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PREFACE

This dissertation represents the culmination of several months of research and hard

work. It is with great pleasure that I present it to the academic community.

Throughout this journey, I have been fortunate to receive support and guidance from

many individuals and the institution, to whom I owe immense gratitude.

The dissertation is organized as follows: Chapter 1 provides an introduction to the

topic, including its significance and relevance. Chapter 2 reviews the existing

literature on Food adulteration and it’s detection using various methods, synthesizing

key findings and identifying gaps in the literature. Chapter 3 outlines the methodology

employed in this study, detailing the research design, data collection methods, and

analytical approach. Chapter 4 explains the machine learning algorithms used on the

datasets. Finally, Chapter 5 presents the results with empirical findings and analysis

with various ML algorithms.
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“DETECTION OF FORMALIN IN MILK USING MACHINE

LEARNING”

Delinka Genoveva Rosa
Electronics Discipline , SPAS

Goa University

Abstract

Food adulteration, commonly referred to as 'food fraud,' is a serious issue worldwide

that can have dire consequences on the health and well-being of consumers.Common

types of adulterants added to food include water, starch, urea, detergents, and

chemical preservatives. Adulteration can lead to severe health impacts such as

digestive issues, toxicity, and long-term diseases like cancer. To enhance the shelf life

of milk during long-distance transportation, formalin is often employed as an

adulterant in milk. However, formalin is a highly toxic substance that can lead to

severe damage to the liver and kidneys if consumed. In this research A non-

destructive system based on machine learning (ML) is developed to detect formalin

adulteration in milk using near-infrared (NIR) spectroscopy. A comprehensive

database was produced by combining variable quantities of formalin in two different

types of milk (ranging from 0% to 50%) and recording spectra using a Jasco V770

spectrophotometer from 400nm to 1400nm. The spectral data obtained was pre-

processed using the Savitzky Golay filter (SG- Filter) and Principial Component

Analysis (PCA). To predict the formalin concentration in milk, five different ML

models were used for regression analysis. Among the regression models, KNN

outperformed for buffalo Milk, jersey cow milk and for the combination of both the

milk having excellent values for R2, RMSE, MAE as follows. For Buffalo milk an R2
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of 0.999, RMSE of 0.28 ml (% v/v), MAE of 0.08 ml (% v/v) and average RMSE

1.08. For Jersey Cow Milk an R2 value of 0.999, RMSE of 0.13 ml (% v/v), MAE of

0.03 ml (% v/v) and average RMSE 0.48. For the combination of both the milks an R2

value of 0.999, RMSE of 0.5 ml (% v/v), MAE of 0.18 ml (% v/v) and average RMSE

1.06.
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Introduction

Food is a fundamental source of nourishment for all living beings, serving as a means

of sustenance and growth. The recommended daily intake of dairy-based food

products for adults is 2-3 portions, as per the food guide pyramid. The quality of milk

is essential in ensuring the production of high-quality dairy products and promoting

consumer health. However, milk adulteration is a significant concern in developing

countries, as it is the most frequently adulterated food commodity. The dairy industry

suffers major economic losses due to this practice, while consumers are exposed to

health risks. Overpopulation, rapid urbanization, and scattered settlements are some of

the contributing factors to the growing demand for milk production. In an attempt to

meet this demand, milk dealers often resort to adulteration. "Food fraud, or Food

Adulteration" which involves the deliberate compromise of food quality and safety, is

a serious public health threat. This unethical practice is a growing concern worldwide

as it not only defrauds consumers but also poses severe health implications.

Adulteration is often carried out to increase profits or due to a lack of proper detection

technology and confusion about appropriate drug administration practices. Therefore,

it is crucial to raise awareness about this issue and take appropriate measures to

prevent and deter food adulteration. Milk is considered the "ideal food" due to the

abundance of nutrients required by both infants and adults, including protein, fat,

carbohydrate, vitamins, and minerals (Moore et al.,2014; Azad and Ahmed, 2016).

Cow milk includes 3.7% fat, 4.8% lactose, 12.7% total solids, 3.4% protein, 0.7% ash,

86% water, casein 2.8%, it varies from breed to breed and species to species.

Today, India is the largest producer of milk in the world, contributing 23% of global

milk production (Milk Production in India, 2022). From 2014-15 to 2022-23,
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increased by 58%, reaching 230.58 million tonnes in 2022-23. (Invest India, n.d.,

2023).

1.1 Background

Milk is undoubtedly a ubiquitous food in the human diet. This is the first food of

mammals and, as such, provides all the energy and nutrients needed for proper growth

and development. The nutritional richness of milk is indisputable; it is a good source

of protein with high biological value and polyvalent roles in immune function as well

as nutrient transport and absorption, and of course, it contains essential vitamins and

minerals (Pereira, 2014). However, the quality of milk can vary significantly

depending on various factors such as the health of the animal, the method of milking,

and storage conditions, among others.

1.1.1 Types of Adulterants in Milk

Various substances are used as adulterants in milk, each with its own implications.

Water

The most common method of adulterating milk is by adding water to increase its

volume, which can lead to a reduction in the nutritional value of the product (Francis

et al., 2020). However, this practice poses a serious health risk to consumers since

contaminated water can contaminate milk and cause various diseases such as

diarrhoea, typhoid, rotavirus, and hepatitis A and E (Bhuiyan and Noor, 2020).

Consumers are particularly concerned about the safety of the water used in milk
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production, as it may contain harmful contaminants such as pesticides and heavy

metals that can pose a risk to their health.

Urea

Milk is often adulterated with urea to improve its brightness, fluidity, and non-protein

nitrogen content, as well as to balance the levels of solids not fat in the correct

proportion. Urea is also used to generate artificial milk. However, even a small

amount of urea can cause health problems such as vomiting, nausea, gastritis, ulcers,

and even cancer. Urea is particularly harmful to the heart, liver, and kidneys, as the

kidneys have to work harder to eliminate it from the body. The presence of ammonia

in milk can result in impairment, loss of acquired speech, and visual impairment.

Inconsistent cow nutrition can also cause the urea content of milk to increase, leading

to productivity issues in dairy cows. Urea is also used for heat consistency,

highlighting the importance of detecting urea in milk (Kandpal et al., 2016).

Formalin

Formalin is a type of disinfectant that is widely use to enhance the storage life of

liquid milk, during transportation. However, applying any form of preservative to

milk is illegal. Formalin is primarily used to conserve biological specimens, and its

use can help save money on refrigeration and electricity. Formalin can induce

carcinogen agents. It can also induce gut corrosion, which can lead to ulcers and

intestinal inflammatory illnesses, all of which can lead to renal failure (Chemical Fact

Sheets: Formaldehyde, 2022).
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Detergents

Cleansers are often used to dissolve and disperse water in oil, resulting in a foaming

mixture with a milk-like white color. The cosmetic nature of milk can be improved by

detergents, which are primarily used to make it thicker and more viscous. However,

detergents can cause gastrointestinal problems and are hazardous to human health.

Detergents such as dioxane, sodium lauryl sulfate, and phosphates are commonly used,

but they can have harmful effects. Dioxane is a carcinogen, while sodium lauryl

sulfate can cause conjunctivitis, liver damage, cytotoxicity, endocrine disruption,

mutation, and cancer. Phosphates can cause symptoms such as nausea, diarrhea, and

skin irritation (Hemanth Singuluri and Sukumaran, 2014).

Hydrogen Peroxide

Hydrogen peroxide is often used to keep milk fresh for a longer period of time, but it

can harm the cells in the gastrointestinal tract, leading to cancer, ulcers, and intestinal

inflammation. It disrupts the antioxidants in the body, which can accelerate the aging

process. Hydrogen peroxide is an oxidizing and bleaching agent that is colorless and

odorless. It is commonly used in deodorants, water and sewage treatment, and the

production of other compounds. Like formalin, hydrogen peroxide can extend the

storage life of milk and inhibit bacterial growth. However, milk contaminated with

hydrogen peroxide has been linked to an increase in heart rate and the development of

cardiac arrhythmia (Lindmark-Månsson and Åkesson, 2000).

Synthetic Milk

Synthetic milk is not real milk, but rather a heavily adulterated product that is

designed to increase profits by enhancing the quantity of liquid. It typically contains a
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combination of liquid cleanser or soap, caustic soda, vegetable fats, sodium, and

ammonia, among other ingredients. Although it looks and tastes like milk, synthetic

milk lacks the nutrients found in real milk. The technology for producing synthetic

milk was developed by milkmen in Kurukshetra around 15 years ago and has since

spread to other countries. According to some estimates, up to 1.10 crore liters of

synthetic milk are produced and sold each day in various states across the country.

Synthetic milk can cause significant harm to the human body, including eye

inflammation, liver and kidney complications. It is especially dangerous for pregnant

women and anyone with high blood pressure. Urea and sodium carbonate, two

common ingredients in synthetic milk, are extremely toxic to the heart, liver, and

kidneys, and can turn the human body into a breeding ground for disease (Francis et

al., 2020)..

Chlorine

In order to counteract the viscosity of diluted milk, chlorine is often utilized as an

additive subsequent to its dilution (Reddy et al., 2017). However, oxygenated milk

can pose potential health risks, such as the development of cardiac conditions and

blockage of arteries (van der et al., 2021). The incl usion of chloride in milk can

disrupt the alkaline ratio and pH of the blood, leading to potential health implications.

Melamine

Melamine is utilized as an artificial means to increase the protein concentration of

milk powder. However, under severe circumstances, its intake can lead to renal failure

and even fatality (Cheng et al., 2010). Melamine is a compound consisting of

cyanamide and 1,3,5-triazine, which typically occurs in the form of crystal shards in

nitrogen. It is commonly employed in the production of amino polymers and plastic
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materials, textiles, nitrogenous pesticides, and other products that are only slightly

miscible in water. Despite its industrial applications, melamine has the potential to

cause harm to one's health. Clinical trials have revealed that melamine ingestion alone

can lead to urinary blockages and the formation of kidney stones. This can cause a

disruption in the effective functioning of kidneys, leading to renal failure.

Whey

Whey, a cost-effective by-product of cheese production, is added to liquid milk to

increase volume as well as protein content (de Carvalho et al., 2015).

Oil

Milk is composed of various components, with fat being a major constituent, typically

accounting for 3-5% (m/m) of cow's milk. Triacylglycerols are the primary type of fat

found in milk, comprising around 97-98% of its fat content, and are responsible for

the characteristic flavor and texture of milk products. Fat is a target of adulteration

due to its value in the production of milk derivatives and its ability to compensate for

fraudulent dilution. Vegetable oils, such as soybean, sunflower, groundnut, coconut,

palm, and peanut oil, as well as animal fat, are the primary adulterants used for this

purpose (Rani et al., 2015).

https://www.sciencedirect.com/science/article/pii/S030881461631857X
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Some more adulterants that are added in milk are listed below:

To decrease microbial growth and increase the shelf life of the product. Such

substances include hypochlorite, salicylic acid, and even potassium dichromate.

However, these substances are toxic to humans, and hence it is crucial to monitor their

use for quality control purposes. Ammonium Sulphate is a chemical fertilizer, which

is added to milk to raise the density of watered milk and increases the lactometer

reading by maintaining the density of milk. The serious health risk of these

adulterants are gastrointestinal complaints, liver and kidney damage. Starch is

adulterated in milk to increase the solid content. Caustic soda is added to the blended

mixture of chemical and natural milk to neutralise the effect of increased acidity,

thereby preventing it from turning sour during transport. Benzoic acid and Salicylic

acid are added to milk to increase the shelf life of milk. Maltodextrin is a common

additive used in milk. It increases the volume of milk and milk products.

Consumption of milk adulterated with Maltodextrin may cause Allergy and diarrhea.

Melamine is added into the milk to increase the protein count falsely in milk and dairy

products. Melamine is described as being harmful if swallowed, inhaled or absorbed

through the skin. Many food colorants are added to improve the appearance of milk

and have hazardous effects on health.Synthetic milk has bitter after taste, gives a

soapy feeling on rubbing between the fingers and turns yellowish on heating Synthetic

milk is made by adding while colour water. chalk powder is added to the milk to

increase its apparent volume, or to make it appear whiter. (Nascimento et al.,2017;

Raturi et al., 2022). The table 1.1 provides a list of adulterants added to milk, along

with the purpose of the adulteration, their impact on health, and the absorption

maxima in nanometers.
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Table 1.1 List of adulterants with milk along with their Spectral Signatures

Adulterants in
Milk

Used Effects on Health Absorption
Maxima (nm)

Water to increase the
quantity

water-borne
illnesses.

Broad band
around 1450 nm

Urea show higher protein
content in milk

harmful to the kidney
and gastrointestinal
system.

Peaks at 232 and
280 nm

Formalin Preservation Damage effect on the
liver and kidneys.

Broad band
around 1100 nm

sodium
carbonate

emulsify and
dissolve the oil in
water giving a frothy
solution, which is
the desired
characteristic of
milk

irritation to your eyes,
skin, mouth, and
lungs.

Peaks at 220 and
260 nm

Starch increase the solid
content.

blockage in the
intestines and
stomach pain.

Broad band
around 1020 nm

ammonium
sulphate

raises the density of
watered milk and
increase the
lactometer

gastrointestinal
complaints, and liver
and kidney damage.

Peaks around 205
and 230 nm

melamine increase the protein swallowed, inhaled or
absorbed through the
skin
irritating to skin and
eye mucous
membranes.

Peaks at 232 and
280 nm

1.1.2 Detection Methods

Detecting formalin adulteration in milk is a critical task for regulatory authorities and

consumers alike. In most cases of contamination, different types of analysis methods
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are used to give the analyst flexibility in selecting the appropriate method. This

enables the analyst to accurately detect and identify the type of adulteration or

contamination present in the food product. It is essential to use these testing methods

to ensure that food products are safe and free from any harmful contaminants, thereby

ensuring the health and safety of consumers. Various techniques, especially in the

fields of electronics and spectroscopy, are employed to detect adulterants in milk.

Here's an overview of some of these techniques:

Electronics-Based Techniques

Electronics-based techniques use various sensors and devices to detect changes in

electrical properties, chemical composition, or sensor responses that indicate

adulteration. Here are the most prominent methods:

 Electronic Nose (E-nose) and Electronic Tongue (E-tongue)

These devices are designed to mimic human olfactory and gustatory senses,

respectively, and use arrays of sensors to detect adulteration in milk. E-nose detects

volatile organic compounds (VOCs) by analyzing their unique patterns. A trained

electronic nose can identify the presence of foreign substances in milk based on

changes in these patterns. E-tongue detects non-volatile compounds in a similar

fashion, using sensor arrays to recognize alterations in the chemical composition of

milk. It is particularly useful in detecting flavor adulterants, like sweeteners or

bittering agents (Cristian Olguín et al., 2014; Zhang, L., et al., 2014)
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 Electrical Conductivity

This technique measures the electrical conductivity of milk to detect the addition of

substances like water, salt, or urea. Since each compound has a distinct conductivity

profile, any deviation from normal levels can indicate adulteration.

 Potentiometric Sensors

These sensors measure changes in voltage due to specific ion concentrations. They are

useful in detecting substances like ammonium compounds and formaldehyde, which

are often used in milk adulteration.

Spectroscopy-Based Techniques

Spectroscopy-based techniques analyze the interaction between light and matter to

detect adulterants. These methods are widely used due to their precision and

sensitivity.

 Near-Infrared Spectroscopy (NIRS)

NIRS involves the absorption of near-infrared light by milk samples. Each compound

absorbs light at specific wavelengths, creating unique spectral signatures. This

technique is effective in detecting adulterants like water, urea, and melamine. It is

non-destructive and allows for rapid analysis, making it ideal for large-scale testing.

(Pierna et al., 2012; Salgó and Gergely, 2012; Albanell et al., 2012)

 Fourier Transform Infrared Spectroscopy (FTIR)

FTIR uses infrared light to obtain molecular fingerprints of milk samples. It is

particularly useful for identifying complex adulterants and can be combined with
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chemometric analysis to increase accuracy. FTIR is capable of detecting a wide range

of adulterants, including detergents and other chemicals used to dilute milk (Jawaid et

al., 2013).

 Raman Spectroscopy

Raman spectroscopy analyzes the scattering of monochromatic light as it interacts

with molecular vibrations. This technique can detect adulterants based on their unique

Raman spectra. It is sensitive to changes in composition and structure, enabling real-

time analysis. Raman spectroscopy is especially useful in detecting protein-based

adulterants and melamine (Khan Mohammad Khan et al., 2015)

 Ultraviolet-Visible (UV-Vis) Spectroscopy

UV-Vis spectroscopy measures the absorption of ultraviolet and visible light by milk

samples. It is helpful for detecting adulterants that affect the optical properties of milk,

such as dyes or colorants (Agharkar and Mane, 2021).

Chemical and Biochemical Techniques

These methods use chemical reactions or biochemical processes to detect adulterants

in milk.

 pH and Acidity Tests

These tests measure the pH level or acidity of milk to detect substances like

detergents or certain chemicals. A significant deviation from normal pH levels

indicates adulteration.

https://link.springer.com/article/10.1007/s12161-014-9873-z
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 Chromatography

Chromatography techniques, such as gas chromatography (GC) and high-performance

liquid chromatography (HPLC), separate and analyze compounds in milk. They are

effective in detecting a wide range of adulterants, including melamine, antibiotics, and

other chemicals (Filazi et al., 2012; Tittlemier, S. A. , 2010; Jablonski et al., 2014).

 Enzyme-Based Tests

Enzyme-based tests use specific enzymes to detect certain adulterants. For example,

the urease test detects urea in milk by measuring enzyme activity in the presence of

urea.

 Immunoassays

Immunoassays use antibodies to detect specific proteins or antigens in milk. They are

useful in detecting adulterants like melamine or other protein-based substances

(Matabaro et al., 2017).

 Polymerase chain reaction (PCR)

Polymerase chain reaction (PCR) has also been used for the specific and sensitive

detection of milk and other food adulterants. PCR is a detection method that can be

used for both qualitative and quantitative detection of milk adulterants including milk

from other sources. The different variants of PCR such as multiplex PCR, Real-Time

PCR and restriction fragment length polymorphism (RFLP) etc. are used for the

detection of microbial and exogenous milk from different sources in raw and

processed milk. The addition of exogenous proteins in milk has been detected

specifically using PCR. The use of PCR as a regular milk adulterant detection method

is still not in practice because of some pitfalls. The high level of substances such as
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fats and proteins are inhibitory to PCR, and inability to detect non-DNA based milk

adulterants limits PCR use in milk adulterant detection method (Di Domenico et al.)

(Ewida and El-Magiud) (Hazra et al.) (Yang et al.).

Choosing the best technique depends on several factors, including the type of

adulterant, required sensitivity, cost, and analysis speed. Electrical conductivity and

pH tests are generally more affordable, making them ideal for initial screening.

However, they may not detect all types of adulterants. Spectroscopy-based techniques,

such as NIRS, FTIR, and Raman spectroscopy, offer high sensitivity and specificity,

making them suitable for comprehensive analysis. They are especially useful when

detecting a wide range of adulterants. (Azad and Ahmed, 2016; Yadav et al., 2022).

Compared to other techniques, NIR spectroscopy has several advantages in detecting

formalin in milk. It is non-destructive, enabling repeated measurements without

affecting the sample's quality. NIR spectroscopy is highly sensitive and accurate,

capable of detecting even trace amounts of formalin. It can also analyze multiple

components at once, providing comprehensive milk quality assessment beyond

formalin detection. It is easy to use and requires minimal sample preparation, making

it cost-effective and suitable for routine screening. The technique can be applied to

various milk matrices and sample forms. NIR spectroscopy is a rapid technique,

providing results within minutes, enabling timely decision-making and intervention.

1.1.3 Advanced techniques Implemented On Adulterants

 Water

Milk adulteration with water is a common fraudulent practice aimed at increasing the

volume of milk, thereby reducing its quality and nutritional value. Research papers
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have proposed several techniques to detect water adulteration in milk. For example,

the measurement of milk's electrical conductivity is a simple yet effective method, as

added water changes the ionic concentration, leading to altered conductivity

(Montalvo et al., 2010). Similarly, the freezing point of milk is a critical parameter;

added water raises the freezing point, and this anomaly can be detected through

cryoscopy or other freezing point determination methods (Garcia et al., 2012). The

analysis of specific gravity or density is another common approach, as the addition of

water reduces these values (Patil et al., 2015). Additionally, spectroscopy-based

techniques, such as near-infrared spectroscopy (NIRS), can detect changes in the

milk's composition due to added water, providing a non-destructive and rapid method

of analysis (Santos et al., 2011). Using these techniques, researchers and regulatory

agencies aim to identify and combat milk adulteration to ensure food safety and

maintain consumer trust.

 Melamine

Various advanced techniques are employed for the quantitative detection of melamine

in milk and milk products. The Surface Enhanced Raman Spectroscopy (SERS)

method has been utilized to identify melamine, with a portable sensor based on this

technology allowing for instant detection (Zhang, Zou, Qi, Liu, Zhu, & Zhao, 2010;

Kim, Barcelo, Williams, & Li, 2012). SB-ATR FTIR (Single Bounce Attenuated

Total Reflectance - Fourier Transform Infrared Spectroscopy) is another technique

used to quantify melamine in both liquid and powdered milk (Jawaid et al., 2013).

Mass spectrometry methods such as LC-MS/MS, APCI-MS (Atmospheric Pressure

Chemical Ionization Mass Spectroscopy), and EESI-MS (Extractive Electrospray

Ionization Mass Spectrometry) have also been employed to detect melamine in
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various milk products (Yang et al., 2009; Zhu et al., 2009). Another technique used

for melamine detection is High-Performance Liquid Chromatography (HPLC), which

has been employed to quantify melamine in milk and other dairy products

(Gopalakrishnan Venkatasami, 2010; Ruicheng Wei et al., 2009). Raman

spectroscopy has also been used to immediately detect melamine in dried milk

powder without extracting it, focusing on the Raman band at 676 cm-1 (Okazaki et al.,

2009). Portable screening systems based on Laser Raman Spectroscopy have been

designed to quantify melamine (Cheng et al., 2010). Gold nanoparticles offer an

innovative approach to melamine detection. When these nanoparticles, which are

grafted with melamine and cyanuric acid derivatives, bind to melamine, they change

color from red to blue, providing an instant on-site detection method (Ai, Liu, & Lu,

2009). Additionally, the use of oxidized polycrystalline gold electrodes has been

reported to detect melamine, along with traditional approaches like Gas

Chromatography-Mass Spectrometry (GC-MS) (Tsai, Thiagarajan, & Chen, 2010).

Recent advancements in melamine detection techniques are discussed in Liu et al.,

2012.

 Urea

Urea is naturally found in milk, constituting a significant portion of the non-protein

nitrogen content. However, urea is often used to adulterate milk, either through

deliberate addition or by combining unspecified synthetic milk with natural milk.

According to the Food Safety and Standards Authority of India (FSSAI) Act 2006 and

the Prevention of Food Adulteration (PFA) rules of 1955, the maximum permissible

limit for urea in milk is 70 mg/100 mL (Sharma et al., 2012). Various techniques have

been developed to detect urea in milk. Near-infrared Raman spectroscopy allows for
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the quantification of urea without pre-processing (Khan et al., 2014), while Liquid

Chromatography (LC) is another method to identify urea as an adulterant (Dai et al.,

2013). Gas Chromatography/Isotope Dilution Mass Spectrometry (GC/IDMS) has

also been used for quantifying urea (Xinhua Dai et al., 2010), and High-Performance

Liquid Chromatography (HPLC) has been suggested for detecting urea by converting

it into a derivative containing a chromophore (Czauderna & Kowalczyk, 2009). A

combination of the Kjeldahl method and spectrophotometry has been proposed to

detect melamine, urea, and ammonium sulfate adulteration (Virginia de Lourdes et al.,

2013). In terms of infrared technology, an optical waveguide sensor that detects

ammonia at a characteristic wavelength of 1530 nm has been developed, aiding in the

detection of multiple analytes including ammonia (Bamiedakis et al., 2013). Other

technologies, such as a Field Effect Transistor (FET) with a graphene channel and

ionic liquid (IL) gate, can detect ammonia and carbon dioxide at specific thresholds

(Inaba et al., 2013) Two research papers discuss the classification of biosensors for

detecting urea, based on enzymatic and non-enzymatic approaches and transduction

signal systems (Farzaneh Shalileh et al., 2023) (None Jyoti et al., 2022) . Another

paper focuses on the detection of urea as a milk adulterant using a fiber optic sensor,

while another presents a point-of-use sensor for urea quantification in milk with

minimal sample reprocessing and seamless readout (Ruchira Nandeshwar et al.,

2023) .
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 Formalin

Fig 1.1 Formalin Structure

Fig 1.2 Recorded Formalin Spectra on Jasco

Formalin (CH2O fig 1.1), a solution of formaldehyde in water , is sometimes used as

an adulterant in milk due to its preservative properties. However, its use in food

products poses significant health risks.The spectroscopic data obtained for formalin

appears as depicted in figure 1.2. According to research, several techniques are used

to detect formalin in milk. For instance, Fourier Transform Infrared Spectroscopy

(FTIR) can identify specific functional groups that are characteristic of formalin,

allowing for its detection in adulterated milk (Alhendi et al., 2014). Chromatography

techniques, such as High-Performance Liquid Chromatography (HPLC), offer another

method to separate and quantify formaldehyde in milk (Kaminski et al., 1973).

Additionally, colorimetric tests based on the Nash reagent have been employed,

where the reagent reacts with formaldehyde to produce a color change, providing a

simple yet effective method for detection (Mathaweesansurn and Detsri, 2022). Some
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studies also suggest the use of Gas Chromatography-Mass Spectrometry (GC-MS) for

more accurate quantification of formaldehyde in milk samples (Vaz et al., 2022 ).

Overall, these methods provide a variety of approaches to detect formalin adulteration

in milk, catering to different analytical needs and contexts.

 Other Compounds

Various advanced spectroscopy techniques have been employed to detect and quantify

adulterants in milk. Near-infrared (NIR) spectroscopy, in the 1100-2500 nm range,

has been used to identify whey in cow's milk (Kasemsumran et al., 2007). Santos et al.

(2013a) conducted a comparative study between NIR and medium-infrared (MIR)

spectroscopy and found that MIR outperformed NIR in detecting a variety of

adulterants, including tap water, whey, hydrogen peroxide, and synthetic urine. In

another study, the presence of synthetic urine in UHT milk was identified in all tested

samples through a chemometric approach (Souza et al., 2011). Moreover, synthetic

urine concentrations as low as 0.78 mg/L could be detected using infrared

microspectroscopy and chemometric analysis (Santos et al., 2013b). Additionally,

changes in sodium and calcium concentrations, measured with flame atomic

absorption spectroscopy, can indicate the presence of synthetic urine (Santos et al.,

2012).

In other research, Matrix-assisted Laser Desorption/Ionization Time of Flight Mass

Spectroscopy (MALDI-QTOF MS) has been used to detect vegetable oil in milk

(Saraiva et al., 2012), and Raman chemical imaging has allowed for the identification

of various adulterants, including ammonium sulfate, dicyandiamide, and other

contaminants in powdered milk (Qin et al., 2013). The adulteration of milk fat is also
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a common issue, with various detection methods available. Techniques such as

fluorescence spectroscopy (Ntakatsane et al., 2013), derivative spectroscopy

(Jirankalgikar & De, 2014), and Raman spectroscopy (Uysal et al., 2013) have proven

effective in detecting these types of adulteration.

In recent years, Fourier-transform infrared (FTIR) spectroscopy and near-infrared

(NIR) spectroscopy have gained attention for their potential in detecting chemical

contaminants in food products. These techniques provide high sensitivity and

specificity, making them suitable for detecting formalin in milk at trace levels. By

leveraging the distinctive spectral signatures of formalin and milk components,

spectroscopic methods offer a rapid and reliable alternative to traditional detection

methods.

Analysis and experimental methods used for milk composition measurement are time-

consuming, costly, and require manpower and are not automated [22]. NIR

spectroscopy is a rapid and less complex method that can be used for real-time

analysis of milk samples in a laboratory or in-line production environment. It is a

cost-effective and efficient technique that can provide accurate and reliable results for

milk analysis. In milk analysis, NIR spectroscopy can be used to describe and

determine the various components present, such as protein, fat, and lactose content of

the milk. This information is essential and important for ensuring the quality and

safety of dairy products and can help detect milk adulteration. NIR spectroscopy can

be suitable for specific adulterant detection when applied to well- characterized

samples with known adulterants. However, its effectiveness depends on the

complexity of the sample matrix and the availability of a comprehensive spectral

database (Sneha et al.)
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1.2 Aim

This dissertation aims to develop an effective, and non-invasive technique to identify

formalin in milk using Near Infrared (NIR)spectroscopy. Milk typically has a short

shelf life of up to 48 hours when stored at a temperature of less than 7°C. However,

the addition of preservatives can help to extend its shelf life. By adding preservatives,

milk can be stored for longer periods without spoiling. Formaldehyde, also known as

formalin, is the oldest and cheapest chemical used as a preservative. Even a small

amount of it can significantly increase the shelf life of milk. However, formalin is

extremely harmful to the human body. It is highly carcinogenic and can cause

vomiting, abdominal pain, dizziness, and in extreme cases, even death. Formalin is

also nephrotoxic, which means it is highly toxic to the kidneys. When consumed, it

reacts with macromolecules such as Deoxyribonucleic acid, Ribonucleic acid, and

proteins, forming reversible adducts or irreversible cross-links. Although the use of

formalin in food products has been banned worldwide, some people continue to use it

for the same purpose. Foods that are commonly adulterated using formalin include

noodles, salted fish, tofu, and even chicken and beer. Even today, formalin is illegally

used as a preservative in some foods, which exposes consumers to its consumption

and its dangerous consequences. Acute exposure to formaldehyde can irritate the eyes,

nose, throat, and skin. Long-term exposure, on the other hand, has been associated

with certain types of cancers, such as sinonasal cancer, and can also trigger asthma.

Adulteration of milk is a malpractice in which dealers either incorporate cheap

substances or subtract valuable components from milk to increase its volume and thus

profit margin. Excessively documented adulterants used to adulterate milk are diluent

(water and ice) thickening agents (starch, glucose, urea, flour, salt, and chlorine, etc.),
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preservatives (sodium carbonate, sodium bicarbonate and formalin, etc.),

reconstituting agents (seed oils, cane sugar and animal fats and milk powder),

cosmetic agents (Detergent/soap and bleaching powder, etc.) melamine and others. In

a research paper by Singuluri (2014) found that Sucrose and skim milk powder were

present in 22% and 80% of the milk samples respectively. Urea, neutralizers, and salt

were present in 60%, 26%, and 82% of the milk samples respectively. Formalin,

detergents, and hydrogen peroxide were present in 32%, 44%, and 32% of the milk

samples obtained.

1.3 Objective

Development of a milk sample database containing formalin adulterant.

Analysis of milk and adulterated samples using NIR spectroscopy

Developing best machine learning algorithm for detecting formalin with good

accuracy and low RMSE

Test and validate the ML models on a diverse range of milk samples cow and buffalo

1.2 Hypotheses

Formalin (formaldehyde solution) is an illegal adulterant sometimes used to preserve

milk, extending its shelf life. Formalin, a 37% aqueous solution of formaldehyde gas,

is a highly toxic substance extensively used as an antiseptic, disinfectant, and

preservative. Milk lasts for 48 hours when it is stored at a temperature less than 7 °C.

Still, its shelf life can be extended further by adding preservatives like formalin which

ensures long-distance transportation without refrigeration, resulting in significant cost

savings for suppliers. Despite its effectiveness in preserving milk, formalin poses a
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severe health hazard to consumers as it can cause liver and kidney damage. Ingesting

formalin can result in a range of adverse effects, including diarrhea, vomiting,

abdominal pain, and even blindness. Given the critical need for rapid and reliable

detection methods, this study hypothesizes that Near-Infrared (NIR) Spectroscopy can

accurately and efficiently detect formalin in milk. NIR Spectroscopy operates in a

wavelength range that allows for detailed molecular analysis, and its sensitivity to

changes in chemical composition suggests it could effectively identify formalin

adulteration in milk. The hypothesis assumes that formalin will produce unique

spectral patterns in the NIR range that distinguish it from typical milk components,

enabling accurate detection even at low concentrations. By analyzing these spectral

patterns, the study aims to confirm whether NIR Spectroscopy is a viable method for

detecting formalin in milk samples.

The primary research question guiding this study is: "Can Near-Infrared (NIR)

Spectroscopy reliably detect the presence of formalin in milk, and if so, at what

concentration levels?" This question seeks to address two critical aspects: the

accuracy and sensitivity of NIR Spectroscopy in identifying formalin adulteration.

Additionally, the study will explore whether certain reprocessing or chemometric

techniques can enhance the detection accuracy of NIR Spectroscopy. A secondary

research question could focus on practical applications: "Is NIR Spectroscopy a

feasible technique for real-time, on-site formalin detection in dairy production

environments?" This question aims to assess whether the method can be used

effectively in field settings, contributing to food safety and quality control. By

addressing these questions, the study intends to provide valuable insights into the

capability of NIR Spectroscopy for detecting formalin in milk and its potential

application in ensuring dairy product safety.
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1.3 Scope of Detection of Formalin in Milk Using NIR Spectroscopy

Formalin detection in milk is a crucial aspect of food safety and public health. Near-

Infrared (NIR) Spectroscopy offers a promising approach for this detection due to its

non-destructive nature, rapid analysis, and high sensitivity to chemical composition

changes. The scope of using NIR Spectroscopy for formalin detection in milk

encompasses several key areas. First, it includes the development and validation of

spectral models to identify and quantify formalin in milk samples. This involves

analyzing the unique spectral fingerprints of formalin in the NIR range, typically

between 400 and 1400 nm, where distinct absorption peaks may be indicative of its

presence.

Additionally, the scope extends to the evaluation of NIR Spectroscopy's sensitivity to

various formalin concentrations. This involves exploring detection thresholds to

determine the minimum concentration of formalin that can be reliably identified. The

approach should also account for potential spectral interference from other milk

components, such as fats, proteins, and lactose, which could affect the accuracy of

detection. Therefore, chemometric techniques and data reprocessing methods, such as

baseline correction and noise reduction, become integral to the successful application

of NIR Spectroscopy in this context.

The practical scope of using NIR Spectroscopy for formalin detection in milk includes

its application in both laboratory and real-time settings. In a laboratory context, the

focus is on achieving high precision and accuracy through controlled experiments and

calibration with known formalin concentrations. This establishes the method's

reliability for quality control and compliance with food safety standards. The real-
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time application involves adapting the NIR Spectroscopy setup for use in dairy

processing environments, allowing for rapid, on-site detection of formalin during milk

production and distribution.

The scope also covers the integration of NIR Spectroscopy into existing quality

assurance workflows, potentially enabling automated detection systems that can

continuously monitor milk for formalin adulteration. This approach could help dairy

producers and regulatory agencies identify contamination early, reducing the risk of

formalin-tainted milk reaching consumers. Additionally, the portability of some NIR

Spectroscopy instruments broadens the scope to field applications, where inspectors

can quickly assess milk samples for formalin content at various points in the supply

chain. Ultimately, the scope encompasses not only the technical aspects of formalin

detection using NIR Spectroscopy but also the practical considerations for ensuring

food safety and regulatory compliance in the dairy industry.
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C H A P T E R 2
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Literature Review

In recent years, spectroscopic methods have emerged as a promising tool for detecting

adulterants in food products. Using machine learning techniques, it is possible to

analyze the spectral data of food products to detect adulterants. While these

techniques have been used to detect formalin in milk, only a small number of

researchers have focused on detecting formalin as an adulterant in milk.

Bezuayehu Gutema Asefa (2022) proposed a method for detecting water adulteration

in milk using digital image analysis combined with machine learning techniques. The

support vector machine-based class prediction model outperformed the other machine

learning tools in classifying adulterated milk samples based on the quantity of added

water, with 94% total accuracy and 97% precision (Bezuayehu et al., 2022). .

Lucas de Souza Ribeiro et al.(2016) developed a hardware architecture based on

diffuse reflectance spectroscopy in the near-infrared. To improve the signal-to-noise

ratio, an optical condenser system with fixed lenses was created. As the light source,

LEDs with precise spectral emission were used. InGaAsSb sensors, which have a fast

response time and good sensitivity to the NIR band, were also employed to detect

diffusely reflected light. The suggested equipment was tested on water-adulterated

milk samples. The findings revealed high coefficients of determination, greater than

0.99.

Aditya Dave et al. (2016) proposed a non-contact approach for detecting milk

adulteration while maintaining the consistency and quality of the milk sample and

making it reusable for future testing. An embedded system with an AVR

microcontroller combined with an optical sensor, LCD, and keypad was created. The

main characteristic involved in detecting adulteration was the refractive index. The

refractive index fluctuated as the amount of water adulteration changed, and these
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relationships were used to construct the system for detecting adulteration of a random

milk sample. The results obtained detected the adulteration with an accuracy of

roughly 95±1%, indicating a 200% increase in accuracy over older methods such as

spectroscopy.

Lucas da Silva Dias et al. (2018) produced a prototype for raw milk analysis that

identifies the added water. To avoid significant scattering of infrared light by fat

globules, a sample preparation process was developed. The sampling method is based

on diffuse reflectance and a low-cost integrating sphere, avoiding costly commercial

alternatives. In the near-infrared response area, the created sphere has a reflectance

index of 88%. LEDs are used as infrared light sources, and an In-Ga-As-Sb

photodiode is used for detection. The calibration was done with a set of samples with

distinct adulterations, and then a new set was examined to validate the estimator's

model. The coefficient of determination (R^2) was found to be 0.9562. The root-

mean-squared error of prediction in the validation stage was 0.01794 .

A paper proposed by N. Swomya et al. (2021) covers the design and development of a

low-cost, portable, multispectral, AI-based, non-destructive spectroscopic sensor

system that can identify milk adulterants in real time. They used three different bands

Ultraviolet (UV), visible, and infrared (IR) wavelengths ranging from (410-940nm).

The steps involved in the research were AI-enabled multispectral spectroscopic sensor

design, sample preparation, spectral data collection and processing, and neural

network methods. To the spectrum data, several machine learning algorithms such as

Naive Bayes, Linear discriminant analysis, support vector machine, decision tree, and

neural network model are applied, yielding accuracy of 90%, 88.1%, 90%, 91.7%,

and 92.7% respectively. The Genetic algorithm framework is used to perform optimal
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parameter selection/parameter modification of the neural network. The neural network

performance is enhanced from 92.7% to 100% by using optimal parameter settings.

A team led by S.J. Dutta (2022) researched measuring the urea content in milk. They

utilized silver nanoparticles, both uncapped and citrate-capped, along with ultraviolet-

visible (UV-Vis) spectroscopy. The team characterized the nanoparticles using

Ultraviolet-Visible, scanning electron microscope (SEM), X-ray diffraction (XRD),

and Fourier transform infrared (FTIR) spectroscopy. When the nanoparticles

interacted with urea, they observed a color change from yellow to blue. The

developed technique demonstrated an average accuracy and sample percent relative

standard deviation (% RSD) ranging from 62.67 to 121.85% and 0.11-1.21%,

respectively.

In a study conducted by Khan Mohammad Khan et.al, (2014) near-infrared Raman

spectroscopy was proposed as a potential method for accurately determining urea

levels in milk. By implementing the Raman technique in combination with the partial

least squares algorithm, the team achieved an impressive accuracy rate of over 97%

for urea concentrations above 100 mg/dl. For levels between 50 and 100 mg/dl,

accuracy remained high at 90% to 95%. However, accuracy decreased to 60% for

urea concentrations lower than 50 mg/d.

Yan cheng et al. (2010) Built a portable compact Raman spectrometric system to

detect melamine adulterants in milk powder. melamine fortified in milk powder was

identified with high reproducibility using two distinct vibration modes at 673 and 982

cm1. The intensity of the first mode was used to calculate the amount of melamine in

milk powder. A detection limit (DL) of 0.13% and a good partial least squares (PLS)

analysis model were obtained.
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Kamboj, Uma, et al. (2020) established the detection of the presence of sugar as an

adulterant in milk using Near Infrared Spectroscopy. They used chemometric

software (CAMO Unscrambler version X 10.3) to analyze the data. The chemometrics

model was developed through multivariate analysis of obtained data using the

Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression

methods. The partial least square regression model performed well in predicting

sugar-adulterated milk samples, with a coefficient of correlation greater than 0.9 and a

root mean square error of validation (RMSEV) of 0.04.

Olgun Cirak et al. (2017) aimed to develop a rapid spectroscopic technique for milk

source classification and discrimination using Fourier transform infrared spectroscopy

(FTIR). The study utilized Hierarchical cluster and principal component analyses to

achieve milk species classification and successfully detected milk sample adulteration

using the FTIR technique. The chemometric method employed amide-I (1700-

1600/cm) and amide-II (1565-1520/cm) spectral bands.

Vinod Kumar Verma, et al. (2019) used the ultrasonic technique to examine the

adulteration of a pure milk sample with artificial (synthetic) milk. The ultrasonic

wave of frequency 0.5 MHz from the transmitter was passed through the sample and

received on the other end by the receiver. The signal received at the receiver is

analyzed using a digital storage oscillator (DSO). As a result, the voltage of the

received signal increases with the percentage increase in adulteration. As a result, the

voltage of the received signal increases with the percentage increase in adulteration.

Medha Khenwar et al. (2022) designed an IoT model to assess the quality of milk by

integrating multiple sensors including bacterial activity monitored by a gas sensor, pH

value monitored by a pH sensor, Viscosity by a Viscosity sensor, and temperature by

the temperature sensor. The IoT model ensures milk quality with the help of these
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sensors, and the overall performance of this IoT model is evaluated using LabVIEW.

The results of this model guarantee milk quality by 90%.

Mabrook, et al. (2003) found A novel method to detect added water to full-fat milk

has been developed using single-frequency electrical conductance measurements. The

characteristics at 100 kHz and 8 ◦C for all skimmed milk samples revealed a linear

decrease in conductance with increasing water content over the entire range of water

concentrations. In contrast, full-fat milk's conductance decreased only at added water

concentrations higher than 10%. At lower added water concentrations, the full-fat

milk exhibited an anomalous conductivity maximum at 2–3% added water.

Sumaporn Kasemsumran, et al. (2007) employed Near-infrared spectroscopy (NIRS)

to detect the adulteration of milk, non-destructively. Two adulteration types of cow

milk with water and whey were prepared, respectively. NIR spectra of milk

adulterations and natural milk samples in the region of 1100 - 2500 nm were collected.

The classification of milk adulterations and natural milk was conducted by using

discriminant partial least squares (DPLS) and soft independent modeling of class

analogy (SIMCA) methods. PLS calibration models for determining water and whey

contents in milk adulteration were also developed, individually.

Mauricio Moreira et al. (2016) developed an innovative digital photometer, which can

detect water presence in milk. The device is compact, equipped with a microcontroller,

and incorporates three NIR-emitting LEDs. Unlike traditional photometers, it doesn't

require lenses, filters, or moving parts. By calculating the transmittance of IR

radiation, the photometer can accurately determine the amount of added water in milk

samples. The researchers conducted various experiments and found that the prototype

had a mean absolute error of under 1% in measuring added water percentage.

Moreover, the absolute deviations from the average were less than 0.7% in two sets of
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10 measurements. The device proved to be as responsive as a commercial cryoscope

but provided faster results( Sumaporn Kasemsumran, et al).

Ram et al. (2022) have developed a cost-effective, uncomplicated, and reliable paper-

based microfluidic device was developed for the detection of starch concentration in

milk. The device was designed to accommodate a 10 μl milk sample that was

introduced into the inlet zone. Following a 5-minute waiting period, the resulting

color transition length was captured using a smartphone. The starch concentration was

then measured by a specialized app, "starch-app," developed in-house. The correlation

between the values of the starch concentration measured by the device and

spectrophotometer was found to be high (R2 = 0.9981) within the range of 0–10% w/v.

The developed device and app have the potential to serve as a useful tool for detecting

milk adulteration, thereby ensuring the quality and safety of milk products.

Sharifi, Fatemeh, et al. (2023) aimed to evaluate the efficacy of a previously

developed photoacoustic spectroscopy system that employs light sources in the visible

to short-wave near-infrared range (Vis-SWNIR, 395–940 nm) for detecting various

adulterants in cow's milk, including formalin, urea, hydrogen peroxide, starch, sodium

hypochlorite, and detergent powder. The outcomes of principal component analysis

(PCA) revealed a visually distinct separation between different types of adulterations.

The artificial neural networks (ANN) exhibited the highest accuracy rate of

classification, almost 97.6%, in identifying the type and level of adulteration. In

conclusion, the Vis-SWNIR photoacoustic spectroscopy system appears to be a

reliable and efficacious tool for detecting different forms of milk adulterations.

Balan et al. (2020) demonstrated Fourier transform infrared (FTIR) spectroscopy,

combined with multivariate chemometrics, as an efficient method for the qualitative

and quantitative analysis of formalin in milk. The spectra of pure and adulterated milk
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(0.5-5% v/v) were obtained using ATR-FTIR in the range of 4000-400 cm−1.

Principal component analysis (PCA) was used to separate pure samples from

adulterated samples, resulting in well-defined clusters. Soft Independent Modelling of

Class Analogy (SIMCA) was used to classify test samples with 100% classification

efficiency. Partial least squares (PLS) regression and principle component regression

(PCR) models were developed using the normal, first derivative, and second

derivative spectra to quantify the level of formalin in milk.

A paper published by Fazal Mabood et. al (2017) utilized near-infrared (NIR)

spectroscopy in the absorption mode, encompassing the wavelength range from 700 to

2500 nm. The study implemented a 2 cm-1 resolution and utilized a sealed CaF2 cell

with a path length of 0.2 mm. Multivariate methods such as Principal Component

Analysis (PCA), Partial Least Discriminant Analysis (PLS-DA), and Partial Least

Regression Analysis (PLS) were employed for the statistical analysis of the acquired

NIR spectral data. The PLS regression model had an R-square of 93%, with a good

prediction as evidenced by an RMSECV of 1.38. Additionally, the model had a

RMSEP value of 1.50 and a correlation of 0.95.

The research paper by Veríssimo et al. (2020) "A new formaldehyde optical sensor:

Detecting milk adulteration" presents a novel sensor that can detect formaldehyde in

milk. The sensor uses an optical fiber coated with polyoxometalate salt, which

changes its UV-Vis spectrum upon contact with formaldehyde. The sensor had a

detection limit of 0.2 mg/L for formaldehyde, which is consistent with conventional

spectrophotometric methods. The sensor was tested on milk samples for

formaldehyde quantification The results obtained from this optical sensor were

consistent with those from traditional methods, with no statistically significant

differences (α=0.05).



34

Vipin K Gupta et al. (2015) study presents a low-cost and rapid colorimetric

technology for determining formaldehyde in milk samples using a smartphone. The

method involves spot-test reaction and digital image analysis with R-G-B approach,

and has a limit of detection of 0.31 ppm. The analytical curves showed linearity

ranging from 0.25-4 ppm with R2 > 0.99.

Carvalho et al. (2015) devised a swift technique to detect and measure the adulteration

of milk powder through the addition of whey. This method involved assessing

glycomacropeptide protein using mid-infrared spectroscopy (MIR). After drying fluid

milk samples and spiking them with varying concentrations of GMP and whey,

calibration models were created using multivariate techniques based on spectral data.

Excellent percentages of correct classification were achieved in principal component

analysis and discriminant analysis as the proportion of whey samples increased. In the

best model of partial least squares regression analysis, the correlation coefficient (r)

and root mean square error of prediction (RMSEP) were 0.9885 and 1.17, respectively.

The rapid analysis, cost-effectiveness, and high throughput of samples tested per unit

time suggest that MIR spectroscopy has the potential to serve as a rapid and reliable

method for detecting milk powder frauds involving cheese whey.

In a research paper by Madhusudan G. Lanjewar et al (2024). Using the same setup

water adulteration in milk was detected The spectroscopic data was pre-processed

using various techniques such as SG filter, MSC, and SNV method.

Wavelength/feature selection and PCA were used to select the most informative

features and reduce their dimensions. Different ML models were employed to predict

water concentration in milk. The KNN model performed the best in regression

analysis with R2, RMSE, SEP, MAE, RPD, LOOCV-R2, and LOOCV-RMSE values

of 0.999, 0.399 mL ( % v/v), 0.096 mL ( % v/v), 0.227 mL ( % v/v), 33.005, 0.999,
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and 0.353 mL ( % v/v), respectively. On the other hand, RF achieved 100% accuracy

and MCC in classification analysis.

Samaneh Ehsani et al. (2022) aimed to investigate the potential of using a portable

near infrared (NIR) spectrometer, operating in the spectral range of 900-1700 nm, in

combination with ensemble methods as a rapid, nondestructive, and simple technique

for detecting water in bovine milk samples in the concentration range of 1% to 30%

(v/v). The developed model showed reliability and robustness, with satisfactory

values for calibration, cross-validation, and prediction sets. The performance of the

RSDE method was compared to other common classification techniques, including

PLS-DA and SVM, and was found to outperform these methods in terms of accuracy

and reliability. Additionally, boosted regression tree (BRT) was used to quantify the

level of water adulterant in milk, achieving a high level of accuracy. These results

indicate the potential of using portable NIR spectrometers and ensemble methods for

detecting water adulteration in milk. The ensemble regression model's performance

was assessed using the regression coefficient (R2) and root mean square error

(RMSE), with the BRT method achieving values of 0.95 and 0.58, respectively, in the

prediction set.

In a study, Bruno G. Botelho et al. (2015) proposed a screening method for detecting

five common adulterants in raw cow milk. The method utilized attenuated total

reflectance (ATR) mid infrared spectroscopy in combination with multivariate

supervised classification (partial least squares discrimination analysis - PLSDA) to

simultaneously detect the presence of water, starch, sodium citrate, formaldehyde, and

sucrose in milk samples containing up to five of these analytes in the range of 0.5-

10% w/v. A multivariate qualitative validation was performed to estimate specific

https://analyticalsciencejournals.onlinelibrary.wiley.com/authored-by/Ehsani/Samaneh
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figures of merit, including false positive and false negative rates, selectivity,

specificity, efficiency rates, accordance, and concordance.

Y. Etzion et al. (2004) conducted a study to determine the protein concentration in

raw cow milk using attenuated total reflectance spectroscopy in the mid-infrared

range. The method relied on the characteristic absorbance of milk proteins, which

include two absorbance bands in the 1500-1700 cm−1 range and absorbance in the

1060-1100 cm−1 range. An optimized automatic procedure for accurate water

subtraction was applied to minimize the influence of the strong water band. Three

methods were used to analyze the spectra: simple band integration, partial least

squares (PLS), and neural networks. The neural network approach produced the most

accurate results, with prediction errors of 0.20% protein when based on PCA scores

only and 0.08% protein when lactose and fat concentrations were included in the

model. The study suggests that Fourier transform infrared/attenuated total reflectance

spectroscopy could be a useful technique for the rapid and potentially online

determination of protein concentration in raw milk.

In a study conducted by Flavia Borges de Freitas Rezende et al., (2012) a high-

performance liquid chromatography method with UV detection (HPLC-UV) was

developed and validated for the detection of formaldehyde in bovine milk. The

method involved a formaldehyde derivatization reaction with 2,4-

dinitrophenylhydrazine at pH 4.0, allowing for the detection of formaldehyde in milk

at 360 nm. The analytical curves ranged from 10.0 to 400.0 μg L−1 in aqueous

solutions and milk samples, with an R2 value greater than 0.99, indicating the

linearity of the method. The limit of quantification of 20.0 μg L−1 demonstrated the

high sensitivity of the method for formaldehyde residues in milk. The method was

validated using milk samples fortified with formaldehyde at three different
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concentrations and demonstrated a mean overall recovery of 102.2 ± 1.3% (n = 9).

The accuracy of the method was evaluated using the Student t-test, and comparable

results were obtained at a 95% confidence level, demonstrating the usefulness and

effectiveness of the proposed method.

A new analytical method by Maha Ibrahim Alkhalf & Elwathig, 2017 using FTIR

spectroscopy was developed to determine formaldehyde in cheese. The method was

accurate with a coefficient of determination (R2) of 0.986 and an average standard

error of calibration of 2.24 mg/100g. The validation using the "leave-one-out" cross-

validation method resulted in an R2 of 0.9662, with standard errors of prediction and

standard deviation being 4.07 mg/100g and 4.61, respectively. These results suggest

that FTIR spectroscopy is a precise and rapid technique for detecting formaldehyde in

cheese samples.

Sandeep Choudary et al. (2022) developed a fluorescence-based method with a point-

of-use colorimetric sensing system to test milk quality in real-time using fluorophores.

The fluorescence intensities of the fluorophores were optimized to predict the pH of

milk samples using a color sensor device (CSD) and were cross-referenced using a

fiber optic spectrophotometer (FOS). The CSD and FOS measured pH and

adulteration in a linear range of 4-9 pH units and 0-70 mm urea in milk, with a quick

response time of 30 seconds and 5 minutes. The interday variability for pH sensing by

the CSD and FOS was evaluated and expressed as a percentage relative standard

deviation (%RSD), which was found to be 1.89 for CSD and 4.72 for FOS.

E. HOP et al. (1993) conducted a study using FT-IR spectrometry to determine the

water content of milk. Calibration was performed in the mid-infrared using a specific

water band at 2110 cm and a reference region at 2590 cm. Multiple linear regression



38

resulted in a prediction error of 0.14% water for milk samples with a water content

between 84.9% and 88.0% w/w.

Masataka Kawasaki et al. (2008) developed a near-infrared (NIR) spectroscopic

sensing system to obtain NIR spectra of raw milk automatically in a milking robot

system. Calibration models were developed to determine major milk constituents (fat,

protein, and lactose), somatic cell count (SCC), and milk urea nitrogen (MUN) in

unhomogenized milk, and the precision and accuracy of the models were validated.

The validation set for fat had a coefficient of determination (r2) of 0.95 and a standard

error of prediction (SEP) of 0.25%. Lactose had r2 and SEP values of 0.83 and 0.26%,

respectively, while protein had r2 and SEP values of 0.72 and 0.15%. For SCC, the r2

and SEP values were 0.68 and 0.28 log SCC/mL, respectively, and for MUN, they

were 0.53 and 1.50mg/dL, respectively. These results indicate that the NIR

spectroscopic system can be used in real-time to assess milk quality in an automatic

milking system.

Mohammed Musa et al. (2021) developed a new procedure to quickly classify and

quantify fresh milk adulteration. Fresh cow milk samples were collected from eight

farms in China and were adulterated with tap water at ten percentage levels. NIR

spectroscopy was used to scan the samples, and chemometric tools like SIMCA and

PLS were applied for statistical analysis. The developed PLS regression model had a

standard error of prediction (SEP) of 5.33 g/L for estimating the levels of adulteration

with water. This method is non-destructive, low-cost, and requires minimal sample

preparation, making it fast and simple for raw milk control in a dairy industry or

quality inspection of commercialized milk.

Thiago R.L.C. Paixão et al. (2009) developed a disposable electronic tongue with all

necessary electrodes integrated into a single device. The device was constructed with



39

gold CD-R and copper sheets substrates, and the sensing elements were gold, copper,

and gold surface modified with a layer of Prussian Blue. The performance and

capability of the device were evaluated with taste substances, different types of milk,

and adulterated samples. The results showed good separation between different

samples in the principal component analysis (PCA) score plots. The relative standard

deviation for signals obtained from the electrodes was below 3.5% .

Noor Aidawati Salleha et al. (2020) conducted a study to differentiate between milk

from different goat breeds using Fourier transform infrared spectroscopy (FTIR) and

multivariate analysis. the results showed clear discrimination between the breeds

using Partial Least Square Discriminant Analysis. The chemical composition analysis

revealed that milk had superior protein, fat, and lactose content compared to the other

breeds, with values of 3.7%, 4.20%, and 5.30%, respectively. This study suggests that

Jamnapari goat milk is different from the other two breeds and can be identified using

FTIR and multivariate analysis.

In a study conducted by Chirantan Das et al. (2018) to analyze the possibility of

detecting soap as an adulterant in cow milk using Electrical Impedance Spectroscopy

(EIS). The technique provides a simple, rapid, precise, and cost-effective platform for

monitoring milk quality. The study analyzed the variation of electrical parameters,

including impedance, capacitance, conductance, and current, for different

concentrations of soap adulteration in milk. The results showed that capacitance,

conductance, and current increased, while impedance decreased with increasing soap

content in milk. The study also extracted the coefficient of sensitivity for soap-

adulterated milk samples and explained it in terms of the measured conductance

values .
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A recent study by Moupali Chakraborty et al. (2018) aimed to identify the minimum

detectable limit for five common milk adulterants using an impedance sensor. The

LOD for adulterants in milk with varying fat percentages was studied using

commercial packet milk, UHT milk, and raw milk. Statistical analysis was applied to

verify the results and ensure data consistency.

A paper by A. Ravindran et al. (2018) With their research concluded that The use of

harmful chemicals in food adulteration is common for extra profits. Traditional

laboratory methods can detect adulterants but are not user-friendly, time-consuming,

and destructive. Spectroscopy offers a non-destructive, fast, and accurate method for

detecting adulteration in food. It can be used for detecting adulteration in various food

products like spices, natural oil, juice, honey, milk products, and wines .
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Materials and Methods

3.1 Sample Collection and Dataset creation

In this study, Raw milk samples were sourced from namely a buffalo and a cow,

both of which were classified under the Bos taurus species. The samples were

collected from the southern regions of Goa and were investigated at Goa University.

Figure 3.1 illustrates the comprehensive flow of the project. Stringent measures were

taken during the transportation of the milk to ensure that it was stored below 40°F

(4.4°C) to preserve the optimal quality of the milk. The rationale behind this is that

warmer temperatures expedite bacterial growth and spoilage, which could

compromise the quality of the milk. A batch of these milk was utilized to capture

spectral data for pure milk and milk adulterated with formalin. Adulteration levels

ranged from 0.5% to 50%, with variations of 0.5% for the range of 1% to 5%

(precisely,0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, and 5%) and 10%

variations for the range of 10% to 50% (including 10%, 20%, 30%, 40% and 50%). In

total, 60 samples were created with various adulteration levels of each milk. The

volume of each milk sample used for spectral recording remained constant at 10 ml.

The samples were uniformly mixed using a sonicator (Q Sonica, Model-Q500) fig 3.2

at 50% intensity for 15 minutes to distribute fat globules consistently. This step is

crucial to avoid dispersion during the spectral analysis. The entire datasets was

meticulously conducted, with careful consideration given to the temperature at which

the milk was stored throughout the spectral analysis to maintain the integrity of the

results. The database in this study was constructed based on the % v/v ratio of milk

and formalin. Milk was measured using a pipette of 10 ml, and formalin was

measured using a micropipette fig 3.3 with a maximum count of 100 microliters. This



43

method was chosen to ensure accuracy and consistency in the measurement of the

samples. Fig 3.5 depicts a test tube containing pure milk and another containing milk

adulterated with 50% formalin. The use of precise instruments and standardized

measurement techniques is crucial in developing reliable data for scientific research.

Fig 3.1:- Block Diagram of the Project

Fig 3.2:- Sonication device

Creating A Database

Database
Applying Pre-
Processing
Techniques

ML models (SVR,
PLSR, DTR,
KNR, RFR)

Performance
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MAE

Training and
Testing Split of

80:20

Best Model
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Fig 3.3 :- Micropipette with Microtip

Fig 3.4:- The figure displays the setup of the spectrophotometer, which was used for

capturing the spectral data in the experiment.
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Fig 3.5:- The figure depicts a test tube containing pure milk and another containing

milk adulterated with 50% formalin

PureMilk
50%
adulteration
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Table 2.1:- Dataset

Sr. No. Formalin (% v/v) Milk (% v/v) Formalin (ml)n (ml) Milk (ml)lk (ml)

1 0 100 0 10

2 0.5 99.5 0.05 9.95

3 1 99 0.1 9.9

4 1.5 98.5 0.15 9.85

5 2 98 0.2 9.8

6 2.5 97.5 0.25 9.75

7 3 97 0.3 9.7

8 3.5 96.5 0.35 9.65

9 4 96 0.4 9.6

10 4.5 95.5 0.45 9.55

11 5 95 0.5 9.5

12 10 90 1 9

13 20 80 2 8

14 30 70 3 7

15 40 60 4 6

16 50 50 5 5

A 10 ml sample of Jersey cow milk and Buffalo was collected and divided into four

equal parts, each containing 2.5 ml of milk. Spectroscopic analysis was then

performed on each of these four parts, with four spectra taken for each part, resulting

in a total of 16 spectra. The entire dataset consisted of 256 spectras of each milk. The

dataset comprised a combination of spectra from both Jersey cow milk and buffalo

milk, resulting in a total of 512 spectras, constituting the third dataset.This approach
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was used to assess the consistency and variability of the spectral data across multiple

portions of the same milk sample.

3.2 Spectral Acquisition System and Spectra pre-processing

The experimental setup for the detection of formalin adulteration in milk using

ML and NIR spectroscopy involved the use of a spectrophotometer JASCO V770 Fig

3.4 to capture the spectra, ranging from 200 to 1700 nm. The parameters for the

acquisition process were set as Photometric mode: Abs, Data interval: 0.5 nm,

UV/Vis bandwidth: 2.0 nm, NIR bandwidth: 8.0 nm, UV/Vis response: 0.06 sec,

NIR response: 0.06 sec, Scan speed: 1000 nm/miMn, Change source at 340 nm,

Change grating at 850 nm. These parameters were kept constant throughout the

experiment for JASCO Fig3.5.

Fig 3.5:- The figure depicts the integrating sphere used in reflectance mode for

capturing spectral data in the experiment.
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Fig 3.6:- The figure shows milk in a cuvette and how the setup of the

spectrophotometer is kept with the lid closed during spectral data collection.

A spectrophotometer in reflectance mode Fig 3.6, specifically with an integrating

sphere like the Jasco V770, measures the reflectance properties of a sample by

integrating scattered light.
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Fig 3.7 Block diagram of Spectrophotometer

At the core is the light source, typically a xenon or tungsten-halogen lamp, which

emits a broad spectrum of light. This light is directed through a monochromator Fig

3.7, usually composed of diffraction gratings and mirrors, which selects a specific

wavelength or range of wavelengths. The monochromatic output is then directed to

the integrating sphere, a spherical chamber with a diffuse white interior that evenly

reflects the light. The Reference Detector Captures light that doesn't interact with the

sample (reference beam) to establish a baseline. Inside the sphere, the sample is

positioned to reflect light into the sphere's interior, where it's uniformly scattered.

This scattered light is collected by a detector, often a photodiode array or

photomultiplier tube, and its intensity is measured to determine the reflectance

properties of the sample. This data is then analyzed to understand the reflectance

properties of the sample at different wavelengths, helping determine its composition

or characteristics.

The recorded spectra (x) were then corrected using the SG filter with with a window

length of 91, polynomial order of 3, and first derivative was apllied to (x). The dataset

underwent a 10-fold cross-validation process, where it was divided into 10 equal parts.
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The ML model was then trained and validated 10 times, with each iteration using a

different part as the validation set and the remaining parts for training. Further, the

pre-processed spectra were standardized using a Min-Max scaler method to bring

them to a common scale. The SG algorithm used in the pre-processing step fits each

polynomial to windows in the region of each point in the spectrum. These

polynomials were then used to smooth the data, and the resulting pre-processed

spectra were used for further analysis. The use of the SG filter method for noise

reduction has been a popular technique in many fields of data processing, as discussed

in previous literature (Hasar et al., 2023). This experimental setup and pre-processing

technique were crucial in obtaining accurate and reliable results for the detection of

formalin adulteration in milk using ML and NIR spectroscopy.

3.3 Operating Principle

Beer-Lambert Law

The Beer-Lambert law is a fundamental principle in the field of spectroscopy. It

describes the linear relationship between the absorbance and the concentration of an

absorber, which is typically a sample solution. According to Beer's law, two external

assumptions are made in the experiment.

Firstly, it is assumed that the absorbance is directly proportional to the concentration

of the sample. This means that as the concentration of the sample increases, so does

the absorbance of light passing through it. Secondly, it is assumed that the absorbance

is directly proportional to the length of the light path or the width of the container.

This means that the longer the light path or the wider the container, the higher the

absorbance will be.
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In the Beer-Lambert law, light is passed from the sides of the container Fig 3.8, and

the intensity of the light changes after it passes through the sample solution. By

measuring the change in intensity, the absorbance of the sample can be calculated.

The Beer-Lambert law is a powerful tool for scientists and researchers in many fields,

including chemistry, biology, and environmental science, as it allows them to

determine the concentration of a sample with great accuracy.

The Beer Lambert's Law is given by;

A=-log (I/Io)

 I is the light intensity

 Io is the initial light intensity

A= Ɛ L C

 A is the amount of light absorbed for a particular wavelength by the

sample

 ε is the molar extinction coefficient

 L is the distance covered by the light through the solution

 c is the concentration of the absorbing species

Fig 3.8 Beer Lambert Law



52

3.4 NIR Spectroscopy

NIR (Near-Infrared) spectroscopy has emerged as a powerful technique for detecting

milk adulteration, offering a rapid, non-destructive, and reliable method to assess the

quality and purity of milk. This technology operates in the near-infrared range Fig 3.9,

typically from 700 nm to 2500 nm, allowing it to identify a wide range of chemical

compounds and physical properties in milk samples. By analyzing the unique spectral

patterns generated when NIR light interacts with the molecular bonds in milk

components, such as proteins, fats, and lactose, it becomes possible to detect

adulterants and contaminants. Common adulterants in milk include water, urea, starch,

melamine, and vegetable oils, each of which has distinct spectral signatures that NIR

spectroscopy can detect and quantify. The technique's speed and accuracy make it

ideal for routine screening in dairy production and quality control environments,

allowing producers and regulatory bodies to ensure milk safety and integrity without

extensive sample preparation or hazardous chemicals.

Fig 3.9 NIR spectral Band
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Machine learning models

Support Vector Regression (SVR), Decision Tree Regression (DTR), Random Forest

Regression (RFR), Partial Least Squares Regression (PLSR), and K-Nearest

Neighbors Regression (KNNR). Each of these models has unique characteristics and

underlying principles. Below is a brief explanation of each, including their basic block

diagrams and how they work.

4.1 Support Vector Regression (SVR)

Support Vector Regression (SVR) is an advanced machine learning technique derived

from the foundational principles of Support Vector Machines (SVM), designed

specifically for regression tasks. Unlike traditional regression models that aim to

minimize the error between predicted and actual values, SVR focuses on finding a

function that approximates the data within a certain threshold, known as the epsilon-

insensitive zone. This approach ensures that only significant deviations from the

predicted function are penalized, thus offering robust performance even in the

presence of noise. SVR employs kernel functions to map input features into a higher-

dimensional space where a linear regression can be performed more effectively,

thereby capturing complex, non-linear relationships between the input variables and

the target. The flexibility of choosing different kernel functions, such as linear,

polynomial, and radial basis function (RBF), allows SVR to adapt to a variety of data

structures and distributions. Hyperplane is a separation line between two data classes

in a higher dimension than the actual dimension as shown in Fig 4.1. In SVR it is

defined as the line that helps in predicting the target value. By maximizing the margin

between the support vectors (the critical data points that define the regression line)
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and the epsilon boundary, SVR minimizes overfitting and enhances generalization to

unseen data. This is particularly beneficial in high-dimensional spaces where

traditional regression models often struggle. One of the key advantages of SVR is its

ability to handle multicollinearity among predictors, a common issue in many real-

world datasets. The model's robustness to outliers further ensures reliable predictions

by focusing on the global trend rather than local fluctuations. In practical applications,

SVR has been widely adopted across various domains, including financial time series

forecasting, where it predicts stock prices with impressive accuracy, and

bioinformatics, where it models complex biological interactions. In engineering, SVR

is used to predict outcomes in manufacturing processes, ensuring optimal quality

control. The implementation of SVR involves selecting appropriate hyperparameters,

such as the regularization parameter (C), the kernel type, and the epsilon value, which

can significantly impact the model's performance. Grid search and cross-validation

techniques are commonly employed to fine-tune these parameters, ensuring the

model's robustness and reliability. Despite its computational intensity, SVR's ability

to balance bias and variance makes it a powerful tool for regression analysis.

Furthermore, advancements in computational power and optimization algorithms have

mitigated the computational challenges, making SVR more accessible for large-scale

applications. The theoretical foundation of SVR is grounded in convex optimization,

ensuring that a unique global solution is achieved, unlike neural networks that might

converge to local minima. This mathematical rigor provides a solid basis for SVR's

reliability and effectiveness. Moreover, the interpretability of SVR models,

particularly when using linear kernels, offers insights into the underlying relationships

within the data, making it a preferred choice for researchers and practitioners who

require both accuracy and explainability. In summary, Support Vector Regression
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stands out as a versatile, robust, and theoretically sound method for regression tasks,

capable of handling a wide range of data complexities and ensuring high predictive

accuracy across various fields. Its unique approach to minimizing error within a

defined threshold, combined with the flexibility of kernel functions, positions SVR as

a powerful tool for modern data analysis and predictive modeling (Sharp, 2020).

Fig 4.1 Support Vector Regression

4.2 Decision Tree Regression (DTR)

Decision Tree Regression (DTR) is a powerful and intuitive machine learning

algorithm used for predicting continuous values by recursively partitioning the data

space into smaller, homogenous regions. Unlike linear regression models that assume

a linear relationship between the independent and dependent variables, DTR can

model complex, non-linear relationships by splitting the data into subsets based on the

values of input features. Each node in the decision tree represents a decision point as

shown in FIg 4.2, where the dataset is divided into two branches according to a

threshold value of a selected feature that minimizes the mean squared error (MSE) or

another suitable loss function. The leaves of the tree represent the predicted values,
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which are the average outcomes of the observations in those regions. This hierarchical

structure of DTR allows for easy visualization and interpretation, making it a valuable

tool for understanding and explaining the underlying patterns in the data. Additionally,

DTRs handle both numerical and categorical data and are robust to outliers since the

splits are based on the median of the data rather than being influenced by extreme

values. They also do not require feature scaling, which simplifies preprocessing.

Despite these advantages, decision trees can be prone to overfitting, especially when

they are deep and complex, capturing noise in the training data. Techniques such as

pruning, where parts of the tree that provide little power in predicting the target

variable are removed, and setting constraints like maximum depth or minimum

samples per leaf, can help mitigate overfitting. Furthermore, ensemble methods like

Random Forest and Gradient Boosting have been developed to enhance the

performance of DTR by aggregating the predictions of multiple trees, thereby

reducing variance and improving generalization to new data. Random Forest, for

instance, builds multiple decision trees using random subsets of features and data

samples and averages their predictions, leading to a more robust model. Gradient

Boosting, on the other hand, builds trees sequentially, where each tree tries to correct

the errors of its predecessor, optimizing the performance iteratively. These ensemble

techniques harness the strengths of individual decision trees while addressing their

weaknesses, resulting in state-of-the-art predictive performance. In practical

applications, DTR and its ensemble variants are widely used across various fields. In

finance, they predict stock prices and assess credit risk; in healthcare, they are

employed to predict patient outcomes and identify risk factors for diseases; in

marketing, they help segment customers and forecast sales. The ease of

implementation and interpretability of decision trees make them an attractive choice
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for both researchers and practitioners. Tools and libraries like Scikit-learn in Python

provide user-friendly interfaces for implementing DTR and tuning hyperparameters,

facilitating their application in real-world scenarios. Despite their simplicity, the

theoretical underpinnings of decision trees are grounded in solid mathematical

concepts of entropy and information gain, ensuring their reliability as predictive

models. In summary, Decision Tree Regression is a versatile and interpretable method

for regression tasks that excels in capturing complex relationships in data without

assuming any specific form of the relationship. Its susceptibility to overfitting can be

effectively managed through pruning and ensemble methods, which enhance its

predictive power and robustness. The widespread use of DTR in various industries

attests to its effectiveness and practicality, cementing its place as a fundamental tool

in the machine learning arsenal. The continuous advancements in ensemble learning

and optimization algorithms further augment the capabilities of DTR, ensuring its

relevance and utility in tackling increasingly complex predictive modeling challenges

(Prasad, 2021).

Fig 4.2 Decision Tree Regression
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4.3 Random Forest Regression (RFR)

Random Forest Regression is a versatile machine-learning technique for predicting

numerical values. It combines the predictions of multiple decision trees to reduce

overfitting and improve accuracy. Python’s machine-learning libraries make it easy

to implement and optimize this approach.

Ensemble Learning

Ensemble learning is a machine learning technique that combines the predictions

from multiple models to create a more accurate and stable prediction. It is an

approach that leverages the collective intelligence of multiple models to improve the

overall performance of the learning system.

Types of Ensemble Methods

There are various types of ensemble learning methods, including:

1. Bagging (Bootstrap Aggregating): This method involves training multiple

models on random subsets of the training data. The predictions from the

individual models are then combined, typically by averaging.

2. Boosting: This method involves training a sequence of models, where each

subsequent model focuses on the errors made by the previous model. The

predictions are combined using a weighted voting scheme.

3. Stacking: This method involves using the predictions from one set of

models as input features for another model. The final prediction is made by the

second-level model.

Random Forest

A random forest is an ensemble learning method that combines the predictions from

multiple decision trees to produce a more accurate and stable prediction. It is a type

https://www.geeksforgeeks.org/machine-learning/
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of supervised learning algorithm that can be used for both classification and

regression tasks.

Every decision tree has high variance, but when we combine all of them in parallel

then the resultant variance is low as each decision tree gets perfectly trained on that

particular sample data, and hence the output doesn’t depend on one decision tree but

on multiple decision trees. In the case of a classification problem, the final output is

taken by using the majority voting classifier. In the case of a regression problem, the

final output is the mean of all the outputs. This part is called Aggregation.

Fig 4.3 Random Forest Regression Model Working

What is Random Forest Regression?

Random Forest Regression in machine learning is an ensemble technique capable of

performing both regression and classification tasks with the use of multiple decision

trees and a technique called Bootstrap and Aggregation, commonly known

as bagging. The basic idea behind this is to combine multiple decision trees in

determining the final output rather than relying on individual decision trees.

https://www.geeksforgeeks.org/decision-tree/
https://www.geeksforgeeks.org/ensemble-methods-in-python/
https://www.geeksforgeeks.org/regression-classification-supervised-machine-learning/
https://www.geeksforgeeks.org/bagging-vs-boosting-in-machine-learning/
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Random Forest has multiple decision trees as base learning models. We randomly

perform row sampling and feature sampling from the dataset forming sample

datasets for every model. This part is called Bootstrap (Dutta, 2019).

4.4 Partial Least Squares Regression (PLSR)

Partial Least Squares (PLS) Regression is a powerful statistical method used for

modeling relationships between sets of observed variables, particularly when the

predictor matrix has more variables than observations and those variables are highly

collinear. Developed in the 1960s by Herman Wold, PLS regression is particularly

useful in scenarios where traditional regression techniques fail due to multicollinearity

or when the dataset contains missing values. PLS works by projecting the predictor

variables and the response variables into a new space, finding linear combinations of

the original variables that capture the most significant variance while also ensuring

these new variables (called latent variables) have the highest possible correlation with

the response variables. This method balances the goals of explaining the variance in

the predictors and the covariance between predictors and responses. The first step in

PLS regression involves standardizing the data, followed by the iterative extraction of

the latent variables. Each extracted component is orthogonal to the others, ensuring

independence and minimizing redundancy in the model. Unlike Principal Component

Regression (PCR), which focuses solely on variance within the predictors, PLS

regression ensures that the components extracted are those that are most relevant for

predicting the response variables, hence improving predictive accuracy. This dual

focus on variance and correlation makes PLS particularly suitable for chemometrics,

genomics, and other fields dealing with high-dimensional data. Model evaluation in

PLS involves cross-validation techniques to determine the optimal number of
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components, preventing overfitting and ensuring generalizability. Furthermore, the

interpretability of PLS models is enhanced through the inspection of variable

importance in projection (VIP) scores, which indicate the contribution of each

predictor to the model. This approach enables researchers to not only make accurate

predictions but also to understand the underlying relationships within the data.

Advanced versions of PLS, such as PLS-DA (Discriminant Analysis) and sparse PLS,

extend its utility to classification problems and variable selection, respectively. The

robustness of PLS regression against noise and missing data, combined with its

flexibility and interpretability, underscores its enduring popularity across various

scientific disciplines. Despite its advantages, PLS regression does have limitations,

including the potential for overfitting if not properly validated and the assumption of a

linear relationship between the latent variables and the responses.

4.5. K-Nearest Neighbors Regression (KNNR)

K-Nearest Neighbor (KNN) regression is a non-parametric, instance-based learning

algorithm used for predicting continuous outcomes. Unlike traditional regression

methods that assume a specific form for the relationship between input features and

the target variable, KNN regression makes predictions based on the similarity of input

features in the training dataset. The algorithm works by identifying the 'k' closest data

points (neighbors) in the feature space to a given query point and then computing the

average of their corresponding output values to make the prediction for the query

point.

As an example, consider the following table of data points containing two features:
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Fig 4.4 KNN Algorithm working visualization

Now, given another set of data points (also called testing data), allocate these points

to a group by analyzing the training set.

(K-NN) algorithm is a versatile and widely used machine learning algorithm that is

primarily used for its simplicity and ease of implementation. It does not require any

assumptions about the underlying data distribution. It can also handle both

numerical and categorical data, making it a flexible choice for various types of

datasets in classification and regression tasks. It is a non-parametric method that

makes predictions based on the similarity of data points in a given dataset. K-NN is

less sensitive to outliers compared to other algorithms.

The K-NN algorithm works by finding the K nearest neighbors to a given data point

based on a distance metric, such as Euclidean distance. The class or value of the

data point is then determined by the majority vote or average of the K neighbors.

This approach allows the algorithm to adapt to different patterns and make

predictions based on the local structure of the data.
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Distance Metrics Used in KNN Algorithm

As we know that the KNN algorithm helps us identify the nearest points or the

groups for a query point. But to determine the closest groups or the nearest points

for a query point we need some metric. For this purpose, we use below distance

metrics:

Euclidean Distance

This is nothing but the Cartesian distance between the two points which are in the

plane/hyperplane. Euclidean distance can also be visualized as the length of the

straight line that joins the two points which are into consideration. This metric helps

us calculate the net displacement done between the two states of an object.

Manhattan Distance

Manhattan Distance metric is generally used when we are interested in the total

distance traveled by the object instead of the displacement. This metric is calculated

by summing the absolute difference between the coordinates of the points in n-

dimensions.

Minkowski Distance

We can say that the Euclidean, as well as the Manhattan distance, are special cases

of the Minkowski distance.

https://www.geeksforgeeks.org/calculate-the-euclidean-distance-using-numpy/
https://www.geeksforgeeks.org/how-to-calculate-manhattan-distance-in-r/
https://www.geeksforgeeks.org/how-to-calculate-manhattan-distance-in-r/
https://www.geeksforgeeks.org/minkowski-distance-python/


65

From the formula above we can say that when p = 2 then it is the same as the

formula for the Euclidean distance and when p = 1 then we obtain the formula for

the Manhattan distance.

The above-discussed metrics are most common while dealing with a Machine

Learning problem but there are other distance metrics as well like Hamming

Distance which come in handy while dealing with problems that require overlapping

comparisons between two vectors whose contents can be Boolean as well as string

values (GeeksforGeeks, 2018).

How to choose the value of k for KNN Algorithm?

The value of k is very crucial in the KNN algorithm to define the number of

neighbors in the algorithm. The value of k in the k-nearest neighbors (k-NN)

algorithm should be chosen based on the input data. If the input data has more

outliers or noise, a higher value of k would be better. It is recommended to choose

an odd value for k to avoid ties in classification. Cross-validation methods can help

in selecting the best k value for the given dataset.

Workings of KNN algorithm

Thе K-Nearest Neighbors (KNN) algorithm operates on the principle of similarity,

where it predicts the label or value of a new data point by considering the labels or

values of its K nearest neighbors in the training dataset.

Step 1: Selecting the optimal value of K

 K represents the number of nearest neighbors that needs to be considered

while making prediction.

Step 2: Calculating distance

https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/hamming-distance-two-strings/
https://www.geeksforgeeks.org/hamming-distance-two-strings/
https://www.geeksforgeeks.org/cross-validation-machine-learning/
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 To measure the similarity between target and training data points, Euclidean

distance is used. Distance is calculated between each of the data points in the

dataset and target point.

Step 3: Finding Nearest Neighbors

 The k data points with the smallest distances to the target point are the

nearest neighbors.

Step 4: Voting for Classification or Taking Average for Regression

 In the classification problem, the class labels of are determined by

performing majority voting. The class with the most occurrences among the

neighbors becomes the predicted class for the target data point.
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C H A P T E R 5
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Results

In this study, we utilized Near Infrared (NIR) spectroscopy to identify the presence of

formalin in Jersey Cow milk, Buffalo Milk and Combining the datasets of both the

milks samples at differing concentrations. A spectrophotometer was employed to

capture the essential spectral data. The subsequent analysis involved the application of

five distinct predictive models to evaluate the presence and concentration of formalin

within the milk samples. The ML model was then trained and cross validated 10 times,

with each iteration using a different part as the validation set and the remaining parts

for training. This technique was employed to ensure a robust performance evaluation

of the model. The outputs from these models were evaluated based on key metrics

such as the R-squared (R²) score, Root Mean Square Error (RMSE) and Mean

Absolute Error (MAE). Through these results, we can better understand the utility of

this method in ensuring the safety and quality of milk, potentially leading to improved

food safety practices and regulations.

R² score measures how well a regression model explains the variability in the

dependent variable. It ranges from 0 to 1, with 1 indicating perfect prediction and 0

indicating no predictive power.

RMSE measures the average distance between predicted and actual values. It

quantifies the standard deviation of the errors or residuals, and is calculated from the

squared differences between predictions and actual observations.
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MAE measures the average magnitude of the errors made in a set of predictions,

irrespective of their direction. It is obtained by averaging the absolute differences

between predicted and actual values. A lower MAE indicates a more accurate model,

with zero indicating perfect prediction.

In this study, we applied several reprocessing techniques to enhance the quality of our

spectral data and improve the performance of our predictive models. Reprocessing

method includes the SG filter designed to correct or reduce noise and other distortions

in the data. PCA is a dimensionality reduction technique that transforms data into a

set of orthogonal components capturing the most variance which was applied to the

dataset.

Spectral readings were obtained from each sample, and these data were analyzed

using five different predictive models.

Using SG- Filter, we observed a significant enhancement in the accuracy of the

predictive models, as demonstrated by key metrics R², RMSE and MAE. These

results indicate that the SG Filter reprocessing technique was effective in refining the

dataset, contributing to more reliable detection of formalin in milk samples. The

following sections will present the detailed results of these analyses, underscoring the

impact of SG-Filter pre-processing on the overall performance of our models.
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5.1 Buffalo Milk

Buffalo milk samples were intentionally adulterated with formalin at varying levels to

assess the efficacy of Near Infrared (NIR) spectroscopy in detecting this chemical.

The adulteration percentages ranged from 0% to 5% in 0.5% increments, followed by

larger increments of 10%, 20%, 30%, 40%, and 50% to test a wider spectrum of

contamination. Figure 5.1 displays the spectra plot of buffalo milk, while Figure 5.2

shows the plot after the application of the Savitzky-Golay filter.

Fig 5.1:- Dataset for buffalo Milk

Fig 5.2 Savitzky Golay for Jersey Cow Milk

400 525 650 775 900 1025 1150 1275 1400
Wavelength
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The Buffalo milk dataset was analyzed using five different models with 10 k-folds.

Among these models KNN showed the best performance, as shown in the figures

below. A detailed summary of all the results can be found in Table 5.1.

Fig 5.3 Graph for Buffalo Milk (SVR)

Fig 5.4 Graph for Buffalo Milk (PLSR)

�2 =0.99
RMSE = 0.78

�2 =0.99
RMSE = 1.59
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Fig 5.5 Graph for Buffalo Milk (DTR)

Fig 5.6 Graph for Buffalo Milk (KNR)

�2 =0.99
RMSE = 0.4

�2 =0.99
RMSE = 0.28
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Fig 5.7 Graph for Buffalo Milk (RFR)

Table 5.1 performance of ML with SG performed spectra on Buffalo Milk

Best fold

Models �2 MSE RMSE MAE Average RMSE

SVR 0.99 0.61 0.78 0.53 1.98

PLSR 0.99 2.54 1.59 1.43 2.15

DTR 0.99 0.16 0.4 0.09 3.72

KNR
0.99 0.08 0.28 0.08 1.08

RFR 0.91 16.45 4.05 2.86 6.60

�2 =0.99
RMSE = 4.05
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5.2 Jersey Cow Milk

Jersey Cow Milk samples were intentionally adulterated with formalin at varying

levels to assess the efficacy of Near Infrared (NIR) spectroscopy in detecting this

chemical. The adulteration percentages ranged from 0% to 5% in 0.5% increments,

followed by larger increments of 10%, 20%, 30%, 40%, and 50% to test a wider

spectrum of contamination. Spectral readings were obtained from each sample fig 5.8

while Figure 5.9 shows the plot after the application of the Savitzky-Golay filter.

Fig 5.8 Plot for Jersey Cow Milk Dataset

Fig 5.9 Savitzky Golay for Jersey Cow Milk

400 525 650 775 900 1025 1150 1275 1400
Wavelength
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The Jersey Cow milk dataset was analyzed using five different models with 10 k-folds,

and KNN showed the best performance among these models, as shown in the figures

below. A detailed summary of all the results can be found in Table 5.2.

Fig 5.10 Graph for Jersey Cow Milk (SVR)

Fig 5.11 Graph for Jersey Cow Milk (PLSR)

�2 =0.99
RMSE = 1.45

�2 =0.98
RMSE = 1.69
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Fig 5.12 Graph for Jersey Cow Milk (DTR)

Fig 5.13 Graph for Jersey Cow Milk (KNR)

�2 =0.99
RMSE = 0.37

�2 =0.99
RMSE = 0.13
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Fig 5.14 Graph for Jersey Cow Milk (KNR)

Table 5.2 performance of ML with SG performed spectra on Jersey Cow Milk

Best fold

Models �2 MSE RMSE MAE Average RMSE

SVR 0.99 2.11 1.45 1.15 1.97

PLSR 0.98 2.88 1.69 1.37 2.18

DTR 0.99 0.14 0.37 0.17 2.25

KNR 0.99 0.01 0.13 0.03 0.48

RFR 0.97 6.06 2.46 2.10 4.38

�2 =0.97
RMSE = 2.46
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5.3 Combination of two milks

Both Milk that is Cow milk and Jersey Cow Milk database were combined together

which were intentionally adulterated with formalin at varying levels to assess the

efficacy of Near Infrared (NIR) spectroscopy in detecting this chemical. The

adulteration percentages ranged from 0% to 5% in 0.5% increments, followed by

larger increments of 10%, 20%, 30%, 40%, and 50% to test a wider spectrum of

contamination. Spectral readings were obtained from each sample fig 5.15 while

Figure 5.16 shows the plot after the application of the Savitzky-Golay filter.

Fig 5.15 Plot for Datasets Combining Both Milks

Fig 5.16 Savitzky Golay for Combination of Both the Milk

400 525 650 775 900 1025 1150 1275 1400
Wavelength
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Five distinct models were utilized on the Combination of both the data sets with 10 k-

folds, and KNN demonstrated superior performance among these five, as depicted in

the figures below. Table 5.3 presents a comprehensive summary of all the results.

Fig 5.17 Graph for the combination (SVR)

Fig 5.18 Graph for combination (PLSR)
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Fig 5.19 Graph for combination (DTR)

Fig 5.20 Graph for combination (KNR)
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Fig 5.21 Graph for Combinations (RFR)

Table 5.3 performance of ML with SG performed spectra on the combination

Best fold

Models �2 MSE RMSE MAE Average RMSE

SVR 0.99 1.93 1.39 1.06 2.12

PLSR 0.98 4.51 2.12 1.70 2.52

DTR 0.99 0.14 0.37 0.17 3.01

KNR 0.99 0.25 0.5 0. 18 1.06

RFR 0.97 6.06 2.46 2.10 5.78

\
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5.4 Conclusion

The widespread issue of food fraud poses serious threats to consumer health and well-

being, with common adulterants like water, starch, urea, detergents, and chemical

preservatives leading to severe health impacts, including digestive issues, toxicity,

and long-term diseases like cancer. To address the adulteration of milk with formalin,

a non-destructive machine learning-based system using near-infrared (NIR)

spectroscopy was developed. The research involved creating a comprehensive

database by combining variable quantities of formalin in two types of milk and

recording spectra using a Jasco spectrophotometer. The k-Nearest Neighbors (KNN)

algorithm excels in detecting formalin in buffalo milk, Jersey cow milk, and their

combination when analyzed using spectroscopy. After applying PCA to reduce the

data to 5 principal components and utilizing the Savitzky-Golay filter with a window

length of 91, polynomial order of 3, and first derivative, KNN consistently achieved

the highest accuracy, precision, and recall among the evaluated machine learning

models. KNN effectively identifies the presence of formalin, reduces false positives,

and accurately classifies true negatives, proving its robustness in handling spectral

data and detecting milk adulteration, thus making it the optimal choice for this

application. KNN demonstrated superior performance for buffalo milk, Jersey cow

milk, and the combination of both, with impressive R2, RMSE, and MAE values.

Specifically, for buffalo milk, KNN achieved an R2 of 0.999, RMSE of 0.28 ml (%

v/v), and MAE of 0.08 ml (% v/v) with an average RMSE of 1.08. For Jersey cow

milk, KNN resulted in an R2 value of 0.999, RMSE of 0.13 ml (% v/v), and MAE of

0.03 ml (% v/v) with an average RMSE of 0.48. Additionally, for the combination of

both milks, KNN attained an R2 value of 0.999, RMSE of 0.5 ml (% v/v), and MAE of

0.18 ml (% v/v) with an average RMSE of 1.06.
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CODE

from google.colab import drive

drive.mount('/content/drive')

import pandas as pd

import numpy as np

import numpy

import math

import matplotlib.pyplot as plt

from matplotlib import pyplot

from scipy import signal

from sklearn.svm import SVR

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.cross_decomposition import PLSRegression

from sklearn.model_selection import KFold, cross_val_score

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

dataset=pd.read_csv('/content/drive/MyDrive/final dataset files/machine

larning/Dataset.csv')

dataset

x = dataset

x

x.shape

x = dataset.drop(['per'], axis=1).to_numpy()
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wavelength = x[0,0:1001]

wavelength

x= x[1:85,0:1001]

x

y= dataset.per.to_numpy()

y = y[1:85]

y

y.shape

# plotting the signal

pyplot.plot(wavelength, x.T)

pyplot.xlabel(' Wavelength')

pyplot.ylabel('Abs')

pyplot.title("Spectra")

pyplot.show()

#train and test

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)

#standard scalar

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(x_train)

x_train= scaler.transform(x_train)

x_test= scaler.transform(x_test)

k_folds = KFold(n_splits = 10)

# Calculate first derivative applying a Savitzky-Golay filter

X = signal.savgol_filter(x, window_length=91, polyorder=3, deriv=1)
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f = pyplot.figure()

f.set_figwidth(7)

f.set_figheight(8)

print("Plot after re-sizing: ")

pyplot.plot(wavelength, x.T)

pyplot.xlabel(' Wavelength')

pyplot.ylabel('Abs')

pyplot.title("Spectra")

pyplot.show()

SUPPORT VECTOR REGRESSION

mod = SVR(C=10, epsilon=0.2)

cv_scores = cross_val_score(mod, x_train, y_train, cv=k_folds)

mod.fit(x_train, y_train)

y_pred = mod.predict(x_test)

r = r2_score(y_test, y_pred)

print("Root Square:")

print(r)

MSE= mean_squared_error(y_test, y_pred)

print("Mean Square Error:")

print(MSE)

y_test = np.array(y_test).astype(float)

y_pred = np.array(y_pred).astype(float)

MSE = np.square(np.subtract(y_test, y_pred)).mean()

RMSE = math.sqrt(MSE)
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print("Root Mean Square Error:")

print(RMSE)

y_pred

import numpy as np

import matplotlib.pyplot as plt

fig,ax = plt.subplots(1)

# plot the data

ax.scatter(y_test,y_pred,color="red", marker="o",)

m, b = np.polyfit(y_test, y_pred, 1)

#add linear regression line to scatterplot

plt.plot(y_test, m*y_test+b)

plt.xlabel('Actual')

plt.ylabel('Predicted concentraton in mg/L')

plt.title("Prediction of chlorophyll A")

plt.show()

from sklearn.datasets import make_regression

make_regression(n_features=4, n_informative=2,random_state=0, shuffle=False)

clf = SVR(C=10, epsilon=0.2)

kf = KFold(n_splits=10, shuffle=True, random_state=42)

rmse = 0

for i, (train_index, test_index) in enumerate(kf.split(x_pca)):

print(f"Fold {i}:")

#print("TRAIN:", train_index, "TEST:", test_index)

X_train, X_test = x_pca[train_index], x_pca[test_index]

y_train, y_test = y[train_index], y[test_index]
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X_train = X_train.astype(np.float64)

X_test = X_test.astype(np.float64)

y_test = y_test.astype(np.float64)

y_train = y_train.astype(np.float64)

clf.fit(X_train, y_train)

ypred = clf.predict(X_test)

ypred=np.array(ypred).flatten()

aa=np.array(y_test).flatten()

mat_plot(aa,ypred)

rmse = rmse + np.sqrt(mean_squared_error(aa,ypred))

#df = pd.DataFrame(clf.cv_results_)

#df

rmse = rmse /10

print("average RMSE",rmse)

#partial least square regression

from sklearn.cross_decomposition import PLSRegression

pls2 = PLSRegression(n_components=5)

pls2.fit(x_train, y_train)

PLSRegression()

Y_pred = pls2.predict(x_test)

from sklearn.metrics import r2_score
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r = r2_score(y_test, Y_pred)

print("Root Square:")

print(r)

from sklearn.metrics import mean_squared_error

MSE= mean_squared_error(y_test, Y_pred)

print("Mean Square Error:")

print(MSE)

import math

y_test = np.array(y_test).astype(float)

y_pred = np.array(y_pred).astype(float)

MSE = np.square(np.subtract(y_test, Y_pred)).mean()

RMSE = math.sqrt(MSE)

print("Root Mean Square Error:")

print(RMSE)

fig,ax = plt.subplots(1)

# plot the data

ax.scatter(y_test, Y_pred,color="blue", marker="o",)

m, b = np.polyfit(y_test, Y_pred, 1)

#add linear regression line to scatterplot

plt.plot(y_test, m*y_test+b)

plt.xlabel('Actual')

plt.ylabel('Predicted concentraton in mg/L')
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plt.title("Prediction of chlorophyll A")

plt.show()

from sklearn.datasets import make_regression

make_regression(n_features=4, n_informative=2,random_state=0, shuffle=False)

clf = PLSRegression(n_components=5)

kf = KFold(n_splits=10, shuffle=True, random_state=42)

rmse = 0

for i, (train_index, test_index) in enumerate(kf.split(x_pca)):

print(f"Fold {i}:")

#print("TRAIN:", train_index, "TEST:", test_index)

X_train, X_test = x_pca[train_index], x_pca[test_index]

y_train, y_test = y[train_index], y[test_index]

X_train = X_train.astype(np.float64)

X_test = X_test.astype(np.float64)

y_test = y_test.astype(np.float64)

y_train = y_train.astype(np.float64)

clf.fit(X_train, y_train)

ypred = clf.predict(X_test)

ypred=np.array(ypred).flatten()

aa=np.array(y_test).flatten()

mat_plot(aa,ypred)

rmse = rmse + np.sqrt(mean_squared_error(aa,ypred))

#df = pd.DataFrame(clf.cv_results_)

#df

rmse = rmse /10
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print("average RMSE",rmse)

DECISION TREE REGRESSION

import matplotlib.pyplot as plt

import numpy as np

from sklearn import tree

from sklearn.tree import DecisionTreeRegressor

clf = tree.DecisionTreeRegressor()

from sklearn.datasets import load_diabetes

from sklearn.model_selection import cross_val_score

from sklearn.tree import DecisionTreeRegressor

regressor = DecisionTreeRegressor(random_state=0)

cross_val_score(regressor,x_test, y_test, cv=3)

reg = DecisionTreeRegressor(max_depth=50)

clf = tree.DecisionTreeRegressor()

clf = clf.fit(x_train, y_train)

D_pred = clf.predict(x_test)

from sklearn.metrics import r2_score

r = r2_score(y_test, D_pred)

print("Root Square:")

print(r)

from sklearn.metrics import mean_squared_error

MSE= mean_squared_error(y_test, D_pred)

print("Mean Square Error:")

print(MSE)

import math
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y_test = np.array(y_test).astype(float)

y_pred = np.array(y_pred).astype(float)

MSE = np.square(np.subtract(y_test, D_pred)).mean()

RMSE = math.sqrt(MSE)

print("Root Mean Square Error:")

print(RMSE)

fig,ax = plt.subplots(1)

# plot the data

ax.scatter(y_test, D_pred,color="blue", marker="o",)

, b = np.polyfit(y_test, D_pred, 1)

#add linear regression line to scatterplot

plt.plot(y_test, m*y_test+b)

plt.xlabel('Actual')

plt.ylabel('Predicted concentraton in mg/L')

plt.title("Prediction of chlorophyll A")

plt.show()

from sklearn.datasets import make_regression

make_regression(n_features=4, n_informative=2,random_state=0, shuffle=False)

clf = tree.DecisionTreeRegressor()

kf = KFold(n_splits=10, shuffle=True, random_state=42)

rmse = 0

for i, (train_index, test_index) in enumerate(kf.split(x_pca)):

print(f"Fold {i}:")

#print("TRAIN:", train_index, "TEST:", test_index)

X_train, X_test = x_pca[train_index], x_pca[test_index]



109

y_train, y_test = y[train_index], y[test_index]

X_train = X_train.astype(np.float64)

X_test = X_test.astype(np.float64)

y_test = y_test.astype(np.float64)

y_train = y_train.astype(np.float64)

clf.fit(X_train, y_train)

ypred = clf.predict(X_test)

ypred=np.array(ypred).flatten()

aa=np.array(y_test).flatten()

mat_plot(aa,ypred)

rmse = rmse + np.sqrt(mean_squared_error(aa,ypred))

#df = pd.DataFrame(clf.cv_results_)

#df

rmse = rmse /10

print("average RMSE",rmse)

RANDOM FOREST REGRESSION

from sklearn.ensemble import RandomForestRegressor

from sklearn.datasets import make_regression

make_regression(n_features=4, n_informative=2,random_state=0, shuffle=False)

regr = RandomForestRegressor(max_depth=2, random_state=0)

regr.fit(x_train, y_train)

R_pred=regr.predict(x_test)

from sklearn.metrics import r2_score

r = r2_score(y_test, R_pred)

print("Root Square:")
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print(r)

from sklearn.metrics import mean_squared_error

MSE= mean_squared_error(y_test, R_pred)

print("Mean Square Error:")

print(MSE)

import math

y_test = np.array(y_test).astype(float)

y_pred = np.array(y_pred).astype(float)

MSE = np.square(np.subtract(y_test, R_pred)).mean()

RMSE = math.sqrt(MSE)

print("Root Mean Square Error:")

print(RMSE)

fig,ax = plt.subplots(1)

# plot the data

ax.scatter(y_test, R_pred,color="blue", marker="o",)

m, b = np.polyfit(y_test, R_pred, 1)

#add linear regression line to scatterplot

plt.plot(y_test, m*y_test+b)

plt.xlabel('Actual')

plt.ylabel('Predicted concentraton in mg/L')

plt.title("Prediction of chlorophyll A")

plt.show()

from sklearn.datasets import make_regression

make_regression(n_features=4, n_informative=2,random_state=0, shuffle=False)

clf = RandomForestRegressor(max_depth=2, random_state=0)
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kf = KFold(n_splits=10, shuffle=True, random_state=42)

rmse = 0

for i, (train_index, test_index) in enumerate(kf.split(x_pca)):

print(f"Fold {i}:")

#print("TRAIN:", train_index, "TEST:", test_index)

X_train, X_test = x_pca[train_index], x_pca[test_index]

y_train, y_test = y[train_index], y[test_index]

X_train = X_train.astype(np.float64)

X_test = X_test.astype(np.float64)

y_test = y_test.astype(np.float64)

y_train = y_train.astype(np.float64)

clf.fit(X_train, y_train)

ypred = clf.predict(X_test)

ypred=np.array(ypred).flatten()

aa=np.array(y_test).flatten()

mat_plot(aa,ypred)

rmse = rmse + np.sqrt(mean_squared_error(aa,ypred))

#df = pd.DataFrame(clf.cv_results_)

#df

rmse = rmse /10

print("average RMSE",rmse)

K-NEAREST NEIGHBOR REGRESSION

# Import necessary libraries

from sklearn.decomposition import PCA

'''
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from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x_smooth, y, test_size=0.1,

random_state=0)'''

# Apply PCA

pca = PCA(n_components = 5)

X_pca = pca.fit_transform(X)

# Explained variance

explained_variance = pca.explained_variance_

total_explained_variance = explained_variance.sum()

# Print results

print(f"Explained Variance:\n{explained_variance}")

print(f"Total Explained Variance: {total_explained_variance:.4f}")

# Explained variance ratio

explained_variance_ratio = pca.explained_variance_ratio_

total_explained_variance_ratio = explained_variance_ratio.sum()

# Print results

print(f"\nExplained Variance Ratio:\n{explained_variance_ratio}")

print(f"Total Explained Variance Ratio: {total_explained_variance_ratio:.4f}")

# Import necessary libraries

import numpy as np

import matplotlib.pyplot as plt

# Plot explained variance ratio

cumulative_variance_ratio = np.cumsum(explained_variance_ratio)

f = plt.figure()

f.set_figwidth(10)
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f.set_figheight(10)

plt.plot(cumulative_variance_ratio, marker='o')

plt.xlabel('Number of Principal Components')

plt.ylabel('Cumulative Explained Variance Ratio')

plt.title('Cumulative Explained Variance Ratio by Principal Components')

plt.show()

!pip install matplotlib

def mat_plot(a,b): # qq1 is the actual readings andthe b is the predictd

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

from sklearn.metrics import r2_score

import numpy as np

import matplotlib.pyplot as plt

print("The R2 ", (r2_score( a, b)))

print("RMSE:", np.sqrt(mean_squared_error( a, b)))

#print("MAPE%:", mean_absolute_percentage_error( a, b))

print("MAE",mean_absolute_error(a,b))

print("MSE",mean_squared_error(a,b))

print("RMSE",np.sqrt(mean_squared_error(a,b)))

fig, ax = plt.subplots()

ax.plot(b, a, linewidth=0, marker="o", color='C0', markersize=8)

#plot(x, y, color='green', linestyle='dashed', marker='o', markerfacecolor='blue',

markersize=12).

low_x, high_x = ax.get_xlim()

low_y, high_y = ax.get_ylim()
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low = max(low_x, low_y)

high = min(high_x, high_y)

ax.plot([low, high], [low, high], ls="-", c=".2", alpha=.4)

#ax.set_title('R2 score')

plt.rcParams.update({'font.size': 20})

ax.set_xlabel("Actual")

ax.set_ylabel("Predicted ")

plt.show()

import matplotlib

import numpy as np

from sklearn.model_selection import KFold

from sklearn.neighbors import KNeighborsRegressor

from sklearn.metrics import mean_squared_error

# Apply PCA

pca = PCA(n_components = 2)

x_pca = pca.fit_transform(X)

rmse = 0

kf = KFold(n_splits=10, shuffle=True, random_state=42)

for i, (train_index, test_index) in enumerate(kf.split(x_pca)):

print(f"Fold {i}:")

#print("TRAIN:", train_index, "TEST:", test_index)

X_train, X_test = x_pca[train_index], x_pca[test_index]

y_train, y_test = y[train_index], y[test_index]

X_train = X_train.astype(np.float64)

X_test = X_test.astype(np.float64)
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y_test = y_test.astype(np.float64)

y_train = y_train.astype(np.float64)

neigh = KNeighborsRegressor( n_neighbors = 1, p = 1, weights = 'distance',

algorithm = 'auto' )

neigh.fit(X_train, y_train)

y_pred=neigh.predict(X_test)

y_pred=np.array(y_pred).flatten()

qq1=np.array(y_test).flatten()

print( "***********")

#plt.plot(qq1,y_pred)

mat_plot(qq1,y_pred)

rmse = rmse + np.sqrt(mean_squared_error(qq1,y_pred))

print( "Result for each fold " + str(i))

print( "***********")

rmse = rmse /10

print("average RMSE",rmse)

from sklearn.model_selection import cross_val_score

from sklearn.neighbors import KNeighborsRegressor

from sklearn.metrics import mean_squared_error

# Import necessary libraries

from sklearn.decomposition import PCA

# Apply PCA

pca = PCA(n_components = 5)

x_pca = pca.fit_transform(X)

'''
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from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x_pca, y, test_size=0.1,

random_state=42, shuffle= True)'''

neigh = KNeighborsRegressor()

x_pca = x_pca.astype(np.float64)

y = y.astype(np.float64)

'''

y_train = y_train.astype(np.float64)

y_test = y_test.astype(np.float64)

'''

from sklearn.model_selection import KFold

from sklearn.model_selection import GridSearchCV

parameters = {'n_neighbors':list(range(1, 5)) , 'p':list(range(1, 5)) ,

'weights':['distance'], 'algorithm': ['auto']}

from sklearn.model_selection import GridSearchCV

kf = KFold(n_splits=10, shuffle=True, random_state=42)

clf = GridSearchCV(neigh, parameters, cv = kf , return_train_score=False, scoring=

'neg_mean_absolute_error') # scoring='neg_mean_squared_error

clf.fit(x_pca, y)

'''

#clf.cv_results_

ypred = clf.predict(x_test)

ypred=np.array(ypred).flatten()

aa=np.array(y_test).flatten()

mat_plot(aa,ypred)
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'''

kf = KFold(n_splits=10, shuffle=True, random_state=42)

rmse = 0

for i, (train_index, test_index) in enumerate(kf.split(x_pca)):

print(f"Fold {i}:")

#print("TRAIN:", train_index, "TEST:", test_index)

X_train, X_test = x_pca[train_index], x_pca[test_index]

y_train, y_test = y[train_index], y[test_index]

X_train = X_train.astype(np.float64)

X_test = X_test.astype(np.float64)

y_test = y_test.astype(np.float64)

y_train = y_train.astype(np.float64)

clf.fit(X_train, y_train)

ypred = clf.predict(X_test)

ypred=np.array(ypred).flatten()

aa=np.array(y_test).flatten()

#plt.plot(qq1,y_pred)

mat_plot(aa,ypred)

rmse = rmse + np.sqrt(mean_squared_error(aa,ypred))

df = pd.DataFrame(clf.cv_results_)

df

rmse = rmse /10

print("average RMSE",rmse)
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APPENDIX

Features of Jasco- V-770 Spectrophotometer:

A wide range UV-Visible/Near Infrared Spectrophotometer with a unique optical

design featuring a single monochromator and dual detectors for the wavelength

range from 190 to 2700nm (3200nm option).

The V-770's single monochromator design provides for maximum light throughput

with excellent absorbance linearity. A PMT detector is used for the UV to visible

region and a Peltier-cooled PbS detector for the NIR region.

The V-770 UV-Visible/NIR spectrophotometer is operated using Spectra

Manager™ Suite. This innovative cross-platform spectroscopy software is

compatible with Windows 7 Pro (32- and 64-bit) and Windows 8.1 operating

systems. For simple operation, the handheld iRM has a great look and feel with a

colour touch sensitive screen. Data can also be downloaded to Spectra Analysis on

a PC further PC data processing.

The V-700 Series has a growing list of software applications for both Spectra

Manager™ and iRM. If you have an application which you don’t see listed, please

let us know as we may already have it or we can prepare an application designed

specifically for your requirements.
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Optical System
Czerny-Turner grating mount
Single monochomator
Fully symmetrical double beam

Light source Halogen lamp, Deuterium lamp
Wavelength range 190 to 2700 nm (3200 nm option)

Wavelength accuracy +/-0.3 nm (at 656.1 nm)
+/-1.5 nm (at 1312.2 nm)

Wavelength repeatability +/-0.05 nm (UV-Vis), +/-0.2 nm (NIR)

Spectral bandwidth (SBW)

UV-Visible: 0.1, 0.2, 0.5, 1, 2, 5, 10 nm
L2, L5, L10 nm (low stray light mode)
M1, M2 nm (micro cell mode)
NIR: 0.4, 0.8, 1, 2, 4, 8, 20, 40
L8, L20, L40 nm (low stray light mode)
M4, M8 nm (micro cell mode)

Stray light

1 % (198 nm KCL)
0.0005 % (220 nm NaI)
0.0005 % (340 nm NaNO2)
0.0005 % (370 nm NaNO2)72
SBW: L2 nm
0.04 % (1420 nm: H2O)
0.1 % (1690 nm: CH2Br2)
SBW: L8 nm

Photometric range UV-Visible: -4~4 Abs
NIR: -3~3 Abs

Photometric accuracy

+/-0.0015 Abs (0 to 0.5 Abs)
+/-0.0025 Abs (0.5 to 1 Abs)
+/-0.3 %T
Tested with NIST SRM 930D

Photometric repeatability
+/-0.0005 Abs (0 to 0.5 Abs)
+/-0.0005 Abs (0.5 to 1 Abs)
Tested with NIST SRM 930D

Scanning speed 10~4000 nm/min (8000 nm/min in
preview mode)

Slew speed UV-Vis: 12,000 nm/min
NIR: 48,000 nm/min

RMS noise
0.00003 Abs
(0 Abs, wavelength: 500 nm,
measurement time: 60 sec, SBW: 2 nm)

Baseline stability
0.0003 Abs/hour
(Wavelength: 250 nm, response: slow
and SBW: 2 nm)

Baseline flatness +/-0.0002 Abs (200 - 2500 nm)
Detector PMT, Peltier cooled PbS

Standard functions IQ accessories, Start button, Analog
output

Standard programs Abs/%T meter, Quantitative analysis,
Spectrum measurement,
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Time course measurement, Fixed
wavelength measurement,
Validation, Daily check, Dual
wavelength time course
measurement

Dimensions and weight 460(W) x 602(D) x 268(H) mm, 29 kg
Power requirements 150 VA

Installation requirements Room temperature: 15-30 Celsius,
humidity: below 85%
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