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Abstract

The research project, "PRESENTATION ATTACK ONSMARTPHONE UNDER SURVEIL-

LANCE SCENARIO," explores biometric authentication, focusing on face recognition, amidst

cybersecurity concerns. It aims to investigate smartphone capabilities in detecting presentation

attacks within surveillance contexts. The study involves designing a robust data acquisition

protocol, benchmarking detection algorithms, and evaluating performance against 2D and 3D

attack scenarios. By leveraging diverse datasets and innovative methodologies, the project aims

to advance facial authentication in surveillance applications, addressing critical cybersecurity

challenges.
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Chapter 1

Introduction

1.1 Background

Authentication is the method of verifying the uniqueness of a user or system, confirming that

the person or entity trying to access a system or data is who they claim to be. Authentication

mechanisms typically involve presenting credentials, such as usernames and passwords, security

tokens, biometric data (like fingerprints or facial recognition), or digital certificates [? ]. It is

a fundamental aspect of security in various domains, including computer systems, networks,

websites, and applications. Without proper authentication, unauthorized individuals or systems

could gain access to sensitive information or resources, leading to security breaches and potential

harm. Depending on the context and security requirements, authentication can be achieved using

various methods like passwords, Two-Factor Authentication (2FA), Public Key Infrastructure

(PKI), OAuth and OpenID Connect, and Token-based Authentication.

The shift towards biometric modalities for authentication represents a response to the limi-

tations and vulnerabilities of traditional authentication methods like passwords and even some

advanced methods like Two-Factor Authentication (2FA) or Token-based Authentication. Bio-

metric modalities offer a higher level of security compared to traditional authentication methods,

as biometric characteristics such as fingerprints, iris patterns, or facial features are unique to each

individual and difficult to replicate or spoof. This makes it harder for unauthorized users to gain
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access to systems or data. Additionally, biometric authentication methods are often more conve-

nient for users compared to remembering passwords or carrying physical tokens, improving the

overall user experience and reducing the likelihood of insecure practices. Furthermore, biometric

authentication reduces the risk of credential theft since biometric data is not easily stolen or

intercepted in transit, enhancing accountability and traceability in systems. Moreover, in some

industries such as finance and healthcare, regulatory requirements mandate the use of strong

authentication methods to protect sensitive data and ensure compliance with privacy regulations,

making biometric authentication methods a preferred choice. Overall, the shift towards biometric

authentication reflects a desire for stronger security, improved user experience, and compliance

with regulatory requirements in an increasingly digital and interconnected world, despite its

challenges such as privacy concerns and potential breaches.[3]

Biometric modalities refer to the distinct biological characteristics or traits that are utilized for

biometric authentication. These modalities capture unique physiological or behavioral attributes

of individuals, which can be used to verify their identity. Common biometric modalities include:

1.1.1 Biometric Modalities

There are different types of biometric modalities based on physiologial and behavioural traits for

biometric authentication.

Fingerprint Recognition

Fingerprint recognition is a biometric technique that entails the acquisition and examination

of the distinctive ridge and valley patterns on a person’s fingertip. It is considered one of the

most established and extensively employed biometric modalities owing to the inimitability and

constancy of fingerprints. This technology finds its applications in various domains such as law

enforcement, access control, mobile device security, and financial transactions.[7]
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1.1 Background

Iris Recognition

Iris recognition is a biometric technology that involves the analysis of the distinct patterns present

in the colored region of the eye, specifically the iris. These patterns are formed during embryonic

development and remain stable throughout life, making iris recognition a highly reliable and

accurate biometric modality. This technology is particularly well-suited for applications such

as surveillance and border control, where its capability to accurately identify individuals from

a distance is highly advantageous. Moreover, iris recognition is also applied in access control

systems, healthcare for patient identification, and airport security.

Fig. 1.1 Diverse biometric traits, including fingerprint recognition, iris scanning, facial recogni-
tion, voiceprint analysis, hand geometry, retina scanning, and vein pattern recognition, serve as
distinct identifiers

Facial Recognition

Facial recognition systems are biometric technologies that operate by analyzing the unique

characteristics of an individual’s face, such as the interocular distance, nose length, and mouth

curvature. This modality finds widespread application in domains such as surveillance, law

enforcement, access control, and identity verification on mobile devices. In recent years, facial
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recognition algorithms have undergone significant advancements, enabling real-time recognition

in varying lighting conditions and angles, which has further enhanced the efficacy and reliability

of this technology.

Voice Recognition

Voice recognition is a biometric technology that identifies and analyzes the distinctive features of

an individual’s voice, including pitch, tone, and cadence. This modality is widely employed for

speaker verification in various applications, such as telephone banking, voice-controlled devices,

and secure access to systems and services. To further enhance the accuracy of voice recognition

systems, behavioral biometrics, such as speech patterns and intonation, may also be incorporated.

These advancements have significantly improved the reliability and efficacy of voice recognition

technology in recent years.

Hand Geometry

Hand geometry recognition is a biometric technology that captures and analyzes the physical

features of an individual’s hand, such as the size and shape of the palm and fingers. This modality

is commonly employed in access control systems, time and attendance tracking, and industrial

environments that require high levels of hygiene. Hand geometry systems are considered

relatively simple and cost-effective compared to other biometric modalities, making them a

popular choice for various applications.

Retina Recognition

Retina scanning is a biometric technology that involves the acquisition of an image of the blood

vessel patterns present at the back of an individual’s eye (retina) using infrared light. This

modality is highly accurate and resistant to spoofing attacks, as retina patterns are unique to each

individual and challenging to replicate. Retina scanning finds its application in high-security

environments such as government facilities, military installations, and research laboratories,

where its unparalleled accuracy and resistance to fraud are highly advantageous.
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1.1 Background

Signature Dynamics

Signature recognition systems are biometric technologies that operate by analyzing the distinctive

characteristics of an individual’s signature, such as stroke sequence and pressure. This modality

is widely implemented in banking and financial institutions for the authentication of signatures

on checks and documents. Furthermore, it finds application in legal and administrative contexts

for identity verification purposes. The uniqueness and consistency of an individual’s signature

make it an effective biometric modality for a range of applications that require high levels of

accuracy and security.

Keystroke Dynamics

Keystroke dynamics is a biometric technology that involves analyzing the unique typing patterns

of individuals, such as typing speed, rhythm, and errors. This modality can be employed for

continuous authentication on computers and mobile devices, detecting unauthorized access based

on typing behavior. It offers a non-intrusive and passive form of authentication, which is highly

advantageous in various contexts. However, its accuracy may be influenced by factors such as an

individual’s typing habits and environmental conditions. Despite these limitations, keystroke

dynamics remains an effective barometric modality, offering a unique means of identifying

individuals based on their typing patterns.

These biometric modalities vary in terms of accuracy, ease of use, and applicability to

different use cases. Organizations often select biometric modalities based on factors such as

security requirements, user acceptance, and the specific context of implementation. Additionally,

some systems may employ multiple biometric modalities in combination (multimodal biometrics)

to enhance accuracy and robustness. But facial biometric-based authentication offers several

advantages that make it a compelling choice among biometric modalities:

Facial recognition offers a convenient and seamless authentication experience to users, which

eliminates the need for physical tokens or passwords. Facial biometrics are non-intrusive and

do not require physical contact with a device or sensor, which makes it a preferred choice for

applications where hygiene or user comfort is a concern. The familiarity of facial recognition
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to most people due to its widespread use in consumer devices such as smartphones makes it

more acceptable to users compared to other authentication methods. Facial recognition systems

can provide rapid authentication, which makes it suitable for high-traffic environments such as

airports, stadiums, and public transportation hubs. Furthermore, facial biometric authentication

is accessible to a wide range of users, including those with disabilities or impairments which may

make other authentication methods challenging. Many modern devices such as smartphones,

tablets, and laptops are equipped with built-in cameras that can capture facial biometric data,

which makes it easy to implement facial recognition without the need for additional hardware.

When properly implemented, facial biometric authentication can offer a high level of security as

facial features are unique to each individual, and advanced algorithms can detect and prevent

spoofing attempts using photos or videos. Finally, facial recognition can be combined with other

biometric modalities, such as fingerprint or iris recognition, to create multimodal authentication

systems that offer enhanced security and reliability.

In the context of access control, biometric authentication has replaced traditional methods

such as keycards or PINs in corporate buildings, government facilities, schools, hospitals, and

residential complexes. Similarly, many mobile devices now incorporate biometric authentication

features, enhancing device security and allowing users to unlock their devices and access

sensitive information using their unique biometric traits. In the banking and financial services

industry, biometric authentication is used for identity verification during account opening,

transactions, and online banking, while law enforcement agencies use biometric authentication

for criminal identification, suspect tracking, and forensic investigations. Biometric authentication

is also employed in border control and immigration, healthcare, retail and hospitality, and

transportation for various purposes, including enhancing security, improving efficiency, and

providing personalized services. These examples demonstrate the diverse range of applications

where facial-based authentication is currently being used, highlighting its growing importance in

various sectors for enhancing security, efficiency, and user experience[? ].
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1.1 Background

Fig. 1.2 Exploring facial biometrics: Unlocking identity through the unique features of the
human face

1.1.2 Facial Biometric Challenges

However, despite the widespread adoption of facial-based authentication, challenges persist,

particularly regarding presentation attacks. Presentation attacks involve malicious attempts to

deceive the facial recognition system by using counterfeit or manipulated biometric data, such

as photographs, videos, or masks, to gain unauthorized access. These attacks pose a significant

threat to the integrity and reliability of facial biometric authentication systems, potentially

compromising security across various sectors.

These attacks, also referred to as spoofing attacks or biometric attacks, pose significant

security risks and are categorized into different types based on the nature of the Presentation

Attack Instrument (PAI) employed.

Photo attacks represent one of the most prevalent and concerning types of presentation

attacks. They involve presenting a photograph of the targeted individual’s face to the facial

recognition system’s sensor. Photo attacks are particularly worrisome due to their simplicity and

accessibility. Attackers can easily obtain high-quality face images from social media platforms

or covertly capture them using digital cameras, making them a potent threat to facial recognition

systems unless robust countermeasures are implemented.

Furthermore, 2D presentation attacks exploit the use of two-dimensional representations of

genuine faces, including printed photographs or digital images displayed on screens. While

relatively straightforward to execute, these attacks can bypass authentication mechanisms if facial
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recognition systems lack effective anti-spoofing measures capable of distinguishing between

genuine and fake images.

In contrast, 3D presentation attacks involve presenting three-dimensional representations of

genuine faces to facial recognition systems. These attacks may include sophisticated methods

such as 3D-printed masks, sculpted facial prosthetics, or computer-generated 3D models. Their

complexity and ability to replicate the depth and structure of real faces make them challenging to

detect, especially for facial recognition systems without advanced anti-spoofing capabilities.[1]

To mitigating the risks associated with presentation attacks necessitates the implementation of

robust anti-spoofing measures, including liveness detection techniques, multi-modal biometrics,

and continuous authentication mechanisms. By proactively addressing vulnerabilities and staying

abreast of emerging threats, organizations can enhance the security and reliability of their facial

biometric authentication systems in the face of evolving presentation attack techniques. As such,

ongoing research and development efforts are focused on advancing anti-spoofing techniques

and robustness measures to detect and mitigate presentation attacks effectively. Addressing these

concerns is crucial to maintaining trust in facial-based authentication systems and ensuring their

continued effectiveness in enhancing security, efficiency, and user experience across diverse

applications.

In response to the imperative of mitigating risks associated with presentation attacks, our

research endeavors have focused on implementing robust anti-spoofing measures, leveraging the

capabilities of smartphone sensors to record both 2D and 3D facial data. Through systematic

experimentation with various types of attacks, we have meticulously collected data using different

smartphone sensors to develop robust algorithms for presentation attack classification. As

in today’s world, smartphones have become a ubiquitous tool for data collection in various

applications. This widespread use of smartphones can be attributed to the convergence of several

enabling technologies, such as high-resolution cameras, powerful processors, and advanced

sensors, which make it easier to collect data on the go. Additionally, smartphones offer inherent

advantages such as portability, accessibility, and user-friendliness, making them an ideal platform
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for data collection in different fields. As a result, researchers and developers are increasingly

leveraging smartphones to collect data for various applications, including health monitoring,

environmental monitoring, and social research.

1.2 Image capturing tech is for taking digital images

Fig. 1.3 image acquisition technology

1.2.1 Digital Cameras

Digital cameras are perhaps the most common devices used for capturing digital images. They

come in various forms, including compact cameras, DSLRs (Digital Single-Lens Reflex), mirror-

less cameras, and action cameras. These cameras use image sensors (such as CCD or CMOS) to

convert optical images into digital signals.

1.2.2 Smartphone Cameras

Smartphone cameras have become ubiquitous, offering increasingly sophisticated imaging capa-

bilities. They typically use CMOS image sensors along with lenses and software processing to

capture and enhance images. Features such as multiple lenses (wide-angle, telephoto, ultra-wide),

computational photography, and AI-based enhancements have become common in smartphone

cameras.
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1.2.3 Webcams

Webcams are cameras built into computers or external devices primarily used for video calling,

conferencing, or live streaming. They typically use CMOS sensors and connect to computers via

USB or other interfaces.

1.2.4 Action camera

Action cameras are rugged, compact cameras designed for capturing dynamic activities such

as sports, adventures, and extreme sports. They often feature wide-angle lenses, waterproof

housings, and shockproof designs.

1.2.5 Drones

Drones (unmanned aerial vehicles) are equipped with cameras for aerial photography and

videography. Drone cameras range from small, integrated units on consumer drones to high-end

professional cameras mounted on professional-grade drones.

1.2.6 Security Cameras

Security cameras, also known as surveillance cameras, are used for monitoring and recording

activities in various environments. They may include features such as motion detection, night

vision, and remote monitoring capabilities.

1.2.7 Machine Vision Cameras

Machine vision cameras are specialized cameras used in industrial applications for tasks such as

quality control, inspection, and robotic guidance. They often feature high-speed, high-resolution

sensors optimized for specific applications.
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1.2.8 Thermal Cameras

Thermal cameras capture images based on heat signatures rather than visible light. They are

used for applications such as surveillance, search and rescue, industrial inspection, and medical

diagnostics.

1.2.9 360-Degree Cameras

360-degree cameras capture immersive, panoramic images and videos, allowing viewers to

explore the entire scene. They often use multiple lenses and sensors to capture a full spherical

view.

1.3 Smartphone based Face Biometric

Smartphones are equipped with an array of integrated sensors, including high-resolution cameras,

microphones, GPS receivers, accelerometers, and gyroscopes, which facilitate the capture of

diverse data types, including biometric data such as facial images, fingerprints, and voice

samples. The portability and mobility of smartphones make them ideal for data collection in

various environments and situations. Their compact form factor allows users to carry them

effortlessly, enabling data collection on the go, whether in urban settings, remote locations, or

while traveling.

Smartphones feature intuitive user interfaces, touchscreens, and mobile applications that

streamline the data collection process. These interfaces can guide users through data capture

steps, prompt for inputs, and provide real-time feedback, enhancing user engagement and

data quality. Additionally, smartphones are inherently connected devices, capable of wireless

communication via cellular networks, Wi-Fi, and Bluetooth. This connectivity enables real-time

data transmission, synchronization with cloud services, and remote access to data collection

platforms, facilitating seamless collaboration and data sharing.

Modern smartphones boast powerful processors, ample storage, and advanced graphics

capabilities, enabling them to handle complex data processing tasks locally. They can perform
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on-device analysis, image processing, and machine learning algorithms, reducing reliance on

external computing resources and enhancing data privacy. Moreover, smartphones offer robust

security features to safeguard user data, including biometric authentication methods such as

fingerprint scanners and facial recognition. Biometric data collected on smartphones can be

encrypted, stored securely, and protected from unauthorized access, ensuring user privacy and

data integrity.

Leveraging smartphones for data collection is cost-effective compared to investing in dedi-

cated data collection devices or specialized equipment. With widespread adoption and competi-

tive pricing, smartphones provide a cost-efficient solution for organizations seeking to scale data

collection efforts while minimizing hardware expenses. Furthermore, continuous advancements

in smartphone technology, including improvements in sensor capabilities, processing power,

battery life, and connectivity options, further enhance their suitability for data collection ap-

plications. These advancements enable innovative use cases and expand the possibilities for

data-driven insights across industries

Despite the many advantages of utilizing smartphones for data collection, there are also

several challenges that must be considered. One of the most significant challenges is the limited

battery life of smartphones, which can be drained quickly by continuous data collection. This

necessitates frequent recharging or the use of external battery packs to ensure uninterrupted

data collection. Another challenge is the finite internal storage capacity of smartphones, which

can pose difficulties when collecting large data volumes, such as high-resolution images or

videos. Efficient storage management or the offloading of data to external storage or cloud

services become necessary to overcome this challenge. Smartphones are also susceptible to

security threats such as malware and unauthorized access, which can compromise collected

data. Implementing robust security measures, such as encryption and secure data transmission

protocols, is essential to mitigate these risks. Privacy concerns can also arise when collecting

sensitive data on smartphones, necessitating adherence to privacy regulations, obtaining user

consent, and transparently communicating data collection practices to build user trust. The

quality and accuracy of collected data can be compromised by environmental conditions, sensor
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limitations, or technical glitches. Implementing quality control measures, such as data validation

and error detection, can help ensure data reliability. Reliance on network connectivity for data

transmission can also be disrupted by poor coverage or network outages, requiring offline data

collection capabilities or alternative communication methods to address connectivity challenges.

Additionally, the wide variety of smartphone models and software versions can lead to com-

patibility issues and software fragmentation, requiring careful consideration during application

development. Encouraging user engagement and compliance with data collection protocols

can also be challenging due to privacy concerns or lack of incentive. Designing user-friendly

interfaces and offering incentives can improve participation rates and enhance data collection

quality.
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Chapter 2

Literature Review and Contribution

2.1 Literature Review

It seems that the study titled "Deeply vulnerable: a study of the robustness of face recognition

to presentation attacks" by A Mohammadi, S Bhattacharjee, and S Marcel, published in Iet

Biometrics in 2018, discusses the vulnerability of deep-learning-based face-recognition (FR)

methods to presentation attacks (PA). It highlights that while FR methods based on deep neural

networks (DNN) have shown significant improvements in recognition performance, a trustworthy

face-verification system should also be capable of resisting various kinds of attacks, including PA.

The study shows that DNN-based FR systems tend to score bona fide and PA samples similarly,

making them extremely vulnerable to PAs. The experiments conducted in the study indicate that

the vulnerability of the studied DNN-based FR systems is consistently higher than 90%, and

often higher than 98%.[17]

The paper addresses the lack of reliable software-based face presentation attack detection

(PAD) methods for mobile authentication. It notes that existing datasets cover various attack

scenarios but lack standardized evaluation protocols for assessing generalization capabilities

across different conditions.To fill this gap, the authors introduce the OULU-NPU database. It

aims to evaluate PAD methods across realistic mobile authentication scenarios, considering

unknown environmental conditions, acquisition devices, and presentation attack instruments.

15



Literature Review and Contribution

The database includes 5940 videos of 55 subjects in three environments, recorded using six

different smartphones. High-quality print and video-replay attacks were created using various

printers and display devices.The database features four evaluation protocols, each introducing

previously unseen conditions to the test set. This enables fair comparisons of generalization

capabilities. Baseline results using color texture analysis-based PAD method highlight the

database’s challenges.[8] . The REPLAY-MOBILE database, introduced in the 2016 International

Conference of the Biometrics Special Interest, aims to provide robust countermeasures for face

presentation-attack detection (PAD) on mobile devices. The database includes 1,200 videos

of 40 clients, containing both genuine videos and various types of presentation attacks. It also

provides three separate sets for training, validating, and testing classifiers for the face-PAD

problem, making it easier for researchers to compare new approaches with existing algorithms in

a standardized way. The database also offers baseline results using state-of-the-art approaches

based on image quality analysis and face texture analysis.[10]

The paper "Spoofing attacks to 2D face recognition systems with 3D masks" by N. Erdogmus

and S. Marcel, published in 2013, highlights the vulnerability of 2D face recognition systems

to spoofing attacks using 3D facial masks. The study aims to examine possible 3D attack

instruments and assess the spoofing performance for each type of mask. A small database

with six different types of 3D facial masks is constructed and used to conduct experiments on

state-of-the-art 2D face recognition systems. The study shows that 2D face recognition systems

are vulnerable to spoofing attacks using 3D facial masks and highlights the need for developing

robust countermeasures to detect and prevent such attacks.[11]

The paper "Presentation attack detection for face recognition using light field camera" by R.

Raghavendra, K.B. Raja, and C. Busch, published in IEEE Transactions on Image Processing in

2015, proposes a novel approach for face presentation attack detection using a light field camera

(LFC). The LFC records the direction of each incoming ray, which renders multiple depth or

focus images in a single capture. The proposed approach involves exploring the variation of

focus between multiple depth images rendered by the LFC to reveal presentation attacks. A

new face artefact database is collected using LFC, comprising of 80 subjects, and extensive
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experiments carried out on the light field face artefact database have revealed the outstanding

performance of the proposed PAD scheme when benchmarked with various well-established

state-of-the-art schemes.[19]

The paper "Face liveness detection with component dependent descriptor" by J. Yang et al.,

presented at the 2013 International Conference on Biometrics, proposes a component-based

face coding approach for liveness detection to detect spoofing attacks. The method involves

locating face components, coding low-level features for each component, deriving high-level

face representation, and concatenating histograms for identification. The proposed framework

utilizes micro differences between genuine and fake faces while retaining inherent appearance

differences among different components and achieves the best liveness detection performance in

three databases.[23]

The paper presents a novel software-based fake detection method that uses image quality

assessment to enhance the security of biometric recognition systems. The proposed approach is

fast, user-friendly, and non-intrusive, and can be used to detect different types of fraudulent access

attempts in multiple biometric systems. The method uses 25 general image quality features

extracted from the same image acquired for authentication purposes to distinguish between

legitimate and impostor samples. The experimental results show that the proposed method is

highly competitive compared with other state-of-the-art approaches and that the analysis of the

general image quality of real biometric samples reveals highly valuable information that can be

efficiently used to discriminate them from fake traits. The study focuses on fingerprint, iris, and

2D face recognition systems.[13]

The paper "Face anti-spoofing with multifeature videolet aggregation" by T.A. Siddiqui et al.,

presented at the 2016 International Conference on Pattern Recognition, proposes a novel multi-

feature evidence aggregation method for face spoofing detection. The method fuses evidence

from features encoding texture and motion properties in the face and surrounding scene regions,

using local binary pattern and motion estimation algorithms. The multi-feature windowed

videolet aggregation of these orthogonal features, coupled with support vector machine-based
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classification, provides robustness to different attacks. The proposed approach is evaluated on

three standard public databases and achieves an equal error rate of 3.14%, 0%, and 0% on .[22]

The paper "Generalized face anti-spoofing by detecting pulse from face videos" by X. Li et

al., presented at the 2016 International Conference on Pattern Recognition, proposes a robust

anti-spoofing method by detecting pulse from face videos to differentiate genuine faces from

fake ones. The method is based on the fact that a pulse signal exists in a real living face but not

in any mask or print material, making it a generalized solution for face liveness detection. The

proposed method is evaluated on a 3D mask spoofing database and cross-database experiments

with high-quality masks show that the pulse-based method is able to detect even the previously

unseen mask type, whereas texture-based methods fail to generalize beyond the development

data. Finally, the authors propose a robust cascade system combining two complementary

attack-specific spoof detectors, utilizing pulse detection against print attacks and color texture

analysis against video attacks.[16]

The paper "Biometric antispoofing methods: A survey in face recognition" by J. Galbally et

al., published in IEEE Access in 2014, provides a comprehensive overview of the work carried

out over the last decade in the field of antispoofing, with special attention to the face modality.

Spoofing, or presentation attack, is a biometric vulnerability where a synthetic or forged version

of a genuine biometric trait is presented to the sensor to fool the system into recognizing an

illegitimate user as a genuine one. The paper covers theories, methodologies, state-of-the-art

techniques, evaluation databases, and provides an outlook into the future of this active field of

research.[12]

This paper evaluates various face presentation detection (PAD) techniques to distinguish real

face samples from spoof artifacts in mobile scenarios, including photo print and video replay

attacks. The study compares the detection performance of 30 representative face PAD methods

on three public mobile spoofing datasets and tests the generalization ability of existing methods

under cross-database testing scenarios. The paper provides insights to promote both academic

research and practical applications.
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This paper develops a multi-modal biometric authentication system for smartphones using

fingerprint, face, and voice recognition. It proposes a standardized evaluation methodology

to assess the system’s performance, including a detailed description of the biometric database

created for evaluation. The dataset includes diverse populations from different geographic

locations, and specific protocols were followed during data acquisition to maintain consistency

and quality. The paper also reports the performance evaluation of baseline biometric verification

and presentation attack detection on the dataset, allowing for the development of novel algorithms

for biometric authentication.[15]

It seems like the paper is about detecting presentation attacks in face biometric systems on

smartphones using raw sensor data. The authors proposed a novel approach involving subtracting

noise from raw data and computing energy values for detection. They evaluated the proposed

method using a newly collected database of 390 live presentation attempts of face characteristics

and 1530 attack presentations on the iPhone 6S smartphone. The results showed a lower average

classification error achieved, and the proposed method using raw sensor data effectively detects

presentation attacks. Overall, the average classification error is significantly lower with the

presented approach.[21]

It’s interesting to see the focus on Face Anti-spoofing (FAS) in long-distance scenarios like

station squares and parks. The introduction of the Surveillance High-Fidelity Mask (SuHiFiMask)

dataset seems like a significant step in evaluating algorithms’ robustness under quality changes

in surveillance scenarios. The face presentation attack detection challenge using this dataset also

sounds like a great initiative to assess algorithms for detecting attacks in long-range surveillance

scenarios. It’s impressive to see the support from various grants and funding sources for this

work, including the National Key Research and Development Plan, Chinese Academy Sciences,

Chinese National Natural Science Foundation Projects, Science and Technology Development

Fund of Macau Project, and the InnoHK program.[1]

Alireza Sepas-Moghaddam’s research is focused on using light field imaging technology to

improve biometric recognition and presentation attack detection systems. The GUC Light Field

Face Artefact Database (GUC-LiFFAD) and IST Lenslet Light Field Face Spoofing Database (IST
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LLFFSD) are two databases used for benchmarking and testing proposed solutions. The proposed

solution based on a histogram of oriented gradients descriptor showed superior performance

when compared to other state-of-the-art alternatives. Furthermore, the importance of using

color information was highlighted, as it led to better performance compared to using grayscale

information alone. Alireza Sepas-Moghaddam’s research focuses on utilizing advancements

in light field imaging technology to develop biometric recognition and presentation attack

detection systems with improved performance. To facilitate this research, two databases, GUC

Light Field Face Artefact Database (GUC-LiFFAD) and IST Lenslet Light Field Face Spoofing

Database (IST LLFFSD), have been created that include various artefact types, greyscale and

RGB rendered face images, depth maps, and raw light field imaging data in Lytro Light Field Raw

(LFR) format.The proposed solution for face presentation attack detection, which is based on a

histogram of oriented gradients descriptor, demonstrated outstanding effectiveness and stability,

surpassing state-of-the-art alternatives. Additionally, the importance of incorporating color

information in benchmarking solutions was emphasized, as the use of color led to performance

improvements when compared to using only grayscale information.[4]

The challenges in implementing anti-spoofing techniques for face recognition systems in

real scenarios, focusing on generalization, usability, and performance issues, are crucial aspects

highlighted in the paper. The lack of publicly available collaborative face-PAD datasets indeed

hinders the comparison of anti-spoofing methods in an open and reproducible framework. It’s

great to see the growing interest in Presentation Attack Detection (PAD) methods, leading

to the development of various research works, anti-spoofing databases, and competitions for

evaluating new PAD algorithms. The emphasis on analyzing cross-domain performance, database

limitations, and usability aspects in face antispoofing is essential for the advancement of this field.

Additionally, the need for larger and more representative datasets to improve the performance of

current face-PAD methods in real-world scenarios is well noted.[5]

The research paper "Fusion Methods for Face Presentation Attack Detection" by Faseela

Abdullakutty, Pamela Johnston, and Eyad Elyan aims to improve the security of face recognition

systems by combining deep learning features with traditional color and texture features to detect
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face presentation attacks. The study used the Replay Attack dataset to train pre-trained and

custom CNN models for binary classification. They employed a feature-fusion method that

combines pre-trained deep learning models with traditional color and texture features to enhance

the detection of face presentation attacks.The research showed that the fusion methods improved

detection rates on public datasets like CASIA, Replay Attack, and SiW by enriching the feature

space. The results were reported in various performance metrics, including accuracy, HTER,

precision, recall, F1 score, FPR, and FNR, demonstrating the effectiveness of the fusion strategies

for detecting face presentation attacks.[2]

It seems like you are sharing information about a research paper titled "Secure Face Unlock:

Spoof Detection on Smartphones" written by Keyurkumar Patel, Hu Han, and Anil K. Jain. The

paper discusses the development of a face spoof detection system on Android smartphones to

analyze image distortion for print and replay attacks. The researchers used the MSU USSA

database containing over 1000 subjects for spoof detection, and print and replay attacks were

captured using Nexus 5 smartphone cameras. The paper also discusses image distortion analysis,

including surface reflection, moire pattern, and color distortion. The proposed approach was

found to be effective in detecting face spoofing attacks for print and replay attacks in real

application scenarios. The researchers also developed an unconstrained smartphone spoof attack

database (MSU USSA) with 1000+ subjects. The system was found to be successful in detecting

face spoofing attacks in real application scenarios during user studies.[18]

It’s interesting to see the focus on Face Anti-spoofing (FAS) in long-distance scenarios like

station squares and parks. The introduction of the Surveillance High-Fidelity Mask (SuHiFiMask)

dataset seems like a significant step in evaluating algorithms’ robustness under quality changes

in surveillance scenarios. The face presentation attack detection challenge using this dataset also

sounds like a great initiative to assess algorithms for detecting attacks in long-range surveillance

scenarios. It’s impressive to see the support from various grants and funding sources for this

work, including the National Key Research and Development Plan, Chinese Academy Sciences,

Chinese National Natural Science Foundation Projects, Science and Technology Development

Fund of Macau Project, and the InnoHK program.[20]
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The article "A Smart Spoofing Face Detector by Display Features Analysis" by ChinLun Lai

and ChiuYuan Tai likely presents a novel approach to spoofing detection in facial recognition

systems. By analyzing display features, the authors propose a method for detecting spoofing

attempts, enhancing the security of face recognition systems.The term "smart spoofing face

detector" suggests an intelligent system capable of distinguishing between genuine facial images

and spoofed ones.Facial biometric authentication systems are susceptible to spoofing attacks

using photos, videos, or masks. Research has extensively explored feature extraction using color

spaces, such as YCbCr and HSV, to improve accuracy in spoofing attack detection. Texture

analysis in facial recognition tasks has also utilized various color spaces. The extracted color

features are then input into classification models like ResNet50, VGG16, and MobileNetV2

to effectively detect spoofing attacks. In experimental results, the proposed approach achieved

a promising result with the lowest Equal Error Rate (EER) of 3.62% on the CASIA dataset,

demonstrating the method’s effectiveness.[1]

2.2 Research Qustions

These questions have been formulated based on the findings of previously conducted literature

reviews in the field of biometric authentication and identification systems. The questions aim

to explore various aspects related to the effectiveness and vulnerabilities of facial recognition

technology, including deep-learning-based systems, software-based face presentation attack

detection methods, 2D face recognition systems, light field cameras, genuine face characteristics

for liveness detection, multi-feature evidence aggregation methods, pulse detection, trends and

advancements in biometric antispoofing methods, face presentation attack detection techniques

in mobile scenarios, and the integration of multiple biometric modalities for improved security

and reliability of authentication systems on smartphones.

• How do deep-learning-based face recognition systems perform when subjected to presen-

tation attacks, and what are the vulnerabilities associated with these systems?
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• What are the limitations of existing software-based face presentation attack detection

methods for mobile authentication, and how can these limitations be addressed?

• How do 2D face recognition systems respond to spoofing attacks using 3D facial masks,

and what are the implications for biometric security?

• What are the advantages of using light field cameras for face presentation attack detection,

and how do these cameras compare to traditional methods in terms of accuracy and

reliability?

• What are the key features and characteristics of genuine faces that distinguish them from

fake ones in biometric authentication systems, and how can these features be effectively

leveraged for liveness detection?

• How do multi-feature evidence aggregation methods enhance the robustness of face

spoofing detection algorithms, and what are the implications for real-world applications?

• What are the advantages and limitations of using pulse detection as a generalized solution

for face liveness detection, and how does it compare to traditional texture-based methods?

• What are the current trends and advancements in biometric antispoofing methods for face

recognition, and what are the challenges that need to be addressed for further improvement?

• How do various face presentation attack detection techniques perform in mobile scenarios,

and what factors contribute to their effectiveness and generalization capabilities?

• How does the integration of multiple biometric modalities (e.g., fingerprint, face, voice)

improve the security and reliability of authentication systems on smartphones, and what

are the key considerations for system evaluation and benchmarking?

2.3 Objectives

Facial data acquisition plays a crucial role in surveillance setups, and a well-defined protocol is

essential to ensure accurate and reliable data collection. For indoor conditions, the installation
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of high-quality surveillance cameras at strategic positions and proper lighting arrangements are

crucial to capture facial features accurately. Similarly, for outdoor scenarios, weather-resistant

cameras and adequate lighting are necessary to ensure effective facial recognition.

To enhance the precision of facial recognition in surveillance, various experiments are

being conducted to evaluate the performance of smartphone models in detecting face mask

attacks under diverse scenarios. The experiments aim to test the accuracy, speed, and reliability

of the smartphones in detecting face mask attacks in indoor, outdoor, well-lit, and low-light

environments. The findings from the experiments will help identify the most effective smartphone

models and scenarios for detecting face mask attacks.

Furthermore, a benchmarking study is underway to assess the performance of presentation

attack detection algorithms for accurate facial recognition in surveillance. The study involves

evaluating various 2D and 3D presentation attack detection algorithms and assessing their

accuracy, speed, and reliability in detecting presentation attacks. The results of the study will

help identify the most effective presentation attack detection algorithms for accurate facial

recognition in surveillance.

These studies are crucial in developing more effective and reliable surveillance systems while

ensuring ethical data collection practices. The results from these experiments and benchmarking

studies will provide valuable insights into enhancing the precision and reliability of facial

recognition systems.

The summary of objective of the project is to improve the performance of facial recognition

technology by addressing its limitations and vulnerabilities in various scenarios

• Design a protocol for acquiring facial data in surveillance setups, addressing indoor/outdoor

conditions and privacy.

• Conduct experiments to assess smartphone performance in detecting face mask attacks in

varied scenarios.

• Benchmark presentation attack detection algorithms for accurate facial recognition in

surveillance, including 2D and 3D attacks.
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2.4 Contribution

In this project, we aimed to evaluate the performance of different smartphones against face

presentation attacks, and construct a comprehensive database of different types of presentation

attacks in controlled and uncontrolled environmental conditions. To accomplish this, we collected

a large dataset of face images captured in various conditions, including indoor and outdoor

settings, and under different lighting conditions. We then simulated different types of presentation

attacks, including print attacks, silicon mask attacks,latex mask attack, joker mask attacks, and so

on.And collected data on the devices’ responses to these attacks. We used this data to construct

a database of presentation attacks and bonafide face images, which we then used to train and

test different classifier models based on deep learning and conventional classification methods.

Our extensive qualitative and quantitative experimental results showed that deep learning models

were more effective than conventional classification methods in detecting face presentation

attacks, with higher accuracy and lower false positive rates. We also found that the performance

of different smartphones varied widely, with some devices showing high accuracy in detecting

presentation attacks, while others were more vulnerable to attacks. Overall, our findings suggest

that it is important for smartphone manufacturers to continue improving their face recognition

technology and security features to better protect users’ personal information and data against

face presentation attacks

The summary of the contribution of the project.

• Design a protocol for acquiring facial data in surveillance setups, addressing indoor/outdoor

conditions and privacy.

• Construct a database of presentation attacks and bonafide face images in various lightening

conditions, for of presentation attacks.

• Evaluate the performance of different smartphones against face presentation attacks.

• Training and testing of different classification models.
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Database

3.1 Smartphone Face Database for Presentation Attack

When it comes to collecting data for face spoofing detection, researchers often prioritize con-

trolled indoor environments due to the greater control they have over environmental factors such

as lighting, background clutter, and camera angles. This type of controlled environment facili-

tates the gathering of consistent and high-quality data for training and evaluating the spoofing

detection system. However, outdoor data collection poses additional challenges due to the unpre-

dictability of environmental factors such as varying lighting conditions, diverse backgrounds,

and potential occlusions. These factors have the potential to impact the performance of the

spoofing detection system. Therefore, it is crucial for researchers to collect data from both

indoor and outdoor settings to assess the robustness of their spoofing detection algorithm across

different environmental conditions. This comprehensive approach is essential to ensure that the

system can effectively detect spoofing attempts in real-world scenarios, where environmental

factors may vary significantly. Furthermore, this approach enables researchers to identify and

address any limitations or biases in the training data, ultimately enhancing the reliability and

generalizability of the detection system.
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In addition to collecting data from indoor and outdoor settings, researchers can also benefit

from gathering data across a diverse range of subjects, spoofing attack types, and devices. By

doing so, researchers can ensure that their spoofing detection system is capable of detecting

a wide range of potential attacks, including those performed with different devices and by

individuals with varying physical characteristics. Moreover, it is important to consider the ethical

implications of data collection for face spoofing detection. As biometric data is sensitive personal

information, it is crucial to obtain informed consent from participants and ensure that their

privacy is protected. Additionally, researchers should take measures to prevent their data from

being misused or exploited by third parties. In summary, we can say collecting data for face

spoofing detection requires a comprehensive approach that considers not only the environmental

conditions but also the range of potential attacks and the ethical implications of data collection.

By doing so, researchers can develop a more robust and reliable spoofing detection system that

is capable of detecting a wide range of potential attacks in real-world scenarios while ensuring

the privacy and security of individuals’ biometric data. Our research methodology involved

capturing data both indoors and outdoors to comprehensively assess the effectiveness of our

presentation attack detection system. By recording data in varied environments, we aimed to

develop a robust system capable of accurately detecting presentation attacks across different

scenarios, which can ensure thorough testing and validation of our system’s performance under

real-world conditions.

3.1.1 Indoor Acquisition

When collecting data for smartphone-based spoofing detection, indoor conditions are typically

preferred as they provide a controlled environment that mimics everyday scenarios encountered

by users. The following key considerations should be taken into account when selecting indoor

environments: Firstly, consistent and adequate lighting conditions should be maintained to

avoid extreme contrasts or shadows that could impact the quality of facial images captured

by the smartphone camera. Secondly, backgrounds that are typical of indoor settings should

be chosen, such as walls, furniture, or indoor decorations, while avoiding overly cluttered or
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Fig. 3.1 Indoor environment setup for experimentation or observation

visually complex backgrounds that could distract from the facial features being captured. Thirdly,

different camera angles and distances should be experimented with to capture a variety of facial

poses and expressions, allowing the spoofing detection algorithm to recognize genuine facial

images from different perspectives. Fourthly, participants should be encouraged to display a

range of facial expressions during data collection, including neutral, smiling, and frowning

expressions, to improve the robustness of the spoofing detection system against attempts to

mimic specific facial gestures. Furthermore, it is important to maintain consistent environmental

conditions throughout the data collection process to ensure reliable and reproducible results,

while minimizing external factors such as noise, temperature fluctuations, or interruptions that

could affect data quality. Including participants from diverse demographic backgrounds (e.g.,

age, gender, ethnicity) is important to ensure the spoofing detection system is inclusive and

effective for a wide range of users. Finally, ethical considerations are crucial when collecting

data for face spoofing detection. Obtaining informed consent from participants and ensuring

their privacy and confidentiality are protected throughout the data collection process is essential.
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Adhering to ethical guidelines and regulations governing research involving human subjects is

also important. In summary, indoor conditions for data collection for smartphone-based spoofing

detection involve several key considerations, including lighting, background, camera angles and

distances, variety of facial expressions, environmental consistency, participant diversity, and

ethical considerations. By following these considerations, researchers can collect reliable and

robust data for training and evaluating the spoofing detection system.

3.1.2 Outdoor Acquisition

Collecting data outdoors for smartphone-based spoofing detection presents additional challenges

due to the variability of environmental conditions. To effectively navigate these challenges,

researchers should consider the following: Firstly, outdoor environments offer diverse lighting

conditions, including direct sunlight, shadows, and reflections. Collect data at different times

of the day and in various weather conditions to train the spoofing detection system to handle

outdoor lighting variability. Secondly, outdoor scenes can include a wide range of backgrounds,

such as urban landscapes, parks, or natural settings. Collect data in different outdoor locations

to expose the algorithm to various background textures, colors, and patterns. Thirdly, outdoor

settings are often dynamic, with moving objects, changing weather conditions, and varying

levels of noise. Account for these factors during data collection to simulate real-world scenarios

where users may encounter distractions or interruptions while using their smartphones. Fourthly,

be prepared to collect data in adverse weather conditions such as rain, fog, or snow. Ensure

the smartphone’s camera and sensors can function effectively under these conditions, and take

appropriate precautions to protect the device from damage. Furthermore, it is crucial to maintain

camera stability to capture clear and sharp images despite potential movement or vibration.

Consider using stabilization techniques or accessories to minimize motion blur and ensure data

quality.

Additionally, respect individuals’ privacy and obtain their consent before capturing data in

outdoor settings. Inform participants about the purpose of the study and how their data will be

used, and provide assurances regarding data security and confidentiality. Finally, annotate outdoor
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Fig. 3.2 Outdoor environment setup for experimentation or observation

data with additional contextual information, such as GPS coordinates or timestamps, to facilitate

analysis and validation of the spoofing detection algorithm’s performance across different outdoor

environments. In summary, collecting data outdoors for smartphone-based spoofing detection

requires a comprehensive approach that considers the variability of environmental conditions.

By taking into account natural lighting, background diversity, dynamic environments, adverse

weather conditions, camera stability, privacy and consent, and data annotation, researchers

can effectively navigate these challenges and collect reliable and robust data for training and

evaluating the spoofing detection system.

The table presents information about various smartphone models, their camera setups, and

video recording capabilities. The "Details" column provides additional information about the

camera setups, including the type of lenses present and the maximum video recording resolution

supported. For smartphones with advanced camera systems like the Samsung S20, iPhone 11Pro,

and iPhone 12ProMax, the details include more advanced features like up to 8K or 4K with HDR

video recording. For simpler camera setups like those found in the Samsung A03 and Poco C3,
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Table 3.1 Smartphone Camera Details: Overview of Camera Setups and Video Recording
Capabilities.

Smartphone Camera Details

Samsung S20
Rear Camera Triple-camera setup with wide, ultra-wide, and telephoto lenses

Video Recording Capable of recording up to 8K resolution video.

iPhone 11Pro
Rear Camera Triple-camera setup with wide, ultra-wide, and telephoto lenses.

Video Recording Supports 4K video recording.

iPhone 12ProMax
Rear Camera Triple-camera setup with wide, ultra-wide, and telephoto lenses.

Video Recording Capable of recording 4K video with Dolby Vision HDR.

Samsung A03
Rear Camera Single-camera setup, likely with a standard wide-angle lens.

Video Recording Capable of recording video at 720p HD resolution.

Redmi Note 9ProMax
Rear Camera Quad-camera setup with wide, ultra-wide, macro, and depth sensors.

Video Recording Supports 4K video recording.

Poco C3
Rear Camera Triple-camera setup or single-camera setup.

Video Recording Likely supports 1080p Full HD video recording.

Pixel 7
Rear Camera Likely dual or triple-camera setup.

Video Recording Capable of recording 4K video.

Galaxy S8 Rear Camera Single camera.

Video Recording Capable of recording 4K video.

iPhone 8 Rear Camera Single camera.

Video Recording Supports 4K video recording.

Galaxy S10
Rear Camera Triple-camera setup with wide, ultra-wide, and telephoto lenses.

Video Recording Capable of recording 4K video.
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the details focus on whether the camera setup is single or triple, and the maximum resolution

supported for video recording. The table also provides information about additional camera

features such as quad-camera setups and their video recording capabilities.

Table 3.2 Smartphone Camera Details: Overview of Camera Setups and Video Recording
Capabilities table 2

Smartphone Camera Details

Galaxy S10
Rear Camera Triple-camera setup with wide, ultra-wide, and telephoto lenses.

Video Recording Capable of recording 4K video.

Samsung Galaxy J7
Rear Camera Single-camera setup, likely with a standard wide-angle lens.

Video Recording Capable of recording video at 1080p Full HD resolution

samsung S20
Rear Camera Triple-camera setup with wide, ultra-wide, and telephoto lenses.

Video Recording Capable of recording up to 8K resolution video.

Redmi Note 9ProMax
Rear Camera Quad-camera setup with wide, ultra-wide, macro, and depth sensors.

Video Recording Supports 4K video recording.

A table compares the camera setups and video recording capabilities of four smartphones:

Galaxy S10, Samsung Galaxy J7, Samsung S20, and Redmi Note 9ProMax. The table includes

details about the rear camera setup and video recording capabilities for each smartphone. The

"Camera" column specifies the type of camera setup and the lenses present, while the "Details"

column provides information about the maximum resolution supported and any additional

features such as HDR support. The table is formatted with vertical and horizontal lines, with

centered content within each cell and resized to fit within the text width of the document. Overall,

the table provides a comparison of the camera features of different smartphones.

The data collection for evaluating the performance of smartphone models in detecting

face mask attacks involved diverse participants wearing different types of masks, including

silicon mask ,letax mask,paper,joker and so on. The experiments were conducted in various

environments, such as indoor, outdoor to check the effectiveness of the smartphone models. The

camera positions were varied to capture the facial features accurately, and consistent lighting

and varied backgrounds were maintained in the indoor experiments. Adverse weather conditions

were simulated in the outdoor experiments to evaluate the performance of the smartphone models

in detecting face mask attacks in real-world scenarios.
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Table 3.3 Data Collection Protocol for Facial Data in Surveillance Setups: Overview of Cate-
gories, Subjects, Protocols, and Conditions.

Category Data Subject Protocols Smart phone 2 Variants (Glass & NoGlass) Sessions Conditions (indoor & outdoor) Number of sample at 30fps

Bonafide
BF 30 1 10 2 1 2 10

(BF)

Attack

SMA 4 2 10 2 1 2 30

LMA 3 2 10 2 1 2 30

WMA 10 1 10 – 1 2 15

PPA 10 1 10 – 1 2 20

PHMA 4 2 10 2 1 2 20

JCPHMA 3 2 10 2 1 2 20

CPHMA 3 2 10 2 1 2 20

The table presents information on different categories of data, including "BF" for Bonafide

data and various types of "Attack" scenarios involving spoofing attacks. The data is represented

by abbreviations or codes for each category, while the subject column denotes the number of

individuals involved in data collection. The protocols column shows the number of specific

procedures followed during data collection, and the smartphone column specifies the number of

smartphones used. The table also indicates the presence of multiple variants of attack scenarios,

such as with or without glasses, and the number of data collection sessions conducted for

each category. Additionally, the table distinguishes between indoor and outdoor environmental

conditions under which data collection occurred and provides the total number of samples

collected at a frame rate of 30 frames per second for each category.

Table 3.4 Abbreviations and Their Full Forms: Reference Table.

SHORT FORM FULL FORM
BF Bonafide

SMA Silicon mask attack

LMA Latex Mask Attack

WMA Wrap mask attack

PHMA Plastic Hard Mask Attack

JCPHMA Joker Color Plastic Hard Mask Attack

CPHMA Color Plastic Hard Mask Attack

PMA Paper Mask Attack

EMA Eye Mask Attack
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The table includes two columns, one listing the abbreviations or short forms used and the

other providing their corresponding full forms or expanded versions. The abbreviations and their

full forms listed in the table are as follows: "BF" stands for Bonafide, "SMA" for Silicon Mask

Attack, "LMA" for Latex Mask Attack, "WMA" for Wrap Mask Attack, "PHMA" for Plastic

Hard Mask Attack, "JCPHMA" for Joker Color Plastic Hard Mask Attack, "CPHMA" for Color

Plastic Hard Mask Attack, "PMA" for Paper Mask Attack, and "EMA" for Eye Mask Attack.

3.2 Bonafide

In the context of face recognition, the term "bonafide data" refers to authentic facial images that

are obtained from real individuals. These images are usually acquired under carefully controlled

conditions to ensure that they faithfully represent the distinct facial features of each person.

3.3 Presentation Attach Instruments (PAI)

3.3.1 Silicon Face Mask Attack

Silicon mask attack, also known as a mask presentation attack, refers to a class of spoofing

or presentation attacks that are designed to circumvent facial recognition systems. This type

of attack is executed by using a highly realistic mask made of silicon or other materials to

impersonate a genuine user. Its primary objective is to deceive the facial recognition system into

recognizing the attacker as the authorized user, thereby providing access to confidential systems

or sensitive information.

3.3.2 Latex Mask Attack

In a Latex Mask Attack, an attacker utilizes a mask made of latex or similar material to imper-

sonate a genuine user. These masks are crafted to resemble human faces and can be designed

with intricate details to closely mimic facial features. The attacker presents the latex mask to the

facial recognition system, aiming to bypass authentication and gain unauthorized access.
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Fig. 3.3 Illustrations of Silicon Mask Presentation Attacks: Visual Examples of Facial Imperson-
ation Using Silicon Masks.

Fig. 3.4 Latex Mask Examples: Depictions of Facial Presentation Attacks Utilizing Latex Masks.
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3.3.3 Wrap Mask Attack

A Wrap Mask Attack involves the use of a thin, flexible material wrapped around the face to

create a 3D representation of a genuine user’s face. The material used for wrapping can vary,

including paper, fabric, or even specially designed materials. Despite being less elaborate than

latex masks, wrap masks can still deceive facial recognition systems by creating the illusion of

facial depth and contours.

3.3.4 Plastic soft Mask Attack

In a Plastic soft Mask Attack, an attacker employs a rigid mask made of plastic or other hard

materials to impersonate a genuine user. Unlike latex masks, which are flexible, plastic hard

masks maintain their shape and structure more effectively. These masks may be 3D-printed or

manually crafted to closely resemble human faces, making them difficult for facial recognition

systems to differentiate from genuine faces.

Fig. 3.5 Illustrations of Plastic Soft Mask Presentation Attacks: Visual Depictions of Facial
Impersonation Using Soft Plastic Masks.
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Fig. 3.6 Joker Color Plastic Hard Mask Attacks: Depictions of Facial Impersonation Using
Vibrant Hard Masks.

3.3.5 Joker Color Plastic Hard Mask Attack

This attack involves the use of a rigid plastic mask, similar to the Plastic Hard Mask Attack, but

with additional coloring or design elements inspired by the Joker character from popular culture.

The purpose is to create a visually striking mask that may distract or deceive facial recognition

systems, making it difficult for them to differentiate between the mask and a genuine human

face.As show in the fig 3.6.

3.3.6 Color Plastic Hard Mask Attack

In a Color Plastic Hard Mask Attack, the attacker utilizes a rigid plastic mask that is colored

or painted to resemble a genuine human face. These masks may incorporate skin tones, facial

features, and other details to create a realistic appearance. By presenting the color plastic hard

mask to the facial recognition system, the attacker aims to bypass authentication and gain unau-

thorized access.As show in fig.3.7.

3.3.7 Paper Mask Attack

A Paper Mask Attack involves the use of a mask made of paper or similar lightweight materials.

While less durable and realistic compared to plastic or latex masks, paper masks can still be

used to deceive facial recognition systems, especially in scenarios where the system’s security
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Fig. 3.7 Color Plastic Hard Mask Presentation Attacks: Visual Examples of Facial Impersonation
Using Hard Masks in Various Colors

measures are minimal or easily bypassed. Attackers may create paper masks with printed facial

features or hand-drawn designs to mimic a genuine human face.

Fig. 3.8 Paper Mask Presentation Attacks: Depictions of Facial Impersonation Using Paper
Masks.

3.3.8 Eye mask attack

In an Eye Mask Attack, the attacker focuses specifically on creating a mask that covers only

the eyes while leaving the rest of the face exposed. By strategically concealing key facial

features such as the nose, mouth, and chin, the attacker aims to exploit vulnerabilities in the

facial recognition system’s detection algorithms, potentially tricking the system into granting

unauthorized access.
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Fig. 3.9 Eye Mask Presentation Attacks: Visual Examples of Facial Impersonation Using Eye
Masks.

3.4 Data Acqusition setup

The data capture process involved two environments, indoor and outdoor. The indoor environment

was a corridor with approximately 9-15 incandescent bulbs that were 200 watts each and used

as lighting. On the other hand, the outdoor data collection was done inside a walking passage.

During data capture, the distance between the sensor and the subject was measured in two parts:

the first distance was from the subject’s start to stop, which was approximately 8.5 meters, and

the second distance was from the subject’s stop to the sensor, which was approximately 1.4

meters.

Below is a list of different scenarios where facial recognition systems can be attacked, along

with their descriptions:

• Bonafide (BF): Data collection occurs for Glass and No Glass conditions in a single

session, with participants wearing a Hoodie and Cap.

• Latex Mask Attack (LMA): Data capture involves two protocols within a single session.

In Protocol 1, participants don a Hoodie, Cap, and Latex Mask, while in Protocol 2, they

wear a Wig and Latex Mask.
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• Silicon Mask Attack (SMA): Similar to LMA, this attack comprises two protocols in one

session. Protocol 1 involves participants wearing a Hoodie, Cap, and Silicon Mask, while

Protocol 2 involves a Wig, Cap, and Silicon Mask.

• Wrap Mask Attack (WMA): Data is collected in one protocol during a session where

participants wear a color-printed face photo wrap.

• Printed Photo Attack (PPA): Participants use a color-printed face photo in a single

protocol session for data capture.

• Plastic Hard Mask Attack (PHMA): Data collection involves two protocols during one

session. Protocol 1 includes participants wearing a Hoodie, Cap, and Plastic Hard Mask,

while Protocol 2 involves a Wig, Cap, and Plastic Hard Mask.

• Joker Color Plastic Hard Mask Attack (JPHMA): Similar to PHMA, this attack

comprises two protocols in one session. Protocol 1 involves participants wearing a Hoodie,

Cap, and Joker Color Plastic Hard Mask, while Protocol 2 involves a Wig, Cap, and Joker

Color Plastic Hard Mask.

• Color Plastic Hard Mask Attack (CPHMA): Participants undergo data collection for

Glass and No Glass in two protocols during a single session. Protocol 1 involves wearing

a Hoodie, Cap, and Color Plastic Hard Mask, while Protocol 2 includes a Wig, Cap, and

Color Plastic Hard Mask.

• Paper Mask Attack (PMA): Two protocols are executed during a single session, with

participants wearing a Hoodie, Cap, and Paper Mask in Protocol 1, and a Wig, Cap, and

Paper Mask in Protocol 2.

• Eye Mask Attack (EMA): Data capture occurs in one protocol session where participants

wear a Halloween color eye mask.

This table provides a summary of the total time required for data collection across various

scenarios involving different types of facial masks. The data includes the number of subjects,
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Table 3.5 Total Time Required for Data Collection

Data subject variants time sec Total time
Bonafide 25 2 15 30

Silicon mask 4 4 30 30 375

Latex Mask 4 4 30 30 240

Wrap mask 10 1 10 30 240

Print Photo mask 10 1 10 30 50

Plastic Hard Mask 4 2 30 30 50

Plastic Soft Mask 4 2 30 30 120

Color Plastic Hard Mask 3 2 30 30 90

Paper Mask 2 1 30 30 30

Eye Mask 5 1 30 30 75

variants, time taken per session (in seconds), time per subject (in seconds), and the total time

taken for data collection (in seconds) for each scenario.

• Bonafide: Data collection involving 25 subjects, with 2 variants, each taking 15 seconds,

resulting in a total time of 30 seconds.

• Silicon Mask: Data collection for silicon mask scenarios, involving 4 subjects and 4

variants, each taking 30 seconds, resulting in a total time of 375 seconds.

• Latex Mask: Similar to the silicon mask scenario, data collection involves 4 subjects and

4 variants, each taking 30 seconds, resulting in a total time of 240 seconds.

• Wrap Mask: Data collection for the wrap mask scenario involves 10 subjects, with 1

variant, each taking 10 seconds, resulting in a total time of 240 seconds.

• Print Photo Mask: Data collection for the print photo mask scenario involves 10 subjects,

with 1 variant, each taking 10 seconds, resulting in a total time of 50 seconds.

• Plastic Hard Mask: Data collection for the plastic hard mask scenario involves 4 subjects,

with 2 variants, each taking 30 seconds, resulting in a total time of 50 seconds.
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• Plastic Soft Mask: Similar to the plastic hard mask scenario, data collection involves 4

subjects and 2 variants, each taking 30 seconds, resulting in a total time of 120 seconds.

• Color Plastic Hard Mask: Data collection for the color plastic hard mask scenario

involves 3 subjects, with 2 variants, each taking 30 seconds, resulting in a total time of 90

seconds.

• Paper Mask: Data collection for the paper mask scenario involves 2 subjects, with 1

variant, each taking 30 seconds, resulting in a total time of 30 seconds.

• Eye Mask: Data collection for the eye mask scenario involves 5 subjects, with 1 variant,

each taking 30 seconds, resulting in a total time of 75 seconds.
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Chapter 4

Methodology

In the realm of presentation attack detection (PAD), feature-based methods are crucial for

identifying spoof attempts by processing various features extracted from facial images. These

features encompass texture, temporal data, image quality, and vital signs. These methods can be

broadly categorized into static and dynamic approaches.

Static approaches, exemplified by texture and image quality analysis, operate without relying

on temporal information. They assess each frame individually, allowing for video-based anti-

spoofing tasks. The culmination of assessments from multiple frames informs the final decision,

making static methods popular due to their efficiency, low computational requirements, and

cost-effectiveness. In contrast, dynamic approaches leverage temporal information, analyzing

motion or life signs to verify liveness in facial recognition (FR) systems. While dynamic methods

offer enhanced spoof detection capabilities, they typically require more computational resources.

Texture-based PAD methods excel in differentiating genuine images from fakes through

micro-textural analysis, particularly in detecting photo and replay attacks. The utilization of

Local Binary Pattern (LBP) descriptors is prevalent in these methods, although they may struggle

with low-resolution images. Presentation attacks often introduce image distortions such as

surface reflections, color distortions, and shape deformations, which are exploited by face PAD

systems.
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Fig. 4.1 Overview of Presentation Attack Detection Techniques in Biometric Systems

Dynamic approaches rely on temporal feature analysis, considering relative motion in videos

for spoof detection. Some methods utilize life signs such as pulse, eye blinking, or lip movement

to confirm liveness. Techniques like Dynamic Mode Decomposition (DMD) utilize temporal

cues like eye blinking and lip movements for liveness identification. However, motion-based

techniques may demand user cooperation, impacting processing time.

Traditional feature-based methods predominantly relied on hand-crafted features like Local

Binary Patterns (LBP), Histogram of Oriented Gradient descriptors (HOG), etc., which often

struggled with generalization due to variations in spoofing mediums and devices. The advent

of deep learning has revolutionized feature learning, leading to superior detection performance

compared to hand-crafted methods. Consequently, there’s been a significant shift towards deep

learning-based approaches in face PAD.

The enrollment process involves capturing a video of the individual’s face using the smart-

phone camera, ensuring that the face is well-illuminated and clearly visible. The captured video

is then split into individual frames, and a face detection algorithm is applied to each frame to

detect and locate the person’s face. Subsequently, facial features are extracted from the detected

face regions, which may include landmarks, texture descriptors, or deep learning embeddings

that represent unique characteristics of the person’s face. The extracted facial features are utilized

as input to train a classification model (such as SVM or CNN), and labels are assigned to indicate

whether each sample is bonafide or a mask attack. By learning to distinguish between genuine

faces and mask attacks based on the extracted features, the model effectively classifies new
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incoming samples as either bonafide or fraudulent.

To capture a new sample, a video of the person’s face, either bonafide or wearing a mask, is

captured and split into individual frames. A face detection algorithm is applied to each frame

to detect and locate the person’s face. Subsequently, the trained classification model is applied

to the extracted facial features from each frame to predict whether each frame corresponds to

a bonafide face or a mask attack. To evaluate the accuracy of the classifier, the predictions are

compared to manually annotated ground truth labels for the sample video based on whether the

person is genuinely presenting their face or wearing a mask during the sample capture. Based

on the classifier’s predictions and the accuracy evaluation, it can be determined whether each

sample video corresponds to a bonafide face or a mask attack.

4.1 Block Diagram:

Face Video
Smart 
Phone Extracted Frames Face Detail

LEARN MODEL

Bonafede/ 
Presentation 

attack

Face Video Extracted Frames Face Detail

ENROLLMENT

Probe

CLASSIFIER

Fig. 4.2 Block Diagram Illustrating Presentation Attack Detection Methodology in Facial Recog-
nition Systems
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4.1.1 Data recording using smartphone

To capture a video using a smartphone, there are several general steps that can be followed.

Firstly, the camera app on the smartphone should be opened. This can usually be done from the

home screen or the app drawer. Next, the user should switch to video mode, which is typically

accessible via an icon or option labeled "Video" or a camcorder icon. Once the user has entered

video mode, they should frame their shot using the smartphone’s screen, adjusting the camera

angle, zoom, and focus as desired. Recording can then be initiated by tapping the "Record"

button, typically represented by a circle icon. The recording indicator will appear on the screen,

indicating that the video is being recorded. The user can capture the desired footage by keeping

the camera steady and recording. Recording can be stopped at any time by tapping the "Stop"

button, usually represented by a square icon. After recording, the user can review the captured

video in the camera app, where they may have the option to preview the video, trim the footage,

or apply filters or effects before saving it to their smartphone’s gallery.

4.1.2 Frame Extraction

The process of extracting flames from videos involves several preprocessing steps that are

designed to isolate the regions of interest. Firstly, the video needs to be split into individual

frames, with each frame representing a single image in the video sequence. Next, the frames

are converted to a color space that enhances flame visibility, such as the HSV (Hue, Saturation,

Value) color space, where flames typically have distinct hue and intensity characteristics. After

this, image processing techniques are applied to detect potential flame regions in each frame,

such as thresholding, edge detection, or blob analysis. Once these regions are identified, they are

segmented from the background using techniques like connected component analysis or region

growing to isolate the flames more accurately. The detected flame regions are then subjected to

filtering or refinement techniques to remove noise and false positives, such as morphological

operations, spatial filtering, or machine learning-based classification. Optionally, additional post-

processing steps can be performed to enhance the quality or clarity of the extracted flame regions
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using techniques like smoothing, sharpening, or contrast adjustment. Finally, the extracted flame

regions are saved or displayed for further analysis or visualization. These preprocessing steps can

be implemented using various image processing libraries and tools such as OpenCV, MATLAB,

or Python with libraries like NumPy and SciPy, with specific techniques and parameters being

selected based on factors such as the characteristics of the input video, the complexity of the

flame scenes, and the desired level of accuracy in flame extraction.

4.1.3 Frame rate

The number of frames captured by a smartphone camera in a 30-second video can be calculated

based on the frame rate (fps) of the video recording and camera resolution settings. The frame

rate refers to the number of frames captured or displayed per second, and typical frame rates for

smartphone video recording include 24 fps, 30 fps, 60 fps, and higher. To calculate the number

of frames in a 10-second video, multiply the frame rate by the duration of the video (in seconds).

For example, if the frame rate is 30 fps, the number of frames in a 10-second video would be 30

x 30 = 900 frames. However, it’s important to note that the actual number of frames captured

can vary depending on the camera’s resolution settings, as higher resolutions may require more

processing power and storage capacity, which can affect the frame rate and number of frames

captured.

To calculate the total number of frames

Total number of frames=Frame rate (fps)×Duration (seconds)

4.1.4 Face Detection

Detecting faces in video frames involves a series of steps, which include frame extraction,

preprocessing, face detection, face region extraction, and optional post-processing. Firstly, the

video should be split into individual frames, and each frame is preprocessed to enhance features
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relevant to face detection. This can include resizing, converting to grayscale, and histogram

equalization to improve contrast. Next, a face detection algorithm is applied to each preprocessed

frame to detect and locate faces. There are several popular algorithms for face detection, such as

Haar Cascade Classifiers, Histogram of Oriented Gradients (HOG), and Convolutional Neural

Networks (CNNs). Once faces are detected, the bounding boxes or regions of interest containing

the detected faces are extracted from the frames. Post-processing techniques can be applied

to refine the detected face regions, such as non-maximum suppression to remove redundant

detections or smoothing to stabilize the bounding boxes across frames. Finally, the frames with

the detected face regions highlighted can be visualized or saved, or the face regions can be

extracted for further analysis or processing.

4.1.5 Learning model

In the realm of machine learning, a learning model is a mathematical representation of a problem

domain that a machine learning algorithm uses to make predictions or decisions based on input

data. The models are trained on labeled data to identify patterns and relationships within the data,

enabling them to make predictions on new, unseen data. There are different types of learning

models, including regression models, classification models, clustering models, dimensionality

reduction models, and deep learning models. Regression models are used to predict continu-

ous numerical values, while classification models categorize input data into discrete classes or

categories. Clustering models group similar data points together based on their features, and

dimensionality reduction models reduce the number of features in a dataset while preserving im-

portant information. Deep learning models are a subset of neural network models with multiple

layers of interconnected neurons. The selection of a learning model depends on the nature of the

problem, the characteristics of the data, and the desired outcome. The effectiveness of different

models varies depending on the specific task and dataset. Therefore, choosing the appropriate

learning model is crucial in designing effective machine learning systems.
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Presentation attack detection (PAD) is a vital aspect of face recognition systems, where the

objective is to identify and distinguish between genuine and fake facial presentations. Various

algorithms and techniques can be used for PAD, including traditional computer vision techniques,

machine learning models, feature fusion, liveness detection, deep learning architectures, and

adversarial training. Traditional computer vision techniques such as texture analysis, feature ex-

traction, and motion analysis can be utilized to detect anomalies in facial images and differentiate

between genuine and fake faces. SVM classifiers, CNN models, and Pro CRC can be trained on

features extracted from facial images to identify presentation attacks and distinguish them from

genuine facial presentations. Feature fusion techniques, such as combining texture, motion, and

shape features, can enhance the robustness of the detection system. Liveness detection methods,

such as analyzing physiological signals or requiring specific actions, can verify the presence of

live human subjects during facial recognition. Advanced deep learning architectures tailored for

PAD tasks, such as Siamese networks, Capsule networks, or attention mechanisms, can capture

complex patterns and variations in facial images and improve the accuracy of presentation attack

detection. Adversarial training techniques can also be used to improve the robustness of the

model against adversarial attacks aimed at bypassing the detection system. In the context of the

algorithms mentioned, SVM, Pro CRC, and AlexNet can be utilized for PAD tasks to distinguish

between genuine and spoofed faces. By combining these algorithms and techniques, presen-

tation attack detection systems can effectively identify and mitigate the risks associated with

spoofing attacks in facial recognition systems, ensuring the reliability and security of biometric

authentication processes.
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4.2 Unleashing the Power of Convolutional Neural Networks

(CNNs) in Machine Learning: A Revolution in Computer

Vision and Beyond

Convolutional Neural Networks (CNNs) have marked a significant breakthrough in the realm of

machine learning, particularly in the domain of computer vision. These deep learning models are

tailored to effectively process and analyze structured grid-like data, with images as their primary

input. Unlike traditional neural networks, CNNs feature a hierarchical architecture comprising

specialized layers that extract hierarchical representations of visual data. The key components

of CNNs are the convolutional layers, which utilize learnable filters or kernels to capture local

patterns and features across the input image. These convolutional operations are complemented

by pooling layers, which downsample the spatial dimensions of the feature maps, enabling

hierarchical feature extraction while reducing computational complexity. Through supervised

learning on large datasets, CNNs autonomously learn to extract hierarchical features from raw

image data, progressively discerning complex visual patterns and structures. Additionally, CNN

architectures often incorporate fully connected layers at the end of the network to synthesize the

extracted features for producing the final output, such as class probabilities in image classification

tasks.

Beyond their application in image classification, CNNs have been extended to a wide range

of computer vision tasks, including object detection, semantic segmentation, image generation,

and more. Moreover, CNNs have transcended the domain of computer vision and found utility in

diverse fields like natural language processing, speech recognition, and reinforcement learning.

The versatility and effectiveness of CNNs have solidified their position as a cornerstone of

contemporary machine learning, empowering researchers and practitioners to address complex

real-world problems with unprecedented accuracy and efficiency. As CNNs continue to evolve,

researchers are exploring novel architectures, training techniques, and applications to further

extend their capabilities and push the boundaries of what is possible with deep learning.
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4.2 Unleashing the Power of Convolutional Neural Networks (CNNs) in Machine Learning:
A Revolution in Computer Vision and Beyond

The impact of CNNs goes beyond traditional computer vision tasks, permeating various

other domains of machine learning and artificial intelligence. CNNs have been applied to tasks

such as text classification, sentiment analysis, and language translation in natural language

processing, where input data is represented as sequences of words or characters. Similarly, in

speech recognition, CNNs have been employed to process audio signal spectrograms, enabling

accurate transcription and understanding of spoken language.

As CNNs continue to evolve, researchers are exploring novel architectures, training tech-

niques, and applications to further push the boundaries of what is possible with deep learning.

Recent advancements include attention mechanisms, capsule networks, and self-supervised learn-

ing, aiming to improve model interpretability, robustness, and efficiency. However, the ethical

and societal implications of CNNs are increasingly being scrutinized, with efforts underway to

address issues like bias, fairness, privacy, and accountability in the deployment of AI systems.

In conclusion, CNNs have transformed the landscape of machine learning, offering unparal-

leled capabilities for processing and understanding visual data. Their versatility, scalability, and

effectiveness have catalyzed transformative advancements across a wide range of fields, driving

progress and innovation in the era of artificial intelligence. As CNNs continue to evolve, it is

essential to ensure that their deployment is ethical, fair, and transparent, benefiting society as a

whole.

4.2.1 Alexnet

AlexNet is a convolutional neural network (CNN) architecture that was introduced in 2012

by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. It is one of the pioneering deep

learning models that has played a significant role in advancing computer vision tasks, particularly

image classification. The architecture of AlexNet comprises eight layers of learnable parameters,

including five convolutional layers followed by max-pooling layers and three fully connected

layers. Dropout layers are also incorporated to prevent overfitting. AlexNet’s convolutional

layers use a kernel size of 3x3 with a stride of 1 and rectified linear unit (ReLU) activation
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Fig. 4.3 AlexNet: A Pioneering Deep Convolutional Neural Network Architecture for Image
Classification

functions. These layers are responsible for extracting features from the input images. Addition-

ally, max-pooling layers are applied after each set of convolutional layers to reduce the spatial

dimensions of the feature maps and introduce translation invariance. ReLU activation functions

are used throughout the network, which helps in mitigating the vanishing gradient problem and

accelerating the training process. Local Response Normalization (LRN) is applied after the first

and second convolutional layers in AlexNet. This technique normalizes the activity of neurons

across adjacent channels, enhancing the model’s generalization ability. The last three layers of

AlexNet are fully connected layers that are responsible for classification based on the features

extracted by the preceding convolutional layers. The final layer employs a softmax activation

function to output class probabilities. AlexNet was trained on the ImageNet dataset, which

contains millions of labeled images across thousands of classes. The training process involved

using stochastic gradient descent (SGD) with momentum, data augmentation techniques, and

dropout regularization. The success of AlexNet on the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) in 2012 marked a significant breakthrough in the field of deep learning.

AlexNet works by employing a deep convolutional neural network (CNN) architecture to

process and classify images. Here’s a simplified overview of how it operates:
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Input Images: AlexNet takes images as input. These images are typically represented as

matrices of pixel values, where each pixel corresponds to a color value (e.g., red, green, blue).

Convolutional Layers: The input image is passed through a series of convolutional layers. Each

convolutional layer consists of a set of learnable filters (also called kernels) that slide across

the input image. These filters convolve with the input image, extracting features such as edges,

textures, and patterns. The convolution operation is performed by taking the dot product between

the filter and a small region of the input image, producing a feature map. Activation Function

(ReLU): After each convolutional operation, a rectified linear unit (ReLU) activation function

is applied element-wise to the feature map. ReLU introduces non-linearity into the network

and helps in capturing complex patterns in the data. Pooling Layers: Following some of the

convolutional layers, max-pooling layers are applied. Max-pooling reduces the spatial dimen-

sions of the feature maps by selecting the maximum value within each region of the feature map.

This downsampling helps in reducing computational complexity and makes the network more

robust to variations in input. Local Response Normalization (LRN): In AlexNet, local response

normalization (LRN) is applied after the first and second convolutional layers. LRN normalizes

the activation of neurons across adjacent channels, enhancing the network’s ability to generalize.

Fully Connected Layers: After several convolutional and pooling layers, the feature maps are

flattened into a vector and fed into fully connected layers. These layers perform high-level

reasoning and classification based on the features extracted by the convolutional layers. The

output of the last fully connected layer is typically passed through a softmax activation function

to produce class probabilities.[6]

Training: AlexNet is trained using supervised learning with labeled data. During training, the

model’s parameters (weights and biases) are adjusted iteratively using optimization algorithms

such as stochastic gradient descent (SGD) with momentum. The goal is to minimize a loss

function that quantifies the difference between the predicted outputs and the ground truth labels.

Data augmentation techniques, dropout regularization, and LRN are used to prevent overfitting

and improve generalization. Output: The final output of AlexNet is a probability distribution

over the classes in the dataset. It predicts the probability that the input image belongs to each
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class, allowing for tasks such as image classification.

4.3 Exploring Traditional Methods in Face Recognition: Lever-

aging Classical Machine Learning and Computer Vision

Techniques

Before the emergence of deep learning and neural network-based approaches, traditional methods

in the context of face recognition were prevalent. These methods relied on classical machine

learning algorithms and computer vision techniques. Here are some key points about traditional

methods in face recognition:

Feature-Based Approaches: Traditional methods often involved the use of handcrafted

features extracted from facial images. These features included geometric features such as

distances between facial landmarks, texture features like local binary patterns (LBP), and

appearance-based features like Eigenfaces or Fisherfaces.

Dimensionality Reduction: Many traditional methods incorporated dimensionality reduction

techniques to simplify the feature space and enhance computational efficiency. Principal Compo-

nent Analysis (PCA) and Linear Discriminant Analysis (LDA) were commonly used for this

purpose.Classification Algorithms: Traditional classification algorithms such as Support Vector

Machines (SVM), k-Nearest Neighbors (k-NN), and Decision Trees were frequently employed

for face recognition tasks. These algorithms learned a mapping from the extracted features to

class labels and could distinguish between different individuals based on their facial characteris-

tics. Template Matching: Some traditional methods utilized template matching techniques to

compare facial images. These techniques involved comparing a test image with a database of

reference images to find the closest match based on predefined similarity measures.
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Challenges: Traditional methods often faced challenges in handling variations in lighting

conditions, facial expressions, occlusions, and pose changes. They also struggled with managing

large datasets and required manual parameter tuning.

Robustness and Efficiency: Despite their limitations, traditional methods were lauded for their

simplicity, interpretability, and computational efficiency. They performed well in constrained

environments with controlled conditions and limited variability.

Integration with Deep Learning: In recent years, there has been a trend towards integrating

traditional methods with deep learning techniques to leverage the strengths of both approaches.

For instance, deep learning models may be used for feature extraction, while traditional classifiers

are employed for classification tasks.

4.3.1 support vector machines (SVM)

Support Vector Machine or SVM is one of the most popular Supervised Learning algorithms,

which is used for Classification as well as Regression problems. However, primarily, it is used

for Classification problems in Machine Learning.

The goal of the SVM algorithm is to create the best line or decision boundary that can

segregate n-dimensional space into classes so that we can easily put the new data point in the

correct category in the future. This best decision boundary is called a hyperplane.

SVM chooses the extreme points/vectors that help in creating the hyperplane. These extreme

cases are called as support vectors, and hence algorithm is termed as Support Vector Machine.

Consider the below diagram in which there are two different categories that are classified using a

decision boundary or hyperplane:[14]

Example: SVM can be understood with the example that we have used in the KNN classifier.

Suppose we see a strange cat that also has some features of dogs, so if we want a model that

can accurately identify whether it is a cat or dog, so such a model can be created by using the

SVM algorithm. We will first train our model with lots of images of cats and dogs so that it can

learn about different features of cats and dogs, and then we test it with this strange creature. So

as support vector creates a decision boundary between these two data (cat and dog) and choose
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Fig. 4.4 Visualization of Support Vector Machine (SVM) Decision Boundaries for Classification

extreme cases (support vectors), it will see the extreme case of cat and dog. On the basis of the

support vectors, it will classify it as a cat. Consider the below diagram:

Fig. 4.5 SVM algorithm can be used for Face detection, image classification, text categorization,
and so on

[14]

Types of SVM classifiers

Linear SVM are used with linearly separable data; this means that the data do not need to

undergo any transformations to separate the data into different classes. The decision boundary
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and support vectors form the appearance of a street, and Professor Patrick Winston from MIT uses

the analogy of "fitting the widest possible street"2 (link resides outside ibm.com) to describe this

quadratic optimization problem. Mathematically, this separating hyperplane can be represented

as:

wx + b = 0

where w is the weight vector, x is the input vector, and b is the bias term.

There are two approaches to calculating the margin, or the maximum distance between

classes, which are hard-margin classification and soft-margin classification. If we use a hard-

margin SVMs, the data points will be perfectly separated outside of the support vectors, or "off

the street" to continue with Professor Hinton’s analogy. This is represented with the formula,

(wx j +b)y j ≥ a (4.1)

and then the margin is maximized, which is represented as: max Y = a
∥W∥ where a is the margin

projected onto W . Soft-margin classification is more flexible, allowing for some misclassification

through the use of slack variables ξ The hyperparameter, C, adjusts the margin; a larger C value

narrows the margin for minimal misclassification while a smaller C value widens it, allowing for

more misclassified data.

Nonlinear SVM Much of the data in real-world scenarios are not linearly separable, and

that’s where nonlinear SVMs come into play. In order to make the data linearly separable,

preprocessing methods are applied to the training data to transform it into a higher-dimensional

feature space. That said, higher dimensional spaces can create more complexity by increasing

the risk of overfitting the data and by becoming computationally taxing. The “kernel trick” helps

to reduce some of that complexity, making the computation more efficient, and it does this by

replacing dot product calculations with an equivalent kernel function4.

There are a number of different kernel types that can be applied to classify data. Some popular

kernel functions include:
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• Polynomial kernel

• Radial basis function kernel (also known as a Gaussian or RBF kernel)

• Sigmoid kernel

Support vector regression (SVR) Support vector regression (SVR) is an extension of SVMs,

which is applied to regression problems (i.e. the outcome is continuous). Similar to linear SVMs,

SVR finds a hyperplane with the maximum margin between data points, and it is typically used

for time series prediction. SVR differs from linear regression in that you need to specify the

relationship that you’re looking to understand between the independent and dependent variables.

An understanding of the relationships between variables and their directions is valuable when

using linear regression. This is unnecessary for SVRs as they determine these relationships on

their own. TutorialClassifying data using the SVM algorithm using Python Use SVMs with

scikit-learn to make predictions accounts likely to default on their credit card.

Hyperplane and Support Vectors in the SVM algorithm

Hyperplane: There can be multiple lines/decision boundaries to segregate the classes in n-

dimensional space, but we need to find out the best decision boundary that helps to classify the

data points. This best boundary is known as the hyperplane of SVM.

The dimensions of the hyperplane depend on the features present in the dataset, which means

if there are 2 features (as shown in image), then hyperplane will be a straight line. And if there

are 3 features, then hyperplane will be a 2-dimension plane.

We always create a hyperplane that has a maximum margin, which means the maximum

distance between the data points.

Support Vectors

The data points or vectors that are the closest to the hyperplane and which affect the position of

the hyperplane are termed as Support Vector. Since these vectors support the hyperplane, hence

called a Support vector.
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How SVMs work

The working of the SVM algorithm can be understood by using an example. Suppose we have a

dataset that has two tags (green and blue), and the dataset has two features x1 and x2. We want a

classifier that can classify the pair(x1, x2) of coordinates in either green or blue. Consider the

below image:

Fig. 4.6 Example Illustrating SVM Algorithm for Binary Classification

So as it is 2-d space so by just using a straight line, we can easily separate these two classes.

But there can be multiple lines that can separate these classes. Consider the below image:

Hence, the SVM algorithm helps to find the best line or decision boundary; this best boundary

or region is called as a hyperplane. SVM algorithm finds the closest point of the lines from

both the classes. These points are called support vectors. The distance between the vectors

and the hyperplane is called as margin. And the goal of SVM is to maximize this margin. The

hyperplane with maximum margin is called the optimal hyperplane.
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Fig. 4.7 Multiple Decision Boundaries in 2D Space

Fig. 4.8 Visualization of SVM Algorithm: Finding the Optimal Hyperplane
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4.3.2 Probabilistic Collaborative Representation Classifier (ProCRC)

The Probabilistic Collaborative Representation Classifier (ProCRC) is a machine learning algo-

rithm utilized for classification tasks. It leverages collaborative representation and probabilistic

modeling techniques to enhance classification accuracy and offer probabilistic interpretations,

particularly beneficial in uncertain scenarios. Collaborative representation involves expressing

each dataset sample as a linear combination of all other samples, while probabilistic model-

ing estimates the probability distribution of the data. This amalgamation of techniques makes

ProCRC valuable in situations where uncertainty estimation is crucial. Implementation of the

algorithm can involve various mathematical frameworks, including optimization techniques and

probabilistic graphical models. ProCRC finds application across diverse domains such as pattern

recognition, computer vision, and bioinformatics.

ProCRC advances upon traditional representation-based classifiers like the Sparse Representation-

based Classifier (SRC) and the Collaborative Representation-based Classifier (CRC). It intro-

duces a probabilistic framework that computes the probability of a test sample belonging to the

collaborative subspace of all classes, fostering a more robust and interpretable classification

process. Instead of relying solely on distance-based metrics, ProCRC maximizes the likelihood

of a test sample belonging to each class, enabling informed decision-making based on the class

with the highest likelihood.

A significant advantage of ProCRC lies in its clear probabilistic interpretation, enhancing un-

derstanding of the classification process. Moreover, ProCRC demonstrates superior performance

compared to popular classifiers like SRC, CRC, and Support Vector Machine (SVM) across vari-

ous classification tasks. Integration with features extracted using Convolutional Neural Networks

(CNN) enables ProCRC to achieve state-of-the-art results on challenging visual datasets.

The probabilistic framework of ProCRC not only enhances classification accuracy but

also offers insights into the underlying statistical properties of the data. This makes ProCRC

invaluable in domains requiring robust and interpretable classification algorithms, such as image

classification, pattern recognition, and computer vision.[9]
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Chapter 5

Result and Discussion

5.1 Experiments

The primary objective of our research is to investigate the detection of presentation attacks on

smartphones, with a particular emphasis on face biometrics. As a part of our investigation, we are

examining the efficacy of surveillance systems in detecting different types of presentation attacks

in both indoor and outdoor settings. A comprehensive explanation of our approach and findings

is presented in Chapter 3 of our study. To conduct our experiments, we utilized various face

detection algorithms, including Pro CRC, AlexNet, and SVM, to gauge their effectiveness against

different protocol attacks. Our study aims to contribute to the growing body of knowledge in

the field of biometrics and enhance the security of smartphone-based systems against fraudulent

activities.

As part of our research, we sought to analyze the performance of different Presentation

Attack Detection (PAD) algorithms. To accomplish this, we utilized classifier accuracy metrics

to evaluate the performance of these algorithms against a performance matrix. The goal was to

gain a comprehensive understanding of the efficacy of these algorithms in detecting different face

presentation attacks on various smartphone models. To achieve this, we conducted three distinct

experiments that allowed us to evaluate the performance of these algorithms under different

conditions and scenarios. Our research findings will contribute to the growing body of knowledge
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on biometric security systems and help enhance the detection capabilities of smartphone-based

security systems against fraudulent activities.

We have conducted three experiments as part of our research. In the first experiment, you

utilized within evaluation,in that we used one smartphone for both training and testing. In the

second experiment, you used cross-sensor evaluation by training on one smartphone and testing

on a different one. Finally, in the third experiment, we conducted two sub-experiments, in one

experiment we using one sensor for training and three sensors for testing, and for the other

experiment we used three sensors for training and one sensor for testing. With this research, we

hope to make a significant contribution to the field of biometrics and enhance the security of

smartphone-based systems around the world.

Table 5.1 Data partition for Experiment

Sensor Data Partition Training Testing
Samsung J7 Bonafide 6000 6000

Mask Attack 6000 6000

Samsung S20 Bonafide 6000 6000

Mask Attack 6000 6000

Redmi9note Bonafide 6000 6000

Mask Attack 6000 6000

Samsung 10 Bonafide 6000 6000

Mask Attack 6000 6000

In our research, we used a data partitioning technique that involved using four sensors to

collect data for training and testing the system. In this approach, we collected data from both

bonafide and attack sources. For the bonafide data, we collected samples from six subjects, while

for the attack data, we collected samples from four subjects. To partition the data for training

and testing in the two protocols, we used three subjects from the bonafide data for training and

the other three subjects for testing. We collected 6000 samples of crop face images for both

the training and testing phases. This approach ensured that the system was trained on a diverse

range of samples to improve its accuracy and reliability. Similarly, for the attack data, we used

two subjects for training and the other two subjects for testing. We collected 6000 samples for
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both the training and testing phases. By using this approach, we ensured that the system was

trained on samples from different sources to improve its performance. we use this data pratiton

technique in different protocol to to ensure that the system was trained and testes on a diverse

range of sample.the rigorously conduct experiment and analysis ensure the accuacy of the result

Experiment 1: within Evaluation

Table 5.2 Within Sensor Evaluation

Training Testing

Samsung J7 Samsung J7

Redmi9note Redmi9note

Samsung S20 Samsung S20

Samsung 10 Samsung 10

Protocol 1 of our research involved the use of a single sensor to evaluate the efficacy of

various Presentation Attack Detection (PAD) algorithms. To this end, we collected a dataset

comprising bonafide and mask attacks. The bonafide dataset consisted of 6,000 samples from

three different subjects, each wearing hoodies and glasses or no glasses at all. The mask attack

dataset, on the other hand, comprised 6,000 samples from two silicon masks, each worn with

different combinations of hoodies, wigs, and glasses. We utilized this dataset to train our

algorithms, following which we tested them using a different set of subjects with the same senso

r. The testing dataset was also composed of 6,000 samples for both the bonafide and mask attack

categories. Our objective was to evaluate the performance of the PAD algorithms under different

conditions and assess their ability to detect presentation attacks accurately.

Our approach to Protocol 1 was based on sound academic principles and involved rigorous

experimentation and analysis. By conducting this research, we aim to contribute to the growing

body of knowledge on biometric security systems and enhance the security of smartphone-based

systems against fraudulent activities.
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Table 5.3 Cross Smartphone Evaluation

Training Testing

Samsung J7 Redmi9note

Redmi9note Samsung S20

Samsung S20 Samsung 10

Samsung 10 Samsung J7

Experiment 2: Cross Smartphone Evaluation

In the context of biometric security systems, Protocol 2 involves cross-sensor testing. This

means that we use data from one sensor to train the system and then test it on another sensor.

The process is based on sound academic principles and involves rigorous experimentation and

analysis. To conduct the training phase, we carefully gathered 6000 samples of bonafide from 3

different subjects. Additionally, we collected 6000 samples of silicon masks from 2 different

subjects. The training phase aimed to teach the system to differentiate between bonafide and

mask samples accurately. In doing so, we aim to enhance the security of smartphone-based

systems against fraudulent activities. During the testing phase, we used 6000 samples of bonafide

from 3 different subjects and 6000 samples of silicon masks from 2 different subjects. The

testing was conducted on a different set of individuals to ensure the accuracy of the system across

a broader range of subjects. It’s important to note that the training and testing subjects were not

the same and consisted of different individuals. The findings of this research will contribute to

the growing body of knowledge on cross-sensor testing and improve the security of biometric

systems. The rigorous experimentation and analysis involved in this research ensure the accuracy

and reliability of the results

Experiment 3: Single Cross Sensor data in training Evaluation Results for Facial Detection

System

Protocol 3 is a comprehensive study that involves two sub-protocols aimed at improving the

accuracy and security of biometric systems. In the first sub-protocol, we used one sensor for

training and three sensors for testing. During the training phase, we collected 6000 samples
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Table 5.4 Single Cross Sensor data in training Evaluation Results for Facial Detection System

Training Testing

Samsung J7

Samsung S20

Redmi9note

Samsung 10

Samsung S20

Redmi9note

Samsung J7

Samsung 10

Redmi9note

Samsung S20

Samsung 10

Samsung J7

Samsung 10

Samsung S20

Samsung J7

Redmi9note

of bonafide data from 5 subjects and 6000 samples of mask attack data from 5 subjects. We

used this data to train the system to differentiate between bonafide and mask samples accurately,

with the ultimate goal of improving the security of smartphone-based systems against fraudulent

activities. For the testing phase, we gathered data from three different sensors and collected the

same data from six different subjects for each sensor. This provided us with a diverse range of

samples to test the system’s accuracy and reliability. We collected 6000 samples of bonafide

and 6000 samples of mask attack from each sensor to evaluate the performance of the system

across multiple sensors. In the second sub-protocol, we trained and tested the model using a

different approach. We used data from three different sensors to train the system, collecting 6000

samples of bonafide data from 6 subjects and 6000 samples of mask attack data from 3 subjects.

For the testing phase, we used only one sensor and collected 6000 samples of bonafide data

from different subjects and 6000 samples of mask attack data from different subjects, similar

to the training set. This approach aimed to evaluate the system’s performance on a different

set of subjects and determine if the system’s accuracy and reliability were consistent across

different individuals. By conducting this research, we aim to contribute to the growing body of

knowledge on biometric security systems. The rigorous experimentation and analysis involved in
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this research ensure the accuracy and reliability of the results. Ultimately, our goal is to enhance

the security of smartphone-based systems against fraudulent activities and improve the overall

safety and protection of individuals.

Experiment 4: Multiple cross sensor data in Training Evalution Results for Facial Detection

System

Table 5.5 Multiple cross sensor data in Training Evalution Results for Facial Detection System

Training Testing

Samsung S20

Samsung J7Redmi9note

Samsung 10

Redmi9note

Samsung S20Samsung J7

Samsung 10

Samsung S20

Redmi9noteSamsung 10

Samsung J7

Samsung S20

Samsung 10Samsung J7

Redmi9note

Protocol 4 is a comprehensive study that involves two sub-protocols aimed at improving

the accuracy and security of biometric systems. In the first sub-protocol, we used three sensor

for training and sensors for testing. During the training phase, we collected 6000 samples of

bonafide data from 5 subjects and 6000 samples of mask attack data from 5 subjects. We used

this data to train the system to differentiate between bonafide and mask samples accurately, with

the ultimate goal of improving the security of smartphone-based systems against fraudulent

activities. For the testing phase, we gathered data from three different sensors and collected the

same data from six different subjects for each sensor. This provided us with a diverse range of

samples to test the system’s accuracy and reliability. We collected 6000 samples of bonafide
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and 6000 samples of mask attack from each sensor to evaluate the performance of the system

across multiple sensors. In the second sub-protocol, we trained and tested the model using a

different approach. We used data from three different sensors to train the system, collecting 6000

samples of bonafide data from 6 subjects and 6000 samples of mask attack data from 3 subjects.

For the testing phase, we used only one sensor and collected 6000 samples of bonafide data

from different subjects and 6000 samples of mask attack data from different subjects, similar

to the training set. This approach aimed to evaluate the system’s performance on a different

set of subjects and determine if the system’s accuracy and reliability were consistent across

different individuals. By conducting this research, we aim to contribute to the growing body of

knowledge on biometric security systems. The rigorous experimentation and analysis involved in

this research ensure the accuracy and reliability of the results. Ultimately, our goal is to enhance

the security of smartphone-based systems against fraudulent activities and improve the overall

safety and protection of individuals.

5.2 Exploring Facial Detection: Evaluation and Performance

Analysis of Machine Learning Algorithms

It’s fascinating to see how facial detection technology has become so widespread in recent years,

with various applications across different domains. From security and surveillance to personal

devices and social media platforms, accurately detecting faces in images and videos has become

increasingly important. The goal of this project is to develop an efficient and accurate facial

detection system using cutting-edge techniques in computer vision and machine learning. By

leveraging advancements in deep learning algorithms and neural networks, we hope to create

a robust solution that can detect faces in diverse environments and under varying conditions.

Facial detection is crucial in many applications, including security systems for access control,

video surveillance for public safety, and personalized user experiences in digital devices. With

the growing use of facial recognition technology, it’s essential to ensure that facial detection

algorithms are reliable and perform well, to protect user privacy and security.
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In this project, we used several machine learning algorithms, including support vector

machines (SVM), AlexNet, and Ori-CRC, to develop a facial detection system that can accurately

distinguish between presentation attacks and bonafide. We evaluated the performance of our

system under different conditions, including the presence of a hoodie or wig, and glasses or

no glasses. To evaluate the system’s accuracy, we used different protocols. In protocol 1, we

used the same sensor for training and testing, while in protocol 2, we used different sensors for

training and testing. In protocol 3.1, we used one sensor for training and three for testing, while

in protocol 3.2, we used three sensors for training and one for testing.

5.2.1 Experiment 1: Within sensor Evaluation Results for Facial Detection

System

Fig. 5.1 Images depicting individuals wearing cap hoodies without glasses.

The study evaluated the performance of different classification algorithms for PAD for face

in protocol 1 ,we have two varients with and without glasses. The results showed that Alexnet

achieved higher accuracy compared to SVM and Pro CRC, and Redmi9note achieved the highest

accuracy with the Alexnet algorithm among the used smartphone models. However, the accuracy
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Fig. 5.2 Capturing variations: Classifying subjects with cap, hoodie, and glasses

Fig. 5.3 Variability in features: Classification with cap, wig, and no glasses
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Fig. 5.4 Feature variability analysis: Classification with cap, wig, and glasses

was lower when glasses were worn, indicating the impact of environmental factors on the

accuracy of facial expression recognition. The study underscores the importance of selecting

appropriate algorithms and environmental factors to achieve high accuracy in facial expression

recognition tasks.

Moreover, the study also observed that the use of glasses negatively impacted the classification

accuracy of facial expressions in the presence of bonafide and mask attack presentations. The

findings highlight the need to consider environmental factors such as glasses while performing

facial PAD tasks, as they can pose challenges in achieving high accuracy. The study provides

insights into the impact of environmental factors on the accuracy of facial expression recognition

algorithms, and future research can explore other environmental factors to improve their practical

applications.

5.2.2 Experiment 2: Cross sensor Evaluation Results for Facial Detection

System

we conclude that the Alexnet algorithm was the most accurate out of the three tested algorithms,

with an average testing accuracy of approximately 71.36%. The SVM algorithm was also

competitive, with an average accuracy of approximately 67.31%. However, the Pro CRC
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Fig. 5.5 Feature analysis: Classification with cap, hoodie, and glasses

Fig. 5.6 Images depicting individuals wearing cap hoodies without glasses
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Fig. 5.7 Variability in features: Classification with cap, wig, and no glasses

Fig. 5.8 Feature variability analysis: Classification with cap, wig, and glasses
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algorithm had the lowest average accuracy of approximately 61.28%. In terms of smartphone

performance, the Redmi9note had the highest average testing accuracy across all algorithms,

with an accuracy of approximately 82.41%, making it the top-performing smartphone in our

study. The Samsung S20 came in second with an average accuracy of approximately 70.8%,

followed by the Samsung J7 with an average accuracy of approximately 69.5%. Interestingly,

the Samsung 10 had the lowest average accuracy of approximately 67.2%. Overall, our results

suggest that the Redmi9note smartphone is the best choice for image classification tasks, while

the Alexnet algorithm is the most accurate out of the three tested algorithms.

5.2.3 Experiment 3:Single Cross Sensor data in training Evaluation Re-

sults for Facial Detection System

Fig. 5.9 Feature analysis: Classification with cap, hoodie, and glasses

According to study protocol 3, the testing results for Samsung J7, Redmi9note, Samsung

S20, and Samsung 10 models showed that Alexnet algorithm consistently provided the highest

accuracy, with an average of approximately 61.75%. This indicates that Alexnet is a reliable
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Result and Discussion

Fig. 5.10 Images depicting individuals wearing cap hoodies without glasses

Fig. 5.11 Variability in features: Classification with cap, wig, and no glasses
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5.2 Exploring Facial Detection: Evaluation and Performance Analysis of Machine
Learning Algorithms

Fig. 5.12 Feature variability analysis: Classification with cap, wig, and glasses

choice for classification tasks related to smartphone models, as it displayed consistent and

robust performance across all models. On the other hand, the Support Vector Machine (SVM)

and Pro CRC algorithms provided lower average testing accuracies of around 57.55% and

51.56%, respectively. Therefore, the study suggests that Alexnet algorithm outperforms the

other algorithms in terms of average testing accuracy, making it the most effective choice for

smartphone model classification tasks.

5.2.4 Experiment 4: Multiple cross sensor data in Training Evalution

Results for Facial Detection System

The results from study protocol 4 indicate that the Alexnet algorithm consistently achieved the

highest accuracy, averaging around 75.75%, across the testing outcomes for the Samsung J7,

Redmi9note, Samsung S20, and Samsung 10 models. This consistent performance suggests that

Alexnet is a reliable option for classification tasks related to smartphone models, demonstrating

stable and robust results.
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Fig. 5.13 Feature analysis: Classification with cap, hoodie, and glasses

Fig. 5.14 Images depicting individuals wearing cap hoodies without glasses

80



5.2 Exploring Facial Detection: Evaluation and Performance Analysis of Machine
Learning Algorithms

Fig. 5.15 Variability in features: Classification with cap, wig, and no glasses

Fig. 5.16 Feature variability analysis: Classification with cap, wig, and glasses
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On the other hand, the Support Vector Machine (SVM) and Pro CRC algorithms showed

lower average testing accuracies, approximately at 60.55% and 56.56% respectively. These

findings suggest that while SVM and Pro CRC are viable approaches, they generally yield lower

accuracy compared to Alexnet.

Based on these findings, the study recommends the utilization of the Alexnet algorithm for

smartphone model classification tasks due to its superior average testing accuracy performance,

highlighting its effectiveness in such scenarios.

5.3 Discussion

The project conducted a study to evaluate the performance of different algorithms for smartphone

model classification. Alexnet consistently achieved the highest testing accuracy across all

smartphone models, with an average accuracy of approximately 61.75%. This indicates that

Alexnet is a reliable choice for classification tasks related to smartphone models, as it displayed

consistent and robust performance across all models.

One significant finding of the study was the impact of camera resolution on classification

accuracy. The Redmi9note smartphone, with a higher camera resolution, demonstrated a higher

accuracy compared to the other models tested. This observation underscores the importance of

considering various environmental factors and potential sources of error when developing and

testing classification algorithms.

Another noteworthy discovery was the influence of wearing glasses on the accuracy of the

classifiers. This highlights the need for careful consideration of potential sources of error when

developing classification algorithms and supports the necessity for further research to understand

the underlying factors that contribute to the impact of glasses on classification accuracy.

Overall, the project provides valuable insights into the development and evaluation of

classification algorithms for smartphone model classification tasks. The findings can inform

the development of more effective and reliable classification algorithms in various domains and
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emphasize the importance of considering various environmental factors and potential sources of

error during algorithm development and testing.
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Chapter 6

Conclusion and Future Scope

In the modern age of rapid technological progress, it is crucial to ensure the security of files and

systems, spanning from personal desktop data to highly confidential government information,

against unauthorized attacks. Individuals utilize various means and methods to gain unauthorized

access to highly secured premises. Generally, authentication methods are categorized based on

three principles to ensure secure authentications.

Moving forward, this research could delve into advanced machine learning techniques such as

deep learning and reinforcement learning to further enhance the accuracy of presentation attack

detection. Additionally, exploring the integration of multimodal biometric systems and novel

methods for continuous authentication could provide avenues to bolster overall system security.

Moreover, broadening the evaluation to encompass larger and more diverse datasets and testing

in varied environmental conditions would strengthen the generalizability and robustness of the

proposed methodologies. Lastly, considering the evolving landscape of biometric authentication

and emerging technologies, future work could focus on addressing new types of presentation

attacks and adapting detection methods accordingly.
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