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Preface

This dissertation represents the culmination of several months of research and hard work.

It is with great pleasure that I present it to the academic community. Throughout this

journey, I have been fortunate to receive support and guidance from many individuals

and the institution, to whom I owe immense gratitude. The dissertation is organized as

follows: Chapter 1 provides an introduction to the topic, including its significance and

relevance. Chapter 2 reviews the existing literature on Raaga Identification using

different methods, synthesizing key findings and identifying gaps in the literature.

Chapter 3 outlines the methodology employed in this study, detailing the research design,

data acquiring methods, and analytical approach. Finally, Chapter 4 presents the

empirical findings and analysis.
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Machine Learning Approach Towards Raga Identification

Navin D. Matonkar

MAY, 2024

Abstract:

Raga is the essence of Indian Classical Music that is used in its composition, performance,

improvisation and organization. This work has developed a method for Raga

identification using MFCC with machine learning algorithms and deep learning . A

comparative study is done on the efficiency of the different machine learning model for

Raaga Identification. Raaga Identification helps to Identify different Raaga. A

comparative study is done on the efficiency of the different machine learning model for

Raaga Identification. Raaga Identification helps to Identify different Raaga. Automatic

identification of the underlying raga in an Indian Classical song has applications in areas

like music recommendation and indexing. The achieved accuracy are 94.99, 90, 80.5, 90

for CNN ,SVM ,XBG ,Random Forest respectively.
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CHAPTER 1

1.Introduction

1.1 Background

What is Indian Classical Music?

India as a country is widely famous for its rich cultures, and traditions. Everything about

India is custom opulent. From our attire to the cuisines, the languages to the holidays, and

from our taste buds to our music. Indian Classical music is one of the oldest forms of art.

It originated from the Vedic Literature of Hinduism and the ancient Natyashastra. Indian

Classical Music can be divided into its two base elements which are Raga and Tala. The

raga mainly forms the musical structure of the song while the tala measures the time.

Even though the range of Indian Classical Music is so vast and it is an ancient art, it can

be separated into two main parts geographically – The North Indian part which is called

the Hindustani Music, and the South Indian Classical Music, which is termed as the

Carnatic Music[1].

Hindustani Classical music is all about improvisation and playing and exploring all

aspects of the raga and Carnatic Classical Music is all about tala or composition-based.

But the ancient Natya Shastra text is at the root of Indian Classical Music in general. It is

so diverse and authentic that with time it has adapted itself to various regional styles,

dialects, and languages, take for example Bengali Classical Music. Before the ancient

Delhi Sultanate, there wasn’t much difference between Hindustani Classical Music and
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Carnatic Classical Music. But after the Sultanate empire, North India was differentiated

from South India and the traditions took different forms, adapting themself to their

customs and folklores and vibes. That’s how Carnatic and Hindustani Classical Music

was originated.

The songs composed under Indian Classical Music are heavily based on our Customs,

religious traditions, and holidays and hence the instruments used in the production of this

music are kept pure and true to their name, by using traditional Indian instruments.

Instruments like Table, Harmonium, Sitar, Sarod. The sounds produced by these

Classical Instruments are some of the crispest sounds you’ll ever hear.

Some of the famous Indian Classical Musicians are Ustaad Bismillah Khan – the famous

Shehnai players who grasped the reign of the traditional Shehnai music like no other and

no one else since then has been able to replace or match those standards. Another

extremely popular artist was Pandit Ravi Shankar, globally known for his iconic

contribution to Indian Classical Music, he was widely famous for his Sitar skills.

Hariprasad Chaurasia is another great example of Indian Classical Musicians, he is

known as the legendary flutist. This one is quite a heartbreaking one; the famous singer

Jagjit Singh who sang the song “Chitthi Na Koi Sandesh” was also extensively trained in

Indian Classical Music. Female artists like Lata Mangeshkar, Asha Bhosle, Gauhar Jaan,

are amongst some of the most legendary Indian Classical Musicians of our country.

An interesting fact about Indian Classical Music is that it follows the “Gharana Culture”.

According to the Gharana Culture, one family practices one raga or instrument for
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generations. A lot of the most famous Indian Classical Music Artists belonged to the

Gharana Culture.

Hindustani Classical Music

The Indian Classical Music branches into the North Indian Classical Music or widely

known as the Hindustani Classical Music or Shashtriya Sangeet. Originated in the 12th

century, it has a 12-note scale that focuses on the improvisation and exploration of ragas.

There are three main octaves in this music form, mainly, low, medium, and high, and

each octave resonates with a body part. Like a low octave in the heart, medium octave in

the throat, and high octave in the head. Even though Hindustani music solely focuses on

the vocals, in recent years and especially outside India and Asia, Instrumental Hindustani

Classical Music is extremely popular. Partly because of the language barrier and partly

because of the faster and refreshingly different instrumental sounds.

Examples of such classical compositions are innumerable such as “Bansiya Bajawat”

based on Raga Yaman, “Jaago Mohan Pyaare” based on Raga Bhairav, “Jaao Shyam

Tum Humse Na Bolo” based on Raga Bhairvi.

Carnatic Classical Music

The other branch of Indian Classical Music is Carnatic Music or Karnataka Sangitam.

The difference between Hindustani Classical Music and Carnatic Classical Music comes

with the geography of the states. Carnatic music is based around the South Indian

Languages, widely famous in states like Tamil Nadu, Karnataka, Telangana, Kerala,

Andhra Pradesh, and Kerala.
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Another major difference is that Carnatic Music focuses more on the vocals. All the

compositions, even the instrumental ones are supposed to be sung. The rules of Carnatic

Classical Music are also more stringent than that of Hindustani Classical Music.

One of the best aspects of India is the way every culture and customs are celebrated here.

Carnatic Classical Music is also widely celebrated throughout Southern India. The city of

Chennai holds a six-week-long music season in which Carnatic Music is widely

appreciated. The Ragas may be termed or named differently in Carnatic Classical Music

than Hindustani Classical Music but their tone remains the same.

What is Thaats?

In Hindustani (North Indian) classical music system, a thaat represents a Parent Scale that

uses at least 7 swars/notes(out of the 12 swars) to make a Raaga or Raag. Out of these

seven notes–sa re ga ma pa dha ni–Sa and Pa remains constant without variations but

other notes: re ga ma dha and ni each have two variants (natural vs. flat, or natural vs.

sharp), so there is a possibility of getting 32 different thaats, but 10 thaats are commonly

used in Hindustani music[2].

Pandit Vishnunarayan Bhatkhande:

The modern thaat system was created by Vishnu narayan Bhatkhande(1860–1936). He

modelled his system after the Melakartha system of carnatic music classification.

A Thaat always has the following rules:

A thaat must have seven tones out of the twelve tones [seven natural, four flat (Re, Ga,

Dha, Ni), one sharp (Ma)]



5

The tones must be in ascending sequence: Sa Re Ga Ma Pa Dha Ni

A thaat cannot contain both the natural and altered versions of a note

A thaat, unlike a raga, does not have separate ascending and descending lines

A thaat has no emotional quality (which ragas, by definition, do have)

Thaats are not sung but the ragas produced from the thaats are sung ,10 Thaats as follows

with respect to the Raga :

1. Kalyaan Thaat – This Thaat has a group of evening ragas. As this Thaat is considered

as a blessing-seeking and soothing. it is sung at the beginning of a concert in the evening.

Like Bhairav, this Thaat too is vast and so has many variations like Shuddha Kalyan,

Shyam Kalyan, Yaman Kalyan, Anandi Kalyan, Khem Kalyan (Haunsdhwani + Yaman),

Savani Kalyan etc.

2. Bilaawal Thaat - It’s the most fundamental of all the ten Thaats and is related to the

morning.

3. Khamaaj Thaat – It is obtained by replacing the Shuddha Nishad of Bilawal by Komal

Nishad. Its nature is romantic (Shringar Ras).

4. Bhairav Thaat – Bhairav Thaat uses Komal Rishabh and Komal Dhaivat. It has manly

and austere feelings. Itf is exceptionally huge and so constitutes a large number of note

combinations like Ahir Bhairav, Alam Bhairav, Anand Bhairav, Bairagi Bhairav, Beehad

Bhairav, Bhavmat Bhairav, Devata Bhairav, Gauri Bhairav, Nat Bhairav, Shivmat

Bhairav etc. It is typically sung in a devotional mood in the early morning.

5. Poorvi Thaat – This is the mixture of komal Dhaivat to Marwa Thaat. It is intensely

sober and is sung at the sunset.
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6. Maarva Thaat – It’s a combination of komal Rishabh and Kalyan Thaat. This Thaat

coveys the mood of the sunset and so has a feeling of nervousness.

7. Kaafi Thaat – Kafi Thaat uses the Komal Gandhar and Komal Nishad. It’s a late

evening raga and is associated with the spring.

8. Aasaavari Thaat – Asavari Thaat is a blend of Komal Dhaivat and Kafi Thaat. It has

the nature of renunciation and sacrifice as well as suffering. It is apt for late morning.

9. Bhairavi Thaat – Bhairavi uses all the komal swars, Rishabh, Gandhar, Dhaivat,

Nishad. Bhairavi Raga is named after the cosmic feminine power (i.e. Shakti or Maa

Durga). It conveys the feeling of devotion and compassion. It is actually sung in the early

morning, yet customarily its singing ends the program.

10. Todi Thaat – This is regarded as the king of all Thaats, as symbolizes pleased worship

with a placid, warm outlook and is sung in the late morning.

The specifications of each of the above thaats and popular Raagas in each Thaat are given

below:

1. Kalyaan Thaat : S R G Ḿ P D N (Teevra Madhyam Ḿ)

Raagas: Kalyaan/ Shuddha Kalyaan, Shyam Kalyan, Bhupaali, Chaandni Kedaar,

Chhayaanat, Gaud Saarang, Hameer, Hindol, Kaamod, Kedaar, Nand, Yaman/ Aiman,

Yaman Kalyaan

2. Bilaawal Thaat : S R G M P D N (All Shuddha Swars)
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Raagas: Bilaawal/ Alahiya Bilaawal, Bihaag, Nat Bihaag, Bihaagada, Deshkaar/ Desikaar,

Durga, Hamsadhwani, Hemkalyaan, Kaushik Dhwani, Shankara

3. Khamaaj Thaat : S R G M P D n (Only Nishaad n is komal)

Raagas: Khamaaj, Desh, Gara, Gaud Malhaar, Gaawati, Gorakh Kalyaan, Jayjayvanti,

Jhinjhoti, Jog, Kalaavati, Rageshri, Saraswati, Sorat, Tilak Kaamod, Tilang

4. Bhairav Thaat : S r G M P d N (Rishabh r and Dhaivat d are komal)

Raagas: Bhairav, Ahir-Bhairav, Nat-Bhairav, Gauri, Gunkali, Jogia, Kaalingadaa,

Ramkali, Vibhaas

5. Poorvi Thaat : S r G Ḿ P d N (Rishabh r, Dhaivat d, both are komal; and Madhyam Ḿ

is Teevra)

Raagas: Poorvi, Basant, Lakshmi Kalyaan, Lalit, Paraj, Puriyaa Dhanashri, Shree

6. Maarva Thaat : S r G Ḿ P D N (Rishabh r is komal, Madhyam Ḿ is Teevra)

Raagas: Maarwa, Bhankar, Bhatiyaar, Lalit, Puriyaa, Puriyaa Kalyaan, Sohini, Vibhaas

Kaafi Thaat : S R g M P D n (Gaandhaar g, Nishaad n, both are komal)

Raagas: Kaafi, Abhogi, Bageshri, Bahaar, Barwaa, Bhimpalaasi, Brindaavani Saarang,

Chandrakauns, Dhaani, Jog, Megh, Ramdaasi Malhaar, Surdaasi Malhaar, Mian Malhar,

Nayaki Kaanhadaa, Patdeep/ Patdeepki/ Pradipki, Piloo, Shahana, Shuddha Saarang

8. Aasaavari Thaat : S R g M P d n (Gaandhaar g, Dhaivat d, and Nishaad n, all three are

komal)
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Raagas: Aasaavari, Adaanaa, Darbaari Kaanhadaa, Kaunsi Kaanhadaa, Desi, Dev

Gandhaar, Jaunpuri

9. Bhairavi Thaat : S r g M P d n (Rishabh r, Gaandhaar g, Dhaivat d, and Nishaad n, all

four are komal)

Raagas: Bhairavi, Bhupal Todi, Bilaskhaani Todi, Komal Rishabh Aasaavari, Maalkauns

10. Todi Thaat : S r g Ḿ P d N (Rishabh r, Gaandhaar g, and Dhaivat d, all three are

komal; and Madhyam Ḿ is Teevra)

Raagas: Todi, Gurjari Todi, Lilaavati, Madhuvanti, Multaani

What is a Raaga?

The notion of a Raga is at the foundation of Indian Classical Music. Simply put, a Raga

uniquely defines a set of musical notes and their allowed arrangements to form a melody

to evoke a certain mood.

In Sanskrit, a Raga means “something that colors your mind.” Within Indian classical

musical systems, a Raga has the power to create very specific emotions in one’s mind. A

range of emotions such as joy, sadness, happiness, romance, yearning, devotion, and

more can be expressed through Raags. Some Raags are seasonal; they enhance the

listener's mood through association with a particular season, such as spring or monsoon.

Ancient scriptures define a Raga as a composition of sounds capable of bringing joy to

the human heart while attaining beauty through specific movements of notes and

phrases[3].
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A raga gets its unique identity by a variety of characteristics which are briefly described

below –

1. Svaras - The seven solfege symbols Sa, Re, Ga, Ma, Pa, Dha, Ni used in ICM are

known as svaras. All svaras, except Sa and Pa, have two to three variations. Every raga

typically consists of a set of five to seven svaras. Each svara has well defined functional

role in the context of a given raga . Unlike western music, Svaras don’t have a fixed pitch

value, rather they are relative to each other.

2. Vadi and Samvadi - Vadi and Samvadi are the most significant and second most

significant svara in a raga respectively. Significant svara usually refers to the svara which

is repeated the most or the svara on which the artist can pause for a significant amount of

time.

3. Tonic Pitch - It is the base pitch of the performer which acts as a reference throughout

the performance. The artist is free to choose the Tonic Pitch which corresponds to the

svara Sa and all the other svaras derive their values relative to it. The concept of tonic is

fundamental to any raga in ICM . It should be noted that Tonic Pitch is a pitch value, not

a pitch class.

4. Arohana-Avrohana - The ascending and descending progression of svaras in a raga is

known as Arohana and Avrohana respectively.

5. Gamaka - Gamakas are the various improvisations and ornamentations that can be

brought in by the artist while performing. There are around 15 different gamakas in
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Indian Carnatic Music . For example, kampitam is a gamaka characterized by an

oscillatory pitch movement around the svara.

6. Raga Motif - It is a combination of melodic phrases that characterize a raga . It is the

most noticeable feature used by humans to identify a raga. It is the building block of

ragas on the top of which an artist can improvise.

7. Chalan - The melodic transition from one svara to another is different for every raga

and is defined by the chalan of that raga. It also defines the amount of time an artist needs

to spend on each svara .

What are the ingredients of a Raaga?

Every Raga has its own rules and features. Examples of these rules are:

•Only specific notes are allowed in the raga.

•The raga defines its most important notes, known as Vadi and Samvadi.

•It defines the key phrases that should be used often during improvisation.

•Special treatment must be given to some notes. ex. specific notes that must be sung with

a glide(meend), an oscillation of a particular note(aandolan).

•The raga also sets its mood and tempo. Watch Bhairav videos for a demonstration of an

inherently slow and a peaceful raga vs Deshkar, which has quick-moving notes.

Knowing the rules is necessary for an artist to practice the Raga accurately so that when

it’s performed, the focus can be on the aesthetics. Knowing the rules of a raga, although
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not required by a casual listener, will certainly make their listening experience more

enjoyable.

How many Ragas are known today?

Indian Classical music is a very ancient art form. It has transformed over centuries due to

various influences. And in every generation scholars have made invaluable contributions

in analyzing and documenting the system of Raags. India’s classical music system was

known to have 4,840 Raags at some point in time. This art form is challenging to describe

in a textual format; it is essentially an oral tradition. This music was best passed on down

through the generations by Gurus to their disciples. Due to the challenges faced in

documenting this system of music, many Raags were lost forever, and only a few

hundred remain today.

What is Svara?

Svara (Sanskrit: स् svara) is a word that connotes simultaneously a breath, a vowel, the

sound of a musical note corresponding to its name, and the successive steps of the octave

or saptaka. More comprehensively, it is the ancient Indian concept about the complete

dimension of musical pitch.Most of the time a svara is identified as both musical note

and tone, but a tone is a precise substitute for sur, related to tunefulness. Traditionally,

Indians have just seven svaras/notes with short names, e.g. saa, re/ri, ga, ma, pa, dha, ni

which Indian musicians collectively designate as saptak or saptaka. It is one of the

reasons why svara is considered a symbolic expression for the number seven[4].
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Svara
(long)

Sadja(
षड्ज)

Rishabha
(ऋषभ)

Gandhara
(गाना्)

Madhyama
(मधम)

Pañcham
(पञम)

Dhaivata
(धैवत)

Nishada
(निषाद)

Svara
(short)

Sa
(सा)

Re
(्े)

Ga
(ग)

Ma
(म)

Pa
(प)

Dha
(ध)

Ni
(नि)

12
Varietie
s
(names)

C
(sadja
)

D♭
(komal
re),
D
(suddha
re)

E♭
(komal
ga),
E
(suddha
ga)

F
(suddha
ma),
F♯
(tivra ma)

G
(pancama
)

A♭
(komal
dha),
A
(suddha
dha)

B♭
(komal
ni),
B
(suddha
ni)

Table 1: Svara in North Indian system of Rāga

Table 2; Svara Notation
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Svaras Frequencies

Sa 256

Re 280

Ga 312

Ma 346

Pa 384

Dha 426

Ni 480

Table 3 : Svaras with respect to their frequencies

How are Listeners Identifying Raagas?

Extensive Internalization Through Deliberate Practice:

Prolonged Sadhana: Singers of Hindustani music practice long periods of dedicated

practice, often called sadhana. This practice emphasizes careful consideration of the

subtle qualities of the various ragas. Singers carefully study the ascending and

descending patterns (arohana-avarohana), the tonal center (vadi-samvadi) and each

decorative flourish (gamaka) of each raga.
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Mnemonics and Visualization Tools: Hindustani music teachers (gurus) often use

mnemonics or visualization techniques to help singers remember the unique melodic

structure of each Raga. These techniques can include associating the Raga with specific

syllables for better memorization, creating mental images to represent the melodic flow

of the Raga, or using spatial metaphors to describe the movement of notes within the

Raga.
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1.2 Aim and Objective

Machine learning approach towards Raga Identification

Objective

The primary goal of machine learning-based raga identification is to automatically

categorize an Indian classical music composition into the appropriate raga. A model can

be trained on a dataset of labeled raga recordings to accomplish this. The advantages are

broken down as follows:

Automated Classification: Manually identifying ragas needs expertise because to their

complexity and intricacy. This procedure is automated by machine learning, which makes

it quicker and easier to use.

Raga identification serves as a foundational element for music information retrieval

systems. These algorithms may detect a raga and utilize that information to find related

music, classify music according to emotion or mood, or even create playlists depending

on user preferences.

Education and Learning: Educational resources that teach students how to recognise

ragas can be made using machine learning algorithms. They can also be used to evaluate

raga performances and give artists constructive criticism.
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1.3: Hypotheses

Hypotheses for machine learning approaches to raga identification in Indian classical

music:

Feature-based approaches:

Melodic patterns: Ragas are defined by specific melodic movements and phrases. The

idea is that the model may be trained to distinguish between different ragas by taking

information from the audio, such as pitch contours, intervals, and melodic patterns.

Timbral characteristics:The instruments and techniques used to play different ragas give

them unique tones. It is hypothesised that characteristics such as envelope forms,

inharmonicity, and spectral qualities can be utilised for raga identification.

Rhythmic features:Ragas differ in terms of pace and rhythmic patterns. It is hypothesised

that features that can be extracted to help with classification include pace, rhythmic

patterns, and the existence of particular rhythmic elements.

Combining features:Using a combination of melodic, timbral, and rhythmic

characteristics will probably result in a more accurate raga identification. A model trained

on these combined features should perform better than a model trained on separate

features, according to the hypothesis.

Deep learning approaches:

Learning complex relationships: It is possible for deep learning algorithms to

automatically discover intricate connections between raga labels and audio data. Deep

neural networks are thought to be able to pick up on minute details in audio recordings

that are hard to pick up on with manually created features[4].
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Transfer learning: Raga recognition can be improved by fine-tuning pre-trained deep

learning models on sizable music datasets. It is hypothesised that these models can

increase the accuracy of raga classification by utilising their acquired knowledge of

music representation.

Multimodal learning: Additional information like as performance context or raga

descriptions may be useful for raga identification. It is hypothesised that adding this

multimodal data will enhance the model's raga identification capabilities.
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1.4: Scope

When it comes to identifying ragas in Indian classical music, machine learning (ML)

presents a number of promising advantages.

Automated Raga Classification: Traditionally, brilliant musicians are needed to identify

ragas. This procedure is automated by ML, making it, Faster: Automatically analyse large

collections of music and instantly recognize ragas for use in music recommendation

systems, among other uses. Accessible:Quickly analyse vast collections of music and

instantly recognize ragas for use in music recommendation systems, among other uses.

Even more Knowledgeable Music Information Retrieval (MIR): Raga identification is the

bedrock of MIR systems.

Categorization and Search: Look for similar tracks according to raga and sort music

collections by moods expressed through ragas.Smart Playlists: Create playlists that match

user preference or time of day with raga features.Education And Learning Tools: ML can

be particularly useful in music education: Applications For Interactive Learning: Make

interactive applications that will help students learn how to recognize ragas through

gaming or live feedback.Analysis Of Performance: Study the performance of ragas and

provide data-driven advice for improvement on musical technique.More Than

Classification: Though classification may be one goal among many, ML has greater

potential: Raga Derivation And Exploration: Generate new ragas or their variations from

existing ones using generative models. Assistance In Music Composition: Invent AI tools

that recommend melodic phrases or rhythmic patterns specific to a chosen raga, thus

aiding composition.
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Chapter 2

2. Literature Review

Melody is the spirit of Indian classical music for raga identification.

In 2018, Makarand Velankar et al. evaluated several raga recognition systems using a

dataset of monophonic vocal audio samples ranging from 30 to 180 seconds. The PCD

technique achieved an accuracy of 66.66% for 30-second samples, while the N-gram

approach achieved a 58.33% accuracy in pattern identification using pakad or

conspicuous patterns of raga. N-grams are relevant for distinguishing ragas because they

provide significant data about tune structure, which is maintained during performance

and creation. This approach relies on the succession of 'n' notes, with a 2-gram addressing

a two-note succession and a 3-gram addressing a three-note succession. The tune

structure separates two ragas that may be otherwise very similar[5].

Analyzing Acoustics of Indian Music Audio Signal Using Timbre and Pitch Features for

Raga Identification.

In 2019, Waghmare and Sonkamble proposed a classification system for Indian classical

music based on raga, aimed at helping e-students, authors, and artists. The system uses

different feature extraction algorithms, such as MFCC, LPCC, and PCP, for music

examination and characterization. MFCC feature extraction describes the power spectrum

envelope of a single frame in the MFCC feature vector. The system also uses three pitch

detection algorithms, namely, autocorrelation, cepstrum, and harmonic product spectrum,

to determine the pitch values in an input. The average accuracy of MFCC features is
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above 85%, and the accuracy using pitch features is greater than 90% in all three

approaches[6].

RAAGANG—A Proposed Model of Tutoring System for Novice Learners of Hindustani

Classical Music

In 2020 Kunjal Gajjar et.al proposed a model for a teaching system that hears the singer's

voice and assesses it using raga rules/convention. Raga and Taal are the two most crucial

components of composition in Hindustani music, Hindustani classical music follows the

"Guru Shishya Padhati" style of learning.The System has three sub-modules.Note

Identification, Note Evaluation and Error Correction. Context Sensitive Error Correction

is responsible for replacing the error note there by recommending the proper note.This

module determines the context of the error note and offers suggestions based on the past

and future note sequences. accuracy: Note Identification module is tested comparing

machine generated notes with experts identified notes 89.89%,Note evaluation 180

compositions for 8 ragas 100%error identification is archived , scale of accuracy 56.32%

of suggested correction and as exactly original composition ,70.96% suggested

corrections are excellently adequate and 25.08% are fairly adequate as per aesthetics

correctness scale[7]

Tansen : A System For Automatic Raga Identification

In their paper, Pandey et al. proposed the TANSEN system for raga recognition, which

uses note duration heuristics and hill peak duration for note transcription. They also

employed Pakkad matching and Hidden Markov Model for plain and improvised raga
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identification. The system achieved an accuracy of 77% for plain raga identification and

87% for raga identification with Pakad matching[8]

Raga Identification Using Convolutional Neural Network

In 2019, Ankit Anand proposed a CNN based model to extract melodic features from the

predominant pitch values of a song. CNN for raga identification ,Input layer- Songs as

Images (Pitch Variation over time), Convolutional Layer , Pooling , Fully Connected

Layers and Softmax where the model achieved an accuracy of 96.7% and 85.6%

respectively[9].

Machine Learning For Raga Identification In Indian Classical Music

In 2019 PRANATI CHINTHAPENTA, Proposed outlines a comprehensive approach for

automated raga identification in Indian classical music using machine learning techniques.

The methodology involves data collection, feature extraction, model selection, and

evaluation metrics. The proposed approach aims to leverage a curated dataset of Indian

classical music recordings, annotated with raga labels, and extract relevant features such

as pitch, timbre, and rhythm patterns. The model selection involves traditional models

such as KNN and SVM, as well as neural networks like LSTM and CNN. The proposed

approach aims to contribute to the field of music information retrieval and enhance model

robustness and accuracy through future research with ensemble methods, transfer

learning, and larger datasets . The Train accuracy is 87% and the Test accuracy is

30%[10].
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Raga Identification Using MFCC and Chroma features

In 2017, Kavita.M Deshmukh, P. Deore proposed a idea of Raga Identification Using

MFCC and Chroma features This work attempts to solve the raga classification problem

in a non-linear SVM (support vector machine) framework using a combination of two

relevant features that represent the similarities of a music signal using two different

features MFCC (Mel Frequency Cepstral Coefficient) and Chromagram, accuracy rate is

93%[11].

Machine Learning Based Indian raga Identification for Music Therapy

In 2022, Kiran proposed a idea for Machine Learning Based Indian raga Identification for

Music Therapy using DWT Co-efficient Computation, MFCC Computation .. In Indian

classical music, ragas are utilized to symbolize different moods. Furthermore, a certain

Raga may intensify a certain feeling. Accuracy is 90, 96% [12].

Raga Identification Based on Normalized Note Histogram Features

In 2015, R. Pradeep et. al proposed a discriminative method to identify raga of a

polyphonic music clip using Normalized Note Histogram (NNH) features.A salience-

based method is used to extract the pitch value sequence from the polyphonic music

signal.Note-sequence is obtained from the pitch values by applying the tonic frequency

value.110 clips from a music database are used to validate the suggested classifier and

normalized histogram features. 82.34% is the observed accuracy of the proposed

classifier[13].

https://www.semanticscholar.org/author/Kavita.M-Deshmukh/144695263
https://www.semanticscholar.org/author/P.-Deore/2621860
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Towards Raga Identification of Hindustani Classical Music

In 2019,Jyoti A. Lele et.al proposed a raga identification system with different methods

like Fourier transform, chromogram and spectrogram with a database of few santoor

samples and few songs in light music to get reasonable accuracy for the raga

Identification ,accuracy was good for santoor samples upto 75% [14].

Raga classification using enhanced spatial bound whale optimization algorithm

In 2023,B.S.Gowrishankar,et.al proposed enhanced spatial bound whale optimization

algorithm (ESBWOA) is used that overcome the feature selection problem of high

dimensional features. In addition to this, a weighted salp swarm algorithm (SSA) is used

for selecting the tone-based features from the ragas based on amplitude or each raga

sample[15]

Indian Classical Raga Identification using Machine Learning

In 2021,Dipti Joshi,et.al proposed classification of different ragas like Yaman and

Bhairavi by applying K-Nearest-Neighbor (KNN), Support vector machine (SVM)

machine learning algorithms. Automatic raag classification has been discussed and

attempted previously. Various methods have been used like pitch class distribution (PCD),

HMM, finite automata modelling of the musical rules, pitch class string formation[16].
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Carnatic Music Identification of Melakarta Ragas through Machine and Deep Learning

using Audio Signal Processing

In 2023,Kshitiz Kumar,et.al proposed machine learning and deep learning models to

predict the raga of Indian classical music from a given .wav file using the Librosa library,

a widely used Python package for music analysis .study achieved 98.98% testing

accuracy on a subset of 10 ragas using raw spectrograms and deep learning models[17].

Raga classification using enhanced spatial bound whale optimization algorithm

In 2023,B.S.Gowrishankar,et.al proposed audio features such as mel frequency cepstrum

coefficients (MFCCs), spectral flux, short time energy, audio feature extractor, and

spectral centroid features are used for the prediction of a raga. Enhanced spatial bound

whale optimization algorithm (ESBWOA) , Weighted salp swarm algorithm (SSA) for

feature selection ESBWOA accuracy 94.91%, SVM 70.52% , CNN 94%[18]

Deep Learning-Based Classification of Indian Classical Music Based on Raga

In 2023 ,Singha, Anupam, et al. a convolutional neural network was proposed for raga

classification, which takes the spectrograms of the audio note and identifies the raga of

the note. proposed convolutional neural network model achieved a precision of 97.9% on

raga classification[19]

Raga Recognition Using Neural Networks and N-Grams of Melodies

In 2023,Sharma, Ashish, and Ambuja Salgaonkar proposed a neural network-based

classifier for the recognition of the six ragas: Alhaiya Bilaval, Bhairav, Bhimpalasi,

https://typeset.io/authors/bettadamadahally-shivakumaraswamy-gowrishankar-2wn1fb60
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Vrindavani Sarang, Kedar, and Yaman, from Hindustani classical music has been

constructed.Neural network-based classifier for raga recognition ,N-grams of melodies

used as input for the system.Classifier with 94% accuracy in recognizing six ragas[20].

Machine Learning Based Indian Raga Identification for Music Therapy

In 2022, ,K, Anitha,et.al a machine learning-based algorithm is proposed to identify the

Raga recognition for music therapy, which uses MFCC (Mel Frequency Cepstral

Coefficients) feature along with pitch and chroma information for feature extraction

92.34% accuracy using MFCC, pitch, and chroma features with KNN classification[21]

A Deep Learning Based Approach for Janya Raga Classification in Carnatic Music

In 2022,Kavitha, P., et al. proposed research aims to investigate the effectiveness of deep

learning models for janya raga classification in Carnatic music. The research question we

seek to address is: "How effective are deep learning models for janya raga

classification?" Our hypothesis is that deep learning architectures can effectively capture

intricate melodic nuances and outperform traditional methods. To test our hypothesis, we

will curate a dataset of Carnatic music recordings containing various janya ragas and

preprocess the audio data by extracting relevant features such as Mel-frequency cepstral

coefficients and chroma features. We will then design a deep learning architecture

tailored for raga classification, considering CNNs or RNNs with attention mechanisms.

We will experiment with different layer configurations and activation functions to

optimize the model's performance. To evaluate performance, we will split the dataset into

training, validation, and test sets, train the model using stochastic gradient descent or
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Adam optimizer, and assess the model's accuracy, precision, recall, and F1-score. We

will also perform cross-validation to assess the model's generalization capabilities. 1D

CNN-LSTM model achieved 82.0% accuracy[22]

A Comparison of Audio Preprocessing Techniques and Deep Learning Algorithms for

Raga

In 2022, Hebbar. et.al present study aims to examine the significance of raga

classification in Indian classical music and the role of audio pre-processing techniques

and deep learning algorithms in achieving accurate results. The data collection process

will involve the utilization of audio recordings of ragas, The extracted features will

include Mel-frequency cepstral coefficients and chroma features. The deep learning

architectures explored will include convolutional neural networks and recurrent neural

networks. The models will be trained through cross-validation and hyperparameter tuning

methods, and their accuracy will be evaluated through metrics such as accuracy and F1-

score. The study will further examine the efficacy of pitch co-occurrence matrices and

other computational approaches for raga identification, including spectral feature

extraction and Hidden Markov Models. The proposed supervised learning model for raga

identification in Carnatic music will also be analyzed, which involves training a machine

learning model with features extracted from different Ragas and using this trained model

to classify the Raga of a given audio signal. various deep learning models. achieving a

testing accuracy of 98.1% [22]
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Raga Recognition in Indian Carnatic Music Using Convolutional Neural Networks

In 2022,Rajan.et.al proposes a CNN-based sliding window analysis on mel-spectrogram

and modgdgram for raga recognition in Carnatic music, which neither requires pitch

extraction nor metadata for the estimation of raga.CNN-based sliding window analysis on

mel-spectrogram and modgdgram enables raga recognition in Carnatic music without

requiring pitch extraction or metadata, showcasing promising results for machine

learning-based raga identification [23]

Raga Classification Based on Novel Method of Pitch Co-Occurrence

In 2022,V Rajadnya,et.al. proposed Raga identification in machine learning is achieved

through pitch co-occurrence patterns extracted from audio recordings, aiding in efficient

raga classification using K Nearest Neighbour (KNN) algorithm. This research has

utilised the pattern developed due to co-occurrence of pitches of swaras for classification

and K Nearest Neighbour (KNN) has been used as the classifier.Achieved accuracy: 90%

(cross-validation)[24].

A Survey on Computational Approaches for Raga Identification

In 2022, Patil, Surekha, et al. introduced a proposal for intricate melodic structures in

Indian classical music that evoke distinct emotions and cultural contexts. In the field of

Music Information Retrieval (MIR) systems, automatic raga identification holds

significant importance for preserving India's rich musical heritage. With this aim, various

computational approaches have been proposed for raga identification, which are

discussed in this literature review. Among the proposed ideas, pitch co-occurrence
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matrices have gained prominence in recent research. Deep learning paradigms such as

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have

been utilized to learn hierarchical representations from spectrograms or pitch contours.

Methodologies such as spectral features extraction, including pitch histograms, chroma

vectors, and timbral descriptors from audio recordings, and Hidden Markov Models

(HMMs) for modeling the sequential nature of pitch sequences, have been employed for

raga identification. The achieved accuracy levels reported for each of these methods hold

significance in the academic domain[25].

Implementation of a Supervised Learning Model for Raga Identification in Carnatic

Music

In 2021, Kaimal ,et.al. approach involves training a machine learning model with features

extracted from different Ragas and using this trained model to classify the Raga of a

given audio signal. Various methodologies have been proposed for this task, such as

using the jump sequence of svaras or raw spectrograms from the audio source for

classification. Additionally, an adaptive classifier based on Neural Networks (NN) has

been suggested, whereby a feature set is used for learning. In one study, an accuracy of

99.56% and 99.43% was achieved for a set of ten and twenty Ragas, respectively, using

techniques such as Artificial Neural Networks (ANN), Long Short-Term Memory

(LSTM), and XGBoost models. These results indicate the potential of supervised learning

models for Raga identification in Carnatic music[26].

Raga Recognition in Indian Classical Music Using DeepLearning
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In 2021, Shah, Devansh P., et al. Various studies have explored the application of deep

learning techniques to recognize Ragas in Indian Classical Music. The fundamental idea

behind this approach is to train a deep learning model by utilizing features extracted from

different Ragas. Subsequently, this trained model is used to identify the Raga of a given

audio signal. Multiple methodologies have been proposed for this task, including the use

of raw spectrograms from the audio source and Long Short Term Memory-based

Recurrent Neural Networks (LSTM-RNN) for learning temporal sequences in music data.

One study achieved highly accurate Raga recognition results of 98.98% through a deep

learning and signal processing-based approach on a subset of 10 Ragas in the

CompMusic dataset. These findings highlight the potential of deep learning techniques

for Raga recognition in Indian Classical Music[27]

Classification of Indian Classical Carnatic Music Based on Raga Using Deep Learning

In 2020 John, Siji, et al. In Several studies have investigated the potential of utilizing

deep learning for Raga classification in Indian Classical Carnatic Music. The

fundamental concept is to train a deep learning model with features extracted from

different Ragas and then employ this trained model to classify the Raga of an audio

signal. Different methodologies have been proposed for this task, including using raw

spectrograms and using Long Short Term Memory based Recurrent Neural Networks

(LSTM-RNN) for learning temporal sequences in music data. The accuracy of these

models varies with the methodology employed and the number of Ragas considered. a

testing accuracy of 98.98% was achieved using a deep learning and signal processing-

based approach on a subset of 10 Ragas in the CompMusic dataset[28]
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Chapter 3

3.0 Methodology

In audio processing, software such as Wavpad is often utilized to process audio files. For

feature extraction, where the Mel-frequency cepstral coefficients (MFCC) are extracted

from the audio files. These coefficients are then used as input for machine learning

algorithms . The machine learning algorithms predict the raaga associated with an input

audio file.

3.1: Data Set

Audio files of different Ragas are downloaded from youtube, Than all the unnecessary

noise removed using wavpad soft and all the files are converted from MP3 to WAV

Figure 1: Audio pad software
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Raaga
Names

Total Samples Vocals +
Instruments

Vocals Without
Instrument

Only
Instruments

Bhairav 40 20 10 10

Marwa 40 20 10 10

Poorvi 40 20 10 10

Yaman 40 20 10 10

Bageshree 40 20 10 10

Table 4: Data segregation

5 Types Of Raagas Used In Dataset With Respect To Their Thaats

Sr.No Thaat Raaga Sample Size Sample length

1 Bhairav Bhairav 40 3 Min

2 Marwa Marwa 40 3 Min
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3 Poorvi Poorvi 40 3 Min

4 Kalyan Yaman 40 3 Min

5 Kafi Bageshree 40 3 Min

Table 5 :Type Of Ragas used in Dateset

Description Of Raagas

Raga Bhairav

Raag Bhairav is the very first Raag in Indian classical music; this is called Aadi raag.

Bhairav is known as the king of early morning raags. It creates a meditative atmosphere

that is majestic and masculine in character. If Bhairav were a divine person, he would be

very serious and somber. This raag is a janak, or parent raag. It has produced many

offspring raags, or prakaars (types) such as Ahir Bhairav, Aanand Bhairav, etc. Bhairav’s

equivalent in Carnatic music is Raag Mayamalavagowla. Aandolan (Oscillation) of

komal Re and komal Dha swars; the timing of these movements is very important for

rendering the personality of Bhairav[29].

Raag Marwa

Raag Marwa is the head of the Marwa family of Raags. Marwa traces its roots back to an

ancient raag named Malawa. It sounds most beautiful at dusk. Marwa has the ability to
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create a feeling of restlessness in both the performer as well as the audience by the over-

use of komal Re and the deliberate avoidance of Sa. The restlessness is ultimately put to

an end by displaying the Shadaj[30].

Raag Poorvi

Poorvi is a long-lived sunset raga from East India, which some describe as evoking a

‘serious mood of mystical contemplation’. Mixing narrow and wide intervals (all swaras

have at least one immediate neighbour), its complex twists and turns belie the base

scale’s neat, palindromic nature – with Sa and Pa sometimes being omitted or rendered

durbal in ascent in order to ‘obscure’ these geometric balances, set amidst Ma-mixing

phrase patterns such as rmG, GMPd, PMGmrG. Generally considered to have evolved

from an archaic form of Bhairav (the same scale minus tivra Ma) , the raga’s modern

incarnation is proximate to Puriya Dhanashree (which omits shuddha ma) – and prakriti

with Paraj, Prabhat Bhairav, and Lalit Pancham‘s komal dha incarnation. Also see

overlapping ragas including Reva, Purba, and Baradi[31].

Raga Yaman

Yaman is a Janak Raag from the Kalyan family of raags. Some texts use Raag Yaman

and Raag Kalyan interchangeably. There is also a version which uses both shuddh and

teevra Ma. It is called Yaman-Kalyan or Jaimini-Kalyan. Kalyan has been mentioned in

Bharat Muni’s Natyashastra, which is an ancient literature on the performing arts, written

2000 years ago. It is called Kalyani in Carnatic music and is similar to the western

Lydian scale[32]
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Raga Bageshri

Raga Bageshri is a Hindustani classical raga also called Bagesari, Bageshwari,

Vageshwari amongst others. It is hundreds of years old and an ocean of a raga, a

combination of the ragas Dhanashri and Kanada, and a standard of music schools.

Bageshri has a huge depth of expression allowing a never ending sea of exploration. It is

mentioned in the older treatises and is said to have been first sung by Miyan Tansen, in

the sixteenth century. A late night raag of the second prahar 9pm-12am, which is meant

to depict the emotion of a woman waiting for reunion with her lover.With a very north

Indian in flavour, the predominant mood shringar of Bageshri is teasing, romantic and

flirting delight, It can also be used to express a variety of emotions, yearning, lost love

and a touch of sadness.. A highly romantic raga, lending itself to often sad-romantic

beauty, and the depths of unfulfilled love[33].
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3.2: BLOCK DIAGRAM

Figure 2 Block diagram
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Neural networks

Neural networks are a commonly used, specific class of machine learning algorithms.

Artificial neural networks are modeled on the human brain, in which thousands or

millions of processing nodes are interconnected and organized into layers.

In an artificial neural network, cells, or nodes, are connected, with each cell processing

inputs and producing an output that is sent to other neurons. Labeled data moves through

the nodes, or cells, with each cell performing a different function. In a neural network

trained to identify whether a picture contains a cat or not, the different nodes would

assess the information and arrive at an output that indicates whether a picture features a

cat.

Deep learning

Deep learning networks are neural networks with many layers. The layered network can

process extensive amounts of data and determine the “weight” of each link in the network.

For example, in an image recognition system, some layers of the neural network might

detect individual features of a face, like eyes, nose, or mouth. In contrast, another layer

would be able to tell whether those features appear in a way that indicates a face. Like

neural networks, deep learning is modeled on the way the human brain works and powers

many machine learning uses, like autonomous vehicles, chatbots, and medical

diagnostics[4].

“The more layers you have, the more potential you have for doing complex things well, ”

Malone said.
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Deep learning requires a great deal of computing power, which raises concerns about its

economic and environmental sustainability.

CNN (Convolutional Neural Networks)

Deep Learning (DL) is the latest achievement of the Machine Learning era where it has

presented near-human initially, and nowadays super-human abilities in many applications

including voice-to-text translations, object detection and recognition, anomaly detection,

recognizing emotions from audio or video recordings, etc. Even before the introduction

of the AlexNet, perhaps one can consider that this era has begun with the ground-

breaking article published in the journal, Science, in 2006 by Hinton and Salakhutdinov

[59], which explained the role of “the depth” of an ANN in machine learning. It basically

points out the fact that ANNs with several hidden layers can have a powerful learning

ability, which can further be improved with the increasing depth –or equivalently the

number of hidden layers. Hence comes the term “Deep” learning, a particular ML branch,

which can tackle complex patterns and objects in massive size datasets[35].

In this section, we shall begin with the fundamental tool of DL, the deep (and

conventional) CNNs whilst explaining their basic features and blocks. We will briefly

discuss the most popular deep CNNs ever proposed and then move on with the most

recent CNN architecture, the 1D CNNs, which are focused solely on 1D signal and data

repositories. The particular focus will be drawn on compact and adaptive 1D CNN

models, which can promise certain advantages and superiorities over their deep 2D

counterparts.

https://www.sciencedirect.com/topics/engineering/anomaly-detection
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://www.sciencedirect.com/topics/computer-science/neural-network-architecture
https://www.sciencedirect.com/topics/computer-science/neural-network-model
https://www.sciencedirect.com/topics/computer-science/neural-network-model
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Figure 3 Convolutional Neural Networks

1D Convolutional Neural Networks

The conventional deep CNNs presented in the previous section are designed to operate

exclusively on 2D data such as images and videos. This is why they are often referred to

as, “2D CNNs”. As an alternative, a modified version of 2D CNNs called 1D

Convolutional Neural Networks (1D CNNs) have recently been developed . These studies

have shown that for certain applications 1D CNNs are advantageous and thus preferable

to their 2D counterparts in dealing with 1D signals due to the following reasons:

•There is a significant difference in terms of computational complexities of 1D and 2D

convolutions, i.e., an image with NxN dimensions convolve with KxK kernel will have a

computational complexity ~ O(N2K2) while in the corresponding 1D convolution (with

the same dimensions, N and K) this is ~ O(NK).. This means that under equivalent

https://www.sciencedirect.com/topics/computer-science/computational-complexity
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conditions (same configuration, network and hyper parameters) the computational

complexity of a 1D CNN is significantly lower than the 2D CNN.

•As a general observation especially over the recent studies most of the 1D CNN

applications have used compact (with 1–2 hidden CNN layers) configurations with

networks having<10 K parameters whereas almost all 2D CNN applications have used

“deep” architectures with more than 1 M (usually above 10 M) parameters. Obviously,

networks with shallow architectures are much easier to train and implement.

•Usually, training deep 2D CNNs requires special hardware setup (e.g. Cloud computing

or GPU farms). On the other hand, any CPU implementation over a standard computer is

feasible and relatively fast for training compact 1D CNNs with few hidden layers (e.g. 2

or less) and neurons (e.g. < 50).

•Due to their low computational requirements, compact 1D CNNs are well-suited for

real-time and low-cost applications especially on mobile or hand-held devices

In the aforementioned recent studies, compact 1D CNNs have demonstrated a superior

performance on those applications which have a limited labeled data and high signal

variations acquired from different sources (i.e., patient ECG, civil, mechanical or

aerospace structures, high-power circuitry, power engines or motors, etc.). As illustrated

in below Fig, two distinct layer types are proposed in 1D CNNs: 1) the so-called “CNN-

layers” where both 1D convolutions, activation function and sub-sampling (pooling)

occur, and 2) Fully-connected (dense) layers that are identical to the layers of a typical

Multi-layer Perceptron (MLP) and therefore called as “MLP-layers”. The configuration

of a 1D-CNN is formed by the following hyper-parameters:

https://www.sciencedirect.com/topics/computer-science/neural-network-application
https://www.sciencedirect.com/topics/computer-science/neural-network-application
https://www.sciencedirect.com/topics/computer-science/cloud-computing
https://www.sciencedirect.com/topics/computer-science/limited-labeled-data
https://www.sciencedirect.com/topics/computer-science/activation-function
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1)Number of hidden CNN and MLP layers/neurons (in the sample 1D CNN shown in

below Fig, there are 3 and 2 hidden CNN and MLP layers, respectively).

2)Filter (kernel) size in each CNN layer (in the sample 1D CNN shown in below Fig,

filter size is 41 in all hidden CNN layers).

3)Subsampling factor in each CNN layer (in the sample 1D CNN shown in below Fig ,

subsampling factor is 4).

4)The choice of pooling and activation functions.

Figure 4 A sample 1D CNN configuration with 3 CNN and 2 MLP layers.

As in the conventional 2D CNNs, the input layer is a passive layer that receives the raw

1D signal and the output layer is a MLP layer with the number of neurons equal to the

number of classes. Three consecutive CNN layers of a 1D CNN are presented in the

below Fig . As shown in this figure, the 1D filter kernels have size 3 and the sub-

sampling factor is 2 where the kth neuron in the hidden CNN layer, l, first performs a

sequence of convolutions, the sum of which is passed through the activation function, ,

https://www.sciencedirect.com/topics/computer-science/network-configuration
https://www.sciencedirect.com/topics/engineering/perceptron
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followed by the sub-sampling operation. This is indeed the main difference between 1D

and 2D CNNs, where 1D arrays replace 2D matrices for both kernels and feature maps.

As a next step, the CNN layers process the raw 1D data and “learn to extract” such

features which are used in the classification task performed by the MLP-layers. As a

consequence, both feature extraction and classification operations are fused into one

process that can be optimized to maximize the classification performance. This is the

major advantage of 1D CNNs which can also result in a low computational complexity

since the only operation with a significant cost is a sequence of 1D convolutions which

are simply linear weighted sums of two 1D arrays. Such a linear operation during the

Forward and Back-Propagation operations can effectively be executed in parallel.

Figure 5 Three consecutive hidden CNN layers of a 1D CNN

This is also an adaptive implementation since the CNN topology will allow the variations

in the input layer dimension in such a way that the sub-sampling factor of the output

CNN layer is tuned adaptively. The details related to Forward and Back-Propagation in

CNN layers are presented in the next sub-section.

https://www.sciencedirect.com/topics/computer-science/classification-task
https://www.sciencedirect.com/topics/engineering/network-topology
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3.3: Machine Learning

What is machine learning?

Machine learning is a subfield of artificial intelligence, which is broadly defined as the

capability of a machine to imitate intelligent human behavior. Artificial intelligence

systems are used to perform complex tasks in a way that is similar to how humans solve

problems[36].

SVM(Support Vector Machine Algorithm)

Support Vector Machine or SVM is one of the most popular Supervised Learning

algorithms, which is used for Classification as well as Regression problems. However,

primarily, it is used for Classification problems in Machine Learning.

The goal of the SVM algorithm is to create the best line or decision boundary that can

segregate n-dimensional space into classes so that we can easily put the new data point in

the correct category in the future. This best decision boundary is called a hyperplane[37].

SVM chooses the extreme points/vectors that help in creating the hyperplane. These

extreme cases are called as support vectors, and hence algorithm is termed as Support

Vector Machine. Consider the below diagram in which there are two different categories

that are classified using a decision boundary or hyperplane:
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Figure 6 SVM Hyperplane

SVM can be of two types:

Linear SVM: Linear SVM is used for linearly separable data, which means if a dataset

can be classified into two classes by using a single straight line, then such data is termed

as linearly separable data, and classifier is used called as Linear SVM classifier.

Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which means

if a dataset cannot be classified by using a straight line, then such data is termed as non-

linear data and classifier used is called as Non-linear SVM classifier.

Hyperplane and Support Vectors in the SVM algorithm:
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Hyperplane: There can be multiple lines/decision boundaries to segregate the classes in n

dimensional space, but we need to find out the best decision boundary that helps to

classify the data points. This best boundary is known as the hyperplane of SVM.

The dimensions of the hyperplane depend on the features present in the dataset, which

means if there are 2 features (as shown in image), then hyperplane will be a straight line.

And if there are 3 features, then hyperplane will be a 2-dimension plane.

We always create a hyperplane that has a maximum margin, which means the maximum

distance between the data points.

Support Vectors Regression:

The data points or vectors that are the closest to the hyperplane and which affect the

position of the hyperplane are termed as Support Vector. Since these vectors support the

hyperplane, hence called a Support vector.

How does SVM works?

Linear SVM:

The working of the SVM algorithm can be understood by using an example. Suppose we

have a dataset that has two tags (green and blue), and the dataset has two features x1 and

x2. We want a classifier that can classify the pair(x1, x2) of coordinates in either green or

blue. Consider the below image:
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Figure 7Linearly separable data points

So as it is 2-d space so by just using a straight line, we can easily separate these two classes. But

there can be multiple lines that can separate these classes. Consider the below

Figure 8 Linearly separable data points
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Hence, the SVM algorithm helps to find the best line or decision boundary; this best

boundary or region is called as a hyperplane. SVM algorithm finds the closest point of

the lines from both the classes. These points are called support vectors. The distance

between the vectors and the hyperplane is called as margin. And the goal of SVM is to

maximize this margin. The hyperplane with maximum margin is called the optimal

hyperplane.

Figure 9:Optimal hyperplane

Non-Linear SVM:

If data is linearly arranged, then we can separate it by using a straight line, but for non-

linear data, we cannot draw a single straight line. Consider the below image:
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Figure 10 Non linear data

So to separate these data points, we need to add one more dimension. For linear data, we

have used two dimensions x and y, so for non-linear data, we will add a third dimension z.

It can be calculated as:

z=x2 +y2

By adding the third dimension, the sample space will become as below image:
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Figure 11 Mapping 1D data to 2D to become able to separate the two classes

So now, SVM will divide the datasets into classes in the following way. Consider the

below image:

Figure 12 Best Hyperplane in 3D space
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Since we are in 3-d Space, hence it is looking like a plane parallel to the x-axis. If we

convert it in 2d space with z=1, then it will become as:

Figure 13 circumference of radius 1 in case of non-linear data

Hence we get a circumference of radius 1 in case of non-linear data.

Random Forest Algorithm

Random Forest algorithm is a powerful tree learning technique in Machine Learning. It

works by creating a number of Decision Trees during the training phase. Each tree is

constructed using a random subset of the data set to measure a random subset of features

in each partition. This randomness introduces variability among individual trees, reducing

the risk of overfitting and improving overall prediction performance. In prediction, the

algorithm aggregates the results of all trees, either by voting (for classification tasks) or
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by averaging (for regression tasks) This collaborative decision-making process, supported

by multiple trees with their insights, provides an example stable and precise results.

Random forests are widely used for classification and regression functions, which are

known for their ability to handle complex data, reduce overfitting, and provide reliable

forecasts in different environments[38].

Figure 14 Random Forest Classifier

What are Ensemble Learning models?

Ensemble learning models work just like a group of diverse experts teaming up to make

decisions – think of them as a bunch of friends with different strengths tackling a

problem together. Picture it as a group of friends with different skills working on a
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project. Each friend excels in a particular area, and by combining their strengths, they

create a more robust solution than any individual could achieve alone.

Similarly, in ensemble learning, different models, often of the same type or different

types, team up to enhance predictive performance. It’s all about leveraging the collective

wisdom of the group to overcome individual limitations and make more informed

decisions in various machine learning tasks. Some popular ensemble models include-

XGBoost, AdaBoost, LightGBM, Random Forest, Bagging, Voting etc.

What is Bagging and Boosting?

Bagging is an ensemble learning model, where multiple week models are trained on

different subsets of the training data. Each subset is sampled with replacement and

prediction is made by averaging the prediction of the week models for regression

problem and considering majority vote for classification problem.

Boosting trains multiple based models sequentially. In this method, each model tries to

correct the errors made by the previous models. Each model is trained on a modified

version of the dataset, the instances that were misclassified by the previous models are

given more weight. The final prediction is made by weighted voting.

How Does Random Forest Work?

The random Forest algorithm works in several steps which are discussed below

Ensemble of Decision Trees: Random Forest leverages the power of ensemble learning

by constructing an army of Decision Trees. These trees are like individual experts, each

specializing in a particular aspect of the data. Importantly, they operate independently,

minimizing the risk of the model being overly influenced by the nuances of a single tree.

https://www.geeksforgeeks.org/xgboost/
https://www.geeksforgeeks.org/differences-between-random-forest-and-adaboost/
https://www.geeksforgeeks.org/lightgbm-light-gradient-boosting-machine/
https://www.geeksforgeeks.org/bagging-vs-boosting-in-machine-learning/
https://www.geeksforgeeks.org/ml-voting-classifier-using-sklearn/
https://www.geeksforgeeks.org/ensemble-methods-in-python/
https://www.geeksforgeeks.org/ensemble-methods-in-python/
https://www.geeksforgeeks.org/decision-tree/
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Random Feature Selection: To ensure that each decision tree in the ensemble brings a

unique perspective, Random Forest employs random feature selection. During the

training of each tree, a random subset of features is chosen. This randomness ensures that

each tree focuses on different aspects of the data, fostering a diverse set of predictors

within the ensemble.

Bootstrap Aggregating or Bagging: The technique of bagging is a cornerstone of Random

Forest’s training strategy which involves creating multiple bootstrap samples from the

original dataset, allowing instances to be sampled with replacement. This results in

different subsets of data for each decision tree, introducing variability in the training

process and making the model more robust.

Decision Making and Voting: When it comes to making predictions, each decision tree in

the Random Forest casts its vote. For classification tasks, the final prediction is

determined by the mode (most frequent prediction) across all the trees. In regression tasks,

the average of the individual tree predictions is taken. This internal voting mechanism

ensures a balanced and collective decision-making process.

Xbg Classifier

XGBoost, short for eXtreme Gradient Boosting, is a powerful machine learning

algorithm known for its efficiency, speed, and accuracy. It belongs to the family of

boosting algorithms, which are ensemble learning techniques that combine the

predictions of multiple weak learners. In this article, we will explore XGBoost step by

step, building on existing knowledge with decision trees, boosting, and ensemble learning,

XGBoost, or Extreme Gradient Boosting, is a state-of-the-art machine learning algorithm

renowned for its exceptional predictive performance. It is the gold standard in ensemble

https://www.geeksforgeeks.org/feature-selection-techniques-in-machine-learning/
https://www.geeksforgeeks.org/ml-classification-vs-regression/
https://www.geeksforgeeks.org/mode/
https://www.geeksforgeeks.org/regression-classification-supervised-machine-learning/


53

learning, especially when it comes to gradient-boosting algorithms. It develops a series of

weak learners one after the other to produce a reliable and accurate predictive

model.Fundamentally, XGBoost builds a strong predictive model by aggregating the

predictions of several weak learners, usually decision trees. It uses a boosting technique

to create an extremely accurate ensemble model by having each weak learner after it

correct the mistakes of its predecessors[39].

The optimization method (gradient) minimizes a cost function by repeatedly changing the

model’s parameters in response to the gradients of the errors. The algorithm also presents

the idea of “gradient boosting with decision trees,” in which the objective function is

reduced by calculating the importance of each decision tree that is added to the ensemble

in turn. By adding a regularization term and utilizing a more advanced optimization

algorithm, XGBoost goes one step further and improves accuracy and efficiency.

It has gained popularity and widespread usage because it can handle large datasets in a

variety of machine-learning tasks, including regression and classification.

Figure 15 XGB Classifier

https://www.geeksforgeeks.org/ml-gradient-boosting/
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What Makes XGBoost “eXtreme”?

XGBoost extends traditional gradient boosting by including regularization elements in

the objective function, XGBoost improves generalization and prevents overfitting.

Preventing Overfitting

The learning rate, also known as shrinkage, is a new parameter introduced by XGBoost.

It is represented by the symbol “eta.” It quantifies each tree’s contribution to the total

prediction. Because each tree has less of an influence, an optimization process with a

lower learning rate is more resilient. By making the model more conservative,

regularization terms combined with a low learning rate assist avoid overfitting.

XGBoost constructs trees level by level, assessing whether adding a new node (split)

enhances the objective function as a whole at each level. The split is trimmed if not. This

level growth along with trimming makes the trees easier to understand and easier to

create.

The regularization terms, along with other techniques such as shrinkage and pruning, play

a crucial role in preventing overfitting, improving generalization, and making XGBoost a

robust and powerful algorithm for various machine learning tasks.

Tree Structure

Conventional decision trees are frequently developed by expanding each branch until a

stopping condition is satisfied, or in a depth-first fashion. On the other hand, XGBoost

builds trees level-wise or breadth-first. This implies that it adds nodes for every feature at

a certain depth before moving on to the next level, so growing the tree one level at a time.
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Determining the Best Splits: XGBoost assesses every split that might be made for every

feature at every level and chooses the one that minimizes the objective function as much

as feasible (e.g., minimizing the mean squared error for regression tasks or cross-entropy

for classification tasks).

In contrast, a single feature is selected for a split at each level in depth-wise

expansion.Prioritizing Important Features: The overhead involved in choosing the best

split for each feature at each level is decreased by level-wise growth. XGBoost eliminates

the need to revisit and assess the same feature more than once during tree construction

because all features are taken into account at the same time. This is particularly beneficial

when there are complex interactions among features, as the algorithm can adapt to the

intricacies of the data.

Handling Missing Data

XGBoost functions well even with incomplete datasets because of its strong mechanism

for handling missing data during training. To effectively handle missing values, XGBoost

employs a “Sparsity Aware Split Finding” algorithm. The algorithm treats missing values

as a separate value and assesses potential splits in accordance with them when

determining the optimal split at each node. If a data point has a missing value for a

particular feature during tree construction, it descends a different branch of the tree. The

potential gain from splitting the data based on the available feature values—including

missing values—is taken into account by the algorithm to determine the ideal split. It

computes the gain for every possible split, treating the cases where values are missing as

a separate group.
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If the algorithm’s path through the tree comes across a node that has missing values while

generating predictions for a new instance during inference, it will proceed along the

default branch made for instances that have missing values. This guarantees that the

model can generate predictions in the event that there are missing values in the input data.

Cache-Aware Access in XGBoost

Cache memory located closer to the CPU offers faster access times, and modern

computer architectures consist of hierarchical memory systems, By making effective use

of this cache hierarchy, computational performance can be greatly enhanced. This is why

XGBoost’s cache-aware access was created, with the goal of reducing memory access

times during the training stage. The most frequently accessed data is always available for

computations because XGBoost processes data by storing portions of the dataset in the

CPU’s cache memory. This method makes use of the spatial locality principle, which

states that adjacent memory locations are more likely to be accessed concurrently.

Computations are sped up by XGBoost because it arranges data in a cache-friendly

manner, reducing the need to fetch data from slower main memory.

Approximate Greedy Algorithm

This algorithm uses weighted quantiles to find the optimal node split quickly rather than

analyzing each possible split point in detail. When working with large datasets, XGBoost

makes the algorithm more scalable and faster by approximating the optimal split, which

dramatically lowers the computational cost associated with evaluating all candidate splits.

Parameters in XGBoost
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Learning Rate (eta): An important variable that modifies how much each tree contributes

to the final prediction. While more trees are needed, smaller values frequently result in

more accurate models.

Max Depth: This parameter controls the depth of every tree, avoiding overfitting and

being essential to controlling the model’s complexity.

Gamma: Based on the decrease in loss, it determines when a node in the tree will split.

The algorithm becomes more conservative with a higher gamma value, avoiding splits

that don’t appreciably lower the loss. It aids in managing tree complexity.

Subsample: Manages the percentage of data that is sampled at random to grow each tree,

hence lowering variance and enhancing generalization. Setting it too low, though, could

result in underfitting.

Colsample Bytree: Establishes the percentage of features that will be sampled at random

for growing each tree.

n_estimators: Specifies the number of boosting rounds.

lambda (L2 regularization term) and alpha (L1 regularization term): Control the strength

of L2 and L1 regularization, respectively. A higher value results in stronger

regularization.

min_child_weight: Influences the tree structure by controlling the minimum amount of

data required to create a new node.

scale_pos_weight: Useful in imbalanced class scenarios to control the balance of positive

and negative weights.
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Why XGboost?

XGBoost is highly scalable and efficient as It is designed to handle large datasets with

millions or even billions of instances and features. XGBoost implements parallel

processing techniques and utilizes hardware optimization, such as GPU acceleration, to

speed up the training process. This scalability and efficiency make XGBoost suitable for

big data applications and real-time predictions.It provides a wide range of customizable

parameters and regularization techniques, allowing users to fine-tune the model

according to their specific needs.XGBoost offers built-in feature importance analysis,

which helps identify the most influential features in the dataset. This information can be

valuable for feature selection, dimensionality reduction, and gaining insights into the

underlying data patterns. XGBoost has not only demonstrated exceptional performance

but has also become a go-to tool for data scientists and machine learning practitioners

across various languages. It has consistently outperformed other algorithms in Kaggle

competitions, showcasing its effectiveness in producing high-quality predictive models.

MFCC (Mel Frequency Cepstral Coefficients) INTERNAL BLOCK

Figure 16 MFCC Internal Block Diagram
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Mel Frequency Cepstral Coefficients (MFCCs) are a widely used feature extraction

technique in audio and speech processing

What are MFCCs?

MFCCs are coefficients that collectively make up a Mel Frequency Cepstrum (MFC),

which is a representation of the short-term power spectrum of a sound. They are used to

represent the spectral characteristics of sound in a way that is well-suited for various

machine learning tasks, such as speech recognition and music analysis[40].

Why are MFCCs important? The sounds generated by a human are filtered by the shape

of the vocal tract including tongue, teeth etc. This shape determines what sound comes

out. If we can determine the shape accurately, this should give us an accurate

representation of the phoneme being produced1.

How are MFCCs calculated?

The MFCC feature extraction process is basically a 6-step process3:

1. Frame the signal into short frames: Frequencies in a signal change over time, so it

doesn’t make sense to do the Fourier transform across the entire signal. We frame the

signal into 20–40 ms frames. 25ms is standard.

2. Windowing: Windowing is applied to notably counteract the assumption made by the

Fast Fourier Transform that the data is infinite and to reduce spectral leakage3.



60

3. Calculation of the Discrete Fourier Transform: An NN-point FFT is done on each

frame to calculate the frequency spectrum, which is also called Short-Time Fourier-

Transform (STFT), where NN is typically 256 or 5123.

4. Applying Filter Banks: This step is to mimic the logarithmic perception of loudness

and pitch of human auditory system and to decorrelate the energy values3.

5. Take the logarithm of all filterbank energies3.

6. Take the DCT of the log filterbank energies: Keep DCT coefficients 2-13, discard the

rest3.

What do MFCCs represent?

If a cepstral coefficient has a positive value, the majority of the spectral energy is

concentrated in the low-frequency regions. On the other hand, if a cepstral coefficient has

a negative value, it represents that most of the spectral energy is concentrated at high

frequencies.



61

Chapter 4

4. Analysis And Conclusions

4.1 Results

Table 5 shows the accuracy that the methods obtained for different Machine Learning

models as well as Deep Learning models. It shows results of percentage accuracy

obtained for raga identification for 5 Raagas each having 40 samples for respective (3min)

duration in algorithmic approaches. The accuracy of 94.99% for CNN . Similarly

90%,80.5%,91% accuracy for SVM, XGB classifier, Random Forest result obtained . The

initial experiments revealed that methods resulted in 100% (5 out of 5) detection of the

given raga with the clip of 3 min duration for the samples chosen of different ragas.

Table Of Different Model Classifiers

Models Training
/Testing

Accuracy F1-score Precision Recall Cross-

Validation

SVM

80/20 90 90 88 88 88

70/30 88 83 84 83 85

60/40 77 78 79 78 82
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Table 6 Table Of Different Model Classifiers

Confusion Matrix

Confusion matrix presents a table layout of the different outcomes of the prediction and

results of a classification problem and helps visualize its outcomes. It plots a table of all

the predicted and actual values of a classifier Calculations using Confusion Matrix:

We can perform various calculations for the model, such as the model's accuracy, using

this matrix. These calculations are given below:

Classification Accuracy: It is one of the important parameters to determine the accuracy

of the classification problems. It defines how often the model predicts the correct output.

CNN

80/20 94.99 94 88 88 70

70/30 93.33 93.3 93.5 93.3 85

60/40 89 89 90.7 90 80

XGB

80/20 75 92.5 93.36 92.5 88.12

70/30 80.5 92.5 93.36 92.5 85

60/40 76.6 92.5 93.36 92.5 82.5

RANDOM
FOREST

80/20 90 88 88 88 88

70/30 91 84 91 90 90

60/40 83 83 84 82 85
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It can be calculated as the ratio of the number of correct predictions made by the

classifier to all number of predictions made by the classifiers. The formula is given below:

Accuracy =
TP + FP

TP + FN + TN + FP

Misclassification rate: It is also termed as Error rate, and it defines how often the model

gives the wrong predictions. The value of error rate can be calculated as the number of

incorrect predictions to all number of the predictions made by the classifier. The formula

is given below:

ErrorRate =
FP + FN

TP + FP + FN + TN

Precision: It can be defined as the number of correct outputs provided by the model or out

of all positive classes that have predicted correctly by the model, how many of them were

actually true. It can be calculated using the below formula:

Precision =
TP

TP + FP

Recall: It is defined as the out of total positive classes, how our model predicted correctly.

The recall must be as high as possible.

Recall =
TP

TP + FN
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F-measure: If two models have low precision and high recall or vice versa, it is difficult

to compare these models. So, for this purpose, we can use F-score. This score helps us to

evaluate the recall and precision at the same time. The F-score is maximum if the recall is

equal to the precision. It can be calculated using the beType equation here.low formula:

F − measure =
2 ∗ Recall ∗ Precision

Recall + Precision
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Result of Confusion Matrix

CONFUSION MATRIX FOR CNN

Figure 17 Confusion Matrix For CNN

The confusion matrix is derived from the CNN method, utilizing a dataset comprising 200

samples distributed among 5 classes.. 80% of the samples (160) were used for training, while the

remaining 20% (40 samples) were reserved for testing. This means that each class is represented

by 8 samples during the testing phase. The classification of 'Bhairav' , 'Marwa' and 'Yaman'

achieved a perfect 100% prediction accuracy, whereas 'Poorvi' achieved 82% accuracy,

misidentifying 18% with 'Bageshree'. 'Bageshree' achieved 88% accuracy, misidentifying 12%

with 'Poorvi'.
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CONFUSION MATRIX FOR SVM

Figure 18 Confusion Matrix For SVM

The confusion matrix is derived from the SVM method, utilizing a dataset comprising 200

samples distributed among 5 classes.. 80% of the samples (160) were used for training, while the

remaining 20% (40 samples) were reserved for testing. This means that each class is represented

by 8 samples during the testing phase. The classification of 'Bhairav' and 'Yaman' achieved a

perfect 100% prediction accuracy, whereas ’Marwa’ achived 83%,misidentifying 17% with

'Poorvi'.'Poorvi' achieved 64% accuracy, misidentifying 18% with 'Bhairav' and 9% with ‘Marwa’.

'Bageshree' achieved 88% accuracy, misidentifying 12% with 'Poorvi'.
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CONFUSION MATRIX FOR XGB CLASSIFIER

Figure 19 Confusion Matrix For XGB Classifier

The confusion matrix is derived from the XGB Classifier method, utilizing a dataset comprising

200 samples distributed among 5 classes.. 80% of the samples (160) were used for training, while

the remaining 20% (40 samples) were reserved for testing. This means that each class is

represented by 8 samples during the testing phase. The classification of 'Yaman' achieved a

perfect 100% prediction accuracy, whereas 'Bhairav' achieved 43% accuracy, misidentifying 14%

with 'Bageshree'.,29% with ‘Yaman’ and 14% with ’Poorvi’.’Marwa’ achieved 83%,

misidentifying 17% . ‘Poorvi’ achieved 73% misidentifying 9% each with 'Bhairav',’Marwa’ and

'Bageshree' . 'Bageshree' achieved 75% accuracy, misidentifying 12% with 'Poorvi' and 12% with

‘Bhairav’.
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CONFUSION MATRIX FOR RANDOM FOREST

Figure 20 Confusion Matrix For Random Forest

The confusion matrix is derived from the Random Forest method, utilizing a dataset comprising

200 samples distributed among 5 classes.. 80% of the samples (160) were used for training, while

the remaining 20% (40 samples) were reserved for testing. This means that each class is

represented by 8 samples during the testing phase. The classification of 'Bhairav' , 'Marwa' and

'Yaman' achieved a perfect 100% prediction accuracy, whereas 'Poorvi' achieved 82% accuracy,

misidentifying 18% with 'Bageshree'. 'Bageshree' achieved 62% accuracy, misidentifying 12%

with 'Poorvi' and 25% with ‘Marwa’.
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4.2 Conclusion

This work integrated a dataset containing 5 different RAAGAS Bandish audio samples to

identify different RAAGAs in Indian Classical Music . This study concluded that the

application of Deep learning gave better results for identifying RAAGAS than machine

learning. The performance is evaluated with respect to Accuracy and F1-score. MFCC

features give results based on timbre information of the signal. The ICM Raga

identification is mainly performed based on patterns of Swaras and their variations. The

patterns and variations of Swaras of ICM are well described by MFCC features. MFCC

gives spectral information.The obtained accuracy is 94.99% for CNN . Similarly 90%,

80.5%, 91% accuracy for SVM, XGB classifier and Random Forest

4.3 Future Work

Future scope of this work can be aimed to Identify more different Ragas as well as Ragas

from same Thaats and also to identify multiples Ragas. We can also work more feature

extraction methods and can classify the best feature extraction method , for Data set we

can try with different sample length like 5 min for each audio sample (Raga ).To work on

hardware to design a system which can record the Ragas and also predict it. Also futher

we can work on music recommendation system based on raaga
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4.5 APPENDIX

CODE:

from google.colab import drive

drive.mount('/content/drive')

import matplotlib.pyplot as plt

%matplotlib inline

import librosa

import librosa.display

import IPython.display as ipd
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import numpy as np

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from keras.optimizers import Adam

from keras.utils import to_categorical

from sklearn.preprocessing import LabelEncoder

import os

import pandas as pd

# Function to extract label from file path

def extract_label(file_path):

# Assuming the label is the last part of the path before the file extension

label = os.path.splitext(os.path.basename(file_path))[0]

return label

# Function to create DataFrame with paths and labels

def create_dataframe(audio_folder):

df_data = {'file_path': [], 'label': []}

for root, dirs, files in os.walk(audio_folder):
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for file in files:

if file.endswith(".wav"):

file_path = os.path.join(root, file)

label = extract_label(file_path)

df_data['file_path'].append(file_path)

df_data['label'].append(label)

df = pd.DataFrame(df_data)

return df

# Specify the folder containing the audio files

audio_folder = '/content/drive/MyDrive/BRagaP'

# Create the DataFrame

df = create_dataframe(audio_folder)

df['label'] = df['label'].str.replace('\d+', '', regex=True)

# Display the resulting DataFrame

print(df)

import os

import pandas as pd
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# Function to extract label from file path

def extract_label(file_path):

# Assuming the label is the last part of the path before the file extension

label = os.path.splitext(os.path.basename(file_path))[0]

return label

# Function to create DataFrame with paths and labels

def create_dataframe(audio_folder):

df_data = {'file_path': [], 'label': []}

for root, dirs, files in os.walk(audio_folder):

for file in files:

if file.endswith(".wav"):

file_path = os.path.join(root, file)

label = extract_label(file_path)

df_data['file_path'].append(file_path)

df_data['label'].append(label)

df = pd.DataFrame(df_data)
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return df

# Specify the folder containing the audio files

audio_folder = '/content/drive/MyDrive/BRagaP'

# Create the DataFrame

df = create_dataframe(audio_folder)

df['label'] = df['label'].str.replace('\d+', '', regex=True)

# Display the resulting DataFrame

print(df)

df.to_excel('xyz.xlsx')

#import scipy.io.wavfile as wav

#audio1= "/content/drive/MyDrive/BRagaP/bageshree01.wav"

#from scipy.io import wavfile as wav

#wavesr2, wave_audio=wav.read(audio1)

#y, sr = librosa.load(audio1)

#chroma = librosa.feature.chroma_cqt(y=y, sr=sr)

#plt.figure(figsize=(10, 4))

#librosa.display.specshow(chroma, y_axis='chroma', x_axis='time')
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#plt.colorbar()

#plt.title('Chroma Feature')

#plt.show()

#chroma.shape

# ## will use different chroma features

#shifted_data, *other_values = librosa.effects.pitch_shift(y, sr=sr, n_steps=3.0)

# # Get the pitch with the maximum magnitude for each frame

#pitch = pitches[np.argmax(magnitudes, axis=0)]

# # Plot the pitch values over time

#plt.figure(figsize=(12, 4))

#librosa.display.waveshow(y, sr=sr, alpha=0.5)

#plt.plot(librosa.times_like(pitch), pitch, label='Pitch (Hz)', color='r')

#plt.title('Pitch Estimation over Time')

#plt.xlabel('Time (s)')

#plt.ylabel('Pitch (Hz)')

#plt.legend()

#plt.show()
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# pitches, magnitudes = librosa.piptrack(y=y, sr=sr)

# # Get the pitch with the maximum magnitude for each frame

# pitch = np.argmax(magnitudes, axis=0)

# # Plot the pitch values

# # plt.figure(figsize=(10, 4))

# # # librosa.display.specshow(pitch, y_axis='chroma', x_axis='time')

# # plt.colorbar()

# # plt.title('Pitch Estimation')

# # plt.show()

# pitch.shape

# # zero_crossings = librosa.feature.zero_crossing_rate(y)

# # zero_crossings.shape

# # rolloff = librosa.feature.spectral_rolloff(y=y)

# # rolloff.shape

# # spectral_flux = librosa.onset.onset_strength(y=y, sr=sr, feature='spectral')

# # spectral_flux

def features_extractor_mfccs(file):
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audio, sample_rate = librosa.load(file)

mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate,n_mfcc= 40);

mfccs_scaled_features = np.mean(mfccs.T, axis=0)

# zero_crossings = librosa.feature.zero_crossing_rate(audio)

# energy = librosa.feature.rms(audio)

# rolloff = librosa.feature.spectral_rolloff(audio)

# spectral_flux = librosa.onset.onset_strength(y=y, sr=sr, feature='spectral')

return mfccs_scaled_features

extracted_features = []

# Loop through each file

for i in range(len(df)):

# file_path = os.path.join(folder_path, file_name)

# Extract features and append to the list

file_path = df.at[i, 'file_path']

features = features_extractor_mfccs(file_path)

file_name = df.at[i, 'label']

# file_name = file_name.title()
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extracted_features.append([features, file_name])

# Print the extracted features

# print(extracted_features)

features_df=pd.DataFrame(extracted_features,columns=['feature','class'])

X=np.array(features_df['feature'].tolist())

y=np.array(features_df['class'].tolist())

le=LabelEncoder()

ti=le.fit_transform(y)

y=to_categorical(ti)

tt = np.argmax(y,axis=-1)

tt

ttt = le.inverse_transform(tt)

ttt

features_df

y.shape

originallabels = le.classes_

print("Original labels: ", originallabels)
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print("Encoded labels: ", np.unique(ti))

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=127)

X_train_flat = np.array([x.flatten() for x in X_train])

X_test_flat = np.array([x.flatten() for x in X_test])

X_train_flat.shape

print(X_train[0])

print(X_train_flat[0])

num_labels = y.shape[1]

#print(num_labels)

y_train

from tensorflow.keras import layers,models

model = models.Sequential()

model.add(layers.Conv1D(32, kernel_size=5, activation='relu',

input_shape=(X_train_flat.shape[1], 1)))

model.add(layers.MaxPooling1D(pool_size=1))

model.add(layers.Conv1D(64, kernel_size=5, activation='relu'))
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model.add(layers.MaxPooling1D(pool_size=1))

model.add(layers.Flatten())

model.add(layers.Dense(128, activation='relu'))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(num_labels, activation='softmax'))

model.compile(optimizer='adam',

loss='categorical_crossentropy',

metrics=['accuracy'])

model.compile(loss='categorical_crossentropy',metrics=['accuracy'],optimizer='Adam')

from keras.callbacks import ModelCheckpoint

from datetime import datetime

num_epochs = 100

num_batch_size = 4

checkpointer =

ModelCheckpoint(filepath='saved_model.hdf5',verbose=1,save_best_only=True)

start = datetime.now()
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history_1 = model.fit(X_train, y_train, batch_size=num_batch_size, epochs=num_epochs,

validation_data=(X_test, y_test), verbose=1,callbacks=[checkpointer])

duration = datetime.now() - start

print("Training completed in time: ", duration)

y_train

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

plt.plot(history_1.history['accuracy'], label='Training Accuracy')

plt.plot(history_1.history['val_accuracy'], label='Validation Accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.title('Accuracy vs Epochs')

plt.legend()

# Plot loss vs epochs

plt.subplot(1, 2, 2)

plt.plot(history_1.history['loss'], label='Training Loss')
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plt.plot(history_1.history['val_loss'], label='Validation Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.title('Loss vs Epochs')

plt.legend()

plt.show()

test_accuracy=model.evaluate(X_test,y_test,verbose=0)

print(f"test set accuracy: {test_accuracy[1] * 100}%")

train_accuracy=model.evaluate(X_train,y_train,verbose=0)

print(f"train set accuracy: {train_accuracy[1] * 100}%")

test_accuracy

#predicted = model.predict(X_test_flat)

#tt = np.argmax(predicted,axis=-1)

#tt

#ttt = le.inverse_transform(tt)ttt

#hh = np.argmax(y_test,axis=-1)
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#hhh = le.inverse_transform(tt)

#yhhh

file ="/content/drive/MyDrive/test/bhaitestravi.wav"

x,sr1 = librosa.load(file)

ipd.Audio(x,rate=sr1)

prediction_feature = features_extractor_mfccs(file)

prediction_feature = prediction_feature.reshape(1,-1)

predicted_probabilities = model.predict(prediction_feature)

predicted_class_label = np.argmax(predicted_probabilities)

predicted_class_label = np.array([predicted_class_label])

prediction_class = le.inverse_transform(predicted_class_label)

print("Predicted class:", prediction_class[0])

from sklearn.metrics import confusion_matrix

import seaborn as sns

from sklearn.metrics import confusion_matrix

# confusion matrix

import seaborn as sns
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# Predict the values from the validation dataset

Y_pred = model.predict(X_test)

# Convert predictions classes to one hot vectors

Y_pred_classes = np.argmax(Y_pred,axis = 1)

# Convert validation observations to one hot vectors

Y_true = np.argmax(y_test,axis = 1)

# compute the confusion matrix

confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)

# plot the confusion matrix

f,ax = plt.subplots(figsize=(8, 8))

sns.heatmap(confusion_mtx, annot=True,

linewidths=0.01,cmap="Blues",linecolor="gray", fmt= '.1f',ax=ax)

plt.xlabel("Predicted Label")

plt.ylabel("True Label")

plt.title("Confusion Matrix")

plt.show()

from sklearn.metrics import f1_score
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from sklearn.metrics import precision_score, recall_score

print(f1_score(Y_true, Y_pred_classes,average='weighted'))

print(precision_score(Y_true, Y_pred_classes,average='weighted', zero_division=1))

print(recall_score(Y_true, Y_pred_classes,average='weighted', zero_division=1))

from sklearn.model_selection import cross_val_score

k=10

cv_result = cross_val_score(X_train,y_train,cv=k) # uses R^2 as score

print('Cross_val Scores: ',cv_result)

print('Cross_val scores average: ',np.sum(cv_result)/k)

svm

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(X,tt,test_size=0.2,random_state=127)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

y_pred_svc = svc_clf.predict(X_test)
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y_pred_svc.shape

def svc_classifier():

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, f1_score

from sklearn.metrics import confusion_matrix, classification_report

from sklearn.metrics import accuracy_score, recall_score

from sklearn.metrics import roc_curve

import matplotlib.pyplot as plt

import numpy

from sklearn import metrics

# SVC classifier

svc_clf = SVC(kernel='linear', probability=True, class_weight="balanced")

svc_clf.fit(X_train, y_train)

y_pred_svc = svc_clf.predict(X_test)

#confmat = pd.DataFrame(confusion_matrix(ytest, y_pred_svc))

acc = accuracy_score(y_test, y_pred_svc)

print('Test accuracy: {:.4f}'.format(acc))



92

print('Test F1 score: {:.4f}'.format(f1_score(y_test, y_pred_svc, average='weighted')))

print('Misclassified images: {} out of {}'.format((y_test != y_pred_svc).sum(),

len(y_test)))

print("SVM Training Score:", svc_clf.score(X_train, y_train))

print("SVM Testing Score:", svc_clf.score(X_test, y_test))

#classifiers.append(svc_clf)

#accuracies['SVC'] = acc

return y_pred_svc,svc_clf

y_pred_svc,svc_clf = svc_classifier()

print(classification_report(y_test, y_pred_svc))

# make predictions and get probabilities

y_pred = svc_clf.predict(X_test)

y_proba = svc_clf.predict_proba(X_test).max(axis=1)

normalize=True

from sklearn.metrics import confusion_matrix

from seaborn import heatmap

# plot confusion matrix
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plt.figure(figsize=(6, 6))

class_labels = ['Bhairav', 'Marwa', 'Poorvi' ,'Yaman' ,'bageshree']

if normalize:

# heatmap properties

hm_kwargs = dict(cmap='Blues', square=True, annot=True, fmt='.2f', cbar=False,

xticklabels=class_labels, yticklabels=class_labels)

confu_matrix = confusion_matrix(y_test, y_pred.astype(int), normalize='true')

heatmap(data=confu_matrix, **hm_kwargs)

plt.title('Confusion Matrix for SVM')

plt.yticks(rotation=0)

plt.show()

else:

# heatmap properties

hm_kwargs = dict(cmap='Blues', square=True, annot=True, fmt='d', cbar=False,

xticklabels=class_labels, yticklabels=class_labels)

confu_matrix = confusion_matrix(ytest, y_pred.astype(int))

heatmap(data=confu_matrix, **hm_kwargs)
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plt.title('Confusion Matrix')

plt.yticks(rotation=0)

plt.show()

from sklearn.model_selection import cross_val_score

k=10

cv_result = cross_val_score(rf,X_train,y_train,cv=k) # uses R^2 as score

print('Cross_val Scores: ',cv_result)

print('Cross_val scores average: ',np.sum(cv_result)/k)

Random Forest

from sklearn.ensemble import RandomForestClassifier

rf=RandomForestClassifier(n_estimators=150,random_state = 3)

rf.fit(X_train,y_train)

print("Train ccuracy of random forest",rf.score(X_train,y_train))

print("Test accuracy of random forest",rf.score(X_test,y_test))

RandomForestClassifier_score=rf.score(X_test,y_test)

y_pred=rf.predict(X_test)
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t_true=y_test

from sklearn.model_selection import cross_val_score

k = 10

cv_result = cross_val_score(rf,X_train,y_train,cv=k) # uses R^2 as score

cv_result_randomforest=np.sum(cv_result)/k

print('Cross_val Scores: ',cv_result)

print('Cross_val scores average: ',np.sum(cv_result)/k)

from sklearn.metrics import classification_report, confusion_matrix

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(random_state = 4)

rf.fit(X_train,y_train)

y_pred = rf.predict(X_test)

cm = confusion_matrix(y_test,y_pred)

print('Confusion matrix: \n',cm)

print('Classification report: \n',classification_report(y_test,y_pred))

from sklearn.metrics import confusion_matrix

from seaborn import heatmap
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# plot confusion matrix

plt.figure(figsize=(6, 6))

class_labels = ['Bhairav', 'Marwa', 'Poorvi' ,'Yaman' ,'bageshree']

if normalize:

# heatmap properties

hm_kwargs = dict(cmap='Blues', square=True, annot=True, fmt='.2f', cbar=False,

xticklabels=class_labels, yticklabels=class_labels)

confu_matrix = confusion_matrix(y_test,y_pred)

heatmap(data=confu_matrix, **hm_kwargs)

plt.title('Confusion Matrix RANDOM FOREST')

plt.yticks(rotation=0)

plt.show()

else:

# heatmap properties

hm_kwargs = dict(cmap='Blues', square=True, annot=True, fmt='d', cbar=False,

xticklabels=class_labels, yticklabels=class_labels)

confu_matrix = confusion_matrix(y_test, y_pred)
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heatmap(data=confu_matrix, **hm_kwargs)

plt.title('Confusion Matrix')

plt.yticks(rotation=0)

plt.show()

XGB

!pip install xgboost

from xgboost import XGBClassifier

#svm = SVC()

xgb = XGBClassifier()

#svm.fit(x_train,y_train)

xgb.fit(X_train,y_train)

#svm_test_pred = svm.predict(x_test)

xgb_test_pred = xgb.predict(X_test)

#svm_acc = accuracy_score(y_test,svm_test_pred)

xgb_acc = accuracy_score(y_test,xgb_test_pred)

#Accuracy on test data for ML classifiers

#print("SVM accuracy: ",svm_acc)
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print("XGB accuracy: ",xgb_acc)

from sklearn.model_selection import KFold

# Split the data into k folds

kf = KFold(n_splits=5)

# Iterate over the folds

for train_index, test_index in kf.split(X):

# Train the model on the training fold

model.fit(X_train, y_train)

# Evaluate the model on the test fold

score = model.score(X_test, y_test)

# Print the score

print(score)

from sklearn.metrics import confusion_matrix

from seaborn import heatmap

# plot confusion matrix

plt.figure(figsize=(6, 6))

class_labels = ['Bhairav', 'Marwa', 'Poorvi' ,'Yaman' ,'bageshree']
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if normalize:

# heatmap properties

hm_kwargs = dict(cmap='Blues', square=True, annot=True, fmt='.2f', cbar=False,

xticklabels=class_labels, yticklabels=class_labels)

confu_matrix = confusion_matrix(y_test, y_pred, normalize='true')

heatmap(data=confu_matrix, **hm_kwargs)

plt.title('Confusion Matrix for XGB CLASSIFIER')

plt.yticks(rotation=0)

plt.show()

else:

# heatmap properties

hm_kwargs = dict(cmap='Blues', square=True, annot=True, fmt='d', cbar=False,

xticklabels=class_labels, yticklabels=class_labels)

confu_matrix = confusion_matrix(ytest, y_pred.astype(int))

heatmap(data=confu_matrix, **hm_kwa

plt.title('Confusion Matrix')

plt.yticks(rotation=0)
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plt.show()

model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])

model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))

test_loss, test_accuracy = model.evaluate(X_test, y_test)

print(f"Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}")
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