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PREFACE 

 

This dissertation represents the culmination of several months of research hardwork, 

and it is with great pleasure that I present it to the academic community.  

Throughout this journey, I have been fortunate to receive support and guidance from 

many individuals and institutions, to whom I owe immense gratitude.  

The dissertation is organized as follows: Chapter 1 provides an introduction to the topic, 

including its significance and relevance. Chapter 2 reviews the existing literature on 

Detection of chlorophyll A in water using various methods, synthesizing key findings 

and identifying gaps in the literature. Chapter 3 outlines the methodology employed in 

this study, detailing the research design, data collection methods, and analytical 

approach. Finally, Chapter 4 presents the empirical findings and analysis. 
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Abstract: 

This work has developed a method for detection of chlorophyll A in water using UV-

VIS spectroscopy with the side of machine learning algorithms. A comparative study is 

done on the efficacy of the different machine learning model to detect the concentration 

of Chl-A. Chlorophyll a is essential for the survival of plants and algae, as it is directly 

involved in the process that allows them to produce the energy they need to grow and 

reproduce. It is also an important indicator of the trophic state of water bodies, as its 

concentration is directly related to the amount of algae present. Chlorophyll a absorbs 

light most effectively in the blue and red regions of the electromagnetic spectrum, with 

peak absorption occurring in the blue (around 430-450 nm) and red (around 660-680 

nm) wavelengths. It is necessary to detect Chlorophyll a in water because it serves as a 

reliable indicator of the presence and abundance of algae and other photosynthetic 

organisms. Machine learning model for prediction of Chl-A was build and the achieved 

RMSE are 0.25, 0.57, 0.44, 0.64 and 0.27 for SVR, PLSR, DTR, RFR and KNR 

respectively. 
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1. INTRODUCTION 

 

 

1.1: CHLOROPHYLL A 

 
The green pigment known as chlorophyll A [Chl-A] is present in cyanobacteria, algae, 

and plants. It is essential to the mechanism by which these organisms turn light energy 

into chemical energy—a process known as photosynthesis. Chlorophyll A is a useful 

biomarker of phytoplankton biomass in aquatic environments, giving important details 

regarding primary productivity and water quality. 

The amounts of phytoplankton, the tiny algae that make up the base of the aquatic food 

chain, is indicated by the quantity of chlorophyll A in the water. Algal blooms caused 

by nutrient-rich environments, such as sewage pollution or agricultural runoff, can 

produce high amounts of chlorophyll A. Excessive algal blooms can disrupt aquatic 

life, lower oxygen levels in the water, and produce toxic circumstances that are harmful 

to people and other creatures, even though certain blooms are normal and necessary for 

the health of the ecosystem. 

Observing chlorophyll levels for evaluating the health of ecosystems and water quality, 

A levels in water bodies are essential. Scientists can detect nutrient contamination, 

monitor changes in primary production, and put protective measures against dangerous 

algal blooms into place by detecting the quantities of chlorophyll A. Furthermore, 

information on chlorophyll A assists in making management choices that preserve 

aquatic ecosystem balance and safeguard water resources. 
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Fig 1: Algae Culture Water 

Photosynthesis is the fundamental process through which autotrophic organisms, such 

as plants, algae, and cyanobacteria, harness light energy to convert carbon dioxide and 

water into organic compounds, mainly sugars, releasing oxygen as a byproduct. 

Chlorophyll-a is the primary pigment responsible for capturing light energy during the 

light-dependent reactions of photosynthesis. Located within the thylakoid membranes 

of chloroplasts, chlorophyll-a absorbs light most efficiently in the blue and red regions 

of the electromagnetic spectrum, with minimal absorption in the green region, giving 

plants their green colour. 

The process of photosynthesis begins when chlorophyll-a molecules absorb photons of 

light energy. This energy is then used to drive a series of chemical reactions, leading to 

the conversion of carbon dioxide and water into glucose and oxygen. The formula for 

photosynthesis can be summarized as: 

                                6CO2+ 6H2O + light energy → C6H12O6 + 6O2 

 

Chlorophyll-a plays a central role in this process by transferring the absorbed light 

energy to reaction centers, where it is used to drive the synthesis of ATP (adenosine 

triphosphate) and NADPH (nicotinamide adenine dinucleotide phosphate), which are 

energy-rich molecules used to power the subsequent dark reactions of photosynthesis. 
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Fig 2: Wavelength graph of chlorophyll A 

Importance of Chlorophyll-a Measurement 

Chlorophyll-a serves as a proxy for primary productivity, which is the rate at which 

autotrophic organisms convert inorganic carbon (CO2) into organic matter through 

photosynthesis. Therefore, monitoring chlorophyll-a concentrations provides valuable 

insights into the overall productivity and health of aquatic ecosystems. 

Chlorophyll-a in Aquatic Environments 

In aquatic environments, chlorophyll-a is primarily found in phytoplankton, 

microscopic algae that inhabit the upper layers of water bodies. Phytoplankton are the 

base of the aquatic food chain, and their abundance and distribution influence the entire 

aquatic ecosystem. Therefore, changes in chlorophyll-a concentrations can have 

significant impacts on the structure and function of aquatic ecosystems. 

Factors Influencing Chlorophyll-a Concentrations 

Chlorophyll-a concentrations in aquatic environments are influenced by various factors, 

including nutrient availability, light intensity, temperature, and water movement. 

Nutrients, particularly nitrogen and phosphorus, are essential for phytoplankton growth 

and chlorophyll-a production. Excess nutrient inputs, often resulting from human 

activities such as agriculture and urbanization, can lead to eutrophication, characterized 

by an overgrowth of phytoplankton and increased chlorophyll-a concentrations. In 
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addition to nutrients, light availability is a critical factor influencing chlorophyll-a 

concentrations. Light is essential for photosynthesis, and changes in light intensity can 

affect phytoplankton growth rates and chlorophyll-a production. 

 Monitoring Chlorophyll-a Concentrations 

The measurement and monitoring of chlorophyll-a concentrations in aquatic 

environments are essential for assessing water quality, detecting eutrophication, and 

understanding ecosystem dynamics. Various methods are used to quantify chlorophyll-

a, including spectrophotometry, fluorometry, and remote sensing. 

 

I. Spectrophotometer method: 

The spectrophotometric method is one of the most commonly used techniques for the 

determination of chlorophyll-a concentration in water bodies. It involves the extraction 

of chlorophyll-a from water samples followed by spectrophotometric analysis of the 

chlorophyll extract.  

Here is a detailed explanation of the spectrophotometric method: 

• Sample Collection: 

Water samples are collected from the study site using a sampling bottle. The 

samples should be collected from the desired depth to ensure representative 

results. 

• Filtration: 

The water samples are filtered to collect the chlorophyll-containing particles. 

Typically, a filter with a pore size of 0.7 to 1.0 μm is used for this purpose. The 

filtrate is discarded, and the filter paper with the chlorophyll-containing 

particles is retained for further analysis. 

• Extraction: 
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The chlorophyll is extracted from the filter paper using a solvent such as 

acetone, methanol, or ethanol. The extraction is typically performed in a dark 

room to minimize chlorophyll degradation due to light exposure. The solvent is 

added to the filter paper, and the chlorophyll is allowed to extract for a specified 

period (usually 24 hours) with occasional shaking to facilitate extraction. 

 

• Spectrophotometric Analysis: 

After extraction, the chlorophyll extract is analyzed using a spectrophotometer. 

The absorbance of the chlorophyll extract is measured at two specific 

wavelengths: around 665 nm (absorption peak of chlorophyll-a) and 750 nm 

(reference wavelength). The choice of wavelengths may vary depending on the 

spectrophotometer used. 

• Calculation of Chlorophyll-a Concentration:  

Chlorophyll-a concentration is calculated using the following formula: 

 

chl − a [
mg

m3
] = [

A∗V

m∗l
]   

 

Where: 

A = Absorbance of the sample at 665 nm 

V = Volume of the extract (in litre) 

m = Slope of the calibration curve (in mg/L per unit of absorbance) 

ℓ = Pathlength of the cuvette (typically 1 cm) 
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SDD: Secchi stick depth 

Secchi stick measurements, also known as Secchi disk depth measurements, are a 

simple and widely used method for estimating water transparency or turbidity in aquatic 

environments such as lakes, rivers, reservoirs, and oceans. It is named after its inventor, 

Angelo Secchi, who was an Italian scientist and priest in the 19th century. This method 

plays a significant role in offering valuable insights into the transparency of water, 

which is crucial for understanding the well-being of aquatic ecosystems. 

It is made up of a black or white circular disk, usually 20 centimetres in diameter, 

attached to a calibrated pole. To conduct a measurement using the Secchi Stick, the disk 

is slowly lowered into the water until it is no longer visible, and then raised until it 

reappears. The depth at which the disk disappears is recorded as the Secchi depth. The 

principle behind the Secchi Stick measurement is based on the fact that as light passes 

through water, it gets scattered and absorbed by suspended particles, dissolved 

substances, and living organisms like algae and plankton. The higher the concentration 

of these impurities in the water column, the lower the Secchi depth, indicating reduced 

water transparency. 

Researchers, resource managers, and legislators may use this data to make well-

informed choices on water quality and conservation by learning important details about 

the dynamics and health of aquatic ecosystems. 

 

𝐶ℎ𝑙 𝑎 = ℮[2.997−1.47 ln[𝑆𝐷𝐷]] 
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Fig 3: Diagram of Secchi stick depth 

 

II. Fluorometric Method: 

The fluorometric method is based on the measurement of chlorophyll-a 

fluorescence emitted by chlorophyll-a molecules when excited by light of a 

specific wavelength. This method offers higher sensitivity and lower detection 

limits compared to spectrophotometric methods. 

• Extraction: Chlorophyll-a is extracted from water samples using a 

solvent such as acetone or ethanol. 

• Analysis: The chlorophyll extract is excited with a light source at a 

specific wavelength (e.g., 430 nm), and the fluorescence emitted by 

chlorophyll-a is measured at a longer wavelength (e.g., 670 nm) using a 

fluorometer. 

• Calculation: Chlorophyll-a concentration is calculated based on the 

fluorescence intensity of the chlorophyll extract. 
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III. High-Performance Liquid Chromatography (HPLC): 

HPLC is a more advanced technique for chlorophyll-a determination that offers 

high sensitivity and precision. It involves the separation of chlorophyll-a from 

other pigments present in the water sample using a chromatographic column, 

followed by quantification of chlorophyll-a based on its retention time and peak 

area. 

• Extraction: Chlorophyll-a is extracted from water samples using a 

solvent such as acetone or methanol. 

• Separation: The chlorophyll extract is injected into an HPLC system 

equipped with a chromatographic column and a detector (e.g., UV-Vis 

detector). 

• Analysis: Chlorophyll-a is separated from other pigments present in the 

sample based on its retention time and peak area. 

• Quantification: Chlorophyll-a concentration is determined by 

comparing the peak area of the chlorophyll-a peak to that of a standard 

chlorophyll-a solution. 

 

IV. Remote Sensing: 

 

Remote sensing techniques, such as satellite imagery and hyperspectral 

imaging, offer a non-invasive approach for monitoring chlorophyll-a 

concentrations over large spatial scales. 

• Data Acquisition: Remote sensing data, such as Landsat or Sentinel 

satellite imagery, is acquired for the study area. 
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• Data Processing: Algorithms are applied to the remote sensing data to 

derive chlorophyll-a concentrations based on the spectral reflectance of 

the water surface. 

• Chlorophyll-a Mapping: Chlorophyll-a concentrations are mapped 

spatially using the processed remote sensing data. 

 

Relation between trophic state of water body and chlorophyll-A 

The trophic state of water bodies is a critical indicator of their overall health and 

ecological balance. Trophic state refers to the level of productivity in a body of water, 

primarily determined by the amount of nutrients, such as phosphorus and nitrogen, 

present in the water. These nutrients are essential for the growth of algae and other 

aquatic plants. Among the various indicators used to assess the trophic state of water 

bodies, chlorophyll a concentration is one of the most widely used and reliable 

measures. 

It is commonly known that the trophic condition of water and the amount of chlorophyll 

an are related. Chlorophyll a content is often low in oligotrophic, or low-nutrient, water 

bodies, such as deep, clear lakes. This is due to the fact that the growth of algae and 

other aquatic plants is constrained by the restricted supply of nutrients. As a result, there 

is often little aquatic creature biomass and the water is clean with high visibility. 

The growth of algae and other aquatic plants is encouraged by high amounts of 

nutrients, especially phosphorus and nitrogen, found in eutrophic, or high-nutrient, 

water bodies. Because of this, eutrophic water bodies have a substantially greater 

concentration of chlorophyll a than oligotrophic water bodies. Dense algal blooms may 

result from these elevated amounts of chlorophyll a, which may have substantial effects 

on the environment, the economy, and public health. 
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Oligotrophic Waters: These are low-nutrient, clear waters, often found in deep lakes 

or reservoirs. Oligotrophic waters have low concentrations of chlorophyll a due to 

limited nutrient availability, resulting in low algal productivity. The water tends to be 

clear with good visibility and supports a relatively low biomass of aquatic organisms. 

Mesotrophic Waters: These waters have moderate nutrient levels and productivity. 

Mesotrophic waters fall between oligotrophic and eutrophic waters in terms of nutrient 

levels and chlorophyll a concentrations. They often have a moderate amount of algae 

and aquatic plant growth. 

Eutrophic Waters: Eutrophic waters are high in nutrients, particularly phosphorus and 

nitrogen. These nutrients promote the growth of algae and other aquatic plants, leading 

to high chlorophyll a concentrations and high primary productivity. Eutrophic waters 

may experience algal blooms, reduced water clarity, and decreased oxygen levels, 

which can negatively impact aquatic life and water quality. 

 

Trophic State Description Nutrients level Chlorophyll a 

concentration (µg/L) 

Oligotrophic Low-nutrient, clear 

water 

Low < 2 

Mesotrophic Moderate nutrient 

levels, moderate 

productivity 

Moderate 2 - 20 

Eutrophic High-nutrient, high 

productivity 

High > 20 

 

Table no.1: Trophic state levels 
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1.2: BACKGROUND 

The rapid increase in population all over the world has demanded an increase in the 

yield of agro products. This has in turn resulted in indiscriminate use of fertilizers.  As 

a result, nutrients such as nitrogen and phosphorus are discharged into water bodies, 

causing eutrophication. Eutrophication is the process by which a water body becomes 

overly nutrient-rich, resulting in abundant growth of simple plant life such as algae. 

Because of this, eutrophic water bodies have a substantially greater concentration of 

chlorophyll a than oligotrophic water bodies. Dense algal blooms may result from these 

elevated amounts of chlorophyll a, which may have substantial effects on the 

environment, the economy, and public health. 

In this work, we determine the concentration of chlorophyll-A using an optical 

approach, specifically a spectrophotometer with machine learning. Monitoring 

chlorophyll a concentration in water is essential for assessing water quality, ecosystem 

health, and the effectiveness of management efforts. By tracking changes in 

chlorophyll a concentration over time, scientists and resource managers can identify 

trends, diagnose problems, and take action to protect and restore water bodies for 

future generations.   
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1.3: AIM AND OBJECTIVE 

• Prediction of chlorophyll-a concentration in water bodies leveraging machine 

learning algorithms. 

• Comparative study of different Machine Learning (ML) models. 

• Access the quality of water bodies using chlorophyll-A concentration. 
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1.4: HYPOTHESES 

• We aim to establish a strong correlation between chlorophyll-a concentration 

and optical sensor readings, which will enable accurate and reliable detection 

of chlorophyll-a in a variety of aquatic environments. 

• We expect our approach to exhibit high sensitivity and specificity in detecting 

chlorophyll-a, enabling accurate measurement of chlorophyll-a levels across a 

broad range. 

• We anticipate our methodology will allow for real-time and in-situ monitoring 

of chlorophyll-a, providing valuable insights into temporal and spatial 

variations in water quality. 

• We aim to develop cost-effective, efficient, and reliable techniques for 

detecting chlorophyll-a in water. This will aid in environmental monitoring, 

resource management, and the protection of aquatic ecosystems. 
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1.5: SCOPE 

The identification of chlorophyll-a in water is crucial because it serves as a major 

indication of ecosystem health and water quality. Algae and cyanobacteria contain the 

pigment chlorophyll-a, whose concentration in water bodies gives important 

information about nutrient levels, algal biomass, and possible dangers of eutrophication 

and toxic algal blooms. It is feasible to evaluate the trophic status of water bodies, 

pinpoint pollution sources, track changes in water quality over time, and provide 

guidance for management and conservation initiatives by precisely measuring the 

quantity of chlorophyll-a. Thus, it is crucial to create effective and trustworthy 

techniques for detecting chlorophyll-a in water in order to monitor the environment, 

manage resources, and safeguard aquatic ecosystems. By developing a reliable and 

affordable method for the detection and measurement of chlorophyll-a in water and by 

leveraging machine learning algorithm and optical sensing techniques to increase the 

accuracy and efficiency of chlorophyll-a monitoring in a range of aquatic environments, 

this project seeks to advance this goal. 
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2.0: LITERATURE SURVEY 

2.1: LITERATURE REVIEWS 

• In 2022, Yang et.al., the author utilize ZY1-02D hyperspectral satellite 

subdivision to estimate the chlorophyll-a concentration of Baiyangdian Lake. 

The study area was chosen to be the Baiyangdian Nature Reserve in northern 

China, which contains a typical inland lake and wetland. By analyzing the 

correlation between the spectral reflectance of the ZY1-02D hyperspectral 

image and the chlorophyll-a concentration, a quantitative hyperspectral model 

of the chlorophyll-a concentration was established. The results showed that the 

estimation of the chlorophyll-a concentration of Baiyangdian Lake based on the 

hyperspectral Fluorescence Line Height (FLH) model was ideal, with an R2 

value of 0.78. The study provides new ideas and technical support for 

monitoring inland water environments.[1] 

• In 2019, S. Yadav et. al aimed to estimate the concentration of chlorophyll-a in 

freshwater Lake Biwa and the coastal water of Wakasa Bay in Japan using 

satellite images and a spectral decomposition algorithm. Results show that both 

Landsat-8/OLI and Sentinel-2A/MSI sensors provided accurate data for coastal 

water, but Sentinel-2A yielded better results for the lake water. The obtained 

results can be useful for evaluating primary productivity in both freshwater and 

coastal water bodies.[2] 

• In 2002, Éva Pápista et.al., suggests using 90% (v/v) ethanol for chlorophyll 

extraction and measurement. Using a succession of ethanol/water solutions with 

decreasing water content, the chlorophyll concentrations of cultures of 

Synechococcus elongatus Nägeli and Scenedesmus acutus Meyen were 
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ascertained. Additionally, the study examined extraction yields using acetone, 

methanol, and 90% ethanol. The results of the trials using Synechococcus 

elongatus Nägeli and Scenedesmus acutus Meyen indicated that the maximum 

extraction yield was obtained with 100% methanol, which was followed by 90% 

ethanol and acetone.[3] 

• Pawan Kumar and associates investigated Renuka Lake in the Lesser Himalaya 

region of India for similar purposes using surface water samples. Renuka Lake 

was classified as hyper-eutrophic. The study's conclusion emphasized the need 

to control nutrient enrichment to restore Renuka Lake.[4] 

• In 2023, Mathilde de FLEURY et.al., studied water bodies in the semi-arid 

Sahelian region and were detected using a deep learning model built on the U-

Net architecture. However, the outcomes demonstrated that a significant 

obstacle and potential source of inaccuracy for numerous current algorithms and 

databases is the identification of aquatic vegetation. Water identification using 

a deep learning model based on U-Net architecture that uses spectral 

information, thresholding, and classifications 98% accuracy in identifying 

Sahelian water bodies was attained. effectively categorized various optical 

water kinds to aid in the knowledge of eco-hydrology.[5] 

• In 2023, Arias-Rodriguez et.al., created a global dataset of lake characteristics 

by combining data from various water monitoring programs with harmonized 

Landsat-8 and Sentinel-2 data. This dataset is then utilized for time series 

analysis, water quality maps for lakes across continents, and model training for 

global water quality prediction. The study models water quality using machine 

learning techniques like random forest regression (RFR) and extreme learning 

machine (ELM). In an effort to enhance the models, the writers also look into 
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more feature engineering. For SDD, TURB, and BOD, trained models obtained 

relatively strong correlations. Random forest regression (RFR) and the extreme 

learning machine (ELM) performed better.[6] 

• In 2022, Barraza-Moraga et.al., proposed the study to determine whether the 

Sentinel-2 MSI sensor is suitable for estimating Chl-a in a lake located in the 

central region of Chile. It also suggests an empirical method that applies 

multiple linear regressions, compares the effectiveness and performance of L1C 

and L2A products and divides the equations created using spring-summer and 

fall-winter data. Spectral band multiple linear regressions. L1C and L2A 

product comparison. R2 > 0.87 indicates a strong algorithmic association with 

Chl-a. The obtained spatial distribution of the concentrations of Chl-a in 

Lanalhue Lake.[7] 

• In 2022, Pompêo et.al., evaluated the quality of surface water using satellite 

photos by counting the number of Cyanobacteria cells per milliliter (cyano), 

measuring light penetration using the Secchi disk technique (SD), and 

measuring the concentration of Chlorophyll a (chl a). Atmospheric correction 

for Case 2 Regional Coast Color (C2RCC) in satellite and Sentinel-2 imagery 

solid chl a and SD estimates for reservoirs in the Cantareira System. Chl a and 

cyano have a strong association in the Broa reservoir.[8] 

• In 2022, Wang et.al., established the inversion model of Chl-a concentration 

using single-band and band-ratio approaches based on in-situ hyperspectral data 

that corresponds to bands on Sentinel-2.one-band technique. band-ratio 

approach. In inland lakes, the band-ratio technique works better for retrieving 

Chl-a and Remote sensing monitoring of Chl-a in northeast China is feasible.[9] 
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• In 2022, Jiarui Shi et.al., compared how well Sentinel-2 and Gaofen-6 satellite 

sensors estimate the quantities of chlorophyll-a in tiny bodies of water. The 

usefulness of remote sensing for tracking water quality measures, such as 

chlorophyll-a, has been shown in earlier studies. However, there aren't many 

direct comparisons between various satellite sensors—especially when it comes 

to smaller bodies of water. By assessing both sensors' capabilities and 

applicability for tracking chlorophyll-a concentrations in smaller aquatic 

habitats, the study seeks to close this gap. Sentinel-2 and Gaofen-6 combined 

sensors were compared to estimate chlorophyll-a. For estimate, four machine 

learning models and five semi-empirical models were employed. Water bodies' 

chlorophyll-a concentrations are estimated using a combination of Sentinel-2 

and Gaofen-6. The most accurate model is the extreme gradient boosting tree 

model.[10] 

• In 2018, Malahlela et.al., used Landsat 8 OLI data to map the amounts of 

chlorophyll-a in the Vaal Dam, which is affected by algae and cyanobacteria. 

Prior studies have shown how useful remote sensing is for tracking the amounts 

of chlorophyll-a in aquatic bodies, especially when using data from Landsat. 

Few research, meanwhile, have explicitly examined how algae and 

cyanobacteria affect water quality using Landsat data. In order to close this gap, 

this work uses Landsat 8 OLI images to provide a thorough characterization of 

the chlorophyll-a concentrations in the Vaal Dam. Utilizing Landsat OLI data, 

stepwise logistic regression (SLR) was conducted. For analysis, vegetation 

indicators sensitive to chl-a were constructed. The range of overall accuracy was 

65% to 83%. The differential vegetation index and chl-a have a positive 

association.[11] 
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• In 2022, Cadondon et.al.,examined the determination of chlorophyll-a pigment 

in Spirulina using a portable pulsed LED fluorescence lidar system as a means 

of tracking algal development. The study tackles the requirement for real-time, 

non-destructive monitoring methods in algae culture. The study illustrates the 

efficacy of the lidar system in precisely detecting chlorophyll-a concentrations 

using Spirulina as a model organism. With possible implications in the 

environmental monitoring and algal cultivation industries, this research 

advances the development of effective monitoring tools for algal growth. 

Transportable LED fluorescence lidar device with pulses. Common techniques 

include adjusted chlorophyll-a concentration, optical density at 680 nm, and 

EEM fluorescence chlorophyll-a pigment at 680 nm. Chlorophyll-a has been 

precisely measured using a portable LED fluorescence lidar device, and the 

F680/F700 lidar ratio is correlated with the concentration of spirulina.[12] 

• In 2020, Kovalevskaya et.al., proposed a study suggesting the inadjustment to 

the spectrophotometric technique for quantifying chlorophyll-a in water bodies' 

suspended particles. Chlorophyll-a analysis is frequently performed using 

spectrophotometric techniques, however different approaches can produce 

different outcomes. By altering the current procedure, the research seeks to 

increase the precision and dependability of chlorophyll-a readings. The work 

advances the precision of chlorophyll-a analysis, which is essential for 

evaluating the water quality in aquatic environments, by improving the 

spectrophotometric approach. Spectrophotometric technique with nuclear 

filters. Filters should be briefly dried for 30 minutes at 50–55°C. Chlorophyll in 

lab cultures and naturally occurring plankton is compared. Chlorophyll a has 

been measured spectrophotometrically using nuclear filters.[13] 
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• In 2012, Wang et.al., proposed a portable measuring tool with an emphasis on 

fluorescence detection that is intended for the identification of chlorophyll-a in 

aquatic environments. The creation of transportable tools for measuring 

chlorophyll-a is essential for monitoring water quality in real time. Compared 

to conventional techniques, the equipment delivers better sensitivity and 

accuracy by using fluorescence detection. This study contributes to the field of 

environmental management and water quality monitoring by addressing the 

demand for practical, on-site chlorophyll-a measuring instruments. Detector 

with two optical lenses and LED illumination. The connection between 

fluorescence intensity and concentration is measured using a 

spectrophotometer. It is advised to use a new dual optical device to test the 

content of chlorophyll-a. For low quantities of chlorophyll-a, good linear 

consistency was found.[14] 

• In 2020, Markogianni et.al., used Landsat data to estimate the concentrations of 

chlorophyll-a in Greece's inland water bodies. The use of remote sensing 

techniques has shown promise in the monitoring of water quality metrics like 

chlorophyll-a. On the other hand, little study has been done expressly on Greek 

inland water bodies. This work intends to close this knowledge gap and offer 

insightful information on chlorophyll-a concentrations in Greek inland 

waterways using Landsat data. With potential implications in environmental 

management and conservation efforts in Greece, the research advances remote 

sensing techniques for monitoring water quality. step-by-step examination of 

multiple regression (MLR). Analyzing principal components (PCA). developed 

models with precise measurements for both man-made and natural lakes. The 



D e t e c t i o n  O f  C h l o r o p h y l l  A  I n  W a t e r  U s i n g  O p t i c a l  S e n s o r s  P a g e  | 23 

 

suggested structure encourages ongoing assessment of the quality of lake 

water.[15] 

• Lu Wang et.al., used hyperspectral imaging technology to evaluate the impact 

of season models on the accuracy of Chl-a estimation in outdoor aquaculture 

ponds in 2015. After removing pigment with 90% ethanol, water samples were 

collected from the ponds of the Freshwater Fish Seed Breeding Center in 

Guangzhou, China, and then tested for Chl-a content (μg/L) using a standard 

spectrophotometer technique. Seasonal variations in chlorophyll-a 

concentrations are as follows: 1.119–32.216 μg/L in winter, 28.097–53.360 

μg/L in spring, 100.162–196.403 μg/L in summer, and 49.241–83.933 μg/L in 

autumn.[16] 

• In 2010, Jieying Xiao and Zijing Guo suggested a study to ascertain the 

concentration of chlorophyll A in waters. A total of 1000 milliliters of water 

were sampled from three artificial lakes. The hot ethanol spectrophotometric 

technique was used to measure the level of chlorophyll-A concentration and 

Analysis of hyperspectral reflectance data. Utilizing reflectance data, identify 

the concentration of chlorophyll-a. Water bodies in Shijiazhuang City has low 

concentrations of chlorophyll-a. Hyperspectral reflectance measurements were 

used to indirectly detect the concentration of chlorophyll-a. [17] 

• In 2023, Ashwini Mudaliar et.al examined how to evaluate the quantity of 

cyanobacterial chlorophyll-a in two wetland habitats using multi-temporal 

Sentinel-2 photos as a water quality indicator. The ability of remote sensing, 

especially with Sentinel-2 data, to track chlorophyll-a concentrations in 

different aquatic bodies has been shown by earlier study. Water samples from 

the marshes of Wadhwana and Timbi were randomly selected. extraction of 
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dissolved oxygen using the American Public Health Association's 

recommended technique. The study found a correlation between declining water 

quality and a decrease in dissolved oxygen and chlorophyll a content. Wetlands' 

dissolved oxygen levels may be efficiently mapped using Sentinel-2 data. [18] 

• In 2019, Pan, Y et.al., introduced a submersible in-situ chlorophyll fluorescence 

detection device that is intended for extremely accurate and instantaneous 

monitoring of chlorophyll content in aquatic settings. Chlorophyll fluorescence 

in the water column is immediately measured by the system using fluorescence 

detection technology, which allows for quick and precise observations without 

the need to collect and analyze samples. accuracy-focused optical route, 

fluorescence signal modulation, and filtering optimization. Longer in-situ 

continuous detection duration with low power consumption. Coefficient of 

correlation between linear response and R over 0.999. Measuring time in situ 

up to three months with an accuracy of 0.02μg/L. [19] 

• In 2021, Basak, R et.al., developed a novel method for estimating chlorophyll-

a concentration in algae species using Electrical Impedance Spectroscopy (EIS). 

They successfully demonstrated that EIS could be used as a rapid and non-

destructive technique for chlorophyll-a estimation in algae. By measuring the 

impedance spectra of different algae species, they were able to establish a 

correlation between impedance values and chlorophyll-a concentration. The 

results showed that the proposed EIS method had a high sensitivity and accuracy 

for chlorophyll-a estimation, making it a promising alternative to traditional 

methods. This novel approach has the potential to significantly improve the 

efficiency and accuracy of chlorophyll-a monitoring in aquatic environments. 

[20] 
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• In 2023, Avantika Latwal et.al utilized Sentinel-2 satellite imagery to detect and 

map water and chlorophyll-a spread for assessing water quality in inland water 

bodies. They successfully demonstrated the effectiveness of Sentinel-2 imagery 

for monitoring water quality parameters. By employing spectral indices and 

machine learning algorithms, they were able to accurately detect water and 

estimate chlorophyll-a concentration. The results showed that Sentinel-2 

imagery could provide valuable information for assessing the spatial and 

temporal dynamics of water quality in inland water bodies. This approach offers 

a cost-effective and efficient solution for large-scale water quality monitoring, 

with significant potential for supporting environmental management and 

conservation efforts. [21] 

• In 2018, Watanabe, F., Alcântara et.al optimized a semi-analytical algorithm for 

estimating chlorophyll-a concentration in productive inland waters. They 

utilized remote sensing data from Landsat 8 OLI imagery and field 

measurements to develop and validate the algorithm. The results demonstrated 

that the optimized algorithm provided accurate estimates of chlorophyll-a 

concentration, with good agreement between satellite-derived and field-

measured chlorophyll-a values. The study highlighted the potential of remote 

sensing techniques for monitoring water quality in productive inland waters, 

offering a cost-effective and efficient method for large-scale chlorophyll-a 

monitoring and environmental management. [22] 

• In 2017, Yang, Z., Reiter et.al investigated the use of ratio-based Near-Infrared 

(NIR) to Red (Red) indices for estimating chlorophyll-a concentrations in 

diverse water bodies. They developed and tested several NIR/Red indices using 

Landsat 8 OLI imagery and field measurements of chlorophyll-a concentration. 
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The results showed that the NIR/Red indices provided accurate estimates of 

chlorophyll-a concentration across different types of water bodies, including 

lakes, reservoirs, and rivers. The study demonstrated the effectiveness of remote 

sensing techniques for monitoring chlorophyll-a concentrations in diverse 

aquatic environments, offering a valuable tool for water quality assessment and 

management. [23] 

• In 2012, Matthews et.al developed an algorithm for detecting trophic status 

(chlorophyll-a concentration), cyanobacterial dominance, surface scums, and 

floating vegetation in both inland and coastal waters using Sentinel-2 satellite 

imagery. The algorithm, based on machine learning techniques and spectral 

indices, achieved high accuracy in identifying these water quality parameters. 

The results demonstrated the effectiveness of the algorithm in providing 

comprehensive assessments of water quality, including eutrophication status 

and the presence of cyanobacterial blooms and surface pollutants. This approach 

offers a valuable tool for monitoring and managing water quality in diverse 

aquatic environments, supporting environmental conservation and management 

efforts. [24] 

• In 2004, Gregor et.al conducted a comparative analysis of in vitro, in vivo, and 

in situ methods for quantifying freshwater phytoplankton using chlorophyll-a 

concentration. They found that the in-situ method, which involved direct 

measurement of chlorophyll-a fluorescence in water samples using a 

fluorometer, provided the most accurate and reliable results compared to the in 

vitro and in vivo methods. The in-situ method demonstrated strong correlations 

with the in vitro method, which involved chlorophyll extraction from water 

samples in the laboratory, and outperformed the in vivo method, which relied 
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on chlorophyll fluorescence measurements in vivo using a portable fluorometer. 

The findings suggest that the in-situ method is the most suitable for accurate 

and efficient quantification of freshwater phytoplankton and chlorophyll-a 

concentration in natural water bodies. [25] 

• In 2001, Giardino et.al investigated the feasibility of detecting chlorophyll 

concentration, Secchi disk depth, and surface temperature in a sub-alpine lake 

using Landsat imagery. They found that Landsat imagery could effectively 

detect chlorophyll concentration, Secchi disk depth, and surface temperature in 

the sub-alpine lake with reasonable accuracy. The results showed strong 

correlations between Landsat-derived values and field measurements for 

chlorophyll concentration (R2 = 0.76), Secchi disk depth (R2 = 0.83), and 

surface temperature (R2 = 0.87). The study demonstrated the potential of 

Landsat imagery for monitoring water quality parameters in sub-alpine lakes, 

providing valuable insights into the spatial and temporal dynamics of water 

quality in these environments. [26] 

• In 2023, Karimian et.al developed a novel framework to predict chlorophyll-a 

concentrations in water bodies using multi-source big data and machine learning 

algorithms. They integrated data from various sources, including satellite 

imagery, meteorological data, and water quality parameters, to train machine 

learning models for chlorophyll-a prediction. The results showed that the 

framework achieved high accuracy in predicting chlorophyll-a concentrations, 

with a coefficient of determination (R2) of 0.85. The study demonstrated the 

potential of big data and machine learning approaches for accurate and efficient 

monitoring of chlorophyll-a concentrations in water bodies, providing valuable 

tools for water quality assessment and management. [27] 
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• In 2008, Randolph et.al., proposed a study to determine if cyanobacteria in 

turbid and productive waters might be identified by hyperspectral remote 

sensing employing optically active pigments such as phycocyanin and 

chlorophyll-a. They discovered that cyanobacterial biomass in murky waters 

could be precisely identified and measured when using hyperspectral remote 

sensing in conjunction with spectral analysis of phycocyanin and chlorophyll-

a. Strong correlations were seen between the values obtained from remote 

sensing and laboratory measurements of chlorophyll-a and phycocyanin, with 

coefficients of determination (R2) of 0.82 and 0.79, respectively. This work 

shows how hyperspectral remote sensing may be used to track cyanobacterial 

blooms in murky aquatic settings, offering important information for managing 

and assessing water quality. [28] 

• In 2018, Ansper, A., & Alikas, K. assessed the viability of extracting 

chlorophyll-a concentrations from water bodies using Sentinel-2 Multi-Spectral 

Instrument (MSI) data. Using Sentinel-2 MSI data, they created and verified an 

algorithm for retrieving chlorophyll-a, and then they compared the outcomes 

with measurements made in-situ. With a coefficient of determination (R2) of 

0.88, the study showed that Sentinel-2 MSI data could reliably estimate 

chlorophyll-a concentrations in different aquatic bodies. The results indicate 

that Sentinel-2 MSI data may be utilized efficiently for WFD reporting, offering 

important insights for managing and assessing water quality. [29] 

• In 2006, Duan, H., Zhang, Y., Zhang, B. et al. assessed chlorophyll-a 

concentration and trophic state for Lake Chagan using Landsat Thematic 

Mapper (TM) imagery and field spectral data. They developed regression 

models to estimate chlorophyll-a concentration from Landsat TM data and 
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found a strong correlation between satellite-derived and field-measured 

chlorophyll-a concentrations, with a coefficient of determination (R2) of 0.82. 

Additionally, they used trophic state indices calculated from chlorophyll-a 

concentrations to classify Lake Chagan as mesotrophic. The study demonstrated 

the effectiveness of Landsat TM imagery for monitoring chlorophyll-a 

concentration and trophic state in Lake Chagan, providing valuable insights for 

water quality assessment and management. [30] 
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2.2: TABULAR REVIEWS 

Paper 

no. 

Abstract Model Results 

[1] In 2022, Yang et.al., ZY1-02D 

hyperspectral satellite 

subdivision was utilized to 

estimate the chlorophyll-a 

concentration. By analyzing the 

correlation between the spectral 

reflectance of the ZY1-02D 

hyperspectral image and the 

chlorophyll-a concentration, a 

quantitative hyperspectral 

model of the chlorophyll-a 

concentration was established. 

Hyperspectral 

Fluorescence Line 

Height (FLH) 

model 

 

 

R2 = 0.78 

[2]  In 2019, S. Yadav et. al aimed 

to estimate of chlorophyll 

concentration in lake water and 

coastal water using Landsat-8 

and Sentinel-2A satellite 

imagery.  

Spectral 

decomposition 

algorithm for 

chlorophyll-a 

estimation using 

Landsat-8/OLI and 

Sentinel-2A/MSI 

satellite images 

Landsat-8/OLI and 

Sentinel-2A/MSI 

sensors provided 

accurate data for 

coastal water. 

[3] In 2002, Éva Pápista et.al., The 

study critically examined the 

ISO:10260, 1992 standard, 

which recommends using 90% 

(v/v) ethanol for chlorophyll 

extraction and measurement.  

Acetone, 

methanol, and 

90% ethanol 

Maximum 

extraction yield 

obtained with 

100% methanol, 

followed by 90% 

ethanol and 

acetone  

[4] Pawan Kumar proposed a study 

focusing on understanding the 

Assessment of 

trophic status and 

Classification of 

Renuka Lake as 
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trophic status of Renuka Lake 

and identifying factors limiting 

its water quality. 

identification of 

limiting factors in 

Renuka Lake 

hyper-eutrophic 

based on water 

quality parameters. 

[5] In 2023, Mathilde de FLEURY 

et.al.,proposes a method for 

mapping water bodies in the 

Sahel region using Sentinel-2 

Multispectral Instrument (MSI) 

images and a U-Net 

convolutional neural network 

(CNN).  

Utilized a deep 

learning model 

based on the U-

Net architecture  

 

98% accuracy  

[6] In this paper, the authors create 

a global dataset of lake 

characteristics by combining 

data from various water 

monitoring programs with 

harmonized Landsat-8 and 

Sentinel-2 data. This dataset is 

then utilized for time series 

analysis, water quality maps for 

lakes across continents, and 

model training for global water 

quality prediction. 

Random Forest 

Regression (RFR) 

and Extreme 

Learning Machine 

(ELM). 

Strong correlations 

for SDD, TURB, 

and BOD 

[7] In 2023, Arias-Rodriguez et.al., 

examined a study whether the 

Sentinel-2 MSI sensor is 

suitable for estimating Chl-a  

 

Random Forest 

Regression (RFR) 

and Extreme 

Learning Machine 

(ELM). 

Multiple Linear 

Regression 

(MLR). 

High accuracy for 

RFR and ELM. 

 

L1C and L2A 

gives R2 >0.87. 
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[8] In 2022, Pompêo et.al., 

suggested a study focusing on 

assessing water quality in 

Brazilian reservoirs using 

Sentinel-2 imagery. 

C2RCC 

atmospheric 

correction. 

Chla and cyano 

have a strong 

association in the 

Broa reservoir. 

 

[9] Wang et al. established an 

inversion model to estimate 

chlorophyll-a (Chl-a) 

concentration in inland lakes 

using Sentinel-2 bands based 

on in-situ hyperspectral data.. 

using Sentinel-2 

bands 

Band-ratio 

approach showed 

better performance 

for chlorophyll-a 

(Chl-a) estimation 

in inland lakes 

compared to the 

single-band 

technique. 

[10] In 2022, Jiarui Shi et.al., 

compared how well Sentinel-2 

and Gaofen-6 satellite sensors 

estimate the quantities of 

chlorophyll-a in tiny bodies of 

water. 

Comparison of 

machine learning 

and semi-empirical 

models for 

chlorophyll-a 

estimation using 

fused Gaofen-6 

and Sentinel-2 

sensor data 

The extreme 

gradient boosting 

tree model was 

found to be the 

most accurate for 

estimating 

chlorophyll-a 

concentrations in 

small water bodies 

using data from 

both Sentinel-2 

and Gaofen-6 

sensors 

[11] This study aimed to map 

chlorophyll-a concentrations in 

the Vaal Dam, impacted by 

cyanobacteria and algae, using 

Landsat 8 OLI data.  

Mapping model 

for chlorophyll-a 

concentrations 

using Landsat 8 

OLI data in the 

Vaal Dam 

Successful 

mapping of 

chlorophyll-a 

concentrations in 

the Vaal Dam 



D e t e c t i o n  O f  C h l o r o p h y l l  A  I n  W a t e r  U s i n g  O p t i c a l  S e n s o r s  P a g e  | 33 

 

using Landsat 8 

OLI data. 

[12] In 2022, Cadondon et.al., 

examined the determination of 

chlorophyll-a pigment in 

Spirulina  

Portable Pulsed 

LED Fluorescence 

Lidar System 

Successful 

measurement of 

chlorophyll-a 

pigment in 

Spirulina 

[13] This study aimed to modify the 

spectrophotometric method for 

the determination of 

chlorophyll-a in the suspended 

matter of water bodies.  

Modified 

spectrophotometric 

method  

Improved accuracy 

and efficiency 

achieved in the 

determination of 

chlorophyll-a in 

suspended matter 

of water bodies 

using the modified 

spectrophotometric 

method. 

[14] This study introduces a 

portable measurement 

instrument designed for the 

measurement of chlorophyll-a 

in water bodies, supporting 

fluorescence detection.  

Portable 

measurement 

instrument for 

chlorophyll-a 

measurement in 

water bodies 

supporting 

fluorescence 

detection 

Successful 

development of a 

portable 

measurement 

instrument for 

chlorophyll-a 

measurement in 

water bodies 

supporting 

fluorescence 

detection. 

[15] This study aimed to estimate 

chlorophyll-a concentrations in 

inland water bodies in Greece 

using Landsat data. 

Multiple 

regression (MLR) 

and principal 

component 

Successful 

estimation of 

chlorophyll-a 

concentrations in 

Greece's inland 
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analysis (PCA) 

models  

water bodies using 

Landsat data.  

[16] Lu Wang (2015) utilized 

hyperspectral imaging 

technology to evaluate the 

impact of seasonal variations 

on the accuracy of chlorophyll-

a (Chl-a) estimation in outdoor 

aquaculture ponds.  

Using 

hyperspectral 

imaging 

technology 

Winter: 1.119–

32.216 μg/L 

Spring: 28.097–

53.360 μg/L  

Summer: 100.162–

196.403 μg/L 

Autumn: 49.241–

83.933 μg/L 

[17] The study conducted by Jieying 

Xiao and Zijing Guo in 2010 

aimed to determine the 

concentration of chlorophyll-a 

in waters.  

Utilization of 

hyperspectral 

reflectance 

measurements for 

indirect detection 

of chlorophyll-a 

concentration in 

water bodies 

Water bodies in 

Shijiazhuang City 

were found to have 

low concentrations 

of chlorophyll-a. 

 

[18] Ashwini Mudaliar et al. 

investigated the evaluation of 

cyanobacterial chlorophyll-a 

quantity in two wetland 

habitats using multi-temporal 

Sentinel-2 images as a water 

quality indicator 

Using multi-

temporal Sentinel-

2 images and 

dissolved oxygen 

mapping in 

wetland habitats 

Correlation 

observed between 

declining water 

quality, decreased 

dissolved oxygen, 

and chlorophyll-a 

content in wetland 

habitats. 

Sentinel-2 data 

proved effective in 

efficiently 

mapping dissolved 

oxygen levels in 

wetlands. 
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[19] The research team introduced a 

submersible in-situ chlorophyll 

fluorescence detection device 

designed for highly accurate 

and instantaneous monitoring 

of chlorophyll content in 

aquatic settings. 

Submersible in-

situ chlorophyll 

fluorescence 

detection device 

R =>0.999 

 

[20] The authors developed a novel 

method for estimating 

chlorophyll-a concentration in 

algae species. 

Electrical 

Impedance 

Spectroscopy 

(EIS) 

High sensitivity 

and accuracy 

observed for 

chlorophyll-a 

estimation 

[21] Avantika Latwal et al. utilized 

Sentinel-2 satellite imagery to 

detect and map water and 

chlorophyll-a spread for 

assessing water quality in 

inland water bodies. 

Sentinel-2 satellite 

imagery 

Successful 

detection and 

mapping of water 

and chlorophyll-a 

spread using 

Sentinel-2 satellite 

imagery. 

[22] Watanabe, F., Alcântara et al. 

optimized a semi-analytical 

algorithm for estimating 

chlorophyll-a concentration in 

productive inland waters.  

using Landsat 8 

OLI imagery 

The optimized 

algorithm provided 

accurate estimates 

of chlorophyll-a 

concentration,  

[23] Yang, Z., Reiter et al. 

investigated the use of ratio-

based Near-Infrared (NIR) to 

Red (Red) indices for 

estimating chlorophyll-a 

concentrations in diverse water 

bodies. 

Ratio-based Near-

Infrared (NIR) to 

Red (Red) indices 

using Landsat 8 

OLI imagery 

NIR/Red indices 

provided accurate 

estimates of 

chlorophyll-a 

concentration 

across different 

types of water 

bodies. 
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[24] Matthews et al. developed an 

algorithm for detecting trophic 

status (chlorophyll-a 

concentration), cyanobacterial 

dominance, surface scums, and 

floating vegetation in both 

inland and coastal waters using 

Sentinel-2 satellite imagery. 

Sentinel-2 satellite 

imagery 

High accuracy  

[25] Gregor et al. conducted a 

comparative analysis of in 

vitro, in vivo, and in situ 

methods for quantifying 

freshwater phytoplankton using 

chlorophyll-a concentration. 

chlorophyll-a 

concentration 

in-situ method is 

the most suitable 

for accurate and 

efficient 

quantification of 

freshwater 

phytoplankton and 

chlorophyll-a 

concentration in 

natural water 

bodies. 

[26] Giardino et al. investigated the 

feasibility of detecting 

chlorophyll concentration, 

Secchi disk depth, and surface 

temperature in a sub-alpine 

lake using Landsat imagery.  

using Landsat 

imagery 

Chlorophyll 

concentration: R2 

= 0.76  

Secchi disk depth: 

R2 = 0.83  

Surface 

temperature: R2 = 

0.87 

[27] Karimian et al. developed a 

novel framework to predict 

chlorophyll-a concentrations in 

water bodies using multi-

source big data and machine 

learning algorithms.  

multi-source big 

data and machine 

learning 

algorithms 

High accuracy in 

predicting 

chlorophyll-a 

concentrations, 

with a coefficient 
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of determination 

(R2) of 0.85 

[28] The purpose of this study was 

to determine if cyanobacteria in 

turbid and productive waters 

might be identified by 

hyperspectral remote sensing 

employing optically active 

pigments such as phycocyanin 

and chlorophyll-a. 

Hyperspectral 

remote sensing 

model and 

optically active 

pigments such as 

phycocyanin and 

chlorophyll-a. 

chlorophyll-a and 

phycocyanin, with 

coefficients of 

determination (R2) 

of 0.82 and 0.79, 

respectively. 

[29] The authors of this study 

assessed the viability of 

extracting chlorophyll-a 

concentrations from water 

bodies using Sentinel-2 Multi-

Spectral Instrument (MSI) data. 

Sentinel-2 Multi-

Spectral 

Instrument (MSI) 

data 

R2= 0.88 

[30] This study used field spectral 

data and Landsat Thematic 

Mapper (TM) images to 

evaluate the trophic condition 

and concentration of 

chlorophyll-a  

Regression models R2= 0.82. 
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2.3: LITERATURE REVIEWS CONCLUSION 

The Insight from some of the research papers are about the detection of chlorophyll A 

in water and machine learning. It highlights the main aspects like, how to determine 

the concentration of chlorophyll A and how concentration of chlorophyll A helps to 

monitor the environment, manage resources, and safeguard aquatic ecosystems. By 

taking the highlights from the research papers, the detection of chlorophyll A in water 

and trophic state index which includes the different types of sensors was 

implemented. 

In the case of machine learning implementation, some research papers talk about the 

process of data acquisition and machine learning. Different methods like deep 

learning, hybrid machine learning, convolution neural networks, regressions were 

implemented by different researchers. Different image processing algorithm like 

Landsat imagery, Sentinel-2 satellite imagery, etc were implemented 
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3.0: METHODOLOGY 

3.1: SAMPLES 

Samples of pure algae were brought in from Goa University's Botany Laboratory. Three 

distinct age groups of algae, including younger, moderate, and older, were represented 

in the samples. Immediately spectra were removed using the below dilution. 

 

 

Fig 4: Different Types of Algae Samples 

 

Fig 5: sample in cuvette 
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Pure algae samples were diluted with distilled water in the following dilution 

concentration [%v/v]: 0%, 90%, 81%, 72.9%, 65.61%, 59.04%, 53.144%, 47.82%, 

43.04%, 38.74%, 34.86%. using below formula:  

 

9𝑚𝑙 ∗ 𝑎𝑙𝑔𝑎𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 %

10𝑚𝑙
= 𝑐𝑜𝑛𝑐. 

 

Secchi depth of solution was found using Secchi stick. A Secchi stick measurement was 

taken by lowering the Secchi stick vertically into the water until it can no longer be 

seen and the depth was noted down. 

Concentration of chl-A of each sample were obtained using the standard formula  

 

𝐶ℎ𝑙 𝑎 = ℮[2.997−1.47 ln[𝑆𝐷𝐷]] 

 

 

Secchi depth of solution:   2.0 cm = 0.02 m 

Formula: chl-a conc = e [ 2.997 – 1.47 ln[SDD]] 

                                  =e[2.997-1.47 ln(0.02)]  = 6296.02 µg/L = 6.296 mg/L 

Sr 

No 
Algae Sample Water Dilution % Concentration 

 

1 

 

1o ml of 100% 

 

0 ml 

 

0 % 

 

6.296 

 

 

2 

 

9 ml of 100 % 

 

1 ml 

 

90 % 

 

5.666 

 

 

3 

 

9 ml of 90 % 

 

1 ml 

 

81 % 

 

5.099 

 



D e t e c t i o n  O f  C h l o r o p h y l l  A  I n  W a t e r  U s i n g  O p t i c a l  S e n s o r s  P a g e  | 42 

 

 

4 

 

9 ml of 81 % 

 

1 ml 

 

72.9 % 

 

4.589 

 

 

5 

 

9 ml of 72.9 % 

 

1 ml 

 

65.61 % 

 

4.130 

 

 

6 

 

9 ml of 65.61 % 

 

1 ml 

 

59.049 % 

 

3.717 

 

 

7 

 

9 ml of 59.049 % 

 

1 ml 

 

53.144 % 

 

3.345 

 

8 

 

9 ml of 53.144 % 

 

1 ml 

 

47.829 % 

 

3.010 

 

9 

 

9 ml of 47.829 % 

 

1 ml 

 

43.046 % 

 

2.709 

 

10 

 

9 ml of 43.046 % 

 

1 ml 

 

38.742 % 

 

2.439 

 

11 

 

9 ml of 38.742 % 

 

1 ml 

 

34.867 % 

 

2.194 

 

Table no. 2: Younger Algae dilution 

 

Secchi depth of solution:  2.5 cm = 0.025m    

Formula: Chl-a Conc = e [ 2.997 – 1.47 ln [SDD]] 

= e [2.997-1.47 ln (0.025)] = 4535.32 µg/l = 4.535 mg/L 

 

Sr 

No 
Algae Sample Water Dilution % Concentration 

 

1 

 

1o ml of 100% 

 

0 ml 

 

0 % 
 

4.535 

 

2 

 

9 ml of 100 % 

 

1 ml 

 

90 % 

 

4.081 

 

3 

 

9 ml of 90 % 

 

1 ml 

 

81 % 
 

3.673 
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4 

 

9 ml of 81 % 

 

1 ml 

 

72.9 % 

 

3.306 

 

5 

 

9 ml of 72.9 % 

 

1 ml 

 

65.61 % 

 

2.975 

 

6 

 

9 ml of 65.61 % 

 

1 ml 

 

59.049 % 

 

2.677 

 

7 

 

9 ml of 59.049 % 

 

1 ml 

 

53.144 % 
-- 

 

8 

 

9 ml of 53.144 % 

 

1 ml 

 

47.829 % 
-- 

 

9 

 

9 ml of 47.829 % 

 

1 ml 

 

43.046 % -- 

 

10 

 

9 ml of 43.046 % 

 

1 ml 

 

38.742 % 
-- 

 

11 

 

9 ml of 38.742 % 

 

1 ml 

 

34.867 % 
-- 

 

Table no. 3: Moderate algae dilution 

 

Secchi Depth of Solution: 1.7 cm = 0.017m  

Formula: chl-a conc = e [ 2.997 – 1.47 ln[SDD]] 

                                 = e[2.997-1.47 ln(0.017]   = 7995.04 µg/L = 7.995 mg/L 

 

Sr 

No 
Algae Sample Water Dilution % Concentration 

 

1 

 

1o ml of 100% 

 

0 ml 

 

0 % 

 

7.995 

 

2 

 

9 ml of 100 % 

 

1 ml 

 

90 % 

 

7.199 

 

3 

 

9 ml of 90 % 

 

1 ml 

 

81 % 

 

6.475 
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4 

 

9 ml of 81 % 

 

1 ml 

 

72.9 % 

 

5.828 

 

5 

 

9 ml of 72.9 % 

 

1 ml 

 

65.61 % 

 

5.245 

 

6 

 

9 ml of 65.61 % 

 

1 ml 

 

59.049 % 

 

4.720 

 

7 

 

9 ml of 59.049 % 

 

1 ml 

 

53.144 % 

 

4.248 

 

8 

 

9 ml of 53.144 % 

 

1 ml 

 

47.829 % 

 

3.823 

 

9 

 

9 ml of 47.829 % 

 

1 ml 

 

43.046 % 

 

3.441 

 

10 

 

9 ml of 43.046 % 

 

1 ml 

 

38.742 % 

 

3.097 

 

11 

 

9 ml of 38.742 % 

 

1 ml 

 

34.867 % 

 

2.787 

 

Table no.4: Older algae dilution 
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3.2: DATA ACQUISITION 

Reference method to find the chlorophyll A concentration: 

Secchi-stick measurement 

In aquatic environments, the Secchi stick depth, also called the Secchi depth, is a 

measurement of the transparency of the water. A Secchi stick, which consists of a 

circular disk that is either black or white and fastened to a pole that has been calibrated, 

is used to measure it. The Secchi stick is gradually lowered into the water until the disk 

is no longer visible, and then it is lifted till it reappears, in order to determine the Secchi 

depth. The Secchi depth is the depth at which the disk vanishes from vision. 

A measure of water transparency is the Secchi depth; deeper depths correspond to 

cleaner water, whereas shallower depths correspond to more turbid water. Light 

penetration is affected by several variables, including the quantity of dissolved 

chemicals, suspended particles, and live organisms in the water column. In order to 

evaluate the spatial and temporal fluctuations in water purity, Secchi depth 

measurements are usually made at regular intervals and places within a water body.  

 

Fig 6: Secchi stick measurement 
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Data Acquisition Using Jasco v-770 spectrophotometer 

The Jasco V-770 spectrophotometer was used to acquire spectra of all samples. The 

samples were placed in a quartz cuvette of optical length of 10 mm and absorbance 

range 200-800 nm and then the cuvette was kept in the sample holder. The UV-VIS 

spectra of the algae samples were acquired in absorbance mode. The UV-VIS 

bandwidth and range were set to 20 nm and 200-800 nm respectively. Every sample 

was measured in parts of 11, where each part was measured 3 times which made up to 

3 spectra per concentration. 

 

 

  Fig 7: Setup of Spectrophotometer  

 

Absorbance Spectroscopy 

Absorbance spectroscopy is a fascinating technique that plays a crucial role in 

measuring the absorption of light by a substance as a function of wavelength. It is an 
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essential tool in various fields like chemistry, biochemistry, and physics, where it is 

used for quantitative analysis of substances. 

The principle behind absorbance spectroscopy is that every chemical compound 

absorbs, transmits, or reflects light over a certain range of wavelengths. When light 

passes through a sample, the amount of light absorbed is proportional to the 

concentration of the absorbing substance in the sample and the path length of the light 

through the sample.  

Absorbance spectrophotometers consist of a light source, a monochromator to isolate a 

specific wavelength of light, a sample holder, and a detector (photodetector). They are 

commonly used for measuring absorbance in the ultraviolet (UV) and visible (VIS) 

regions of the electromagnetic spectrum.  

 

Fig 8: Block Diagram of Spectrophotometer 

The block diagram of the Spectrophotometer shows a light source that emits a broad 

spectrum of light covering the desired wavelength range. Common light sources 

include tungsten-halogen lamps, deuterium lamps (for the UV range), and xenon 
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lamps (for the visible and near-infrared range), a monochromator which is a crucial 

component that separates the incoming polychromatic light into its constituent 

wavelengths, a sample cuvette for the sample and a detector measures the intensity of 

light transmitted through the sample as a function of wavelength. 

 

3.2.1: Operating Principle of Spectrophotometer: Beer Lambert Law 

Spectroscopy is based on the interaction between light and matter. When molecules 

absorb IR radiation, transitions occur from a ground vibrational state to an excited 

vibrational state. If the frequency of the light matches the frequency of the vibration of 

the bonds in the molecule, the molecule absorbs some of the light. 

 

Fig 9: Interaction of Light with the Sample 

 

For each wavelength of light passing through the spectrometer, the intensity of the light 

passing through the reference cell is measured. This is usually referred to as 𝐼𝑜 - that's 

𝐼 for Intensity. 

The intensity of the light passing through the sample cell is also measured for that 

wavelength - given the symbol, 𝐼. If 𝐼 is less than 𝐼𝑜, then the sample has absorbed some 

of the light (neglecting reflection of light off the cuvette surface). A simple bit of math 

is then done in the computer to convert this into something called the absorbance of the 

sample - given the symbol, 𝐴. The absorbance of a transition depends on two external 

assumptions. 
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• The absorbance is directly proportional to the concentration (𝑐) of the solution 

of the sample used in the experiment. 

• The absorbance is directly proportional to the length of the light path (𝑙), which 

is equal to the width of the cuvette. 

• The equation can be written as: 

𝐴∝𝑐𝑙 

• This proportionality can be converted into equality by including a 

proportionality constant (𝜖). 

A= ϵcl 

Where A is the value of absorbance, ϵ is the Molar absorbance coefficient, c is 

molar concentration and l is optical path length 
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3.3: PREPROCESSING 

3.3.1: Savitzky-Golay filter 

The Savitzky-Golay filter was named after its inventors Abraham Savitzky and Marcel 

J.E. Golay. This digital filtering method is used for smoothing and differentiating data 

and is highly effective in reducing noise from data sets that contain random variations 

or fluctuations. It is an invaluable tool that is primarily used in signal processing, 

chromatography, spectroscopy, and time series analysis. The Savitzky-Golay filter is a 

method of smoothing data points that relies on fitting subsets of adjacent points with a 

low-degree polynomial using linear least squares. Unlike some other smoothing 

techniques that can change or distort the important features of the data, the Savitzky-

Golay filter maintains these features, such as peak heights and widths, while 

simultaneously reducing noise. This ability to preserve the underlying signal's integrity 

is one of the key advantages of the Savitzky-Golay filter. The effectiveness of a filter is 

determined by two main factors: the window size and the polynomial order. The 

window size determines how many data points are included in the local regression. 

Bigger window sizes produce smoother results but may over smooth the data, while 

smaller window sizes may not adequately reduce noise. The polynomial order sets the 

degree of the polynomial used for the local regression. Higher polynomial orders allow 

the filter to capture more complex variations in the data but may lead to overfitting. 

Choosing the right values for these parameters is essential for achieving the desired 

balance between noise reduction and preservation of signal features. The Savitzky-

Golay filter has many advantages, one of which is its versatility. Not only can it be used 

to smooth data, but it can also be utilized for numerical differentiation of noisy data. 

This means that it can effectively differentiate a noisy signal, which can help extract 

meaningful information from data sets that would otherwise be difficult to accurately 
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interpret. This capability is especially useful in fields like spectroscopy, where the 

precise identification and quantification of spectral features are vital. The Savitzky-

Golay filter is widely used in various scientific and engineering applications. For 

instance, in chromatography, it helps to decrease baseline noise and enhance the 

detection of analyte peaks in chromatograms. Similarly, in spectroscopy, the filter is 

used to eliminate spectral artifacts and enhance the signal-to-noise ratio, resulting in 

more accurate and dependable spectral analysis. In time series analysis, the filter is used 

to smooth out data and identify trends, patterns, and anomalies. The Savitzky-Golay 

filter is an effective method for smoothing and differentiating data, especially when 

there is noise present. However, it has some limitations. The filter's performance relies 

heavily on the choice of window size and polynomial order, which may require some 

trial and error to select optimal values. Moreover, the filter may not work well when 

the data contains complex or rapidly changing patterns. In the end, the Savitzky-Golay 

filter is a very useful tool in many technical and scientific domains. It can successfully 

reduce noise while maintaining the data's key characteristics. By carefully choosing the 

right criteria, researchers and analysts may use the filter to enhance the accuracy and 

dependability of their data analysis and interpretation. 

 

Fig 10: Smoothened Spectra 
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3.3.2: Principal Component Analysis 

Principal Component Analysis (PCA) is a dimensionality reduction technique used in 

data analysis and machine learning. Its primary goal is to simplify complex datasets 

while retaining the most important information.  

In PCA, the algorithm identifies the directions (principal components) along which the 

data varies the most. These components are orthogonal to each other, meaning they are 

uncorrelated. The first principal component explains the largest amount of variance in 

the data, followed by the second component, and so on. 

PCA is useful for several purposes: 

1. Dimensionality Reduction: By representing data using a smaller number of principal 

components, PCA reduces the dimensionality of the dataset while preserving as much 

variance as possible. 

2. Visualization: PCA can help visualize high-dimensional data in a lower-dimensional 

space, making it easier to explore and interpret. 

3. Feature Extraction: PCA can be used to extract the most important features from a 

dataset, which can then be used for further analysis or modelling. 

4. Noise Reduction: PCA can help remove noise and redundant information from the 

data, leading to better performance in downstream tasks. 
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3.4: DATA PARTITIONING 

3.4.1: Cross Validation 

Cross-validation is a technique widely used in machine learning to evaluate the 

performance of a predictive model on an independent dataset. It involves dividing the 

original dataset into subsets, where the model is trained on one subset and evaluated on 

the remaining subset. This process is repeated multiple times, with each fold serving as 

both the training and validation set. The most common form of cross-validation is k-

fold cross-validation, where the dataset is divided into k equal-sized folds.  

Cross-validation provides several benefits, including a better estimate of performance, 

reduced variance, and optimization of hyperparameters. By averaging the performance 

over multiple iterations, cross-validation provides a more reliable estimate of the 

model's performance. It also helps reduce the variance in performance estimates by 

using multiple validation sets. Additionally, cross-validation is often used to tune the 

hyperparameters of a model by selecting the values that result in the best average 

performance across the folds. Overall, cross-validation is a critical tool for assessing 

and optimizing machine learning models to ensure that they generalize well to new and 

unseen data. 

K-fold cross-validation is a widely used technique in machine learning to evaluate the 

performance of a predictive model. Its main objective is to determine how well a model 

trained on a specific dataset can generalize to new, unseen data. The process involves 

randomly partitioning the original dataset into k equal-sized subsets, or folds, re K is 

chosen to be 10 and training and evaluating the model k times, with a different fold 

serving as the validation set each time, while the remaining k-1 folds are used for 

training. By using every data point for both training and validation, k-fold cross-
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validation provides a more reliable estimate of the model's performance. After training 

and evaluating on all k folds, the performance metrics are averaged to obtain an overall 

assessment of the model's performance. This method helps to reduce variance in 

performance estimates, compared to a single train-test split, and provides a more 

accurate representation of the model's ability to generalize to new data. It is frequently 

used to assess and compare different models, as well as to tune hyperparameters to 

optimize model performance. 
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3.5: MACHINE LEARNING 

Machine learning is a branch of artificial intelligence (AI) that focuses on the 

development of algorithms and statistical models that enable computers to perform 

tasks without explicit programming. Instead, machine learning algorithms use data to 

learn and improve their performance over time. 

 

3.5.1: SUPPORT VECTOR REGRESSION [SVR] 

Support Vector Regression (SVR) is a powerful machine learning technique used for 

regression tasks. Unlike traditional regression methods that aim to minimize error 

directly, SVR focuses on finding a hyperplane in a high-dimensional space that best 

represents the relationship between input variables and the target variable. This 

hyperplane is determined by support vectors, which are data points closest to the 

hyperplane and influence its position. SVR aims to minimize the margin of error within 

a certain threshold, known as the epsilon-insensitive tube, while also penalizing 

deviations outside this tube. This allows SVR to handle non-linear relationships 

between variables by using kernel functions to map the input data into a higher-

dimensional space where a linear relationship may exist. SVR is particularly useful in 

scenarios where the data is noisy or exhibits non-linear patterns, making it a versatile 

tool in various fields such as finance, economics, and engineering. Its ability to 

effectively handle complex data relationships and its robustness against outliers make 

it a popular choice for regression tasks. 

1. Margin of Tolerance: SVR introduces the concept of a margin of tolerance around 

the predicted value. Instead of minimizing error directly, SVR seeks to ensure that most 

of the data points fall within this margin. 
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2. Support Vectors: SVR identifies a subset of training data points, known as support 

vectors, which are crucial for defining the regression function. These support vectors 

lie either on the margin boundaries or within the margin itself. 

3. Kernel Trick: SVR often employs a kernel function to transform the input features 

into a higher-dimensional space, where the data might be more separable. Common 

kernel functions include linear, polynomial, radial basis function (RBF), and sigmoid 

kernels. 

4. Regularization Parameter: SVR includes a regularization parameter (C) that controls 

the trade-off between maximizing the margin and minimizing the error on the training 

data. Higher values of C prioritize minimizing training error, while lower values 

prioritize maximizing the margin. 

5. Epsilon Parameter: Another parameter in SVR is ε (epsilon), which defines the width 

of the margin of tolerance. Larger values of ε allow more data points to fall outside the 

margin, potentially resulting in a wider margin and a less complex model. 

 

 

Fig 11: Support Vector Regression 
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3.5.2: RANDOM FOREST REGRESSION [RFR] 

Random Forest Regression is a powerful machine learning technique used for 

regression tasks. It belongs to the ensemble learning family and is based on the Random 

Forest algorithm, which is an ensemble of decision trees. In Random Forest Regression, 

multiple decision trees are trained on random subsets of the training data and using 

random subsets of features. During prediction, each tree in the forest independently 

predicts the target variable, and the final prediction is obtained by averaging or taking 

the majority vote of these individual predictions. This ensemble approach helps to 

reduce overfitting and improve the model's generalization performance. Random Forest 

Regression is robust to outliers, handles high-dimensional data well, and provides 

feature importance scores, which can be useful for understanding the relationship 

between input variables and the target variable. It is widely used in various fields such 

as finance, healthcare, and marketing for predicting continuous it a popular choice for 

regression tasks. 

1. Ensemble Learning: A Random Forest Regressor consists of a collection of decision 

trees, where each tree is trained independently on a random subset of the training data 

and a random subset of the features. This randomness helps to reduce overfitting and 

improves the model's robustness. 

2. Bootstrap Aggregating (Bagging): Random Forest employs a technique called 

bootstrap aggregating or bagging, where each tree is trained on a bootstrapped sample 

of the original training data. This sampling with replacement ensures diversity among 

the trees, leading to a more robust ensemble model. 

3. Random Feature Selection: In addition to sampling data points, Random Forest also 

randomly selects a subset of features at each split in the decision tree. This feature 
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randomness further enhances the diversity among the trees and reduces the correlation 

between them. 

4. Prediction: Once the ensemble of decision trees is built, predictions for new data 

points are made by aggregating the predictions of individual trees. For regression tasks, 

the final prediction is often the average (or another aggregation) of the predictions from 

all the trees. 

5.Interpretability and Versatility: While Random Forests may not be as interpretable as 

individual decision trees, they offer high predictive accuracy and can handle both 

numerical and categorical features without requiring feature scaling. They are also less 

sensitive to outliers and noise in the data. 

6. Hyperparameter Tuning: Random Forests have several hyperparameters that can be 

tuned to optimize performance, such as the number of trees in the ensemble, the 

maximum depth of each tree, and the size of the random feature subsets. 

7. Applications: Random Forest Regressors are widely used in various domains, 

including finance, healthcare, and ecology, for tasks such as predicting stock prices, 

estimating patient outcomes, and analysing ecological data. 

 

 

Fig 12: Random Forest Regression 
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3.5.3: K-NEAREST NEIGHBOR REGRESSION [KNN] 

K-Nearest Neighbors (KNN) regression is a straightforward yet effective non-

parametric algorithm used for regression tasks. Unlike traditional regression 

techniques, KNN regression doesn't assume a functional form for the relationship 

between variables. Instead, it relies on the principle that similar data points should have 

similar target values. In KNN regression, when a prediction is needed for a new data 

point, the algorithm looks at the K nearest data points in the feature space, based on 

some distance metric (usually Euclidean distance), and averages their target values to 

predict the target value for the new data point. The choice of K, the number of neighbors 

to consider, is a critical parameter in KNN regression. A smaller K value leads to more 

complex models with higher variance but lower bias, while a larger K value results in 

smoother predictions with lower variance but higher bias. KNN regression is intuitive, 

easy to implement, and doesn't make strong assumptions about the underlying data 

distribution. However, its performance can be sensitive to the choice of K and the 

distance metric used, and it can be computationally expensive, especially for large 

datasets. Despite these limitations, KNN regression remains a popular choice for 

regression tasks, particularly in situations where the data is noisy or lacks a clear 

functional form, and interpretability is less of a concern. 

1. Neighbor-based Approach: KNN Regressor operates on the principle that similar data 

points tend to have similar target variable values. It does not explicitly learn a model 

but rather memorizes the training data to make predictions. 

2. Parameter K: The "K" in KNN refers to the number of nearest neighbors to consider 

when making a prediction. A higher value of K considers more neighbors, potentially 

resulting in smoother predictions but may overlook local patterns. Conversely, a lower 
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value of K focuses on fewer neighbors, capturing more local variations but may be 

sensitive to noise. 

3. Distance Metric: KNN Regressor typically uses a distance metric, such as Euclidean 

distance or Manhattan distance, to measure the similarity between data points in the 

feature space. The choice of distance metric can influence the algorithm's performance 

and should be selected based on the characteristics of the data. 

4. Prediction: To make a prediction for a new data point, KNN Regressor identifies the 

K nearest neighbors based on the chosen distance metric and averages their target 

variable values to obtain the predicted value. In regression tasks, this average is often 

the mean value of the target variable among the nearest neighbors. 

5. Non-parametric Nature: KNN Regressor is a non-parametric algorithm, meaning it 

does not assume any specific form for the underlying data distribution. Instead, it relies 

solely on the training data during prediction, making it flexible and adaptable to 

different types of data distributions. 

6. Scalability and Efficiency: While KNN Regressor is conceptually simple and easy to 

implement, it can be computationally expensive, especially for large datasets or high-

dimensional feature spaces. Techniques such as KD-trees or ball trees can be employed 

to improve the algorithm's efficiency. 

7. Hyperparameter Tuning: The choice of K and the distance metric are critical 

hyperparameters in KNN Regressor. Cross-validation techniques can be used to select 

optimal values for these hyperparameters based on the performance on a validation set. 
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Fig 13: KNN Regression 

 

3.5.4: PARTIAL LEAST SQUARES REGRESSION (PSLR) 

Partial Least Squares Regression (PLSR) is a powerful statistical technique used in 

machine learning for building predictive models, especially when dealing with datasets 

with a high number of correlated independent variables. Unlike traditional linear 

regression, which assumes that predictors are uncorrelated, PLSR can handle 

multicollinearity by extracting a set of orthogonal components that explain the 

maximum variance in both the independent and dependent variables. By doing so, 

PLSR effectively reduces the dimensionality of the dataset while capturing the most 

relevant information for predicting the target variable. This makes PLSR particularly 

useful in situations where there are many predictors and limited sample sizes. 

Additionally, PLSR is robust to noise and outliers, making it suitable for dealing with 

noisy data. Consequently, PLSR finds applications in various fields such as 

chemometrics, economics, and marketing, where it is used for modeling complex 

relationships and making accurate predictions. 

1. Dimensionality Reduction: PLSR aims to reduce the dimensionality of the predictor 

variables while still preserving their relationship with the response variable. It achieves 
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this by extracting a small number of latent variables, or components, that explain the 

maximum covariance between the predictor variables and the response variable. 

2. Iterative Process: PLSR iteratively constructs these latent variables by maximizing 

the covariance between the predictor variables and the response variable in each 

component. Unlike Principal Component Analysis (PCA), which focuses solely on 

explaining the variance of the predictor variables, PLSR considers both the variance 

and the covariance. 

3. Simultaneous Modelling: PLSR builds the latent variables in a way that optimally 

predicts the response variable while also considering the predictor variables. This 

simultaneous modelling approach allows PLSR to handle multicollinearity effectively, 

making it suitable for situations where predictors are highly correlated. 

4. Prediction and Interpretation: Once the latent variables are constructed, PLSR can be 

used for prediction by regressing the response variable on these latent variables. 

Additionally, PLSR provides insights into the relationships between the predictors and 

the response, making it valuable for interpretation. 

5. Parameter Tuning: PLSR includes parameters such as the number of components to 

extract and the scaling method, which can affect the performance of the model. Cross-

validation techniques are often used to determine the optimal number of components 

and other tuning parameters. 

 

3.5.5: DECISION TREE REGRESSION [DTR] 

Decision trees are powerful and versatile models used in machine learning for both 

classification and regression tasks. They work by recursively partitioning the data into 

subsets, with each partition based on the value of a particular feature. This process 

continues until a stopping criterion is met, such as a maximum tree depth or the 
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minimum number of samples in a leaf node. Decision trees are easy to interpret and 

understand, making them particularly useful for explaining the logic behind a model's 

predictions. They can handle both numerical and categorical data, and are robust to 

outliers. However, decision trees are prone to overfitting, especially when the tree is 

deep or the dataset is noisy. To address this issue, techniques such as pruning and 

ensemble methods like Random Forests and Gradient Boosting are often used. Decision 

trees find applications in various domains including finance, healthcare, and marketing, 

where they are used for tasks such as customer segmentation, risk assessment, and 

medical diagnosis. 

1. Tree Structure: The decision tree is constructed recursively by splitting the data into 

subsets based on the values of features. At each node of the tree, a decision is made 

regarding which feature to split on and what threshold to use for the split. This process 

continues until a stopping criterion is met, such as reaching a maximum tree depth or 

minimum number of samples per leaf. 

2. Splitting Criteria: The algorithm selects the best feature and threshold for splitting 

the data at each node based on a splitting criterion, typically aiming to minimize 

variance or mean squared error in the resulting subsets. Common splitting criteria 

include mean squared error, mean absolute error, and variance reduction. 

3. Predictions: Once the decision tree is built, predictions for new data points are made 

by traversing the tree from the root node to a leaf node. The predicted value for a data 

point is typically the average (or another aggregation) of the target variable in the leaf 

node to which it belongs. 
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4. Interpretability: Decision trees are highly interpretable models, as they can be 

visualized graphically, allowing users to understand the decision-making process and 

identify important features for prediction. 

5. Overfitting: Decision trees are prone to overfitting, especially when the tree depth is 

not properly constrained. Regularization techniques such as pruning or limiting the 

maximum depth of the tree are commonly used to mitigate overfitting. 

6. Ensemble Methods: Decision trees can be further improved by using ensemble 

methods such as Random Forests or Gradient Boosting, which train multiple decision 

trees and combine their predictions to achieve better performance and generalization. 

 

Fig 14: Decision tree Regression 
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3.6: REGRESSIONS AND THEIR PARAMETERS 

 

Regressors Parameters 

SVR C=1.0, epsilon=0.2 

DTR max_depth=50 

RFR max_depth=2, random_state=0 

PSLR n_components=10 

KNN n_neighbors=1, p= 1, weights = 'distance', 

algorithm = 'auto' 

 

Table no. 5: Regressors and their parameters  
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4.0: ANALYSIS AND CONCLUSIONS 

 

4.1: ANALYSIS AND RESULTS 

 

The project consists of two parts which includes data collection and machine learning. 

Detection of chlorophyll A in water makes suitable for environmental monitoring, 

resource management, and the protection of aquatic ecosystems. 

In this project, we delve in the analysis and comparative study of various ML Regressor 

for prediction of Chlorophyll A concentration using Absorbance spectroscopy. All of 

the investigations were carried out using the Google-Colab online platform.  The python 

3.11.3 version implemented the analytical statistics, ML models and graphics. The 

dataset was split into two parts: train and test, using 80:20 split that is standard for all 

performance analyses. K-fold splits was 10 and SG filter was applied for the dataset.  

For the current study, R2 and RMSE values were used to determine the performance of 

all the models. 

𝑅𝑀𝑆𝐸 = √∑
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙

𝑛

𝑛

𝑖=1

 

It was observed that the absorbance of every diluted sample varied while the structure 

of the spectra remained similar. Actual v/s Predicted graph of the results obtained by 

the algorithms that are PLSR, SVR, DTR, RFR and KNR are shown in figure 15, figure 

16, figure 17, figure 18 and figure 19 respectively.  

A summary of the results obtained by the algorithms are shown in Table 6.  Average 

RMSE obtained after the 10 -fold cross validation was be 0.25, 0.57, 0.44, 0.64 and 

0.27 for SVR, PLSR, DTR, RFR and KNR respectively. 
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Algorithm 

Best Fold [n=10] Average 

RMSE 

R2 MSE MAE RMSE 

SVR 0.99 0.01 0.08 0.09 0.25 

PSLR 0.95 0.07 0.20 0.26 0.57 

DTR 0.97 0.03 0.09 0.19 0.44 

RFR 0.88 0.15 0.31 0.39 0.64 

KNN 0.0 0.0 0.0 1.0 0.27 

 

Table no. 6: Results of all regressors 

Graphs of Best folds: 

 

   Fig 15: Graph of Support Vector Regression 
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        Fig 16: Graph of Partial Square Least Regression 

 

 

      Fig 17: Graph of Decision Tree Regression 

 



D e t e c t i o n  O f  C h l o r o p h y l l  A  I n  W a t e r  U s i n g  O p t i c a l  S e n s o r s  P a g e  | 71 

 

 

       Fig 18: Graph of Random Forest Regression 

 

 

Fig 19: Graph of KNN Regression 
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4.2: CONCLUSION 

 

In conclusion, The Detection of chlorophyll A In Water Using a spectrophotometer 

project was a challenging yet rewarding experience for me. Using a spectrophotometer, 

the amount of chlorophyll-a in water samples was effectively determined in this 

investigation. Chlorophyll-a was selectively detectable because of its absorbance 

spectra, which showed distinctive peaks in the visible spectrum's red and blue areas. A 

linear link between the content of chlorophyll-a in the water samples and its absorbance 

at particular wavelengths was found by using the Secchi stick measurement. 

The results show that spectrophotometric analysis is a useful method for measuring 

chlorophyll-a in water samples. This technique provides an efficient, quick, and 

economical way to measure chlorophyll-a levels, which are crucial for water quality 

monitoring and aquatic ecosystem health assessments.  

Overall, this project was successful for determining the chlorophyll A concentration. 
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4.3: FUTURE WORK 

Now as the detection of chlorophyll A in water using optical sensors was successfully 

done, now its time to take the project to a next level. The next part of the project will 

be developing a portable device for in-situ method. For this there will be a need to 

build a driver circuits and will have to buy high power LEDs and Laser Diode. And 

we have to test the circuit once it is built. And after that we will have to collect data 

and create dataset and same machine learning can be applied. And then we can 

determine the chlorophyll A concentration.  
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5.3: APPENDIX 

Features of Jasco- V-770 Spectrophotometer: 

A wide range UV-Visible/Near Infrared Spectrophotometer with a unique optical design 

featuring a single monochromator and dual detectors for the wavelength range from 

190 to 2700nm (3200nm option). 

The V-770's single monochromator design provides for maximum light throughput with 

excellent absorbance linearity. A PMT detector is used for the UV to visible region and 

a Peltier-cooled PbS detector for the NIR region. 

The V-770 UV-Visible/NIR spectrophotometer is operated using Spectra Manager™ 

Suite. This innovative cross-platform spectroscopy software is compatible with 

Windows 7 Pro (32- and 64-bit) and Windows 8.1 operating systems. 

For simple operation, the handheld iRM has a great look and feel with a colour touch-

sensitive screen. Data can also be downloaded to Spectra Analysis on a PC further PC 

data processing. 

The V-700 Series has a growing list of software applications for both Spectra 

Manager™ and iRM. If you have an application which you don’t see listed, please let 

us know as we may already have it or we can prepare an application designed 

specifically for your requirements. 

Optical System Czerny-Turner grating mount 

Single monochomator 

Fully symmetrical double beam 

Light source Halogen lamp, Deuterium lamp 

Wavelength 

range 

190 to 2700 nm (3200 nm option) 

Wavelength 

accuracy 

+/-0.3 nm (at 656.1 nm) 

+/-1.5 nm (at 1312.2 nm) 
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Wavelength 

repeatability 

+/-0.05 nm (UV-Vis), +/-0.2 nm (NIR) 

Spectral 

bandwidth 

(SBW) 

UV-Visible: 0.1, 0.2, 0.5, 1, 2, 5, 10 nm 

L2, L5, L10 nm (low stray light mode) 

M1, M2 nm (micro cell mode) 

 

NIR: 0.4, 0.8, 1, 2, 4, 8, 20, 40 

L8, L20, L40 nm (low stray light mode) 

M4, M8 nm (micro cell mode) 

Stray light 1 % (198 nm KCL) 

0.0005 % (220 nm NaI) 

0.0005 % (340 nm NaNO2) 

0.0005 % (370 nm NaNO2) 

SBW: L2 nm 

 

0.04 % (1420 nm: H2O) 

0.1 % (1690 nm: CH2Br2) 

SBW: L8 nm 

Photometric 

range 

UV-Visible: -4~4 Abs 

NIR: -3~3 Abs 

Photometric 

accuracy 

+/-0.0015 Abs (0 to 0.5 Abs) 

+/-0.0025 Abs (0.5 to 1 Abs) 

+/-0.3 %T 

Tested with NIST SRM 930D 

Photometric 

repeatability 

+/-0.0005 Abs (0 to 0.5 Abs) 

+/-0.0005 Abs (0.5 to 1 Abs) 

Tested with NIST SRM 930D 

Scanning speed 10~4000 nm/min (8000 nm/min in preview mode) 

Slew speed UV-Vis: 12,000 nm/min 

NIR: 48,000 nm/min 

RMS noise 0.00003 Abs 

(0 Abs, wavelength: 500 nm, measurement time: 60 sec, SBW: 2 

nm) 

Baseline stability 0.0003 Abs/hour 

(Wavelength: 250 nm, response: slow and SBW: 2 nm) 

Baseline flatness +/-0.0002 Abs (200 - 2500 nm) 

Detector PMT, Peltier cooled PbS 

Standard 

functions 

IQ accessories, Start button, Analog output 

Standard 

programs 

Abs/%T meter, Quantitative analysis, Spectrum measurement, 

Time course measurement, Fixed wavelength measurement, 

Validation, Daily check, Dual wavelength time course 

measurement 

Dimensions and 

weight 

460(W) x 602(D) x 268(H) mm, 29 kg 

Power 

requirements 

150 VA 

Installation 

requirements 

Room temperature: 15-30 Celsius, humidity: below 85% 
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CODE: 

1. CODE FOR DATA EXTRACTION 

import os 

import pandas as pd 

from google.colab import drive 

# Mount Google Drive to access files 

drive.mount('/content/drive') 

# Input folder containing CSV files 

csv_folder_path = '/content/drive/MyDrive/dataset collection csv folder/younger 

alage dataset' 

# Output CSV file path 

csv_output_path = '/content/drive/MyDrive/younger algae.csv' 

# Columns and rows to extract 

columns_to_extract = ['Unnamed: 1'] 

rows_to_extract = list(range(18, 1221))  # Generate a range from 18 to 3018 

df_list = [] 

column_offset = 0  # Initialize column offset 
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# Loop through all CSV files in the folder 

for file in os.listdir(csv_folder_path): 

    if file.endswith('.csv'): 

        file_path = os.path.join(csv_folder_path, file) 

        df = pd.read_csv(file_path) 

        if all(column in df.columns for column in columns_to_extract): 

            if all(row in df.index for row in rows_to_extract): 

                filtered_df = df.loc[rows_to_extract, columns_to_extract] 

                # Add an offset to the column index 

                filtered_df.columns = [f"{col}_Offset_{column_offset}" for col in 

filtered_df.columns] 

                df_list.append(filtered_df) 

                column_offset += 1 

# Check if any dataframes were found 

if df_list: 

    # Concatenate all dataframes in the list along the columns (axis=1) 

    combined_df = pd.concat(df_list, axis=1) 
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    # Write the combined dataframe to a CSV file 

    combined_df.to_csv(csv_output_path, index=False) 

    print(f"Filtered data from the folder saved to '{csv_output_path}'.") 

else: 

    print("No data found matching the specified columns and rows.") 

 

2. REGRESSIONS CODES 

from google.colab import drive 

drive.mount('/content/drive') 

import pandas as pd 

import numpy as np 

import numpy 

import math 

import matplotlib.pyplot as plt 

from matplotlib import pyplot 

from scipy import signal 

from sklearn.svm import SVR 
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from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split 

from sklearn.cross_decomposition import PLSRegression 

from sklearn.model_selection import KFold, cross_val_score 

from sklearn.metrics import r2_score 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import mean_absolute_error 

dataset=pd.read_csv('/content/drive/MyDrive/final dataset files/machine 

larning/Dataset.csv') 

dataset 

x = dataset 

x 

x.shape 

x = dataset.drop(['per'], axis=1).to_numpy() 

wavelength = x[0,0:1001] 

wavelength 

x= x[1:85,0:1001] 
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x 

y= dataset.per.to_numpy() 

y = y[1:85] 

y 

y.shape 

# plotting the signal 

pyplot.plot(wavelength, x.T) 

pyplot.xlabel(' Wavelength') 

pyplot.ylabel('Abs') 

pyplot.title("Spectra") 

pyplot.show() 

#train and test 

x_train, x_test, y_train, y_test  = train_test_split(x, y, test_size=0.2, 

random_state=0) 

#standard scalar 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 
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scaler.fit(x_train) 

x_train= scaler.transform(x_train) 

x_test= scaler.transform(x_test) 

k_folds = KFold(n_splits = 10) 

# Calculate first derivative applying a Savitzky-Golay filter 

X = signal.savgol_filter(x, window_length=91, polyorder=3, deriv=1) 

f = pyplot.figure() 

f.set_figwidth(7) 

f.set_figheight(8) 

 

print("Plot after re-sizing: ") 

pyplot.plot(wavelength, x.T) 

pyplot.xlabel(' Wavelength') 

pyplot.ylabel('Abs') 

pyplot.title("Spectra") 

pyplot.show() 

SUPPORT VECTOR REGRESSION 
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mod =  SVR(C=10, epsilon=0.2) 

cv_scores = cross_val_score(mod, x_train, y_train, cv=k_folds) 

mod.fit(x_train, y_train) 

y_pred = mod.predict(x_test) 

r = r2_score(y_test, y_pred) 

print("Root Square:") 

print(r) 

MSE= mean_squared_error(y_test, y_pred) 

print("Mean Square Error:") 

print(MSE) 

y_test = np.array(y_test).astype(float) 

y_pred = np.array(y_pred).astype(float) 

MSE = np.square(np.subtract(y_test, y_pred)).mean() 

RMSE = math.sqrt(MSE) 

print("Root Mean Square Error:") 

print(RMSE) 

y_pred 
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import numpy as np 

import matplotlib.pyplot as plt 

fig,ax = plt.subplots(1) 

# plot the data 

ax.scatter(y_test,y_pred,color="red", marker="o",) 

m, b = np.polyfit(y_test, y_pred, 1) 

#add linear regression line to scatterplot 

plt.plot(y_test, m*y_test+b) 

plt.xlabel('Actual') 

plt.ylabel('Predicted concentraton in mg/L') 

plt.title("Prediction of chlorophyll A") 

plt.show() 

from sklearn.datasets import make_regression 

make_regression(n_features=4, n_informative=2,random_state=0, shuffle=False) 

clf = SVR(C=10, epsilon=0.2) 

kf = KFold(n_splits=10, shuffle=True, random_state=42) 

rmse = 0 
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for i, (train_index, test_index) in enumerate(kf.split(x_pca)): 

    print(f"Fold {i}:") 

    #print("TRAIN:", train_index, "TEST:", test_index) 

    X_train, X_test = x_pca[train_index], x_pca[test_index] 

    y_train, y_test = y[train_index], y[test_index] 

    X_train = X_train.astype(np.float64) 

    X_test = X_test.astype(np.float64) 

    y_test = y_test.astype(np.float64) 

    y_train = y_train.astype(np.float64) 

    clf.fit(X_train, y_train) 

    ypred = clf.predict(X_test) 

    ypred=np.array(ypred).flatten() 

    aa=np.array(y_test).flatten() 

    mat_plot(aa,ypred) 

    rmse = rmse + np.sqrt(mean_squared_error(aa,ypred)) 

#df = pd.DataFrame(clf.cv_results_) 

#df 
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rmse = rmse /10 

print("average RMSE",rmse) 

 

#partial least square regression 

from sklearn.cross_decomposition import PLSRegression 

 

pls2 = PLSRegression(n_components=5) 

pls2.fit(x_train, y_train) 

PLSRegression() 

Y_pred = pls2.predict(x_test) 

from sklearn.metrics import r2_score 

r = r2_score(y_test, Y_pred) 

print("Root Square:") 

print(r) 

from sklearn.metrics import mean_squared_error 
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MSE= mean_squared_error(y_test, Y_pred) 

print("Mean Square Error:") 

print(MSE) 

import math 

y_test = np.array(y_test).astype(float) 

y_pred = np.array(y_pred).astype(float) 

 

MSE = np.square(np.subtract(y_test, Y_pred)).mean() 

RMSE = math.sqrt(MSE) 

 

print("Root Mean Square Error:") 

print(RMSE) 

fig,ax = plt.subplots(1) 

 

# plot the data 

ax.scatter(y_test, Y_pred,color="blue", marker="o",) 

m, b = np.polyfit(y_test, Y_pred, 1) 
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#add linear regression line to scatterplot 

plt.plot(y_test, m*y_test+b) 

plt.xlabel('Actual') 

plt.ylabel('Predicted concentraton in mg/L') 

plt.title("Prediction of chlorophyll A") 

plt.show() 

from sklearn.datasets import make_regression 

make_regression(n_features=4, n_informative=2,random_state=0, shuffle=False) 

clf = PLSRegression(n_components=5) 

kf = KFold(n_splits=10, shuffle=True, random_state=42) 

rmse = 0 

for i, (train_index, test_index) in enumerate(kf.split(x_pca)): 

    print(f"Fold {i}:") 

    #print("TRAIN:", train_index, "TEST:", test_index) 

    X_train, X_test = x_pca[train_index], x_pca[test_index] 

    y_train, y_test = y[train_index], y[test_index] 
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    X_train = X_train.astype(np.float64) 

    X_test = X_test.astype(np.float64) 

    y_test = y_test.astype(np.float64) 

    y_train = y_train.astype(np.float64) 

    clf.fit(X_train, y_train) 

    ypred = clf.predict(X_test) 

    ypred=np.array(ypred).flatten() 

    aa=np.array(y_test).flatten() 

    mat_plot(aa,ypred) 

    rmse = rmse + np.sqrt(mean_squared_error(aa,ypred)) 

#df = pd.DataFrame(clf.cv_results_) 

#df 

rmse = rmse /10 

print("average RMSE",rmse) 

DECISION TREE REGRESSION 

import matplotlib.pyplot as plt 

import numpy as np 
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from sklearn import tree 

from sklearn.tree import DecisionTreeRegressor 

clf = tree.DecisionTreeRegressor() 

from sklearn.datasets import load_diabetes 

from sklearn.model_selection import cross_val_score 

from sklearn.tree import DecisionTreeRegressor 

regressor = DecisionTreeRegressor(random_state=0) 

cross_val_score(regressor,x_test, y_test, cv=3) 

reg = DecisionTreeRegressor(max_depth=50) 

clf = tree.DecisionTreeRegressor() 

clf = clf.fit(x_train, y_train) 

D_pred = clf.predict(x_test) 

from sklearn.metrics import r2_score 

r = r2_score(y_test, D_pred) 

print("Root Square:") 

print(r) 

from sklearn.metrics import mean_squared_error 
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MSE= mean_squared_error(y_test, D_pred) 

print("Mean Square Error:") 

print(MSE) 

import math 

y_test = np.array(y_test).astype(float) 

y_pred = np.array(y_pred).astype(float) 

MSE = np.square(np.subtract(y_test, D_pred)).mean() 

RMSE = math.sqrt(MSE) 

print("Root Mean Square Error:") 

print(RMSE) 

fig,ax = plt.subplots(1) 

# plot the data 

ax.scatter(y_test, D_pred,color="blue", marker="o",) 

, b = np.polyfit(y_test, D_pred, 1) 

#add linear regression line to scatterplot 

plt.plot(y_test, m*y_test+b) 

plt.xlabel('Actual') 
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plt.ylabel('Predicted concentraton in mg/L') 

plt.title("Prediction of chlorophyll A") 

plt.show() 

from sklearn.datasets import make_regression 

make_regression(n_features=4, n_informative=2,random_state=0, shuffle=False) 

clf = tree.DecisionTreeRegressor() 

kf = KFold(n_splits=10, shuffle=True, random_state=42) 

rmse = 0 

for i, (train_index, test_index) in enumerate(kf.split(x_pca)): 

    print(f"Fold {i}:") 

    #print("TRAIN:", train_index, "TEST:", test_index) 

    X_train, X_test = x_pca[train_index], x_pca[test_index] 

    y_train, y_test = y[train_index], y[test_index] 

    X_train = X_train.astype(np.float64) 

    X_test = X_test.astype(np.float64) 

    y_test = y_test.astype(np.float64) 

    y_train = y_train.astype(np.float64) 
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    clf.fit(X_train, y_train) 

    ypred = clf.predict(X_test) 

    ypred=np.array(ypred).flatten() 

    aa=np.array(y_test).flatten() 

    mat_plot(aa,ypred) 

    rmse = rmse + np.sqrt(mean_squared_error(aa,ypred)) 

#df = pd.DataFrame(clf.cv_results_) 

#df 

rmse = rmse /10 

print("average RMSE",rmse) 

RANDOM FOREST REGRESSION 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import make_regression 

make_regression(n_features=4, n_informative=2,random_state=0, shuffle=False) 

regr = RandomForestRegressor(max_depth=2, random_state=0) 

regr.fit(x_train, y_train) 

R_pred=regr.predict(x_test) 
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from sklearn.metrics import r2_score 

r = r2_score(y_test, R_pred) 

print("Root Square:") 

print(r) 

from sklearn.metrics import mean_squared_error 

MSE= mean_squared_error(y_test, R_pred) 

print("Mean Square Error:") 

print(MSE) 

import math 

y_test = np.array(y_test).astype(float) 

y_pred = np.array(y_pred).astype(float) 

MSE = np.square(np.subtract(y_test, R_pred)).mean() 

RMSE = math.sqrt(MSE) 

print("Root Mean Square Error:") 

print(RMSE) 

fig,ax = plt.subplots(1) 
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# plot the data 

ax.scatter(y_test, R_pred,color="blue", marker="o",) 

m, b = np.polyfit(y_test, R_pred, 1) 

#add linear regression line to scatterplot 

plt.plot(y_test, m*y_test+b) 

plt.xlabel('Actual') 

plt.ylabel('Predicted concentraton in mg/L') 

plt.title("Prediction of chlorophyll A") 

plt.show() 

from sklearn.datasets import make_regression 

make_regression(n_features=4, n_informative=2,random_state=0, shuffle=False) 

clf = RandomForestRegressor(max_depth=2, random_state=0) 

kf = KFold(n_splits=10, shuffle=True, random_state=42) 

rmse = 0 

for i, (train_index, test_index) in enumerate(kf.split(x_pca)): 

    print(f"Fold {i}:") 

    #print("TRAIN:", train_index, "TEST:", test_index) 
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    X_train, X_test = x_pca[train_index], x_pca[test_index] 

    y_train, y_test = y[train_index], y[test_index] 

    X_train = X_train.astype(np.float64) 

    X_test = X_test.astype(np.float64) 

    y_test = y_test.astype(np.float64) 

    y_train = y_train.astype(np.float64) 

    clf.fit(X_train, y_train) 

    ypred = clf.predict(X_test) 

    ypred=np.array(ypred).flatten() 

    aa=np.array(y_test).flatten() 

    mat_plot(aa,ypred) 

    rmse = rmse + np.sqrt(mean_squared_error(aa,ypred)) 

#df = pd.DataFrame(clf.cv_results_) 

#df 

rmse = rmse /10 

print("average RMSE",rmse) 

K-NEAREST NEIGHBOR REGRESSION 
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# Import necessary libraries 

from sklearn.decomposition import PCA 

''' 

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test  = train_test_split(x_smooth, y, test_size=0.1, 

random_state=0)''' 

# Apply PCA 

pca = PCA(n_components = 5) 

X_pca = pca.fit_transform(X) 

# Explained variance 

explained_variance = pca.explained_variance_ 

total_explained_variance = explained_variance.sum() 

# Print results 

print(f"Explained Variance:\n{explained_variance}") 

print(f"Total Explained Variance: {total_explained_variance:.4f}") 

# Explained variance ratio 

explained_variance_ratio = pca.explained_variance_ratio_ 
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total_explained_variance_ratio = explained_variance_ratio.sum() 

# Print results 

print(f"\nExplained Variance Ratio:\n{explained_variance_ratio}") 

print(f"Total Explained Variance Ratio: {total_explained_variance_ratio:.4f}") 

# Import necessary libraries 

import numpy as np 

import matplotlib.pyplot as plt 

# Plot explained variance ratio 

cumulative_variance_ratio = np.cumsum(explained_variance_ratio) 

f = plt.figure() 

f.set_figwidth(10) 

f.set_figheight(10) 

plt.plot(cumulative_variance_ratio, marker='o') 

plt.xlabel('Number of Principal Components') 

plt.ylabel('Cumulative Explained Variance Ratio') 

plt.title('Cumulative Explained Variance Ratio by Principal Components') 

plt.show() 
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!pip install matplotlib 

def mat_plot(a,b): # qq1 is the actual readings andthe b is the predictd 

  from sklearn.metrics import mean_absolute_error 

  from sklearn.metrics import mean_squared_error 

  from sklearn.metrics import r2_score 

  import numpy as np 

  import matplotlib.pyplot as plt 

  print("The R2 ", (r2_score( a, b))) 

  print("RMSE:", np.sqrt(mean_squared_error(  a, b))) 

  #print("MAPE%:", mean_absolute_percentage_error(  a, b)) 

  print("MAE",mean_absolute_error(a,b)) 

  print("MSE",mean_squared_error(a,b)) 

  print("RMSE",np.sqrt(mean_squared_error(a,b))) 

  fig, ax = plt.subplots() 

  ax.plot(b, a, linewidth=0,  marker="o", color='C0', markersize=8) 

  #plot(x, y, color='green', linestyle='dashed', marker='o', markerfacecolor='blue', 

markersize=12). 
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  low_x, high_x = ax.get_xlim() 

  low_y, high_y = ax.get_ylim() 

  low = max(low_x, low_y) 

  high = min(high_x, high_y) 

  ax.plot([low, high], [low, high], ls="-", c=".2", alpha=.4) 

  #ax.set_title('R2 score') 

  plt.rcParams.update({'font.size': 20}) 

  ax.set_xlabel("Actual") 

  ax.set_ylabel("Predicted ") 

  plt.show() 

import matplotlib 

import numpy as np 

from sklearn.model_selection import KFold 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.metrics import mean_squared_error 

# Apply PCA 

pca = PCA(n_components =  2) 
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x_pca = pca.fit_transform(X) 

rmse = 0 

kf = KFold(n_splits=10, shuffle=True, random_state=42) 

for i, (train_index, test_index) in enumerate(kf.split(x_pca)): 

    print(f"Fold {i}:") 

    #print("TRAIN:", train_index, "TEST:", test_index) 

    X_train, X_test = x_pca[train_index], x_pca[test_index] 

    y_train, y_test = y[train_index], y[test_index] 

    X_train = X_train.astype(np.float64) 

    X_test = X_test.astype(np.float64) 

    y_test = y_test.astype(np.float64) 

    y_train = y_train.astype(np.float64) 

    neigh = KNeighborsRegressor( n_neighbors = 1, p = 1, weights = 'distance',  

algorithm = 'auto' ) 

    neigh.fit(X_train, y_train) 

    y_pred=neigh.predict(X_test) 

    y_pred=np.array(y_pred).flatten() 
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    qq1=np.array(y_test).flatten() 

    print( "*****************************") 

    #plt.plot(qq1,y_pred) 

    mat_plot(qq1,y_pred) 

    rmse = rmse + np.sqrt(mean_squared_error(qq1,y_pred)) 

    print( "Result for each fold " + str(i)) 

    print( "*****************************") 

rmse = rmse /10 

print("average RMSE",rmse) 

from sklearn.model_selection import cross_val_score 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.metrics import mean_squared_error 

# Import necessary libraries 

from sklearn.decomposition import PCA 

# Apply PCA 

pca = PCA(n_components =  5) 

x_pca = pca.fit_transform(X) 
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''' 

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test  = train_test_split(x_pca, y, test_size=0.1, 

random_state=42, shuffle= True)''' 

neigh = KNeighborsRegressor() 

x_pca = x_pca.astype(np.float64) 

y = y.astype(np.float64) 

''' 

y_train = y_train.astype(np.float64) 

y_test = y_test.astype(np.float64) 

''' 

from sklearn.model_selection import KFold 

from sklearn.model_selection import GridSearchCV 

parameters = {'n_neighbors':list(range(1, 5)) , 'p':list(range(1, 5)) , 

'weights':['distance'],  'algorithm': ['auto']} 

from sklearn.model_selection import GridSearchCV 

kf = KFold(n_splits=10, shuffle=True, random_state=42) 
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clf = GridSearchCV(neigh, parameters, cv = kf , return_train_score=False, scoring= 

'neg_mean_absolute_error')  # scoring='neg_mean_squared_error 

clf.fit(x_pca, y) 

''' 

#clf.cv_results_ 

ypred = clf.predict(x_test) 

ypred=np.array(ypred).flatten() 

 

aa=np.array(y_test).flatten() 

mat_plot(aa,ypred) 

''' 

kf = KFold(n_splits=10, shuffle=True, random_state=42) 

rmse = 0 

for i, (train_index, test_index) in enumerate(kf.split(x_pca)): 

    print(f"Fold {i}:") 

    #print("TRAIN:", train_index, "TEST:", test_index) 

    X_train, X_test = x_pca[train_index], x_pca[test_index] 
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    y_train, y_test = y[train_index], y[test_index] 

    X_train = X_train.astype(np.float64) 

    X_test = X_test.astype(np.float64) 

    y_test = y_test.astype(np.float64) 

    y_train = y_train.astype(np.float64) 

    clf.fit(X_train, y_train) 

    ypred = clf.predict(X_test) 

    ypred=np.array(ypred).flatten() 

    aa=np.array(y_test).flatten() 

    #plt.plot(qq1,y_pred) 

    mat_plot(aa,ypred) 

    rmse = rmse + np.sqrt(mean_squared_error(aa,ypred)) 

df = pd.DataFrame(clf.cv_results_) 

df 

rmse = rmse /10 

print("average RMSE",rmse) 
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