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PREFACE

In optical communication, the demand for higher data rates and capacity is ever-growing.

Traditional techniques are not enough, so machine learning can enhance them. This topic

explores how machine learning can improve multiplexing and demultiplexing techniques in

OAM-based systems. We will delve into the fundamentals, complexities, and potential of

machine learning techniques such as classification and regression algorithms. This book

provides valuable insights into the synergy between machine learning and optical

communication, giving a glimpse into the future of high-speed data transmission.
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ABBREVIATIONS

OAM Orbital angular momentum

SVM Support vector machine

Lg Laguerre-Gaussian

VB Vortex beam

LGB Laguerre Gaussian beam

Φ Phi

π Pi

SAM Spin angular momentum

FSO Free space optical

BER Bit error rate

ML Machine learning

ANN Artificial neural network

CNN Convolutional neural network

D2NN Diffractive deep neural network



ABSTRACT

Our proposed project aims to explore a novel technique for the demultiplexing of orbital

angular momentum (OAM) beams in free-space optical communication. Conventionally,

OAM beams are multiplexed at a transmitter and then propagated to a receiver where they are

demultiplexed based on their orthogonality properties. However, here we propose a new

approach that utilises a support vector machine (SVM) as a classifier to demultiplex these

beams by capturing the unique multiplexing intensity pattern. This technique offers several

benefits, including the elimination of alignment requirements, relaxation of orthogonality

constraints, and the avoidance of costly optical hardware. Our findings suggest that the

proposed SVM-based technique outperforms the conventional method and can significantly

enhance the channel capacity of free-space optical communication. Results show that the

SVM-based demultiplexing method is able to demultiplex combinatorically multiplexed

OAM modes from a fixed set with >70.00 % accuracy.



CHAPTER 1



1. INTRODUCTION:

Light is one of the main carriers of information in communication and enhancing its capacity

and spectral efficiency is a goal in academia and industry. The Laguerre-Gaussian beam

(LGB), with its orbital angular momentum (OAM) component, can be used in

communication technology and simultaneously meet the high criteria required for cloud

computing, the Internet of Things, 5G communications networks, and other upcoming

technologies. Researchers studying OAM mode probability density modulated spatial

splitting phenomena, and OAM multiplexing technology in free space have investigated LGB,

the first studied vortex beam, in great detail. A new method of modulating information

involves carrying various OAM modes while modulating it into LGB. Recently, the orbital

angular momentum (OAM) of light has been considered for multiplexing data in free space,

optical fibres, and nanoscale.

1.1 BACKGROUND

In 1992, Allen et al. introduced the concept of Orbital Angular Momentum (OAM) with that

of optical vortex. An optical vortex beam has the ability to carry orbital angular momentum

(OAM) wherein the planes of consistent phase of the electric and magnetic vector fields form

a corkscrew or helicoid which runs in the direction of propagation. The vortex's topological

charge, which denotes the number of twists that the light undergoes in one wavelength, is a

defining characteristic of the vortex. The greater the number of twists, the faster the light

rotates around the axis. As a result, the OAM carried by the optical vortex can theoretically

have an infinite number of eigenstates and is defined in an infinite-dimensional Hilbert vector

space. The potential applications of OAM in the field of communications are vast, despite



some issues that need to be addressed prior to full deployment. If the OAM dimension of

photons can be fully leveraged for information modulation or multiplexing, the information

capacity of a single photon can be significantly improved, resulting in a boost in the

transmission capacity of single-wavelength and single-mode fibres. Furthermore, because the

vortex beam has a helical wavefront, its axial centre field in the direction of propagation is

null, presenting opportunities for applications in particle manipulation and imaging.

An optical vortex beam has the ability to carry orbital angular momentum (OAM), as

discovered by Allen et al. in 1992. This beam has a special spatial structure that causes the

phase front to "twist" in a helical pattern as it propagates and the amplitude to have a ring-

like doughnut profile. Beams with various OAM values can be orthogonal to each other.

When it comes to OAM multiplexing technology, modulated spatial splitting phenomena, and

OAM mode probability density in free space, LGB is the first vortex beam that has been

thoroughly examined by researchers. There is a novel method of modulating information that

carries several OAM modes and is modulated into LGB.

Laguerre-Gaussian (LG) modes, which have an exp (i l φ) phase term characterising an on-

axis phase singularity of strength l, can be used to explain light carrying OAM. LG modes are

identified by their waist size (w0) and radial index (p), in addition to the number l. The LG

modes used here have p = 0, and their intensity cross-sections show one bright ring with no

on-axis intensity for l 6 = 0. The ring's radius scales with l for a given waist size, w0. The

highest value of l that can be employed is limited by the finite apertures present in all optical

systems. The twist number and direction of the helical wavefront depend on the magnitude

and the positive or the negative of l. When l = 0, OAM beams degenerate to Gaussian beams.

https://www.sciencedirect.com/topics/physics-and-astronomy/gaussian-distribution


The helical phase fronts of OAM waves: (a) l = 0, (b) l = 1, and (c) l = 3.

The OAM mode order is represented by the number of 2π phase changes in the azimuthal

direction. These organised beams are a subset of the Laguerre–Gaussian (LG lp) modal basis

set in free space, which has two modal indices: (1) p + 1 indicates the number of 2π phase

changes in the azimuthal direction, and the size of the ring increases with p. Due to its

potential uses in numerous different fields, orbital angular momentum (OAM), which

characterises the "phase twist" (helical phase pattern) of light beams, has recently attracted

attention. Using OAM for optical communications is particularly promising since

a) coaxially propagated OAM beams with various azimuthal OAM states are mutually

orthogonal,

b) inter-beam crosstalk may be reduced,

c) the beams can be multiplexed and demultiplexed effectively.

Multiple OAM states could thereafter be used as various carriers for multiplexing and

transmitting various data streams, potentially boosting the system's capacity.

It is commonly known that a light wave can be seen to carry both spin angular momentum

(SAM) and OAM when interpreted in a quantum mechanical manner. OAM can be

understood to characterise the 'twist' of a helical phase front, in contrast to SAM (e.g.,



circularly polarised light), which is distinguished by the direction of the electric field. An

OAM-carrying beam often features an annular "ring" intensity profile with a phase

singularity at the beam centre due to the helical phase structure. Orthogonal-to-coaxial (OAM)

beams can be characterised as orthogonal states depending on the discrete "twisting" rate of

the helical phase.

More research is being done on vortex beams with orbital angular momentum (OAM). The

OAM beams have a phase singularity, a helical wavefront, and zero intensity in the beam's

core. OAM beams have a broad range of potential applications in the disciplines of optical

communication, rotating body detection, and particle manipulation due to their distinctive

phase properties.

Many methods have been put forth and proven effective for producing OAM beams. A laser

cavity's output could be used to directly produce one or more OAM beams or by transforming

an OAM beam outside of a cavity from a basic Gaussian beam. A spiral phase plate,

diffractive phase holograms, metamaterials or a cylindrical device could serve as the

converter q-plates fibre gratings lens pairs couplers or q-plates. Detecting an OAM beam can

also be done in a variety of ways, for example by employing a converter that a conjugate

helical phase is produced, or a plasmonic detector is used. OAM may theoretically transport

limitless amounts of information since its OAM modes, which have varying topological loads

and are orthogonal to one another in space, have an endless number of eigenstates. In

actuality, though, OAM's capacity to transmit data is constrained by the transmission

environment and the beam's ability to resist jamming. Multiple OAM states could thereafter

be used as various carriers for multiplexing and transmitting various data streams, potentially

boosting the system's capacity. The OAM multiplexing technique makes use of this feature to



load information and combine multi-channel light into one channel for transmission.

Moreover, during transmission, crosstalk happens across modes, making it more challenging

to identify the OAM of a vortex beam. Consequently, it is crucial to identify vortex beams at

the receiving end.

The OAM in optical communications can be used in two main ways. Either an OAM

modulation scheme or an OAM multiplexing technique can be used, just like other physical

dimensions like frequency, time, complex amplitude, and polarisation. It is possible to encode

different data into different OAMs when utilising the OAM modulation scheme. OAM

multiplexing, on the other hand, uses the various OAMs as separate channels to transport and

deliver the various types of data. OAM multiplexing thus has the ability to significantly boost

communication systems' transmission capacity and efficiency.

The optical communications community's main goal is to achieve better data transfer

capacities. This has prompted research into the use of various Lightwave physical

characteristics for data encoding and channel addressing, such as wavelength, polarisation,

phase, and amplitude. Spatial locations and spatially orthogonal modes have been the subject

of extensive research in more recent times. Multiplexing of independent data channels is a

common technique used in optical communication systems to increase the transmission

capacity. By multiplexing multiple OAM beams, each carrying a separate data channel at the

transmitter side, the overall data capacity may be enhanced. Upon coaxially propagating via

the fibre or free space, these OAM beams on various channels could be effectively

demultiplexed at the receiving end. Importantly, because the various OAM beams are

orthogonal, there would be minimal intrinsic channel crosstalk.



It is frequently required to enhance the data link's information capacity because of the

complexity of the information that must be communicated and/or the amount of time allotted

for transmission. Another choice is to use orbital angular momentum (OAM), which enables

the multiplexing and transmission of beams with various mode numbers over the same link.

When turbulence is absent, OAM beams display orthogonality. This is advantageous for

optical FSO communication since multiplexed beams won't interfere with one another,

enabling the recovery of each mode. Channel crosstalk, on the other hand, is the result of

information mixing between adjacent modes due to turbulence. The signal decreases and

information are lost as a result of this crosstalk.

Because OAM beams in various superposition stages have distinct physical manifestations

(such intensity patterns), when OAM beams are utilised for multiplexing or encoding, the

OAM pattern identification issue can be transformed into an image classification problem.

These issues are commonly articulated in terms of bit error rate (i.e., the error rate of

transmitted information bits) and recognition rate (i.e., the percentage of pictures properly

identified). Different mode numbers can be multiplexed together or optically combined into a

single beam due to the orthogonality property of OAM beams; This multiplexed beam must

be demultiplexed to determine which modes are present in the signal after it has propagated

and arrived at the receiver. We first describe a widely used demultiplexing technique and

then we describe our proposed SVM technique.

The use of Orbital Angular Momentum (OAM) beams has the potential to enhance the

capacity of information transmission due to their additional degrees of freedom. However,

traditional methods for mode detection and demultiplexing require intricate and costly optical



equipment. To overcome these limitations, we propose a novel solution based on Machine

Learning techniques for demultiplexing OAM modes at the receiver. Our approach is highly

user-friendly and reasonably priced. Specifically, we generated an OAM mode scattered field

utilising a random phase mask with a known degree of non-uniformity. We then fed the

intensity images of these dispersed fields into a Supervised Vector Machine as input. The

model was trained using several Laguerre-Gaussian modes (����) carrying OAM with � = 0

and � = 1,2,3,4,5,6,7,8. We evaluated the overall accuracy of the model using various photo

sets.

Since the orbital angular momentum (OAM) modes are theoretically orthogonal, OAM

multiplexing and encoding techniques can efficiently boost the optical communication

systems' channel capacity. Nonetheless, the channel distribution has an impact on the OAM

modes' phase distributions. The OAM optical communication system's performance would be

lowered by particle and turbulence-induced beam absorptions, scatterings, and phase

distortions in air and underwater channels. ML-based OAM beam demodulation has become

a prominent research area in the field of OAM optical communications due to its low cost,

high speed, high accuracy, large demodulation range, and ease of processing without the need

for redundant optical equipment. In 2014, researchers applied a self-organizing mapping

neural network, an unsupervised learning model in ML techniques, to OAM optical

communications to perform the demodulation task of OAM beams. Since then, the

advancements in ML technology, particularly deep learning, have led to a significant

improvement in the demodulation accuracy and precision of OAM beams. Consequently, the

demodulation of OAM beams has attained a new level of accuracy and precision. Recently,

several researchers have concentrated on identifying OAM modes using machine learning

(ML) technology in order to enhance the efficiency of OAM optical communication systems.

ML technologies outperform classical picture recognition algorithms in terms of noise



tolerance and self-study capabilities. This paper reviews machine learning (ML)-based

schemes for detecting OAM modes i.e. support vector machines (SVM). Artificial neural

networks (ANN), like BP-ANN, are generally the first machine learning (ML) techniques for

identifying OAM modes, despite their low detection accuracy (with an 8.33% error ratio in

143 km of transmissions). In contrast, studies employing support vector machines (SVM) are

identifying the beam parameters rather than the intensity distributions of OAM beams. The

CNN is mainly designed for image classifications thus it has natural advantages in detecting

intensity images of OAM beams. The convolutional and pooling operations can make CNNs

not sensitive to small offset and extract features by themselves. The research results show

that with OAM intensity as the input images, decoding accuracies of LeNet and Alex Net

structures can reach more than 99% in even strong atmospheric turbulence no matter with

simulations and in lab environments, which are higher than the ANNs. Some improvements

of the CNN structures are also made to increase the accuracy. Some researches focus on

image transformation of the input pictures, such as angular spectrum transforming, as an

OAM detector, researchers employed a type of all-optical neural network known as D2NN,

which can achieve relatively high accuracies without time delay. Overall, as compared to

conventional OAM sorting techniques, OAM detectors that use machine learning are able to

attain excellent detection accuracy.

1.2 AIM AND OBJECTIVES

This paper's main contribution is a novel Supervised Vector Machine (SVM) method for

identifying the active OAM modes in a broadcast signal. As an additional example of

resolving classification issues, SVM has demonstrated superior performance in classification

tasks since 1995. Finding the hyperplane with the "maximum interval" of samples is the



fundamental concept of SVM classification. Theoretically, if the original space is finite-

dimensional, then the sample must be separable in a high-dimensional feature space; convex

optimization technology is typically used to solve this problem. By depending only on an

intensity image of the distinct multiplexing patterns at the receiver side, our SVM-based

demultiplexing technique avoids the need for expensive optical solutions. In a lab setting, we

compare our SVM-based method against a conventional demultiplexing technique, conjugate

mode sorting, using different OAM mode sets and simulated air turbulence levels.

Combinatorically multiplexed OAM modes from a given set of beams were demonstrated to

be demultiplexed using the SVM-based approach.

BASIC BLOCK DIAGRAM

One major problem for OAM-based communication systems in the free-space

communication system is air turbulence, which can result in wavefront distortion of the

transmitted beams. The supervised vector machine (SVM)-based method for detecting vortex

beams has progressively gained popularity in recent years due to the quick advancement of

machine learning. A multi-layer representation learning method with great accuracy has been

presented to identify the OAM modes of multiple vortex beams under varying atmospheric

turbulence. Gaussian beams of different modes are multiplexed together at the transmitter and

are broadcast over the atmospheric turbulence channel. The vortex beam intensity pictures



are gathered at the receiver. To expedite the training process, the received intensity pictures

of vortex beams sent across various air turbulences are reduced.

This project outlines a novel optical multiplexing and demultiplexing system that utilises the

intensity profile generated by a coherent superposition of OAM-carrying Laguerre-Gaussian

(LG) modes and a machine learning detection technique. The proposed system aims at

generating an intensity profile for data multiplexing based on the selection of p and ℓ indices

of LG beams, while the demultiplexing process is performed using support vector machine

(SVM). Unlike existing multiplexing systems that require additional extraction of phase

information, the proposed technique offers a comprehensive design of a coherent optical

multiplexing system that is independent of phase information and instead relies on the

number of spatial modes carrying data symbols increased in a limited optical system.

Furthermore, the proposed optical multiplexing model lays the foundation for a stable image

detection and classification system based on machine learning that only uses the intensity

profile for target modes. Thus, the main contributions of this work are

(1) the development of a comprehensive design of a coherent optical multiplexing system

based on the superposition of LG modes carrying OAM.

(2) the introduction of a robust demultiplexing system based on intensity profile recognition

using the machine learning SVM method.

1.3 HYPOTHESIS

The present study aims to investigate the effectiveness of Support Vector Machines (SVM) in

learning discriminative features from input data and classifying Orbital Angular Momentum

(OAM) modes with high accuracy. It is hypothesized that SVM-based OAM multiplexing

techniques can enhance the capacity and spectral efficiency of optical communication



systems by utilizing OAM modes for multiplexing multiple data streams. Furthermore, they

are expected to demonstrate robustness to channel variations such as turbulence, noise, and

other impairments, due to their ability to learn complex decision boundaries and generalize

well to unseen data. Additionally, the study anticipates that SVM-based OAM multiplexing

techniques will be applicable in real-world optical communication scenarios, offering

practical benefits in terms of performance, simplicity, and compatibility with existing optical

network infrastructure. Lastly, the scalability of SVM-based OAM multiplexing methods to

large-scale multiplexing scenarios is expected, which would accommodate a significant

number of OAM modes and data streams while maintaining high classification accuracy and

efficiency. The hypothesis suggests that SVM-based OAM multiplexing techniques can offer

accurate classification, robustness to channel conditions, capacity enhancement, real-world

applicability, and scalability to large-scale multiplexing scenarios.

1.4 SCOPE

The present study aims to investigate the potential of Support Vector Machine (SVM)

machine learning techniques for encoding information into Orbital Angular Momentum

(OAM) modes. OAM multiplexing has been proposed as a promising solution to increase the

capacity of optical communication systems by allowing multiple independent data streams to

be transmitted through different OAM modes. To achieve this objective, effective methods

for representing input data, including intensity profiles, phase distributions, spatial patterns,

or other relevant features associated with OAM modes, will be explored. SVM models will

then be developed and optimized to learn the mapping between input features and OAM

modes, followed by their performance evaluation in terms of accuracy, classification speed,



robustness to noise and channel impairments, and scalability to large-scale multiplexing

scenarios. Finally, the integration of SVM-based OAM multiplexing techniques into practical

optical communication systems will be investigated, taking into account system compatibility,

complexity, and real-world deployment challenges. Overall, the findings of this research will

contribute to the development of more efficient and robust optical communication systems.

Overall, the scope involves exploring the application of SVM machine learning in OAM

multiplexing and assessing its effectiveness, robustness, and potential benefits in enhancing

the capacity and performance of optical communication systems



CHAPTER 2



2.LITERATURE REVIEW

 In 2004 Graham Gibson et.al proposed that Orbital Angular Momentum (OAM) can

be utilized to encode data onto a laser beam for transmitting information in free-space

optical systems. The process involves using spatial light modulators to prepare or

measure a laser beam in one of eight distinct OAM states. The researchers have

demonstrated that information encoded in this manner is secure against eavesdropping

since any attempt to sample the beam away from its axis will be subject to an angular

limitation and a lateral offset, both of which lead to an inherent level of uncertainty in

the measurement. This research provides an experimental understanding of the role of

aperture and misalignment of the beam in OAM measurement and demonstrates the

uncertainty relationship for OAM..[1]

 In the year 2021 Denis et.al have conducted a thorough analysis of the commonly

employed techniques for generating and detecting orbital angular momentum (OAM)

optical beams. The study encompasses the usage of diffractive optics, meta surfaces

(MSs), and photonic integrated circuits (PICs). Specifically, diffractive optics can be

further classified into spiral phase plates, computer-generated holograms, and

diffractive optical elements. Meanwhile, MSs offer compactness and high

performance relative to conventional DOEs. PICs-based OAM generators can be

further subdivided into two categories: out-of-plane OAM generators and in-plane

OAM generators. The latter has garnered significant attention due to its capacity to

https://opg.optica.org/oe/fulltext.cfm?uri=oe-12-22-5448&id=81642


fully exploit the unique features of OAM beams in guided optics. However, to ensure

uniform spatial distributions of the multi-coupled waveguide, most integrated OAM

generators require exceedingly critical dimension control technology.[2]

 In 2016 For the first time, a method utilising a phased array was suggested to produce

high-order OAM beams in the X-band. Based on the planned system, a mathematical

model incorporating contributions from the array error was developed, and the effects

of the array error on the effectiveness of the EM vortex imaging and the quality of the

radiation field were examined. The simulation findings show that both the intensity

and the phase-front distributions can fluctuate as a result of array error, particularly

phase error.

 In 2016, Fuquan Zhu et.al suggested that the present study has successfully

demonstrated the use of perfect vortex beams for a free-space optical communication

link. This was made possible through the utilisation of a spatial light modulator (SLM)

loaded with phase holograms based on Bessel functions, which enabled the generation

of perfect vortex beams at the focal point of a Fourier lens (FL). To ensure the proper

transmission of perfect vortex beams in free space, a simple lens and a microscope

objective were employed. Moreover, the performance of a communication link using

perfect vortex beams carrying OFDM 16-QAM signals was also demonstrated,

following the generation, transmission, and demodulation of such beams. Notably, the

size of the perfect vortex beam can be easily controlled, hence rendering it highly

versatile for use in the field of free-space optical communication..[3]

https://www.mdpi.com/1424-8220/21/15/4988
https://www.sciencedirect.com/science/article/pii/S0030401817301864?via%3Dihub


 In the 2017 paper, GONG et al. used a circular phased antenna array to generate

OAM-carrying beams that possess ring-shaped intensities and helical phase fronts.

They also propose and validate a communication system that uses OAM based

multiplexing. A circular antenna array is used to generate the superimposed OAM

mode by using appropriate excitation settings. The transmission characteristics of

OAM modes with respect to different transmission distances are investigated.

Experimental results show good transmission characteristics between identical

transmitting and receiving OAM modes and isolations between nonidentical

transmitting and receiving OAM modes. This result lays the foundation for building

multiplexing applications using OAM.[4]

 In 2019 Xiaoming Chen et.al proposed OAM multiplexing in a very echogenic setting.

It was demonstrated that OFDM and zero-forcing equalisation in conjunction with

OAM multiplexing could not only handle the rich multipath effects but additionally

enable high-order modulation transmission

 Taira Giordani et.al have proposed a novel approach to categorise vector vortex

beams (VVBs) using machine learning techniques. Their method involves the use of

convolutional neural networks (CNNs) and principal component analysis (PCA)

coupled with support vector machines (SVMs) for efficient extraction of properties of

high-dimensional photonic VVB systems. The authors trained a CNN to identify pre-

established state classes of experimental images, which resulted in high prediction

https://sci-hub.se/10.1109/TAP.2017.2695526


accuracy. Their work demonstrates the potential of applying advanced machine

learning techniques to overcome the challenges associated with the analysis of high-

dimensional photonic systems.[5]

 Y. Wang et al have put forth an innovative approach to achieve complex-amplitude

modulation in multiple polarisation channels using an all-dielectric terahertz meta

surface. Their proposed technique for OAM multiplexing holography involves

controlling the amplitude and phase of circularly polarised waves in both the co-

polarization and cross-polarization channels independently. This enables the

realisation of various types of OAM multiplexing holography in different channels.

Additionally, they incorporated cylindrical and elliptical cylindrical structures into a

super-pixel, which allowed simultaneous and independent manipulation of the

complex amplitudes in three polarisation channels..[6]

 Y. Zhang et. al suggested utilising multiple machine learning techniques to streamline

the OAM spectrum system for object identification missions by employing a

reference Gaussian beam. They presented two CNN-based deep learning techniques

for object parameter identification, including open angle and direction. In contrast to

the earlier OAM spectrum analysis system, it might simplify the hardware

implementation process and be useful for real-time object feature detection and

remote sensing. In the meantime, the CNN model's computation can be further

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.124.160401
https://www.degruyter.com/document/doi/10.1515/nanoph-2023-0550/html


reduced by the mobile net. The demonstrated method may find additional uses, such

as tyre pressure monitoring and propeller and fan blade monitoring. Utilising an

external source that has been questioned may also aid in the detection of cloaking

objects.

 Xiaoming Chen et.al have presented a comprehensive overview of the promising

technique of Orbital Angular Momentum (OAM) multiplexing, which enhances the

capacity of optical communication systems by exploiting the spatial degree of

freedom of light. The authors have elaborated on how OAM modes, characterized by

their azimuthal phase variations, can be utilized for creating multiple parallel data

channels within a single optical beam. The paper also sheds light on the challenges

encountered while implementing OAM multiplexing in highly reverberant

environments, such as indoor environments with multiple scattering surfaces. The

authors discuss the solutions to mitigate the effects of reverberation in OAM

multiplexing systems, including adaptive signal processing techniques to compensate

for channel distortions and spatial filtering methods to separate desired OAM modes

from reverberant components. [7]

 Yan et al. investigated the application of orbital angular momentum (OAM)

multiplexing in order to enhance the capacity and spectral efficiency of millimetre-

wave wireless communication links. The researchers exhibit a millimetre-wave link

with a data rate of 32-Gbit/s over a distance of 2.5 metres. This is accomplished by

utilising four independent OAM beams on each of two polarizations, resulting in a

https://www.researchgate.net/publication/337135978_Orbital_Angular_Momentum_Multiplexing_in_Highly_Reverberant_Environments


spectral efficiency of approximately 16 bit/s/Hz. Additionally, the team presents a

millimetre-wave OAM mode demultiplexer that is capable of demultiplexing four

OAM channels with minimal crosstalk.[8]

 A study proposed by Shibun Lu et al. emphasises how orbital angular momentum

(OAM) beams can be used to increase optical communication capacity because of

their orthogonality and the comparatively unexplored spatial dimension of light. For

the design of mode division multiplexing and mode de/multiplexers in communication

systems, the work's findings hold great potential for application. This innovative

method advances optical communication technology by using an optical diffraction

neural network to develop the OAM de/multiplexer.

 Bruno Paroli et.al proposed paper titled "Hybrid OAM-Amplitude Multiplexing and

Demultiplexing of Incoherent Optical States," Paroli et al. report on their

experimental study of a new approach for multiplexing and demultiplexing incoherent

optical states. This technique involves combining Orbital Angular Momentum (OAM)

and amplitude modulation to encode information onto optical signals. The authors

successfully demonstrated the transmission of multiple data streams over a single

optical channel, achieving significantly higher data-carrying capacity compared to

conventional methods. Their findings suggest that the hybrid OAM-amplitude

technique has the potential to enhance the performance of optical communication

systems.[9]

https://www.nature.com/articles/ncomms5876
https://www.sciencedirect.com/science/article/pii/S0030401822005168?via%3Dihub


 Jian Wang et.al has recently introduced the latest development. In recent years,

optical vortices have emerged as a promising avenue for enhancing data transmission

rates and capacity in optical communication systems. These vortices are characterised

by their spiral phase fronts and orbital angular momentum (OAM), and offer unique

properties that enable the simultaneous transmission of multiple channels of

information through different OAM states. Jian Wang, a renowned researcher in this

domain, has explored the latest developments and applications of optical vortices in

communication networks. He has introduced the fundamental concepts of optical

vortices, including their generation using phase masks, spatial light modulators

(SLMs), and other techniques. He has also discussed recent advances and emerging

trends in the field of optical vortex-based communication, such as hybrid modulation

schemes, multiplexing techniques, and their potential applications in cutting-edge

technologies like quantum communication..[10]

 Xiaohui yang proposed a paper that focuses on the synthesis of crosstalk between

OAM modes of vortex beams in free space for improving the performance of OAM-

based free-space optical communication (FSOC) .It addresses the issue of disturbance

induced by atmosphere turbulence (AT) and proposes a method to mitigate the

crosstalk among different OAM modes .The proposed method involves propagating

an OAM-probe beam (OPB) with the same OAM mode as the OAM-data beam (ODB)

to generate conjugate distortion in a photoelectric receiver/detector (PD/PR) .The

feasibility of the proposed scheme is verified through an experimental setup, which

https://opg.optica.org/prj/fulltext.cfm?uri=prj-4-5-B14&id=349687


demonstrates significant improvements in the bit error rate (BER). [11]

 Timothy Doster et.al suggested a demultiplexing method that separates the distinct

OAM multiplexed signals using machine learning—as represented by a CNN.

according to the patterns of intensity. The methodology has demonstrated its ability to

effectively manage varying levels of turbulence, surpassing the conjugate mode

sorting method. Additionally, they have produced outcomes for varying extremes of

both acquired image quality and size. One feature is that the OAM multiplexed signal

can be recorded on the receive side using a modest pixel-count imager, provided that

there is a sufficient amount of training data. [12]

 Ri Dong Sun et.al proposed a technique using the SVM's machine-learning

theory where the OAM of an LGB is found. A machine learning model was

suggested that made use of the beam's beam width, beam wander, and scintillation

index as characteristic vectors. The simulations produced satisfactory results. It was

investigated how the detection accuracy was affected by the quantity of training

samples, the transmission distance, and the OAM categorization. The findings

demonstrate that the SVM model, when compared to CNN, more accurately

determines the OAM of the vortex beam with fewer samples. The range of OAM and

the quality of the vortex beam determine the detection accuracy, which is independent

of the OAM value's magnitude.[13]

https://www.researchgate.net/publication/374350698_Synthesizing_the_crosstalk_between_OAM_modes_of_vortex_beam_by_simultaneously_propagating_a_probe_vortex_beam_in_free_space
https://opg.optica.org/ao/fulltext.cfm?uri=ao-56-12-3386&id=363001
https://iopscience.iop.org/article/10.1088/2040-8986/ab2586/meta


 Peipei Wang et.al proposed a novel approach for manipulating light beams based on a

D2 neural network (D2-NN) architecture. This approach is capable of redistributing

the phase and intensity of multiple vector beams (VBs), they demonstrated its

effectiveness through the design of an orbital angular momentum (OAM) mode

coupler and separator. The experimental results show that the energy utilization rate

of the OAM modes modulation is exceptionally high at 99.99%, and the mode purity

of the output light field exceeds 97%. When the trained mode coupler and separator

are employed in an OAM multiplexed communication link, the bit error rates (BERs)

of the two OAM multiplexed channels are almost zero with a signal-to-noise ratio

(SNR) of 22 dB. Furthermore, our proposed method exhibits excellent communication

performance even in a three-way OAM multiplexed communication scenario. Thus,

our results indicate that the D2-NN-based light modulation method is highly accurate

and energy-efficient, possesses light field information processing capabilities, can

simultaneously process multiple OAM modes, and can improve communication

performance when applied to optical OAM communication. [14]

 The author Lei Gong et.al proposed the method, called scattering-matrix-assisted

retrieval technique (SMART), can reliably separate encoded OAM states from many

scattered light sources. Every OAM channel is demultiplexed using the mode

decomposition method, and the optical field of a data-carrying vortex beam with

OAM superposition states is recovered using a speckle-correlation scattering matrix.

Optical communication via non-line-of-sight connections is possible with the SMART

due to its strong resistance against system misalignment.[15]

https://sci-hub.se/10.1109/JSTQE.2021.3077907
https://www.nature.com/articles/s41377-019-0140-3
https://www.researchgate.net/publication/331543340_Optical_orbital-angular-momentum-multiplexed_data_transmission_under_high_scattering


 Erick Lamilla et.al proposed a novel method for generating a coding system that is

independent of phase information using coherent superposition of two Laguerre-

Gaussian LG beams with orbital angular momentum. This approach utilises a machine

learning algorithm known as SVM-ECOC for image prediction, recognition, and

classification. To validate the proposed optical encoding model's robustness, a 4-bit

data symbol code is designed, which is associated with the intensity profile according

to the (p,l) combination. A channel noise consisting of RIN and AWGN is introduced

to the images generated in the encoding stage to emulate a real environment. To

identify each data symbol, two different algorithms based on an SVM-ECOC model

are utilised. .[16]

 Xiaoji Li et.al presented the results of OAM modal recognition of ocean turbulence

based on SVM and the simulation of OAM modal recognition under the ocean

turbulence channel. Analysis was done on how strong turbulence affected the OAM

modal recognition. The findings indicate that when � decreased, the OAM modal

recognition accuracy grew with time. The recognition accuracy rapidly declined as the

number of OAM modes increased. Based on the experimental results, novel concepts

for the demodulation and study of optical underwater communication can be proposed,

with great potential for both experimental and research applications.[17]

https://www.mdpi.com/1424-8220/23/5/2755
https://www.mdpi.com/2077-1312/10/9/1284


 Rui Chen et.al provides an in-depth analysis of orbital angular momentum (OAM)

waves, which possess unique characteristics that differentiate them from traditional

plane waves due to their inherent rotational properties. They examined the various

methods utilized for generating OAM waves, which include advanced spatial light

modulators, meta surfaces, and holography. Additionally, they examined the detection

methodologies used to capture these elusive waves, including spiral phase plates and

interference-based techniques. They also introduced the potential of OAM waves to

revolutionise a wide range of domains. In particular, OAM waves could have a

transformative impact on optical communications by enhancing capacity and

robustness. Furthermore, they could facilitate advancements in imaging, microscopy,

sensing, and quantum information processing. [18]

 L. Allen et.al has experimentally observed that a Laguerre-Gaussian laser mode

possesses a well-defined orbital angular momentum that is proportional to the

azimuthal mode index, denoted by "I". In this context, we have presented a method

that describes how this orbital angular momentum can be extracted from the mode

and converted into a mechanical torque. This process can be achieved through the use

of astigmatic optical elements, which can also be used to generate Laguerre-Gaussian

modes from the more commonly occurring Hermite-Gaussian modes. It is noteworthy

that any light beams that possess field gradients, and are not plane waves, will

inherently possess a certain degree of orbital angular momentum. However, an

improperly phased transformation between transverse laser amplitude distributions

may lead to an ill-defined orbital angular momentum. Therefore, it is crucial to create

https://arxiv.org/pdf/1903.07818


and entirely transform stable, nondegenerate, propagating Laguerre-Gaussian

polynomial modes [19]

 Gregorius C. G et.al described a technique that uses two stationary optical

components to sort orbital angular momentum (OAM) states of light efficiently. The

helically phased light beam corresponding to OAM states is transformed into a

transverse phase gradient beam by means of a Cartesian to log-polar coordinate

translation carried out by the optical elements. Each input OAM state is subsequently

focused to a distinct lateral location by a later lens. Additionally, they provide an

experimental demonstration of the notion by separating eleven OAM states using two

spatial light modulators to produce the appropriate optical elements.[20]

 Shikun Zhang et.al. the authors of this work have presented a novel technique for

measuring the OAM spectrum that makes use of the Dammann vortex grating and the

grey-scale algorithm. Without the need for a power metre, the intensity proportion of

various OAM modes can be found using the grayscale technique. The OAM spectra

of a maximum of six channel multiplexing beams are acquired in the experiment. The

main benefit of this approach is its practical simplicity. The image processing

programme can handle all aspects of this technique, including the grey-scale

algorithm, which is the most involved portion. Additionally, MATLAB and additional

applications can be used to construct the processing programme in its entirety. [21]

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.8185
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.105.153601
https://www.researchgate.net/publication/297895341_Measurement_of_orbital_angular_momentum_spectra_of_multiplexing_optical_vortices


 In 2018, Cui Xiaozhou and others in this research group used the random phase

screen method to simulate the transmission of superimposed LG beams in the ocean

turbulence channel and used the CNN of the classic LeNet-5 architecture to identify 8

types of superimposed LG beams. Research results show that the system can maintain

a recognition rate greater than 95% when the transmission distance is less than 80 m

in the case of weak turbulence (), and maintain a recognition rate greater than 90%

within 60 m in the case of medium and strong turbulence (). However, in actual

underwater channels, there are not only the effects of turbulence, but also interference

factors such as the absorption of water molecules and the scattering of particles in the

water.[22]

 In this study,Wenjie Xiong et.al presented a Convolutional Neural Network (CNN)

approach for identifying Orbital Angular Momentum (OAM) modes. They employ a

Gaussian beam to interfere with Vortex Beam (VB) to obtain interference patterns

that contain conjugated OAM mode information. The CNN is trained in a supervised

manner using the interference patterns obtained under various turbulence conditions

as feature extraction objects. They explored the impact of different Gaussian beam

waists, VB orders, input sample sets, and CNN structures on the performance of the

CNN and highlighted the significance of appropriately setting these parameters. This

investigation adds depth and detail to the research.[23]

 Kuang Zhang proposed a comprehensive overview of the generation of OAM vortex

beams in the microwave domain. The theoretical foundation of Laguerre-Gaussian

https://www.sciencedirect.com/science/article/pii/S0030401818306941?casa_token=oN9wXFHRYZsAAAAA:ILZztaYG8D1ccGVGP9qZE2Tb2Y24NsH0HQ5qAGt8x_uLmGeVsMFyIGCqRUCKEF3976kK-RFG8ha_
https://ieeexplore.ieee.org/abstract/document/9214918


beams is presented, where the well-defined orbital angular momentum possessed by

these beams is highlighted. The classical techniques employed to generate such beams,

including the use of phase plates, reflectors, diffraction gratings, and antenna arrays

for transforming plane waves to vortex waves, are also reviewed. In recent years,

meta surface has emerged as a revolutionary technology for manipulating

electromagnetic properties and functionalities using subwavelength elements. In this

context, meta surfaces have been used to transform plane waves to vortex waves

carrying OAM, both in reflection and transmission modes.[24]

 Jianchi ye et.al proposed a paper named OAM modes classification and

demultiplexing via Fourier optical neural network. This study showcases real-time

Fourier optics convolution right after generating an OAM-coded signal within a

simulated atmospheric turbulence environment. The researchers developed a new

hybrid optical-electronic convolutional neural network that can accurately distinguish

between 16 classes of OAM-coded signals with a demultiplexing accuracy of 68.43%,

even under strong atmospheric turbulence conditions. This is a significant

achievement that highlights the system's potential in demultiplexing high-bit OAM-

coded data strings, which can offer advantages in terms of reduced power

consumption, latency, and enhanced throughput.[25]

 Kuo Zhang et.al, have proposed and studied a method for all-optical parallel

classification that uses OAM mode-encoded diffractive networks to encode the spatial

information of multiple objects as OAM modes of the VB. They analysed the OAM

mode normalized intensity distribution using OAM spectra for multitask optical

https://www.mdpi.com/2076-3417/10/3/1015
https://www.researchgate.net/publication/378924420_OAM_modes_classification_and_demultiplexing_via_Fourier_optical_neural_network


classification. If the existing OAM-encoded D2NN can improve its inference

accuracy, it can be used for other deep-learning tasks, such as dynamic image

recognition and multilabel classification. To solve more complex tasks, they planned

to introduce more OAM modes, which may require the use of a more advanced

multimode OAM comb as a light source.[26]

 Tianying Lin proposed a new method for predicting the purity of OAM mode in

optical fibres using deep learning has been proposed. The method involves training a

specific neural network consisting of three convolutional layers and five fully

connected layers with pre-processed far-field intensity patterns to accurately

determine OAM purity. The trained CNN has achieved an accuracy of over 99% in

predicting OAM mode purity, and the technique is demonstrated to be generalizable

and robust. Additionally, the proposed CNN architecture can be adapted to handle

other types of OAM fibres. This technique offers a simpler and more efficient way to

measure OAM purity compared to traditional methods that require bulk optic devices

and precise alignment. [27]

 DA Stankevich has proposed a paper that provides a detailed analysis of a neural

network demultiplexing method's effectiveness for waves with orbital angular

momentum. The study includes both numerical simulations and experimental tests,

and the results show that the proposed method performs better than the traditional

correlation method in terms of accuracy and efficiency. One notable feature of the

proposed method is that it can achieve high performance even with a relatively simple

architecture. Generally, systems that rely on neural networks require many layers and

complex processing units to achieve optimal results. However, the neural network

https://www.spiedigitallibrary.org/journals/advanced-photonics-nexus/volume-2/issue-06/066006/Advanced-all-optical-classification-using-orbital-angular-momentum-encoded-diffractive/10.1117/1.APN.2.6.066006.full
https://www.researching.cn/articles/OJ5e1e8c422e67c3c6


architecture developed in this study consists of only a few layers, making it possible

to implement the demultiplexing method on a simple signal processor. The authors

demonstrate that this approach can significantly reduce the system's cost and

complexity while maintaining a high level of performance. [28]

 Patrick L Neary and his colleagues proposed a paper addressing the issue of signal

attenuation that affects the classification performance of underwater communications.

They developed innovative CNN-based models known as SMART, which capture the

physics of the attenuation process. Two of these models were trained using automatic

differentiation and the radon cumulative distribution transform. These models were

then integrated into the classifier training pipeline, and it was demonstrated that their

inclusion significantly enhances classification performance even when the trained

model is subjected to environmentally attenuated images. This improved classification

accuracy is of great significance for future OAM underwater optical communication

applications. [29]

 Sanjaya Lohani et.al demonstrated a paper using Deep Neural Networks (DNNs) to

classify numerically generated Laguerre-Gaussian (LG) images that are noisy and

contain Orbital Angular Momentum (OAM) values ranging from 1 to 100. Despite the

challenging nature of the task, these networks are able to achieve error rates of less

than 0.5% after just five epochs. The researchers also discovered that by using states

with nonzero radial index to increase the effective alphabet size, they were able to

obtain similar results of >99% accuracy. Additionally, the researchers demonstrated

the ability of these networks to classify experimentally generated superpositions of

OAM images with near-unity accuracy. Overall, the findings suggest that deep

https://ceur-ws.org/Vol-2416/paper39.pdf
https://www.sciencedirect.com/science/article/pii/S0030401820304752


Convolutional Neural Networks (CNNs) can accurately and efficiently classify

superpositions of OAM states of light.[30]

 A new approach to classify high-dimensional photonic vector vortex beams (VVBs)

using machine learning (ML) techniques has been presented. By implementing

various ML algorithms like supervised and unsupervised learning, the method of

characterizing structured light is more flexible and broader in its applications. The use

of inference strategies based on convolutional neural networks (CNNs) and principal

component analysis (PCA) enhanced by support vector machines (SVMs) enables the

efficient extraction of properties of VVB systems. This approach opens up new

avenues for further experimental validations and can be beneficial for various tasks in

modern photonics by introducing similar ML ideas into their characterization

protocols.[31]

 In a recent study, researchers have demonstrated how machine learning (ML)

techniques can be effectively used as advanced signal processing tools in fibre-optic

communication systems. With the growing speed, dynamism, and software-defined

nature of optical networks, ML and big data analytics are expected to play a crucial

role in addressing complex issues that cannot be tackled through traditional methods.

Therefore, researchers in the field of optical communications and networking can

benefit from having fundamental knowledge and skills in ML to keep pace with the

upcoming trends and challenges.[32]

https://sci-hub.se/https:/doi.org/10.1364/AO.57.004180
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.124.160401
https://ieeexplore.ieee.org/abstract/document/8633908


 Rui Ma et.al proposed a paper where they experimentally and theoretically researched

on the properties of OAM-dependent speckles that originate from the vortex beam

that passes through a ground glass diffuser. It is discovered that an annulus on the

cross-correlation map with a radius dependent on their topological charge difference

can be created by imposing a cross correlation between the OAM-dependent speckles..

Moreover, an OAM-dependent speckle basis can be employed as a viable contender

for demultiplexing data encoded with OAM. The viability of the OAM-dependent

speckle-based demultiplexing is demonstrated by the relatively low error rates of the

24-bit RGB and 8-bit grayscale OAM-encoded data.[33]

https://opg.optica.org/optica/fulltext.cfm?uri=optica-11-5-595&id=549238


CHAPTER 3



3. METHODOLOGY

3.1: Detection of OAM beam using LG beam equation

The Laguerre-Gaussian (LG) beam is a widely used type of orbital angular momentum

(OAM) beam in optical communication systems. It is a particular solution to the Helmholtz

equation in a cylindrical coordinate system, which assumes a paraxial approximation. The

field distribution of the LG beam can be expressed mathematically using a specific formula.

Optical field of LG beam can be represented by

where z refers to the distance between the input plane and the receiver plane, r is the radial

coordinates in a polar coordinate system. � is the OAM mode value and is called topological

charge which represents the phase change along the directional angle p is the radial indices,

��=�0 √1+�/��² represents the beam radius at a distance z away from the beam waist, in

which �0 is the beam waist and, ��=��o²/� is the Rayleigh range �=2�/� is the wave

number, λ is the wavelength. ��� is the associated Laguerre polynomial. For LG beams, l and

p determine its light field distribution. When l = 0 and p = 0, the above equation becomes the

light field expression of the Gaussian beam; When l ≠ 0 and p = 0, the light intensity images



of LG beams demonstrate a ring-shaped distribution like a donut, and its halo radius increases

with the increase of l. The light intensity distributions and phase distributions of the LG

beams are shown in below figures with the transformation of l, while keeping p at 0, the light

intensity distributions will vary accordingly.

The below figures show the intensity and phase distribution of different OAM modes

where (l = +5, +7,+3 ,+8 ,+6 ,-9 ,-4 ,+2 ,-5 ,+4) and the multiplexed image of these l modes.

fig1: intensity profile l=+5



fig 2:intensity profile l=+7

fig 3:intensity profile l=+3



fig 4:intensity profile l=+8

fig 5:intensity profile l =+6



fig 6:intensity profile l=-9

fig 7:intensity profile l=-4



fig 8:intensity profile l=+2

fig 9:intensity profile l=-5



fig 10:intensity profile l=+4

Fig 11: Multiplexed image



fig 12:phase profile l=+5

fig 13:phase profile l=+7



fig 14:phase profile l=+3

fig 15:phase profile l=+8



fig 16:phase profile l=+6

fig 17:phase profile l=-9



fig 18:phase profile l=-4

fig 19:phase profile l=+2



fig 20:phase profile l=-5

fig 21:phase profile l=+4



fig 22: Multiplexed image

3.2: Multiplexing of Lg beams

To meet the ever-increasing demands for higher data rates, researchers have explored

various techniques for multiplexing data in multiple dimensions. Multiplexing of LG

(Laguerre-Gaussian) beams refers to the process of encoding multiple data streams into

different LG modes for transmission in optical communication systems. One such technique

is Orbital Angular Momentum (OAM) multiplexing, which can be combined with different

modulation formats and multiplexing techniques to achieve high-speed communication. In

my project, I am utilising beams with a plate number of 1. Each beam consists of a set of

modes ranging from -10 to +10, carrying modulation information for data. These beams are

then combined into a single multimodal beam. Similarly, a second beam carrying a different

class of modes is used to carry a different set of data, which is also multiplexed into another



multimodal beam. This method allows for 10 classes of data to be included in one set, which

comprises 10 multiplexed OAM beams. In total, we are using 8 sets of classes, which equates

to 80 different multiplexed OAM beams. The obtained data sample set was then divided into

a training set and a test set in a 7:3 ratio.

3.3: Demultiplexing the obtained data using SVM machine learning

Demultiplexing using Support Vector Machine (SVM) is a process that involves decoding

and extracting individual data streams from a multiplexed signal encoded in Laguerre-

Gaussian (LG) modes. This process can be divided into two phases: training and testing

During the training phase, a dataset is prepared which consists of multiplexed signals with

known encoding and labels indicating the original data streams. Relevant features are

extracted from these signals, such as amplitude, phase, frequency, or spatial characteristics,

which can help differentiate between different LG modes or encoding schemes. The training

dataset is then labelled according to the original data streams or LG modes they represent.

The SVM model is then trained using the labelled training dataset to learn the mapping

between the extracted features and the corresponding data streams or LG modes. Once the

model is trained, a separate test dataset is prepared consisting of multiplexed signals with

unknown encoding. The same feature extraction methods used in the training phase are

employed to extract features from the test signals.

The trained SVM model is then applied to predict the original data streams or LG modes

represented by the test signals based on their extracted features. The model's performance is

evaluated by comparing its predictions with the ground truth labels of the test dataset. Metrics



such as accuracy, precision, recall, F1-score, and confusion matrix analysis are commonly

used for this evaluation.

Image classification using Support Vector Machines (SVMs) involves training a model to

classify images based on their features. To implement an SVM-based demultiplexing

technique for image classification we need to follow the below steps

1. Data Preparation: Here we are collecting and preprocessing our image dataset. This

involves resizing images to a uniform size, converting them to grayscale, or applying other

transformations to enhance feature extraction.

2. Data Splitting: Splitting our dataset into training and testing sets. Allocating a significant

portion of our dataset for training here we are giving 70% for training and the rest for testing

i.e.30%.

3.Model Training: Train an SVM classifier using the extracted features and the training

dataset. Using libraries fitcsvm function in MATLAB for this purpose.

4.Model Evaluation: Evaluate the trained SVM classifier using the testing dataset. Calculate

performance metrics such as accuracy, precision, recall, and F1-score to assess its

effectiveness in classifying images



3.4: SVM MACHINE LEARNING

The demultiplexing process on the receiver side of the multiplexer involves training

procedures that employ the support vector machine (SVM) algorithm. SVM is a robust

machine learning algorithm that uses the kernel function to map data into a different

dimensional space to group the information according to similar attributes. The raw data is

fed into the algorithm as input, which is then classified depending on the kernel function. The

data is then saved and compared with the original figure to identify similar patterns that are

used for image identification. This iterative process continues until the maximum number of

iterations n is reached, resulting in a simplification of complex nonlinear decision boundaries

that are derived in a linear dimensional space. Mathematically speaking, the kernel used in

the SVM algorithm for the proposed optical encoding model is the basis function (Gaussian).

3.5: BASIC PRINCIPLES OF SVM

Support Vector Machine (SVM) is a statistical model that classifies data. The key concept

behind SVM is to locate the point that can bring all points closest to the hyperplane with the

largest interval. In the figure below, the red triangular data points signify the class "y=+1"

while the blue circular data points represent the class "y=-1". The SVM classification

hyperplane that fits both data types can be expressed by the equation

f(x) = wTx + b



Here, w is the normal vector of the classification hyperplane, and b is the intercept. When f(x)

is greater than or equal to 0, data point x belongs to class "y=+1". Conversely, data points

where f(x) is less than 0 belong to class "y=-1". Therefore, by solving the variables w and b,

we can obtain the maximum spacing hyperplane and classify data points in the plane.

Support Vector Machines (SVMs) have proved to be a suitable tool for image classification

tasks. In order to apply SVMs for image classification, the first step involves extracting

relevant features from the images. These features may include pixel intensity values, texture

descriptors, colour histograms, or deep features extracted from pre-trained convolutional

neural networks (CNNs). Once the features have been extracted, the data must be prepared

for training and testing. This entails organising the feature vectors along with their

corresponding labels into a format that is appropriate for training the SVM classifier. The

SVM classifier can then be trained using the extracted features and their corresponding labels.

One can utilise libraries such as scikit-learn in Python or LIBSVM in MATLAB to train

SVM classifiers. Different kernel functions such as linear, polynomial, and RBF can be

experimented with, along with hyperparameters, to discover the best-performing model.



Following the training of the SVM classifier, its performance can be evaluated using a

separate validation or testing dataset. Accuracy, precision, recall, and F1-score are a few

metrics that can be used to assess the classifier's performance in classifying images into

different categories. After the SVM classifier has been trained and evaluated, it can be used

to predict the class labels of new, unseen images. Fine-tuning the model may be required,

depending on the performance of the initial SVM model. This process may involve adjusting

hyperparameters, experimenting with different feature extraction methods, or trying various

preprocessing techniques to further improve classification accuracy. Once the SVM model

for image classification is satisfactory, it can be deployed for real-world applications. This

could involve integrating the SVM model into a larger software system or deploying it as part

of a web service or mobile application. It's important to note that while SVMs can be

effective for image classification, they may not always perform as well as more complex

deep learning models such as convolutional neural networks (CNNs), especially on large and

complex datasets. Nonetheless, SVMs have the advantage of being simpler to implement and

interpret, making them a good choice for certain image classification tasks, particularly when

there are limitations in computational resources or when interpretability is crucial.

Support Vector Machines (SVMs) have emerged as a popular and effective tool for image

classification tasks. In particular, SVMs have been successfully applied to demultiplexing

OAM (Orbital Angular Momentum) beams, although other machine learning algorithms and

signal processing techniques are also available for this purpose. SVMs offer several

advantages that make them particularly well-suited for OAM demultiplexing. Firstly, SVMs

can handle nonlinearity in classification tasks by using kernel functions, such as radial basis

function (RBF) or polynomial kernels, which allow them to capture complex relationships in

the data. Secondly, SVMs are known for their robustness to high-dimensional data, making



them suitable for handling the complex data structures associated with OAM beams. Thirdly,

SVMs aim to find the decision boundary (hyperplane) that maximises the margin between

different classes in the feature space, which enables them to achieve better generalisation

performance and robustness to noise. This is particularly crucial for accurate demultiplexing

of OAM beams, especially in the presence of optical distortions and channel impairments.

3.6: Training for SVM-Based Demultiplexing Method

The data collected was divided into two sets to train the SVM-based demultiplexing method.

The first set containing 60 different multiplexed images was used as a training set, while the

second set with 20 different multiplexed images was used as a testing set. Both sets were

completely independent of each other. The accuracy achieved was 70%. Once we have

trained an SVM classifier and applied it to predict labels for a test dataset, we can use a

confusion matrix to summarize the classifier's predictions against the true labels of the test

data. The confusion matrix is a tool that is used to evaluate the performance of an SVM

classifier and is closely related to SVM classification. A confusion matrix is a crucial tool

used to evaluate the performance of a classification model. It is used after training an SVM

classifier, which is then used to predict labels for a set of test data. The confusion matrix then

summarizes the classifier's predictions in comparison to the true labels of the test data. Each

entry of the confusion matrix represents the number of instances that were classified into a

particular class by the SVM. It provides a detailed breakdown of how well a classification

model is performing across different classes.

By examining the entries of the confusion matrix, one can identify where the model is

making correct predictions, known as true positives (TP) and true negatives (TN), and where

it's making errors, known as false positives (FP) and false negatives (FN). The true positives



indicate that the classifier correctly classified the data instances that belong to a specific class,

while true negatives indicate that the classifier correctly classified the data instances that do

not belong to a specific class. False positives are instances that the classifier wrongly

classified as belonging to a class when they do not, while false negatives are instances that

the classifier wrongly classified as not belonging to a class when they do.

By analysing the entries of the confusion matrix, one can gain insights into the SVM

classifier's strengths and weaknesses. For example, one can identify which classes are well-

classified, as evidenced by high TP and TN instances, and which classes are frequently

misclassified, as evidenced by high FP or FN instances. Additionally, one can determine

where the model is performing well and where it requires improvement.

In summary, the confusion matrix provides a comprehensive overview of the classification

performance of an SVM classifier, allowing for detailed analysis, evaluation, and refinement

of the model. It serves as a valuable tool for assessing the classifier's accuracy, identifying

problematic areas, and improving the model's performance.



Below are the l values which I have included in my project

set1

4 5 8 9 -1 -2 -5 -8 1 2 Class 1

2 3 5 7 -4 -6 -8 -9 4 1 Class2

3 6 5 4 2 -2 -5 -3 -7 1 Class3

3 4 6 8 1 -3 -6 -9 2 -2 Class4

1 2 3 4 5 -1 -2 -3 -4 -5 Class5

5 4 1 2 3 -3 -1 -4 -5 -2 Class6

6 7 8 9 10 -10 -9 -7 -8 -6 Class7

4 3 5 6 8 -2 -6 1 -5 3 Class8

9 8 5 6 -2 -3 7 -4 1 -1 Class9

7 8 -6 9 5 7 3 -9 1 -8 Class10

Set2

1 2 3 4 5 6 7 8 9 10 Class 1

4 5 7 3 -4 -9 10 9 3 5 Class2

6 7 8 -4 -6 2 9 8 5 2 Class3

1 -2 3 -4 5 -6 7 6 9 -10 Class4

6 4 -9 8 3 -2 2 -8 10 6 Class5

2 5 -3 -6 -1 9 8 6 4 8 Class6

10 9 8 7 -9 -7 -5 5 2 1 Class7

5 6 7 4 3 -8 -3 -3 8 7 Class8

8 7 6 -3 8 9 4 4 1 4 Class9

1 2 3 4 -5 -6 -7 6 9 10 Class10



Set3

5 7 3 8 6 -9 -4 2 -5 4 Class 1

7 4 9 5 -9 8 7 -6 5 -4 Class2

9 6 3 -4 4 8 9 10 6 -3 Class3

1 -9 2 -7 -9 2 10 -3 5 6 Class4

-8 5 -4 2 9 -7 -4 -2 -1 1 Class5

9 -5 -7 -9 -1 9 8 5 4 8 Class6

10 3 4 7 -9 -7 -5 -3 2 1 Class7

6 2 8 5 5 -6 -2 6 7 4 Class8

1 -3 3 -2 8 9 4 6 1 4 Class9

6 8 3 7 -5 -6 -7 -8 9 10 Class10

Set4

6 8 3 -7 -2 -1 -10 5 2 9 Class 1

3 2 -9 -5 9 3 1 -8 10 -6 Class2

4 6 8 -2 4 5 6 -10 -6 -8 Class3

10 8 2 -3 -7 2 -10 -1 9 6 Class4

5 -4 2 9 -7 -4 -2 -10 6 9 Class5

8 -2 -6 -1 1 -9 -8 7 3 8 Class6

1 9 2 5 7 -7 8 -2 10 -1 Class7

5 3 9 6 -4 -5 -3 8 7 5 Class8

1 6 -2 -5 7 -10 5 -9 5 8 Class9

1 -5 6 8 10 -9 4 -8 -4 1 Class10



Set5

7 9 4 -6 -3 -2 -1 6 3 10 Class 1

4 3 -5 -6 10 4 5 -8 2 -7 Class2

5 7 9 -3 5 6 7 -1 -4 4 Class3

1 9 3 -2 -8 3 -1 -10 6 3 Class4

6 -5 3 8 -6 -3 -1 -9 5 8 Class5

9 -3 -9 -1 1 2 -8 7 3 8 Class6

2 10 3 6 8 -8 -6 -3 7 -10 Class7

6 4 10 7 -5 -6 -4 9 8 -10 Class8

10 7 -3 -4 8 -1 6 -9 2 9 Class9

2 -6 8 9 1 -10 5 -9 -5 1 Class10

Set6

8 10 5 -7 -4 -3 -2 7 2 1 Class 1

5 4 -6 -7 1 5 7 -9 3 -8 Class2

6 8 10 4 6 7 8 -2 -5 5 Class3

2 10 4 -3 -9 4 -2 -1 7 4 Class4

6 -5 3 8 -6 -3 -1 -10 7 10 Class5

10 -4 -3 -2 2 3 -9 8 4 9 Class6

3 1 4 7 9 -8 -6 -4 8 -1 Class7

7 5 1 8 -6 -7 -5 10 4 -1 Class8

1 8 -4 -5 9 -8 7 -9 3 10 Class9

3 -7 9 10 5 7 -3 -10 2 1 Class10



Set7

4 5 7 -9 -5 -1 10 9 8 6 Class1

4 6 7 -9 -1 -3 5 7 1 5 Class2

9 8 7 6 4 5 -9 -4 7 -2 Class3

7 8 9 10 -1 -3 -2 -6 8 -5 Class4

9 8 -2 -4 -1 -10 5 6 10 1 Class5

7 6 8 9 10 2 5 -3 -8 -1 Class6

9 5 6 -2 -9 -4 -1 5 6 3 Class7

-1 -2 -3 -4 5 6 7 8 -9 -10 Class8

8 9 6 -2 10 3 -2 -5 -1 -9 Class9

1 2 3 4 -5 -6 -7 -8 9 10 Class10

Set8

9 8 5 4 -2 -4 1 -10 7 10 Class1

10 -3 9 4 7 -8 -1 -5 2 -7 Class2

4 5 8 10 3 6 -9 -3 2 6 Class3

1 2 -3 -4 5 6 -7 -2 9 10 Class4

9 -8 -5 -3 2 1 6 3 10 6 Class5

8 7 9 10 -3 -4 10 -2 -8 4 Class6

10 6 7 -1 -2 -6 8 -4 2 3 Class7

1 3 5 7 -9 -8 -2 -4 2 4 Class8

8 3 2 -2 4 1 6 -6 9 5 Class9

9 8 2 -2 1 -9 -1 4 8 -6 Class10



4: ANALYSIS AND CONCLUSION

In the initial phase of my project, I focused on generating a diverse range of values for the

Orbital Angular Momentum (OAM) modes. Once I had collected these modes, my next task

was to multiplex these beams, which involved combining them into a single beam. After that,

I needed to demultiplex the intensity beam using machine learning. This process involved

training and testing the datasets where I divided my 80 multiplexed beams in the ratio 60:20,

i.e., 60 images belong to the training set and the remaining 20 images belong to the testing set.

The primary objective of this step was to achieve the best possible accuracy. I was able to

achieve an accuracy of 56.67% for four sets (40 multiplexed beams), where I grouped them

into two. However, the accuracy I achieved for 80 multiplexed images was 70%, which was

quite impressive. Additionally, I was able to obtain multiplexed images of the phase profile

For total 60 images of which 45 were training and 15 were testing, the accuracy I achieved

was 80 % . To evaluate the performance of my model, I created confusion matrices for the

accuracy of 56.67% ,70%, and 80% respectively. Overall, these results demonstrate that my

model was successful in achieving high accuracy in the demultiplexing of intensity and phase

beams.

The confusion matrix presented below depicts an accuracy rate of 70% for my testing data,

where my 60 images were for training and 20 were for testing, which is divided into two

classes - class 1 and class 2. The matrix provides insights into how the predicted outcomes

compare to the actual results.

For class 1, out of a total of 14 images, 12 are true positives, meaning that they were correctly

predicted to belong to class 1. Additionally, 2 images are true negatives, which means that

they were correctly predicted to not belong to class 1.



On the other hand, for class 2, out of a total of 6 images, 4 are false positives, meaning that

they were incorrectly predicted to belong to class 2. The remaining 2 images are false

negatives, indicating that they were incorrectly predicted to not belong to class 2.

Overall, out of the 20 testing images, 14 were correctly classified into their respective classes.

It is important to analyse the confusion matrix in order to identify any patterns or trends that

can help improve the accuracy of future predictions.

fig 1



Based on the above provided information, it can be inferred that the data was divided into

two classes, class1 and class2, with a total of 30 testing images. The accuracy of the

confusion matrix was determined to be 56.67%, which is a measure of how well the model

predicted the correct class for the testing images. Out of the 30 images, 2 images were

correctly predicted to be in class1, while 13 images were correctly predicted to not be in

class2. However, out of the remaining 15 images in class2, 0 are false positives, meaning that

they were incorrectly predicted to belong to class 2. The remaining 15 images are false

negatives, indicating that they were incorrectly predicted to not belong to class 2. Overall,

the model was able to accurately classify 17 out of the 30 testing images.



The above confusion matrix is of phase multiplexed image where I am having total 60 images

which I have divided into ratio 45:15 .so in class 1 out of 10 images my 9 images were

correctly predicted to be in class 1, Additionally, 1 image is true negative, which means that

they were correctly predicted to not belong to class 1.

On the other hand, for class 2, out of a total of 5 images, 2 are false positives, meaning that

they were incorrectly predicted to belong to class 2. The remaining 3 images are false

negatives, indicating that they were incorrectly predicted to not belong to class 2.



CONCLUSION:

In recent project, we proposed and demonstrated a novel method that utilizes the Support

Vector Machine (SVM) theory of machine-learning to detect the Orbital Angular Momentum

(OAM) beam. The results obtained from extensive simulations were found to be highly

promising. Our study focused on the classification of OAM based on detection accuracy, with

an aim to identify the most effective approach for accurately detecting and identifying OAM

beams.

Our findings revealed that the accuracy of the OAM beam detection gradually increased with

the use of more OAM images. This suggests that the more OAM images are utilized, the

more accurately the OAM beam can be identified. Additionally, we found that the accuracy

of the OAM beam detection also depends on the splitting of the data into training and testing

phases.

The significance of this new method and its potential applications cannot be understated.

Accurate detection and identification of OAM beams are vital in numerous fields, including

but not limited to optical communication, astronomy, and remote sensing. Our proposed

method could be particularly useful in these fields and beyond, where the reliable

characterization of OAM beams is critical.
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