRODUCTION

proposed that BEC may be the mechanism driving the phenomena of superfluid-

ity in 4He, even though Einstein’s prediction pertained to a gas of non-interacting

atoms. Further support for this perspective was provided by neutron scattering

experiment.

One of the ways of studying quantum many body physics is through ultracold

atoms and molecules. Ultracold atoms and molecules offer unparalleled freedom

in designing, monitoring, and analysing the experiment. It has become possible

because of advancements in theory and experimentation which permit the inde-

pendent assessment of fundamental atomic and molecular properties, cooling and

trapping methods that have been achieved since the 1980s, and advancements in

optical control and imaging of atoms and molecules.

1.1 Optical lattices

Optical lattices are periodic potentials created by light-matter interactions. When

an atom interacts with an electromagnetic field, the energy of its internal states

depends on the light intensity. Therefore, a spatially dependent intensity induces

a spatially dependent potential energy. Optical lattices have been widely used in

atomic physics as a way to trap and cool atoms.

The additionally the control and ability to manipulate different system parameters

such as dimensionality of the system, lattice constant, lattice geometry and, impu-

rities and defects make them ideal simulators of the quantum many body systems

.

1.2 Bose Hubbard Model

A theoretically straightforward model to represent cold atoms in an optical lat-

tice at finite density is the combination of the kinetic energy in the lowest band

with the on-site repulsion in the bounds of a sufficiently deep optical lattice is

2



1.2. BOSE HUBBARD MODEL CHAPTER 1. INTRODUCTION

Figure 1.1: Representation of Optical Lattices

Figure 1.2: Bose Hubbard Model in 1D with nearest neighbour hopping

called Bose Hubbard Model. The following conditions are met in order to derive

the Bose-Hubbard model from a generic many-body Hamiltonian with a pseudo-

potential interaction.

• Both the thermal and mean interaction energies at a single site are much

smaller than the separation to the first excited.

• The Wannier functions decay essentially within a single lattice constant.

Under these assumptions, only the lowest band needs to be taken into account in

other words we need to work considering the ground state energy only.

We can represent the system through following figure.

Mathematically, we can describe the Bose Hubbard Model by giving it’s Hamilto-

nian equation.

Ĥ = −J
∑
⟨ij⟩

(âiâ
†
j + â†i âj) +

U

2

∑
n̂i(n̂j − 1)− µ

∑
i

n̂i (1.2)

3



1.3. SUPERFLUID TO MOTT INSULATOR TRANSITIONCHAPTER 1. INTRODUCTION

Where na = a†iai

J- Hopping amplitude along the leg

U -Amplitude of onsite interaction

µ - chemical potential

a†i -Creation operator

ai -Annihilation operator

na
i -Number operator

1.3 Superfluid to Mott insulator transition

There are two distinct scenarios that the Bose-Hubbard Hamiltonian describes at

zero temperature on the basis of interactions. One is when J is significantly less

than U and the system is in the Mott insulator phase. The other is dominated

by kinetic energy, in which the system displays superfluidity as the repulsion is

overcomed by tunneling. The race between the kinetic energy, which seeks to de-

localize the particles, and the interaction energy, which seeks to localize them and

reduce the number fluctuations, leads to the rise of superfluidity.

When in the superfluid phase the Hamiltonian is ruled by the kinetic energy el-

ement . Since the many body state in this phase is practically a product over

identical single particle wave functions, one may ignore quantum correlations and

characterize the system using a macroscopic wave function. The system is a su-

perfluid with a macroscopic well-defined phase. When the lattice is switched off,

as would be expected from an array of phase coherent matter wave sources, atoms

are delocalized over it with identical relative phases between neighboring sites,

exhibiting an interference pattern. With the rise in interactions, atoms tend to

get localised at specific lattice sites and number fluctuations decrease because

the average kinetic energy needed for an atom to hop from one site to the next

is no longer adequate to compensate for the potential energy cost. Instead, the
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1.4. BOSE HUBBARD MODEL WITH RING EXCHANGECHAPTER 1. INTRODUCTION

ground state of the system in the Mott insulator phase is made up of localized

atomic wave functions with a set number of atoms per site. Particle-hole excita-

tions, which involve both adding and withdrawing particles from the system, are

the lowest lying excitations that retain particle number. There is an energy gap

that exists throughout this time. The energy required to form a single particle-

hole pair determines the gap.

1.4 Bose Hubbard Model with Ring Exchange

This dissertation aims at studying the Bose Hubbard Model by introducing a ring

exchange term in a bi-ladder. We consider a system of two 1-dimensional lattices

and connect them by allowing the particles to hop between the two legs. We are

considering the particles to be spinless Bosons. Particles can hop between it’s

nearest neighbouring sites in both direction but not beyond that, in addition to

this there is on-site repulsion that takes place. The below given figure tries to ex-

plain the system.

Figure 1.3: Bose Hubbard Model in bi-ladder with ring exchange

5



1.4. BOSE HUBBARD MODEL WITH RING EXCHANGECHAPTER 1. INTRODUCTION

The Hamiltonian for the system can be described as below.

Ĥ = −ta
∑
⟨ij⟩

(â†i âj + â†j âi)− tb
∑
⟨ij⟩

(b̂†i b̂j + b̂†j b̂i)

− tp
∑
⟨i⟩

(â†i b̂i + b̂†i âi)

+K
∑
⟨ij⟩

(â†i âi+1b̂
†
i+1b̂i + â†i+1âib̂

†
i b̂i+1)

+ Ua/2
∑
⟨i⟩

(n̂a
i (n̂

a
i − 1)) + Ub/2

∑
⟨i⟩

(n̂b
i(n̂

b
i − 1))− µ

∑
⟨i⟩

(n̂i
a + n̂i

b)

(1.3)

(1.4)

Where na = a†iai and n
b = b†ibi

ta, tb - Hopping amplitudes along the legs a and b respectively

tp -Hopping amplitude between the sites ai and bi

K-Ring exchange term

Ua, Ub-Amplitude of onsite interaction µ- chemical potential

a†i -Creation operator

ai-Annihilation operator

na
i -Number operator

With addition of ring exchange term the phase involved in our model are not just

limited to superfluidity and mott insulator.Since,we are working at zero temper-

ature, we expect to observe Normal Bose Liquid and along with it phase separa-

tion.

Now let’s move toward the methodology that we used in this dissertation.
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Chapter 2

Methodology

2.1 CMFT+DMRG Method

For studying our model we make use of two methods namely cluster mean field

theory and density matrix renormalization group . We use CMFT to simply our

hamiltonian by considering a small cluster of sites out of the huge lattice and de-

couple all the coupled operators. Next we use DMRG to diagonalise the Hamil-

tonian and calculate the ground state energy ( and wavefunction ) which we get

in the form of eigenvalues (and eigen vectors) of the diagonalised matrix . Let us

first go through the Cluster mean field theory.

• Cluster Mean Field Theory

We consider a small part of our bi-ladder lattice which we call cluster . We

divide the whole lattice in number of identical cluster. We consider a cluster

with 4 sites on both the legs and carry out mean field calculations on it .

And then generalize it for the clusters thoughout our model.

We consider sites with indices 1 to 4 within the cluster and connect it to the

site index 5 on left and 0 on right . We treat all the terms of the hamilto-

nian which are within the cluster to be exact while the ones on the edges are

treated with mean field approximations .

7
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Figure 2.1: Cluster of 4 sites on both the legs of a bi-ladder

Our approximations are :

âi = ⟨âi⟩+ δâi = ψa + δâi (2.1)

âi
† = ⟨âi†⟩+ δâi† = ψa

† + δâi
† (2.2)

i denotes site index.

Similarly for b̂i, b̂i
†

b̂i = ⟨b̂i⟩+ δb̂i = ψb + δb̂i (2.3)

b̂i
†
= ⟨b̂i

†
⟩+ δb̂i

† = ψb
† + δb̂i

†
(2.4)

We have hamiltonian for our model as follows:

Ĥ = −ta
∑
⟨ij⟩

(â†i âj + â†j âi)− tb
∑
⟨ij⟩

(b̂†i b̂j + b̂†j b̂i)

− tp
∑
⟨i⟩

(â†i b̂i + b̂†i âi)

+K
∑
⟨ij⟩

(â†i âi+1b̂
†
i+1b̂i + â†i+1âib̂

†
i b̂i+1)

+ Ua/2
∑
⟨i⟩

(n̂a
i (n̂

a
i − 1)) + Ub/2

∑
⟨i⟩

(n̂b
i(n̂

b
i − 1))− µ

∑
⟨i⟩

(n̂i
a + n̂i

b)

(2.5)

By using the approximations (2.1), (2.2), (2.3), and (2.4) for the field op-

erators we decouple the terms joining the two clusters. Remember that the

8



2.1. CMFT+DMRG METHOD CHAPTER 2. METHODOLOGY

terms within the cluster are kept exact.Also we negelect the decouples terms

from ring exchange.

Our hamiltonian gets modified using these approximations

Ĥ = −ta
n−1∑

⟨i,j=1⟩

(â†i âj + â†j âi)− tb

n−1∑
⟨i,j=1⟩

(b̂†i b̂j + b̂†j b̂i)

− ta(â
†
1 + â1 + â†n + ân)− tb(b̂

†
1 + b̂1 + b̂†n + b̂n)

− tp

n−1∑
⟨i⟩

(â†i b̂i + b̂†i âi)

+K
∑
⟨ij⟩

(â†i âi+1b̂
†
i+1b̂i + â†i+1âib̂

†
i b̂i+1)

+ Ua/2
∑
⟨i⟩

(n̂a
i (n̂

a
i − 1)) + Ub/2

∑
⟨i⟩

(n̂b
i(n̂

b
i − 1))− µ

∑
⟨i⟩

(n̂i
a + n̂i

b)

(2.6)

Now that our Hailtonian decoupled , we move to on to understand the DMRG.

• Density Matrix Renormalisation Group

The DMRG method works in the canonical ensemble, we keep the number

of particles fixed , hence the superfluid order parameter ψ = ⟨a⟩ =0 in

all phases. However, the cluster Hamiltonian works in the grand-canonical

ensemble. The SF parameter ψ = a can be finite, and such phase can be

identified as the superfluid phase. In the MI phase,ψ = 0 . So, this method

produces can reproduce the results similar to those produced by the DMRG.

Now we shall obtain the ground state energy and the wave function of the

Hamiltonian for any given length L using the CMFT + DMRG method with

open boundary condition.

The steps involved are as below :

– Consider a lattice of small size l, say l = 1 forming the system block S.

The Hilbert space of S has dimension MS and is represented by states

9
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Figure 2.2: . New system block Sl is formed from system block S and one added
site represented by open circle.

Figure 2.3: Super block of length L = 2l + 2

{|µs
l ⟩} . Obtain the Hamiltonian Ĥs

l and operators acting on the block.

Similarly, form an environment block E.

– Form a new system block Sl from S and one added site as shown in

figure 2.2. Hilbert space of the new system Sl has dimension MSXNS

and is represented by states {|µs
l |σS⟩} . Here NS = nmax + 1 is the

number of states per site. Similarly, form an environment block E
′
.

– Now build a superblock of length L = 2l + 2 as shown in figure 2.3.

Construct the new Hamiltonian matrix for a given initial guess for

ψ and find the ground state energy EL(ψ) and the wave function by

sparse-matrix diagonalization. This is the most time-consuming step

in this algorithm. Minimize the ground state energy EL(ψ) with re-

spect to ψ to obtain global ground state energy EGS, the wave function

|ψGS⟩ and the superfluid order parameter ψj = ⟨ψGS|aj|ψGS⟩

– Construct a reduced density-matrix ρ̂Sl = TrEl |ψGS⟩⟨ψGS| for the block

system Sl. Diagonalize ρ̂Sl to obtain its eigenvectors |α⟩. The eigen val-

ues measures the weights of the |α⟩ states and |ψGS⟩ satisfies the con-

10



2.1. CMFT+DMRG METHOD CHAPTER 2. METHODOLOGY

sidition that sum of the eigen values should be equal to 1 .The new

basis is represented by MS eigenstates of the reduced density matrix.

This way we have truncated the Hilbert basis of the system block Sl

from MSXNS to MS. This is the most important step of the DMRG

method.

Now we transform ˆHSl

l+1 and operators to the new basis. i.e.,

ˆHSl

new = O† ˆHSlO where O is MSXNS rectangular transformation ma-

trix,likewise for the environment.

– Repeat step block size l + 1 and continue the iteration until the desired

length L. The system size is increased by 2 in each iteration. Calculate

the ground state properties for all lengths.

11



Chapter 3

Results

We considered two cases to test our model . First is hardcore while second is

softcore.

3.1 Hardcore

The hardcore case follows the condition that the number of maximum Bosons

allowed per site can be 1 and the on-site interaction is infinite . Since the number

of Bosons is one here, we have only two possible states |0⟩ and |1⟩ . So, with

possibe combination of states the U part of the hamiltonian vanishes. We set ta,

tb, tp parameters as equal to 1. If keep them as reference and vary ring exchange

amplitude K and chemical potential µ .

We plot graphs for ψ and ρ versus length of the lattice to check the convergence of

order parameter and density and similarly for energy in Figure 3.1 .From this

graphs we understand that The mean-field approximation is known to

overestimate the superfluid phase, hence, the values of the superfluid order

parameter are larger at the edges compared to the center.We see that the

superfluid order parameters start converging from the edges as the system length

increases.Similarly for energy.

Next, in Figure 3.2 we plot ψa, ψb, ρa, ρb along the length to compare if order

12



3.1. HARDCORE CHAPTER 3. RESULTS

Figure 3.1: The convergence of ψ and ρ along the length is shown in the first
graph while second graph shows the convergence of energy for hardcore model

parameter and densities remains the same along both the legs a and b for fixed

value of chemical potential, µ.Chemical potential is the amount of energy required

to insert or remove a Boson. We can see that as we have kept the hopping

amplitude ta and tb equal and as expected order parameter and densities are

13



3.1. HARDCORE CHAPTER 3. RESULTS

Figure 3.2: Comparison of the of ψ and ρ of leg a and b

observed to be the equal on both the legs.

Figure 3.3: ψ ρ and compressibility versus the chemical potential µ

In Figure 3.3 , we plot the graph to observe different phases that can occur in the

simple Bose Hubbard model in bi-ladder as we have kept hopping amplitude of

ring exchange to be 0 .Compressibility is the rate of change of density with

respect to chemical potential µ. We can see that ψ, ρ and compressibility all are

14
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fixed to zero before µ = −3 and again after µ = 3 we see ψ = 0, ρ = 1 and

compressibility=0 which means it is in Mott insulator in the µ range before -3 and

after +3 but in between the order parameter ψ and ρ as well as compressibility all

are finite which implies that it is in Superfluid phase.

This tables can helps us in identifying the phases.

Figure 3.4: Conditions for identifying the phases

15
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Now, we proceed to introduce the ring exchange hopping in our model and

observe the phases.

Figure 3.5: ψ, ρ, and compressibility varrying with chemical potential µ for dif-
ferent values of k. The values of K are specified in the legend along with colour
coding

As we include k we can observe the variation in the strength of superfluidity.

16
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With k = 1 we do not notice much difference in the phase but slight changes in

the strength of order parameter. As k is increased to 2 we see that ψ = 0 for a

range of µ which can be read from the graph, also in this region the

compressibility as well as ρ are finite which tells us the occurance of another phase

”Normal Bose Liquid” .This phase becomes a little more dominant as we increase

the value of k gradually.

Figure 3.6: Critical value of k

With furher increase in the value of k = 3, 4, 5 , it can be seen that the Normal

Bose liquid disappears and a insulating phase with a non-integer density of 0.5

appears and it persists .

17



3.1. HARDCORE CHAPTER 3. RESULTS

At k = 6 the system observes phase transitions only from a Mott insulator of

integer density ρ = 0 to insulating phase of non-integer density ρ = 0.5 and finally

to ρ = 1 .Which means at a sufficient value of k the superfluidity is completely

destroyed.

From this observations we can make a statement that in the hardcore case Bosons

hopping in the ring order works to supresses the superfluidity and this is opposite

to how the chemical potential µ works . In the absence of onsite interaction U ,the

µ tries to keep the system in Superfluid.The hardcore case in our model is the

display of competition between ring hopping and chemical potential.

We make one more set of plots to find the critical value of k ,see Figure 3.5 . At

this point the superfluid make transition to Normal Bose Liquid.

Figure 3.7: Phase Diagram - µ vs k

In this plot we can see the nature of k term which supresses the superfluidity. We

found that k = 1.88 while µ = 0 is the critical point where the Normal Bose

Liquid starts appearing.

We plot the Phase diagram of Chemical Potential,µ versus Ring hopping

amplitude ,k .

18
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3.2 Softcore

The softcore case follows the condition that the number of maximum Bosons

allowed per site is more 1 and the on-site interaction is finite.

Figure 3.8: The convergence of ψ and ρ along the length is shown in the first
graph while second graph shows the convergence of energy for softcore model

So, in this case it’s not just a competition between Ring Hopping k and Chemical

Potential µ as the On-site interaction U has a role to play.

In Figure 3.7 we plot similar graphs as hardcore case to observe the convergence

of Order parameter ψ , density ρ and Energy along the lattice.

19
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Figure 3.9: cmparing a and b

In figure 3.8 we plot the ψa, ψb, ρa, ρb along the length to compare if order

parameter and densities remains the same along both the legs a and b.

20
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In case of softcore case we can see that the system observes the Phase transitions

similar to hardcore case. It displays the transition from intial Mott Insulator

phase to Superfluid and then to Mott insulator. For higher values of k there is a

occurance of non integer density at ρ = 1.5

Figure 3.10: ψ,ρ versus µ

There is no appearance of Normal Bose Liquid is softcore case.This can be

because of the onsite interaction term which dominates the hamiltonian.

21



Chapter 4

Summary

In this project we have been able successfully employed the Cluster Mean Field

plus Density Matrix Renormalisation Group to our Model Hamiltonian which is

Bose Hubbard Model with Ring Exchange hopping in bi-ladder and found out var-

ious phases.

We observe the usual Superfluid to Mott Insulator phase transition in the model

initially. As we introduce our Ring hopping term we observed variation in the

phases due to the competition between Ring exchange Hopping and the Chemi-

cal Potential which is favoured by the absence of onsite interaction in this case.

In case of hardcore , we notice the transition from superfluid to Normal Bose Liq-

uid phase which is eventually conquered by an insulating phase a a non integer

density of 0.5 as we keep in increasing the amplitude of ring hopping. The ring ex-

change term gradually suppresses and finally destroys the Superfluid. In case of

softcore, we do see the insulating phases at non integer densities like 1.5 but there

is no presence of Normal Bose Liquid . This can be because of the dominating

presence of on-site interaction in this case.
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