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ABSTRACT

Molybdenum disulphide has garnered significant attention due to its unique properties

and potential applications in various fields such as electronics, energy storage, and catal-

ysis. Density functional theory calculations have become an useful tool for studying the

properties of materials. In this project, we aim to perform density functional theory

calculations to investigate molybdenum disulphide’s structural and electronic properties.

We studied the evolution of its electronic properties from monolayer, bilayer, and bulk

by studying the band structure. Also, a detailed study of the dependence of interlayer

distance on the nature of the band structure was carried out.
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Chapter 1

Introduction

In recent years, there has been a lot of research on 2D layered materials due to their unique

properties and reduced dimensionality. These materials have opened doors for various

applications in electronics, medicine, and other fields of interest. One such material that

has attracted a lot of attention is Transition Metal Dichalcogenides (TMDs). TMDs

are materials where transition metal atoms bond with chalcogen atoms (such as Sulfur,

Selenium, or Tellurium) in a layered structure. TMDs have unique electronic, optical,

and mechanical properties which make them suitable for applications in optoelectronics,

electronics, catalysis, energy storage, and sensing.

Molybdenum Disulphide (MoS2) is a popular TMD because of its peculiar electronic

properties, making it a good candidate for a research topic. This dissertation uses the

Density functional theory to conduct a detailed study of MoS2. This project studies the

electronic and other properties of monolayer, bilayer, and bulk MoS2.

1.1 Literature Review

Molybdenum disulfide (MoS2) is a material that has optoelectric and electronic applica-

tions due to its layered structure. Due to its large band gap, Monolayer MoS2 is partic-

ularly useful in semiconductor applications. This project focuses on a detailed study of

monolayer, bilayer, and bulk MoS2. The experimental work in these different structures

of MoS2 suggests the transition of indirect band gap seen in bulk MoS2 into direct one in

monolayer MoS2 [1].

The choice of exchange-correlation functional affects the band structure [2]. It is seen

1



1.2. MOTIVATION CHAPTER 1. INTRODUCTION

that GGA gives the correct band gap but its band structure nature is not accurate. A

correction of Grimme df2 [3] gives the correct nature of the band but underestimates [2].

1.2 Motivation

MoS2, in particular, stands out as a promising candidate for various applications in elec-

tronics, optoelectronics, catalysis, energy storage, and sensing due to its exceptional elec-

tronic properties. However, a comprehensive understanding of how these properties vary

depending on the number of layers (monolayer, bilayer, or bulk) is crucial for optimizing

MoS2 for specific applications.

This project aims to bridge this knowledge gap by employing Density Functional

Theory (DFT) to conduct a meticulous investigation of MoS2. By studying the electronic

and other properties of the monolayer, bilayer, and bulk MoS2, this research will provide

valuable insights into the impact of dimensionality on MoS2’s behavior.

1.3 Objectives

In this project, we employ density functional theory (DFT) to calculate different structural

and electronic properties of the MoS2. THe main objectives of the project are as follows

1. To study structure properties such lattice constants and interlayer distances in

monolayer bilayer and bulk MoS2.

2. To study electronic properties such band structure and density of states interlayer

in monolayer bilayer and bulk MoS2.

2



Chapter 2

Method

Density Functional Theory (DFT) is a framework based on quantummechanics that allows

scientists to study the properties of materials from scratch, without needing any prior

assumptions. DFT is different from the Hartree-Fock (HF) method but shares its approach

to studying material properties. DFT also introduces simplifications and modifications

that make it more effective at studying the electronic structure of many-body systems. In

this chapter, we will discuss the key elements of DFT, including its core formalism, and

the techniques used to enhance its computational efficiency and accuracy. core formalism,

and the techniques used to enhance its computational efficiency and accuracy.

2.1 Formalism

2.1.1 Many Body Hamiltonian

From the first principle considerations, we can write a many-body Hamiltonian for a solid

or the simplest case i.e. a molecule. The said Hamiltonian is given below

Ĥ = −
N∑
i=1

∇2
i

2
−

N∑
A=1

∇2
A

2
+

N∑
A=1

N∑
B=1

1

|RA −RB|
−

N∑
A=1

N∑
i=1

1

|ri −RA|
+

N∑
i=1

N∑
j=1

1

|ri − rj|
(2.1)

To get a good understanding of the above Hamiltonian we can write it as

Ĥ = T̂ion(R⃗) + T̂elec(r⃗) + V̂ion−ion(R⃗) + V̂ion−elec(R⃗, r⃗) + V̂elec−elec(r⃗) (2.2)

3



2.1. FORMALISM CHAPTER 2. METHOD

The terms T̂ion(R⃗) and T̂elec(r⃗) are terms corresponding to the kinetic energy of posi-

tive ions and electrons respectively. Whereas V̂ion−ion(R⃗) , V̂ion−elec(R⃗, r⃗) and V̂elec−elec(r⃗) are

terms that correspond to ion-ion, ion-electron, and electron-electron potential.

The above Hamiltonian depends on both nuclear and electronic contributions. To get

a Hamiltonian that only depends on electronic contributions, we can make use of some

approximations.

The need to use approximations for the above Hamiltonian is crucial as we have to

keep track of nuclear as well as electronic parameters. A better approximation would

be to focus on only one type of contribution to Hamiltonian in this case it would be the

electronic contribution that we are interested in. The approximation that helps to achieve

this is Born Oppenheimer approximations.

The Born Oppenheimer approximation is an approximation that allows us to separate

the above Hamiltonian into nuclear and electronic contributions. In these approximations,

we consider that since ions are 1800 times more massive than electrons, the electrons will

respond to external perturbation more quickly than ions. Thus we can consider ions to

be fixed and thus modify our Hamiltonian accordingly.

The equation 2.2 becomes

Ĥ = T̂elec(r⃗) + V̂ion−ion(R) + V̂ion−elec(R, r⃗) + V̂elec−elec(r⃗) (2.3)

The Born Oppenheimer approximation does the following changes to the above Hamil-

tonian:

1. The kinetic term related to ions is neglected as ions are considered to be fixed.

2. Since ions are fixed, R is constant. Therefore the dependence on R is considered con-

stant or parametric. Therefore term V̂ion−ion(R) is constant and term V̂ion−elec(R, r⃗)

is parametric.

The constant term i.e. V̂ion−ion(R) will add some constant value to the expectation

value of other operators hence we can keep that constant value as a reference, therefore,

equation 2.3 now our Hamiltonian will have the following form

Ĥelec = T̂elec(r⃗) + V̂ion−elec(R, r⃗) + V̂elec−elec(r⃗) (2.4)

4
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Hence now our Hamiltonian has electronic contributions only. Hence we can now write

a many-body Schrodinger equation.

ĤelecΨ(r) = E(R)Ψ(r) (2.5)

Nuclear coordinates now parameterize the equation. This above equation is the central

or beginning step to doing many of the electronic structure methods.

2.2 Hohenberg-Kohn Theorems

Now although we have an electronic Hamiltonian to work with solving it is a tedious task

in itself. We have to solve the equation 2.5 to get a wave function that describes the

system’s ground state. The use of variational techniques and proper constraints can give

us a proper solution, which is a standard approach in Hartree and Hartree Fock method.

In DFT, however, we are going beyond this and trying to define the system’s ground

state not with some ground state wavefunction but with density using two fundamental

theorems that are the backbone of DFT. Hohenberg and Kohn in their paper [4] gave us

these two fundamental theorems.

2.2.1 1st Hohenberg-Kohn Theorem

The 1st Hohenberg-Kohn theorem states that the ground state of any interacting many

body/particle system is a unique functional of electron density n(r⃗). The proof of this

rather simpler one goes as follows;

Let us consider two different external potentials (ion-electron potentials) given by

V̂ion−elec(r⃗) and V̂
′

ion−elec(r⃗) gives us same electron density n(r⃗). The corresponding

Hamiltonian will be Ĥ and Ĥ
′
and all other terms will represent with Ĝ which are the

same if we consider the same system for both potentials having some N number of atoms.

Hence we can write

Ĥ = Ĝ+ V̂ion−elec(r⃗) and Ĥ
′
= Ĝ+ V̂

′

ion−elec(r⃗) (2.6)

5
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The total energy of the system is given by

E = ⟨ψ|Ĥ|ψ⟩ and E
′
= ⟨ψ′ |Ĥ ′ |ψ′⟩ (2.7)

where ψ and ψ
′
are the ground state wavefunctions of the system. Here E ̸= E

′

because the potentials are not the same. According to the variational principle, we have:

E ′ < ⟨ψ|Ĥ|ψ⟩ = ⟨ψ|Ĥ ′ − V̂
′

ion−elec(r⃗) + V̂ion−elec(r⃗)|ψ⟩

= E + ⟨ψ|V̂ ′

ion−elec(r⃗)− V̂ion−elec(r⃗)|ψ⟩
(2.8)

and

E < ⟨ψ′|Ĥ|ψ′⟩ = ⟨ψ′|Ĥ − V̂ion−elec(r⃗) + V̂
′

ion−elec(r⃗)|ψ′⟩

= E ′ + ⟨ψ′|V̂ion−elec(r⃗)− V̂
′

ion−elec(r⃗)|ψ′⟩
(2.9)

By adding Eqs. 2.8 and 2.9, we obtain:

(E + E ′) < (E + E ′) + ⟨ψ|V̂ ′

ion−elec(r⃗)− V̂ion−elec(r⃗)|ψ⟩ − ⟨ψ′|V̂ ′

ion−elec(r⃗)− V̂ion−elec(r⃗)|ψ′⟩

(2.10)

If the both V̂ion−elec(r⃗) and V̂
′

ion−elec(r⃗)en gave the same electron density n(r), the two

terms on the right-hand side of Eq 2.10 would be expressed by

⟨ψ|V̂ ′

ion−elec(r⃗)− V̂ion−elec(r⃗)|ψ⟩ =
∫
(V

′

ion−elec(r⃗)− Vion−elec(r⃗)) n(r⃗) dr⃗ (2.11)

and

⟨ψ′|V̂ ′

ion−elec(r⃗)− V̂ion−elec(r⃗)|ψ′⟩ =
∫
(V

′

ion−elec(r⃗)− Vion−elec(r⃗)) n(r⃗) dr⃗ (2.12)

Eqs. 2.10, 2.11, and 2.12 lead to the contradictory relation (E+E ′) < (E+E ′). Therefore,

our assumption that n(r) is the same with the different external potentials is not correct.

Thus there is one-to-one correspondence between electron density and external potential

This proves the Hohenberg-Kohn theorem

6
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But the question remains why density and not wavefunction? the answer to this

question lies in the fact as the number of particles increases the number of variables

required to define wavefunction also increases whereas for any number of particles, the

density always remains the function of 3 spatial variables. This allows solving the same

problem with lower computational cost and lower storage required to store the vital

information about the system.

Hence we can write

E[n(r⃗)] = ⟨ψ|Ĥ|ψ⟩ = ⟨ψ|Ĝ[n̂(r⃗)]|ψ⟩+
∫
dr⃗ Vion−elec(r⃗) n(r⃗) (2.13)

2.2.2 2nd Hohenberg-Kohn Theorem

The 2nd Hohenberg-Kohn Theorem states that If the functional Ĝ[n̂(r⃗)] was known, then

by minimizing the total energy in Eq 2.13, with respect to variations in the electron

density n(r⃗), the ground state of the electron density and the total energy is obtained.

Using Hellmann Feynman Theorem and variational principle:

dE[n(r⃗)]

dn(r⃗)
= ⟨ψ| dĤ

dn(r⃗)
|ψ⟩

= ⟨ψ|Ĝn̂(r⃗)
dn(r⃗)

|ψ⟩+ d

dn(r⃗)

∫
dr⃗Vion−elec(r⃗)n(r⃗)

= 0

(2.14)

We have to use the variational principle under the constraint that
∫
n(r⃗) dr⃗ = N , where

N is the total number of electrons in the system.

2.3 Kohn-Sham Equations

Before diving into fundamental equations governing DFT. We will focus our attention on

total energy and the terms involved in it. We refer back to Eq.2.13 and try to explain the

term ⟨ψ|Ĝ[n̂(r⃗)]|ψ⟩.

⟨ψ|Ĝ[n̂(r⃗)]|ψ⟩ = ⟨ψ|T̂ [n̂(r⃗)]|ψ⟩+ ⟨ψ| 1

r − r′
|ψ⟩ (2.15)

7
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First, we look at the second term on the right-hand side in the above equation i.e.

⟨ψ| 1
r−r′

|ψ⟩.

⟨ψ| 1

r − r′
|ψ⟩ = 1

2

∫
n(r⃗)n(r⃗′)

|r − r′|
+ Exc[n(r⃗)] (2.16)

The first term in the Eq. 2.16 is Hartree potential energy. This term represents Coulom-

bic repulsion felt by electrons due to other electrons. Whereas Exc[n(r⃗)] is exchange-

correlation energy. Both these terms together show the complete picture of the inter-

electronic interactions in molecules and solids. We will further look into these terms in

the next section.

The first term on the right-hand side is the Kinetic energy term. The form of Kinetic

energy term with respective density was proposed by Kohn Sham.

Now let us shift our focus to the Kohn-Sham equation

dE[n(r⃗)]

dn(r⃗)
=

N∑
i=1

d

dn(r⃗)

〈
ψ

∣∣∣∣−∇2

2

∣∣∣∣ψ〉+
1

2

d

dn(r⃗)

∫
n(r⃗)n(r⃗′)

|r − r′|

+
d

dn(r⃗)

∫
dr⃗ Vion−elec(r⃗)n(r⃗) +

dExc[n(r⃗)]

dn(r⃗)

(2.17)

Where electron density is given by n(r⃗) =
∑N

i=1 ψ(r⃗). Now solving Eq. 2.17 using

Variational principle with constraint that
∫
n(r⃗) dr⃗ = N . we get set equations that are

similar to single particle Schrodinger equation given by

[
−∇2

2
+ Veff

]
ψKS
i = ϵi ψ

KS
i (2.18)

where Veff is given by

Veff [n(r⃗)] = Vion−elec(r⃗) +

∫
n(r⃗′)

|r − r′|
dr′ +

dExc[n(r⃗)]

dn(r⃗)
(2.19)

where the second term on the right-hand side is Hartree potential and the third term is

exchange-correlation potential.

Vxc[n(r⃗)] =
dExc[n(r⃗)]

dn(r⃗)
(2.20)

Now assuming we know the form of Vxc[n(r⃗)] we can solve these Kohn Sham equations

iteratively using the Self-Consistent Field (SCF) method.

8
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2.4 Approximations

2.4.1 Exchange-Correlation Functional

The unknown part in the Kohn Sham Hamiltonian is the Exchange-Correlation (XC)

functional. The kinetic energy expectation value was obtained using formalism which is

similar to that used in Hartree Fock hence the interacting nature of the kinetic energy

term is missing. Also, the Hartree term only accounts for coulomb repulsion, so other

exchange and correlational effects present between in the electron are missing. All these

missing effects are taken into account by the XC functional.

The only catch is that we don’t know the exact functional form of XC functional. It

was stated by the Hohenberg-Kohn theorems that this exact functional form does exist

but not knowing the functional form of XC functional makes it impossible to solve the

Kohn sham equations.

Local Density Approximation (LDA)

The LDA is an approximation based on the uniform-electron system. The contribution

of exchange interaction to the total energy for the uniform-electron charge is given by:

Ex[n] = NC2n
1/3 (2.21)

Now, let us consider Eq. (2.21) for the case of the non-uniform-electron charge, in

which n is a function of r⃗. If n(r⃗) slowly varying function, the exchange functional

Ex[n(r⃗)] is approximated as

Ex[n(r⃗)] ≈ NC2n
1/3 (2.22)

where N can be written as
∫
n(r⃗) dr⃗ = N , therefor Eq. (2.22) becomes

Ex[n(r⃗)] =

∫
ϵx(r⃗)n(r⃗) dr⃗ (2.23)

Where ϵx is given by

ϵx = C2n
1/3 (2.24)

Since Eq. (2.23) is based on the free-electron gas, the correlation interaction is needed to

capture accurately the many-body system. Therefore, the energy of correlation interaction

9
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ϵc(r⃗) is added to Eq. (2.23) as

Ex[n(r⃗)] =

∫
[ϵx(r⃗) + ϵc(r⃗)]n(r⃗) dr⃗ (2.25)

This is a general expression for Local Density Approximation for XC functional. The

expression for ϵc(r⃗) was calculated using low density [5] and high-density limit [6]. The

more accurate numerical calculation of ϵc(r⃗) is given by Ceperley and Alder [7]. They

calculated the total energy for the uniform-electron system for different values of rs by

using the quantum Monte Carlo method. Then the correlation energy was obtained by

subtracting the corresponding kinetic and exchange energies from the total energy. Based

on fitting functions to the numerical results of Ceperley and Alder, several forms of ϵc(r⃗)

are proposed by Vosko, Wilk, and Nusair (VWN) [8], Perdew and Zunger (PZ) [9], and

Perdew and Wang (PW) [10].

Generalised Gradient Approximation (GGA)

The LDA is an approximation in the case that n(r⃗) is a slowly varying function. However,

n(r⃗) often changes rapidly in the real material. Moreover, n(r) is generally spin-dependent.

There are many attempts to improve the accuracy of the LDA for real systems where n(r⃗)

varies rapidly. The most successful one is the Generalized Gradient Approximation

(GGA). In the GGA, for the exchange term, an enhancement factor FX is added in Eq.

(2.23) by Perdew, Burke, and Ernzerhof (PBE) [11] as

Ex[n(r⃗)] =

∫
ϵx(r⃗)n(r⃗)Fx(s) dr⃗

= C2

∫
n4/3(r⃗)Fx(s) dr⃗

(2.26)

where s is the dimensionless gradient of n(r⃗), which is defined by

s =
|∇n(r⃗)|
2kFn(r⃗)

(2.27)

where kf = [3π2n(r⃗)]1/3 and the enhancement factor FX(s) is expressed as

FX(s) = 1 + κ− κ

1 + µs2/κ
(2.28)

10
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Also for the correlation term Ec[n(r⃗)] is expressed by ϵc(r⃗) of the uniform electron

system plus an additional term H[n(r⃗), ζ] which depends on both the gradient ∇n(r⃗) and

the spin polarization ζ. The Ec[n(r⃗)] functional is given by PBE as

Ec[n(r⃗)] =

∫
[ϵc(r⃗) +H[n(r⃗), ζ]n(r⃗) dr⃗ (2.29)

Therefore Exc[n(r⃗)] can be written as

Ec[n(r⃗)] =

∫
[C2n

4/3(r⃗)Fx(s) + ϵc(r⃗) +H[n(r⃗), ζ]n(r⃗) dr⃗ (2.30)

This is a general expression for Generalized Gradient Approximation for XC func-

tional.

2.4.2 Pseudopotentials

Pseudopotential is the most widely used approximation in any electronic structure calcula-

tion method. The approximation is generally used in order to minimize the computational

cost required to solve the many-body Hamiltonian. In this approximation, the all-electron

potential due core states of the atom is replaced by an effective potential, and the valence

state wavefunctions are smoothed out near the core.

The approximation helps in tackling the problem of usage of a large number basis to

represent the states as we go near the core region. This is because, near the core region, the

electronic wavefunction becomes highly oscillatory this is due to the fact the probability

of finding an electron becomes large as we near the core due to the strong coulomb

attraction of the nucleus. Therefore the pseudopotentials are useful to to carry out faster

electronic calculations because they reduce the number basis required by replacing the

strong coulombic potential with an effective potential and its effect on the valence states

are smoothed.

The two main properties of pseudopotentials are;

1. Transferability: Transferability is properties in which a pseudopotential can be

used to represent atoms in different chemical environments.

2. Smoothness (softness): The degree at which the valence electron wavefunction

is smoothed out in the core region. This depends type of properties that one is

11
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interested in studying.

There are 3 types of widely used pseudopotentials Norm Conserving (NC), Ul-

tra Soft (US), and Projector Augmented Wave (PAW). We discuss each of these

pseudopotentials in brief.

1. Norm Conserving (NC): In norm-conserving NC, the core states are replaced by

the effective potential, and the valence electron wavefunctions are smoothed near the

core up to some radial grid value known as rcut value. The additional condition in NC

is that the norm of the valence electron wavefunction within a certain radius should

match the norm in the All-Electron (AE) calculation. This means NC does need a

high number of bases compared to other pseudopotential types which increases the

time taken for computation.

2. Ultra Soft (US): The ultra-soft pseudopotentials relax the condition of the norm

conservation to a degree and focus on smoothness. This means ultra soft are less

accurate but are faster.

3. Projector Augmented Wave (PAW): The PAW approach utilizes projector func-

tions to separate core and valence electron wavefunctions. It avoids explicitly in-

cluding core electrons in the calculations. However, it ensures the valence electron

wavefunctions match the all-electron wavefunctions beyond a core radius, similar

to NCPPs. Hence PAW provides a balance between transferability (like NC) and

smoothness (like US).

Below is an example of PAW type pseudopotential for Molybdenum.

Figure 2.1: Plot shows all electron valence wavefunctions (left) and pseudized valence
wavefunction (right)

12
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2.5 Plane wave method

The electronic structure suite that was utilized for this particular project is known as

Quantum Espresso, as described in [12]. The basis set employed by Quantum Espresso

for representing Kohn-Sham wavefunctions (orbitals) is plane waves. Although there are

various options when it comes to the choice of basis for representing KS wavefunction, for

solids, using a plane wave basis can be directly related to the formalism of solids in band

theory.

According to Bloch’s theorem, due to the periodicity of translation in solids, the

electronic wave function in solids should also obey this periodicity. As a result, electronic

wavefunctions should be eigenfunctions of the translation operator.

T̂ Ψn
k(r⃗) = Ψn

k(r⃗ + a⃗) = unk(r⃗) Ψ
n
k(r⃗) (2.31)

The solution for this scenario is plane waves. A KS wavefunction can be written.

Ψn
k(r⃗) =

∑
G

Cn,k
G ei(G⃗+k⃗).r⃗ (2.32)

Where the vector G⃗ are called reciprocal lattice vectors and Cn,k
G are the coefficient, to be

determined.

All eigenstates Ψn
k that have the same k⃗ but different n expand with the same k basis

functions. For the eigenstates of another k⃗ uses a new basis function of the new k⃗; Thus

n here represents the band index.

2.6 Self Consistent Field method

Despite the simplicity of the formalism of Density Functional Theory (DFT), solving

a many-body Hamiltonian is not easy. The density is given as n(r⃗) =
∑N

i=1 ψ
KS
i (r⃗),

and there is interdependence between KS orbitals and density, as explained in Equation

(2.17). To solve this issue, Kohn and Sham proposed using the Self Consistent Field

(SCF) method in DFT[13].

1. Initial Guess: The SCF method starts with an initial guess for the electron density

(distribution of electrons in space).

13
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2. Building the Potential: Based on the initial guess, an effective potential (often

including terms for the interaction between electrons and the nucleus, and between

electrons themselves) is constructed. .

]

Figure 2.2: Self Consistent field (SCF) Loop for the

3. Solving the Kohn-Sham Equation: Using the effective potential, the Kohn-

Sham equation (which governs the behavior of electrons) is solved for the one-

electron KS wavefunctions (orbitals) of the system.

4. Recalculating the Density: From the obtained wavefunctions, a new electron

density is calculated.

5. Iteration and Convergence: This is where the ”self-consistent” part comes in.

The newly calculated density is compared to the initial guess. If they are not the

same, the process repeats from step 2 using the new density as the guess or by mixing

the old and new density. This iterative process continues until the calculated density

and the density used to generate the potential become consistent (converge).

The SCF method was implemented using pw.x executable of Quantum espresso .

Which gives converged charge density and total energy of the system.

14
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2.7 Structural Optimization

The energy of a crystal is determined by the positions of its atoms or ions and the

electrons that surround them. In other words, the total energy of the crystal is a function

of its atomic and ionic configuration, represented mathematically as E(Ri). Therefore,

the equilibrium energy of the crystal is influenced by the positions of its atoms. The

expression for this equilibrium energy is given as:

Fi = −∇Ri
E(Ri) (2.33)

It tends to zero as the system reaches its equilibrium configuration. Now if E(R1, .., Rn)

of a crystal structure depends on the parameters R1, R2, ....., Rn. Then the equilibrium

structural parameter Rm is the value of R at which E(Rmin) = Emin. It implies the find

first derivative concerning R at Rm must be equal to zero.

(
∂E

∂R

)
Rmin

= 0 (2.34)

In consequence, given the DFT calculated total energy E[n(r)], the external pressure

on the unit cell is calculated as follows,

P = −∂E
∂V

(2.35)

The system will be in equilibrium when the pressure P becomes zero.

There are 3 types of relaxations:

1. Volume relaxation: In this, the total energy is minimized w.r.t volume.

2. External relaxation: Here the total energy is minimized w.r.t to unit cell (unit

cell vectors).

3. Internal relaxation: In this, the total energy energy is minimized w.r.t to atomic

position in unit cell.

Using Quantum espresso suite’s pw.x executable we can also perform Internal re-

laxation ( using relax calculation) and Volume relaxation and Internal relaxation

(using vc-relax relaxation).
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2.8 Band Structure

When electrons are present in solids, their movement is affected by the proximity of neigh-

boring atoms and their nuclei, leading to restricted and unique electronic structures. The

band theory, based on Bloch’s theorem, elucidates the influence of these interactions on

the formation of allowed energy bands, separated by forbidden energy gaps, and deter-

mines the electronic properties of materials, such as whether they are metals, insulators,

or semiconductors.

Quantum Espresso software is a widely used open-source tool for electronic structure

calculations and materials modeling. Specifically, the ’pw.x’ executable is utilized for

Self-Consistent field (SCF) calculations, which provide the ground-state energy and

charge density of a given system. During the SCF calculation, the ’pw.x’ executable con-

structs a Hamiltonian matrix that calculates Kohn-Sham wavefunctions and their eigen-

values, exclusively for valence states. The results are saved in the ’pwscf.save (prefix.save)’

folder, for further use.

To calculate bands in the conduction level, a non-self-consistent field (SCF) calculation

is necessary. This involves utilizing the charge density that has been converged from the

SCF calculation. The calculation is then set as bands in ’pw.x’ executable, and the

remaining process is identical to the calculation of bands for valence levels.. The data

generated is then saved as ’pwscf.wfc’ binary files. Visualization of the calculated band

structure is achieved through the use of the ’bands.x’ post-processing executable. This

program converts band data from the ’pwscf.wfc’ folder and generates a plot of the band

structure in various formats, such as .gnu or .xmgr, which can be further analyzed using

external software.

For the present work, band structure diagrams were plotted using Xmgrace software.

2.9 Density of states

The density of states (DOS) describes the number of electron states allowed per unit of

energy and volume. High DOS at a certain energy level means many available states for

electrons at that same level. Conversely, low DOS means fewer available states.

In Quantum espresso, the density of states calculation is performed after the SCF

calculation using the ’pw.x’ executable. Once the SCF calculation is complete, a non-
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SCF calculation is performed to generate ’pwscf.wfc’ files. These files are then converted

into .gnu or .xmgr formats using dos.x.

Partial density of states (PDOS)

The partial density of states is a tool used to determine how each element present in a

molecule contributes to the total density of states of molecules in different structures. This

tool calculates the partial density of states using atomic wavefunctions of that particular

atom, and thus it gives insight into which orbital of a particular atom contributes how

much to the density of states (DOS).

To obtain the PDOS, one needs to use the ’projwfc.x’ post-processing tool. This

tool creates .xmgr or .gnu files for each atom, which can then be used to plot the partial

density of states.

2.10 vdW functionals

In this project, we are using DFT-D and non-local functionals to incorporate vdW inter-

actions in DFT.

1. DFT-D: It is a well-established fact that van der Waals (vdW) energy can be

modeled using a damped inter-atomic potential that is directly proportional to 1/R6,

where R represents the inter-atomic distance. Therefore, a straightforward approach

is to include an energy term with 1/R6 in the total energy calculation.

EDFT−D = EDFT + EvdW (2.36)

where EvdW denotes the vdW energy,EvdW is given by

EvdW = −s6
2

∑
I ̸=J

CIJ
6

R6
IJ

fd(RIJ) (2.37)

here s6 is a global scaling factor depending on the specific GGA and CIJ
6 denotes

the dispersion coefficient for atom pair IJ . The CIJ
6 coefficients are taken by a

least-square fitting procedure from the work of Wu and Yang [14]. fd(RIJ) is a
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damping function, which is given by [3]:

fd(RIJ) =
1

1 + e−d(RIJ/Rr−1
(2.38)

here the parameters d and Rr are fitted to experimental or accurate theoretical data.

The DFT-D method is an inexpensive and straightforward calculation, but it is not

a fully first-principles approach. Examples. Grimme df2 [3] and Grimme df3 [15].

2. Nonlocal vdW functionals: This method replaces the vdW energy term EvdW

in Eq 2.36 by non-local (nl) energy functional of the electron density n(r⃗), which is

given as six-dimensional integral.

Enl
vdW [n(r⃗)] =

1

2

∫ ∫
n(r⃗)Φ(r⃗, r⃗′)n(r⃗′)dr⃗dr⃗′ (2.39)

where Φ(r⃗, r⃗′) is a function depending on r−r′ and the densities n in the vicinity of r

andr′ [16]. Several non-local vdW functionals have been proposed, such as vdW-DF

[16], [17], vdW- DF2 [18], vdW-DF3-opt1 [19], vdW-DF3-opt2 [19], vdW-DF- C6

[20], or rVV10 [21].
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Chapter 3

Results

3.1 Brief

MoS2 belongs to a class of materials called Transition Metal Dichalcogenides (TMDCs).

This chapter studies structural and electronic properties of the monolayer, bilayer, and

bulk MoS2 structure. Also, the dependence of interlayer distance on the Band structure

of the bilayer MoS2 is studied.

3.2 Monolayer

The monolayer MoS2 is 2D Van der Waals material, derived from its bulk structure which

has a hexagonal bravais lattice. It has a Metal (Mo) layer sandwich between layers of two

non-metal elements (S).

(a) top view (b) side view

Figure 3.1: This figure shows a visualization of MoS2 monolayer from top and side.
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3.2.1 Convergence tests

When performing DFT calculation we need to find the convergence of total energy of

the system w.r.t to maximum allowed kinetic energy for wavefunctions (number of plane

waves used), w.r.t to k point grid used for the Brillouin zone integration and sometimes

also w.r.t to kinetic energy cutoff (Ry) for charge density and potential. The optimization

helps us to reduce computational cost and assure accuracy in the obtained results.

In the below figure convergence of total energy w.r.t to Ecut-wfc i.e. maximum allowed

kinetic energy for wavefunctions was performed. The K-point mesh was set to 4 X 4 X 1

for this calculation.

Figure 3.2: Above figure shows plot of SCF energy w.r.t kinetic energy cut off both in
units of Ry.

In Fig 3.2 it can be seen that after 30 Ry of Kinetic energy total energy of the system

converges. Thus we can conclude from these that around 40-50 Ry value of Ecut-wfc

assures good accuracy for the calculations.

As shown in Fig. 3.3, we performed convergence of total energy w.r.t to K point mesh

used for the Brillouin zone integration. For this calculation, the Ecut-wfc was set to 60

Ry. The k-point values where varied from 16 to 196. In this fig, it can be seen that as the

number of K points increases the variation in the total energy goes to almost zero. This

indicates a proper convergence has been achieved. The optimum value of K points is 64

or 8 X 8 X 1. For subsequent calculations, this optimized value of Ecut-wfc and K points

will be used (Unless explicitly mentioned).
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Figure 3.3: Above figure shows the plot of SCF energy w.r.t discretized k vector (or k-
points) grid.

3.2.2 Volume Optimization

Volume optimization of monolayer MoS2 was performed. The structure’s volume was

optimized to get its in-plane lattice parameter. PAW-type pseudopotential was used for

the optimization and results were compared with their experimental values a = 3.16 Å

[22].

It can be seen from Fig 3.4 that the total energy attains a minimum value at around

3.18 Å. Thus DFT calculated in-plane lattice parameter for the monolayer is 3.18 Å which

is a relative percentage error of 0.6 %.

Figure 3.4: Above figure shows plot of SCF energy w.r.t lattice constant in Ang done
with GGA exchange-correlation using PAW pseudopotential
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3.2.3 Electronic Properties

Figure 3.5: Above figure shows plot of electron dispersion curve and TDOS of MoS22

The above figure shows band structure and total density of states of MoS2 monolayer. It

shows band gap of 1.6765 eV. This band gap is obtained using PAW type pseudopotential

and using GGA as XC-functional. The monolayer band structure shows direct transition

Band Gap
Experimental value 1.90 eV
Theoretical value 1.6765 eV

Table 3.1: Table showing Experimental value and Theoretical value of Bandgap for MoS2

at K high symmetry point with experimental band gap value of 1.8 - 1.90 eV [1]. It was

also observed that LDA type XC-functional gives a bandgap around 1.78 eV, which is

closer to the value obtained using GGA type XC-functional.

The total density of states also shows a bandgap of around 1.67 eV. The slight in-

consistency in TDOS and Band structure graph is due to the tetrahedron method which

estimates a little higher fermi energy compared to fermi energy we get after doing SCF.
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This inconsistency can be resolved using better methods such as the optimized tetrahedron

method.

Figure 3.6: Above figure shows the plot of TDOS and PDOS (Left) PDOS of sulfur
(Right) PDOS of Molybdenum

Also, plots of contributions of the individual atomic density of states or partial density

of states to the total density of states were studied for sulfur atoms (S) and molybdenum

atoms (Mo). As seen in fig 3.6 it is clear in the case of S the 3p contribution is higher

than 3s where 3s23p4 is the valence orbitals. Whereas in the case of Mo, the contribution

from the 4d is higher compared to other orbitals where its valence orbitals are 5s14d5.

This is because the bonding occurs between atoms because of Mo’s 4d and S’s 3p as they

have the highest free electron density. Hence their contributions to the total density of

states of states are much higher than other orbitals.

3.2.4 Spin Orbit Coupling

The introduction of the spin-orbit coupling in the monolayer is done by using fully rela-

tivistic calculations done by PAW-type pseudopotentials. It is seen that there is a signifi-

cant splitting of the valence band at the K high symmetry point. The difference in energy

of split bands at K is ∆ESOC = 0.144eV which is consistent with the experimental value

of 0.1 eV [23].

The valence band splitting in single-layer MoS2 is primarily attributed to the presence

of spin-orbit coupling (SOC). In single-layer MoS2, the lack of inversion symmetry leads

to a significant spin-orbit splitting, which breaks the degeneracy of the valence band

maximum along the direction -K. This strong spin-orbit coupling results in the separation
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of spin-up and spin-down states in the valence band, creating a sizable energy splitting

between the two spin states.

Figure 3.7: Above figure shows the plot of spin-orbit coupling in monolayer MoS2, (a)
Without spin-orbit coupling (b) with spin-orbit coupling.
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3.3 Bilayer

3.3.1 Convergence tests

Similar to monolayer, convergence tests were performed for convergence of total energy of

the system w.r.t to maximum allowed kinetic energy for wavefunctions (number of plane

waves used), w.r.t to k point grid used for the Brillouin zone integration and sometimes

also w.r.t to kinetic energy cutoff (Ry) for charge density and potential. The optimization

helps us to reduce computational cost and get good accuracy in our results.

In the below figure convergence of total energy w.r.t to Ecut-wfc i.e. maximum allowed

kinetic energy for wavefunctions was performed. The Kpoint mesh was set to 4 X 4 X 1

for this calculation.

Figure 3.8: Above figure shows plot of SCF energy w.r.t kinetic energy cut off both in
units of Ry.

In Fig 3.12 it can be seen that at a certain value of Kinetic energy cut off for wave-

functions the total energy of the system converges. Thus we can conclude from these that

around 40-50 Ry value of Ecut-wfc is the optimum value to get good accuracy in the total

energy of the system.

We also performed convergence of total energy w.r.t to K point mesh used for the

Brillouin zone integration. For this calculation, the Ecut-wfc was set to 60 Ry. The k-

point values where varied from 16 to 196. In this fig, it can be seen that as the number
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Figure 3.9: Above figure shows the plot of SCF energy w.r.t discretized k vector (or k-
points) grid.

of K points increases the variation in the total energy goes to almost zero. This indicates

a proper convergence has been achieved. The optimum value of K points is 64 or 8 X 8

X 1. For subsequent calculations, this optimized value of Ecut-wfc and K points will be

used (Unless explicitly mentioned).

3.3.2 Volume Optimization

The volume optimization was done to relax the bilayer structure, and 7 exchange func-

tional were used for volume optimization. By relaxing the bilayer we obtained an in-plane

lattice constant and the interlayer distance between two layers. The experimental values

XC-functional lattice constant - a Interlayer spacing - d
GGA 3.1854 7.4100
LDA 3.1236 6.0349

vdw-df-c6 3.16759 6.1491
vdw-df3-opt1 3.15654 6.1358
vdw-df3-opt2 3.1632 6.1459
grimme-df2 3.1908 6.2129
grimme-df3 3.1858 7.2132

Table 3.2: The above table shows optimized in-plane constant-a and interlayer distance
value using different types of XC functionals in Å unit.
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for in-plane lattice constant remain the same as that in the case of monolayer i.e. 3.16

Å [22]. The interlayer distance experimental value is around 6.15 Å. It can be seen from

the table that vdw non-local functionals give a better estimate of interlayer distance with

a percentage error of 0.02 %. GGA overestimates both lattice constant as well as inter-

layer spacing whereas LDA underestimates the same. The Grimme-df2 and Grimme-df3

DFT-D methods give almost the same results as that of GGA.
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3.3.3 Electronic Properties

Figure 3.10: Above figure shows plot of electron dispersion curves of MoS2, a) Band
structure obtained using vdw-df-C6 b) Band structure obtained using vdw-df3-opt1 c)
Band structure obtained using vdw-df3-opt2 d) Band structure obtained using Grimme-
df2 e) Band structure obtained using LDA f) Band structure obtained using GGA.
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The above figure shows band structure of MoS2 bilayer.This band gap is obtained using

PAW type pseudopotential and using 6 different XC-functional. It shows different band

gap values depending on the type of XC-functional used for the calculation.

XC-functional Experimental Band Gap Band Gap obtained
vdw-df-C6 1.53 eV 1.2262 eV

vdw-df3-opt1 1.53 eV 1.2332 eV
vdw-df3-opt2 1.53 eV 1.2270 eV
grimme-df2 1.53 eV 1.4479 eV

LDA 1.53 eV 1.1651 eV
GGA 1.53 eV 1.5196 eV

Table 3.3: Table showing Experimental value and Theoretical value of Bandgap for MoS2

bilayer for different XC-functional

Unlike monolayer, the band structure of bilayer MoS2 shows an indirect transition from

Γ to between K-Γ high symmetry points with an experimentally obtained bandgap of

1.53 eV [2]. This nature is observed in all XC-functional except in GGA, and Grimme

df methods. The GGA shows the transition from K to Γ high symmetry point. The

reason for this different nature for GGA and Grimme df is due to their inconsistency in

producing accurate interlayer distance. This also shows that to get the proper nature of

band structure in case bilayer the interlayer spacing plays a major role.

The band structure values produced by all XC-functional are not that accurate and

have huge deviation from the experimental value showing 19-20 % relative percentage

error. This shows although some functional quite accurately describe the nature of band

structure still most of them fail to produce an accurate value.

Also, plots of contributions of the individual atomic density of states or partial density

of states to the total density of states were studied for sulfur atoms (S) and molybdenum

atom (Mo). The density of states calculation were done using the tetrahedron method.

For this dense k-point grid was used i.e. 48 X 48 X 1 for proper sampling of the Brillouin

zone.

Below are the plots for non-local functionals, Grimme df, LDA, and GGA produced

using PAW type pseudopotential.
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Figure 3.11: Above figure shows plot of TDOS and PDOS (Left) PDOS of sulfur (Right)
PDOS of Molybdenum

As seen in Fig 3.11, the nature of the results are same as that in the case of monolayer.

The reason for this was discussed in section 3.2 subsection 3.2.3.

31



3.4. BULK CHAPTER 3. RESULTS

3.4 Bulk

3.4.1 Convergence tests

Convergence tests similar to monolayer were performed for minization of total energy of

the system w.r.t to maximum allowed kinetic energy for wavefunctions (number of plane

waves used), w.r.t to k point grid used for the Brillouin zone integration and sometimes

also w.r.t to kinetic energy cutoff (Ry) for charge density and potential. The optimization

helps us to reduce computational cost and get good accuracy in our results.

In the below figure convergence of total energy w.r.t to Ecut-wfc i.e. maximum allowed

kinetic energy for wavefunctions was performed. The Kpoint mesh was set to 4 X 4 X 1

for this calculation.

Figure 3.12: Above figure shows plot of SCF energy w.r.t kinetic energy cut off both in
units of Ry.

In Fig 3.12 it can be seen that at a certain value of Kinetic energy cut off for wave-

functions the total energy of the system converges. Thus we can conclude from these that

around 40-50 Ry value of Ecut-wfc is the optimum value to get good accuracy in the total

energy of the system.

We also performed convergence of total energy w.r.t to K point mesh used for the

Brillouin zone integration. For this calculation, the Ecut-wfc was set to 60 Ry. The k

point values where varied from 16 to 196. In these fig, it can be seen that as the number
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Figure 3.13: Above figure shows the plot of SCF energy w.r.t discretized k vector (or k
points) grid.

of K points increases the variation in the total energy goes to almost zero. This indicates

a proper convergence has been achieved. The optimum value of K points is 64 or 8 X 8

X 1. For subsequent calculations, this optimized value of Ecut-wfc and K points will be

used (Unless explicitly mentioned).

3.4.2 Volume Optimization

The volume optimization was done to relax the bulk structure, and 7 exchange functions

were used for volume optimization. By relaxing the bulk we obtained in in-plane lattice

constant, off off-plane lattice constant, and the interlayer distance between two layers. The

XC-functional lattice constant - a lattice constant - b Interlayer spacing - d
GGA 3.1858 14.7244 7.3772
LDA 3.1241 11.9940 6.1277

vdw-df-c6 3.1681 12.2968 6.1952
vdw-df3-opt1 3.1585 12.2981 6.2147
vdw-df3-opt2 3.1642 12.3030 6.206
grimme-df2 3.1908 12.5283 6.2670
grimme-df3 3.1858 14.7244 7.3772

Table 3.4: The above table shows optimized in-plane constant-a and interlayer distance
value using different types of XC functionals in Å unit.
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experimental values for the in-plane lattice constant remain the same as that in the case of

monolayer i.e. 3.14 Å. The interlayer distance experimental value is around 6.15 Å. It can

be seen from the table that vdw non-local functionals give a better estimate of interlayer

distance with a percentage error of 0.02 %. GGA overestimates both lattice constant as

well as interlayer spacing whereas LDA underestimates the same. The grimme-df2 and

grimme-df3 which are DFT-D methods give almost the same results as those of GGA.
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3.4.3 Electronic Properties

Figure 3.14: Above figure shows plot of electron dispersion curves of MoS2, a) Band
structure obtained using vdw-df-C6 b) Band structure obtained using vdw-df3-opt1 c)
Band structure obtained using vdw-df3-opt2 d) Band structure obtained using Grimme-
df2 e) Band structure obtained using LDA f) Band structure obtained using GGA.
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The above figure shows the band structure of MoS2 bilayer.This band gap is obtained

using PAW type pseudopotential and using 6 different XC-functional. It shows different

band gap values depending on the type of XC-functional used for the calculation.

XC-functional Experimental Band Gap Band Gap obtained
vdw-df-C6 1.29 eV 0.826 eV

vdw-df3-opt1 1.29 eV 0.8368 eV
vdw-df3-opt2 1.29 eV 0.8229 eV
grimme-df2 1.29 eV 1.4479 eV

LDA 1.29 eV 0.68 eV
GGA 1.29 eV 1.32 eV

Table 3.5: Table showing Experimental value and Theoretical value of Bandgap for MoS2

bulk for different XC-functional

Band structure of Bulk MoS2 also shows indirect transition from Γ to between K-Γ high

symmetry points. Again this nature is not observed in GGA and Grimme df methods.

The reason for this is described in subsection 3.3.3 of section 3.3.

In the case of Bulk also the value produced by all XC-functional is not that accu-

rate and has a huge deviation from the experimental value showing a 19-20 % relative

percentage error. Also, plots of contributions of the individual atomic density of states

or partial density of states to the total density of states were studied for sulfur atoms

(S) and molybdenum atoms (Mo). The density of states calculation were done using the

tetrahedron method. For this dense k-point grid was used i.e. 48 X 48 X 1 for proper

sampling of the Brillouin zone.

Below are the plots for non-local functionals, Grimme df, LDA and GGA produced

using PAW type pseudopotential.
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Figure 3.15: Above figure shows plot of TDOS and PDOS (Left) PDOS of sulfur (Right)
PDOS of Molybdenum

As seen in Fig 3.15, the nature of the results are same as that in the case of monolayer.

The reason for this was discussed in section 3.2 subsection 3.2.3.
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We now compare the band structure of monolayer bilayer and bulk using functional

which accurately shows the nature of band structure as shown experimentally in [1] [2].

Figure 3.16: Comparision of the Band structure of a) monolayer, b) bilayer and c) bulk
MoS2

In the case of MoS2, the band gap undergoes a significant evolution as we move from

a monolayer to a bilayer and finally to the bulk form. This evolution in band gap is due

to quantum confinement effects and interlayer interactions [24]. In a monolayer of MoS2,

the band gap is direct and has a larger value compared to that of bulk MoS2. As the

number of layers increases, the band gap decreases and becomes indirect. This change in

band gap is due to the increased interlayer coupling, which affects the electronic structure

of the material [1].

Also, we compare the density of states of monolayer, bilayer, and bulk MoS2. The one

key difference in the density of states plot of monolayer, bilayer, and bulk as seen in Fig

3.17 is the sharpness of the peaks. The monolayer density of states has sharp peaks which

tend to get broader as we go from monolayer to bilayer and eventually to bulk. This is

attributed to the phenomena of quantum confinement. The monolayer being an isolated

layer with the weakest interlayer coupling among the three confines the electron motion

in the layer itself. Hence the electronic wavefunction in the monolayer is highly localized

compared to the other three thus giving rise to very sharp peaks. The bilayer and bulk
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on the other hand have strong interlayer couplings which give rise to a more delocalized

electronic wavefunction that increases the available energy states to occupy giving rise to

the broader density of state peaks.

(a) Monolayer

(b) Bilayer

(c) Bulk

Figure 3.17: This figure compares of density of states of monolayer bilayer and bulk MoS2

The planar charge density and planar potential energy plots were studied. These plots

were used to understand better how interlayer spacing affects the nature of band gaps

in MoS2 bilayer and bulk. Below are the bilayer MoS2 structure results. It can be seen

from the both planar average charge and potential energy plots that GGA overestimates
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(a) Monolayer charge density plot (b) Bilayer charge density plot

(c) Bilayer planar potential energy
plot

Figure 3.18: This figure compares the nature of planar charge density and planar potential
energy for bilayer MoS2, subplot 3.18a is for reference and shows how Sulfur (yellow region)
and Molybdenum (red region) contribute to planar charge density.

band structure. When vdw correction is added to GGA using grimme df2 [3] the planar

charge density and planar average potential plot matches with that of non-local and LDA

exchange-correlation functional.
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