
 

1 
 

 

 

 

 

UPPER LIMB 

EXOSKELETON USING 

EMG SIGNALS 

 

 

 

 

 

 



 

2 
 

 

UPPER LIMB EXOSKELETON 

USING EMG SIGNALS 

 

By 

SHAWN D’SOUZA 

NIGEL FERNANDES 

SHRIRAJ PRABHUDESAI 

 

 

M.SC. PART-II ELECTRONICS 

SCHOOL OF PHYSICAL AND APPLIED SCIENCE 

GOA UNIVERSITY 

2021-2022 

 

 



 

3 
 

CERTIFICATE 

 

This is to certify that the project entitled 

“UPPER LIMB EXOSKELETON USING 

EMG SIGNALS” 

Is a record work done by 

SHAWN D’SOUZA 

NIGEL FERNANDES 

SHRIRAJ PRABHUDESAI 

M.Sc. Part II Electronics 

For the year 2021-2022 

The candidates themselves have worked on the project during the period of study under by 

guidance and to the best of my knowledge it has not previously formed the basis of award of 

any previous degree or diploma at Goa University or elsewhere.  

 

 

________________                     ___________                        _____________ 

Programme Director                   Examiner                          Project Guide 



 

4 
 

ACKNOWLEDGEMENT 

We are extremely fortunate to be involved in an exciting and challenging project 

like this one. It has given us an opportunity to work in this field of research and 

development. This project increased our thinking and understanding capability in 

various aspects.  

 

We would like to express our sincere gratitude to our Dr. Rajendra S. Gad (Vice 

Dean - Research) for giving us this opportunity to do this project and also thank 

Dr. Jivan S. Parab (Programme Director), Dr. Aniketh A. Gaonkar (Assistant 

professor), Dr. Narayan T. Vetrekar (Assistant professor), Dr. Marlon D. 

Sequeira (Assistant professor) for their guidance and support in our project. 

 

We would like to thank Don Bosco College of Engineering for 3D printing the 

various parts of our exoskeleton and also the lab staff for co ordinating with a 

welcoming gesture. Also like to thank Mr. Vishant Malik (Lab Technician) for 

his help and support in providing us with the instruments and components for our 

project and Mr. William D’Souza (Clerk) and the support staff Pushpa Andrade, 

Ashwini Velip and Agnelo Lopez for their patience and assistance throughout our 

project. 

 

A big thanks to our family members for their moral support during this time and 

everyone who encouraged us for this project to be successful along with our 

colleagues and friends who helped us along the way. 

 

 

 



 

5 
 

DECLARATION 

 

We the students of Goa University’s M.Sc. Electronics Batch hereby solemnly 

declare that this project report under the title “UPPER LIMB EXOSKELETON 

USING EMG SIGNALS” is a record of work that has been composed by us and 

this report has not been submitted anywhere else for the award of any diploma or 

degree to the best of our knowledge. 

 

 

1. Shawn D’souza                                              _________________ 

 

2. Nigel Fernandes                                             _________________ 

 

3. Shriraj Prabhudesai                                        _________________ 

 

 

 

 

 

 



 

6 
 

ABSTRACT 

An exoskeleton is an external structural mechanism with joints and links 

corresponding to those of the human body. With applications in rehabilitation 

medicine and virtual reality simulation along with heavy duty and defence 

applications, exoskeletons offer benefits for both disabled and healthy 

populations. In other words designing kinematics of an exoskeleton generally 

consist of trying to replicate human limb kinematics.  

We have designed an untethered, powered, upper body exoskeleton for use in the 

fields of rehabilitation and therapeutic application, as well as occupations 

requiring augmented strength. Though systems exist, past exoskeleton 

endeavours have led to bulky, expensive, invasive, and tethered solutions. The 

challenge is to build an exoskeleton system that is inexpensive, streamlined, and 

wireless and easy to use by anyone who needs it. Our solution will be a low-cost, 

ergonomic device actuated through sensors measuring the user’s motion and 

feeding it to the exoskeleton. Sensing data can be collected for a wide range of 

motion for use in physical therapy. This data can be used by doctors and patients 

to more accurately track improvement over time and also help in rehabilitation.  

With its low cost, hospitals could employ multiple devices and aid a larger 

audience of patients, the devices could even be used at home for physical therapy, 

which would dramatically increase quality of life for patients. Outside of physical 

therapy, augmented strength is applicable to physically intensive occupations, as 

well as search and rescue operations. Each year, thousands of workers must take 

leave due to injuries triggered by heavy lifting; with augmented strength, workers 

could avoid harmful situations. 
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1.1 INTRODUCTION 
The earliest exoskeleton-like device was developed in 1890 by a Russian named 

Nicholas which does the operations like walk and help to move the arms as the 

aided equipment. The unit was passive in operation and required human power, 

that used compressed gas bags to store the energy and it would assist with 

movements [1].  

The general categorization of exoskeleton suggests several feasible exoskeleton 

categories. Such categories have general classes, due to the wide quantity of 

exoskeletons in existence, and are the structure, the body part focused on, the 

action, the power technology, the purpose, and the application area varying from 

one to another.  

Exoskeletons are not only designed for specific body parts, the exoskeletons may 

be designed more generally for only one hand, a leg, or even the complete body. 

There are classes for specific limbs and specific joints. These classes include 

exoskeletons designed for the knee, ankle, hand, arm, foot, etc [7]. 

Types of Exoskeleton: 

By body part: 

● Upper extremity exoskeletons: These provide support to the upper body, 

including the arms, shoulders, and torso. 

● Lower extremity exoskeletons: These provide support to the legs, hips, and 

lower torso. 

● Full body exoskeletons: These provide support to the whole body and are thus 

the most powerful exoskeletons. 
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By form: 

● Hard/classic exoskeletons: These use rigid structures and actuators. They are 

tough and can provide a lot of power. 

● Soft exoskeletons: These are made of fabrics and other soft materials. Power 

is applied to the body via compliant actuators, such as air muscles or cables. 

They are more comfortable than classic exoskeletons but don't provide as 

much power. 

 

By actuation technology: 

● Electric: These use electric servos or other electric actuators to provide support 

and extra power to the wearer's muscles. They usually use batteries, so can be 

very portable. 

● Hydraulic: These use hydraulic actuators which are more powerful than 

electric ones. However, they require larger and more complex power sources, 

such as internal combustion engines or hydrogen fuel cells. 

● Fully mechanical: These are also known as passive exoskeletons; these 

include no active actuators. Instead, they support the wearer using mechanical 

linkages. 

● Others: Less common are exoskeletons with fuel cell actuators, shape memory 

alloys, and pneumatics. 

 

There are also a range of different application areas, each of which has different 

requirements for what it would need from an exoskeleton. For example, 

rehabilitation applications are more suited to soft, low-power devices which 

support and develop the natural muscle use of the wearer. On the other hand, 

military and construction applications would want high-powered exoskeletons to 

augment the strength of the wearer. 
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Figure 1.1.1: Types of Exoskeletons 

Upper limb movement is very important for doing normal day to day activities; 

however, there are about 15 million people a year who suffer from stroke 

worldwide, with 5 million stroke survivors who experience permanent motor 

damage and require therapeutic and rehabilitation services overcome their injury 

and get some motor control back[8]. 

An exoskeleton is a wearable robotic device of the upper limb made to work 

comfortably with the human arm which will help in the rehabilitation of arm 

injuries and increase human muscle strength. The device is designed to apply a 

specific torque where the exoskeleton is attached [9].  

The exoskeleton is a mechanical device that can increase the human arm strength 

and endurance. It detects the position of the exoskeleton and the movement 

intention of the human body in real-time through different sensing technologies. 

The brain sends relevant information to the muscles for movement and 

maintaining the human body. The exoskeleton can help the human arm 

movements by determining the trajectory by applying the necessary torque to the 
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motors at the joints and can be predicted and incorporated into the control 

algorithm [10]. 

In recent years, there have been many myoelectric interfaces or devices using 

surface electromyogram signals that were developed for assisting people with 

physical injuries or disabilities. EMG has proven to be an essential tool in 

biomechanical investigations and is used to identify the exact muscle functions, 

injury location, pain, fatigue and other abnormalities [11]. 

The EMG signal is essentially a biomedical signal which measures electric 

currents generated within the muscular tissues. These currents are generated 

throughout the contraction of muscles representing neuromuscular activities. This 

neuromuscular activity is the result of a signal generated in the brain that is 

transmitted via the nervous system to the motor neuron connected to the muscle 

fibres within the muscle. A depolarization wave is generated throughout the 

muscle fibre when motor neuron fires which than creates an action potential 

within the muscle fibres resulting in the movement of electrical charges. This 

electric activity produces an electric signal in the muscle referred to as 

Electromyogram (EMG) signals [12]. Surface electromyographic (EMG) signals 

of patients with weak muscle in the arm have been found to have lower 

complexity and contain more rhythmic bursts compared to signals of healthy 

person’s arm. The muscle activation pattern differs from patients to patients with 

other motor diseases [13]. 

Physical sensors require some degree of volitional movement to trigger and those 

devices might not benefit patients who are unable to generate sufficient force to 

trigger robots. In contrast to physical sensors, bioelectrical sensors such as 

electromyography (EMG) sensors can detect patients voluntary muscle activation 

in real time and triggered the robot-assisted movement which could be beneficial 

for a broader range of patients [14]. 
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Different types of exoskeleton prototypes: 

 

Figure 1.1.2 

 

Figure 1.1.2 shows different types of exoskeleton prototypes  

(A)  parallel actuated shoulder exoskeleton [46]. 

(B)  cmpliant robotic upper-extremity eXosuit (CRUX) [47]. 

(C)  upper-limb exoskeleton for inferno [48]. 

(D)  UB-EXO developed by Aalborg University [49]. 

(E)  compact 3 degrees of freedom (DOF) scissors linkages for upper-limb exoskeleton [50]. 

(F)  NESM [51]. 

(G)  Stuttgart Exo-Jacket [52]. 

(H)  CAREX 7 [53]. 

 

Even though there are different ways to help human beings to heal from their 

muscle injuries and motor disabilities, the resulting solutions for this issues are 

not always successful to help the patient with the injuries that they have sustained. 

Some of these solutions can be very expensive and not result in any improvement 
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to the injuries. Only solutions to try and get your injuries healed is by going to 

the physiotherapy centres and getting the necessary help from the doctors. So 

basically, it means that physiotherapists get you involved in your own recovery 

and you have put in the efforts to do the exercises. 

We propose a model that is fully automated and does not require any manual 

inputs. We develop and design an Upper Limb Exoskeleton to help the patients 

with a partially damaged arm. This model which was developed and designed 

using various technologies and components like the Myoware EMG sensor for 

acquisition of raw electromyogram signals from the arm. This signals are 

acquired in 7 channel mode. We used surface electrodes to extract the signals 

from the human arm which was then stored in the database for further execution. 

The database acquired is classified using various machine learning models. The 

database will help the model to learn about various predefined movements and 

position of the arm. This classified data is given to the ROS which can help the 

exoskeleton move accordingly with the help of various motors and joints in the 

structure. The exoskeleton was designed in Solidworks which is a software to 

design various 3-D models. The model is structured to have 7 DOF movements 

which will replicate the arm joint movements and have various flexibility of the 

human arm. This model is made to fit perfectly and comfortably on the human 

arm for easy use. The key element of our Upper Limb Exoskeleton is to support 

patients with weak arm during their recovery period and can also help elderly 

people for basic day to day life or be used in the industry for strength demanding 

tasks.  

 

 

 

 



 

15 
 

1.2 OBJECTIVE AND MOTIVATION 

 

There is a growing population with limitations in day-to-day activities, the 

percentage of adults aged 18 years and above with limitations in this are 

increasing. People who are 75 years and above with limitations will require the 

help of another person when performing day to day activities. The limitations can 

range from physical or sensory impairments to cognitive and intellectual 

limitations.  

 

Physical impairments are categorized into upper and lower limb, which can be 

caused due to trauma, muscular dystrophy, orthopaedic, stroke, and impairments 

in the central nervous system. Neuro-muscular impairments due to stroke affect 

a significant portion of the population around the world. 80% of all stroke 

survivors experience upper limb paresis, and only 18% of them gain full motor 

recovery within a year. Loss of upper limb motor functionality can significantly 

alter someone’s quality of life and create emotional and physical burdens. 

However, some of these impairments could be recovered or improved by 

following proper therapy procedures. Traditional therapeutic techniques could be 

automated through robotic and exoskeleton systems to expedite the intervention 

and hence the recovery time.  

 

The robotic assisted rehabilitation systems can be easily customized to adapt 

individual needs. The consistency and repeatability can be achieved when robotic 

systems are employed for rehabilitation. However, finding an exoskeleton design 

that fits and aligns properly with the human anatomical joints is very challenging. 

Misalignment can cause large stresses on attached systems and underlaying 

human anatomy. The misalignment and fitting challenges could result from the 
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simplification of complex autonomy of human limb and joints into mechanically 

design exoskeleton joints.  

 

Overall, understanding the correlation between parameters involved in joint 

movement mechanics as well as force interactions can provide insight in 

establishing an appropriate exoskeleton design. The main objective of this project 

is to design and develop a powered upper limb exoskeleton which is driven by 

EMG signals from the upper limb muscles to control and assist the movements 

of the joints. The proposed design is based on modelling and combining the 

robotic system with the human upper limb system bot electrically and 

mechanically. The materials should be cheap and readily available to provide a 

cost-effective powered system. 
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1.3: CONTRIBUTION 

When we began working as a collective, none of us were very sure about how to 

proceed. We knew that for this to work everyone would have to take their roles 

within the group. As we were a small group everyone's full input indeed was 

necessary. Luckily everyone from our group was very committed to produce the 

best outcome we could and this involved not letting each other down. So we had 

divided our project into 3 parts were Shriraj was working on the database and the 

processing while Shawn was assigned the job of ROS and gazebo simulation and 

Nigel was given the job to design the exoskeleton arm in a 3D form. 

 

At the beginning this work allowed us to have a lot of in dept discussions about 

the topic and all possible interpretations and meanings of our work. For a few 

days we all took a similar working roles where all were doing research on the 

same topic to collect information regarding our project. So as we went forward 

by deciding which EMG sensors and electrodes we would be using so we first 

ordered the sensor but simultaneously Shriraj was working on finding an 

appropriate database that could be used for our topic. Also, Shawn and Nigel were 

working on the hardware and software of how we could get proper EMG signals. 

So as days passed, the database was selected and the working was done by Shriraj 

and Shawn. All were helping each other since many things were new to learn. As 

we moved forward, we got signals and we tested the database, found the 

appropriate percentages.  

 

The next task was learning about where the EMG signals can be detected on the 

arm. So for this we consulted with a physiotherapist and learnt where the main 

muscles were and where we could place the electrodes on the arm. There were 7 

possible places so we took Shriraj as a subject and Shawn was dealing with the 

software and Nigel with the circuit connections. We took readings from 7 places 
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on the arm and got a good signal. As this was done the next to move was on ROS 

and gazebo simulation. Here the task was given to Shawn and it was a challenging 

task since this topic was new and its working was quite different from other 

software’s. All of us were involved to learn the installation and later Shawn learnt 

and created an arm in gazebo and using RVIZ. The final part was the 3d design 

which was given to Nigel where he and Shawn decided on which software we 

could use and which would be better supported for our needs of designing. Later 

the arm was designed under the guidance of our guides. It was designed and given 

for 3D printing.  

 

For all of this to work it was very useful to have everyone's contribution as this 

created an open atmosphere where we could talk and give suggestions to each 

other which made a good bond among us and the ability to work and complete 

the task together. 
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LITERATURE REVIEW 

Exoskeleton robotics has ushered in a new era of modern neuromuscular 

rehabilitation engineering and assistive technology research. The technology is to 

improve the upper-limb functionalities required for performing activities of daily 

living. Giving high utility and growing demand for upper-limb exoskeletons, the 

technology is still challenging in the area of mechanism designs, controls, and 

human–robot interaction. Mechanical design and kinematic analysis are the most 

crucial issues in developing an ergonomic exoskeleton system [15].  

There are many talks about the hybrid exoskeletons, that combine electrically 

controlled actuation with functional electrical stimulation, potentially offer great 

benefits for muscular rehabilitation. The aim is always to provide an overview of 

the state of the art of current upper-limb hybrid exoskeletons with a focus on 

stroke rehabilitation. This field is still very new and further development of the 

current control methods used for hybrid exoskeletons is needed [16]. Ruben 

Fuentes-Alvarez et al, uses specific case of exoskeletons of the lower extremities, 

they generally depend only on control algorithms to develop the trajectories of 

the user’s lower extremities. They also implement electromyography (EMG) 

interfaces as separate systems for measuring patient activity or improvements in 

the rehabilitation of the musculoskeletal system that carry their devices. The 

author uses a human in the loop scheme, a combination of a recurrent neural 

network (RNN) and an adaptive non-singular fast terminal sliding mode 

controller (ANFTSMC) strategy is employed to classify the user’s movements 

and control the trajectories of an exoskeleton. This paper presents the 

construction of the electromyographic signals (EMGs) database, containing data 

acquired from brachii biceps and sternocleidomastoid muscles. This work is 

established, with the advantage of being an effective, precise, and intelligent 

system that can be used by people with high degrees of motor disability [18]. 
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Christine Linnenberg et al, investigated the pressures occurring within the arm 

human-machine-interfaces (HMI) of four different exoskeletons that support 

static and dynamic work at or above head level, and the effects of the HMI on 

neurovascular supply of the upper extremity using an orthopaedic provocation 

manoeuvre with raised arms with and without the exoskeletons. Here, the 

decreased time in the provocation manoeuvre with exoskeletons indicated a 

negative effect of the HMIs on the vascular and neural supply of the arm. The 

pressures were higher than the pressure values that guarantee adequate tissue 

oxygenation. It remains unknown whether the way exoskeletons apply pressure 

affects vascular and neural supply to the arms, or whether the regular unloading 

during dynamic activity has a neutralizing effect [19]. 

 

Triwiyanto et al, found that the EMG signal has a random and stochastic 

characteristics, so it is difficult to predict the amplitude. The EMG signal also 

depends on the electrode’s location. Therefore, a proper muscle selection 

determines the system's accuracy value. They studied and investigated the exact 

location of the electrodes to improve the accuracy of the wearable hand 

exoskeleton trainer based on electromyography (EMG) signal control. The 

discovery of the dominant muscle was carried out by investigating the dominant 

EMG signal in three muscles that plays a role in the open and close movements 

of the hand exoskeleton. Electrode was used to detect EMG signal activity and 

the EMG signal was then extracted using the root mean square (RMS) feature. 

After the evaluation, the results showed that the flexor digitorum superficialis 

muscle in the rest position produced higher accuracy value than the other muscles, 

which was 96.63±0.67% [20]. The same author also studied on another thesis 

using freedom of speech to control the exoskeleton. This is based on the number 

of exoskeletons that are controlled using the EMG signal where the EMG signal 

itself has the weakness of the complexity of the signal which is influenced by the 

position of the electrodes as well as muscle fatigue. The two feature extraction 
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types namely mel-frequency cepstral coefficient (MFCC) and zero-crossing 

(ZC), and two machine learning algorithms, namely K-nearest Neighbour (K-

NN) and Decision Tree (DT) was evaluated to get the relevant outcomes. A 

microphone was used to record voice commands and after model evaluation, it 

was found that the MFCC extraction combined with the K-NN algorithm and the 

best accuracy 96±7.0% and the accuracy is 79±14.46% and 90±14.14% for open 

and close commands [21].  

To improve the classification framework by identification of the relevant feature 

that drive the pattern recognition algorithm. A. C. Turlapaty et al., [54] used a set 

of modified spectral moment-based features and another relevant inter-channel 

correlation feature that contribute to an improved classification performance and 

also conducted a sensitivity analysis of the classification algorithm to different 

EMG channels. Necmettin Sezgin et al.[55], analysed the EMG signal using 

bispectrum, which belongs to a family of higher-order spectra. The aggressive 

and normal EMG activities were analysed using bispectrum and the quadratic 

phase coupling of each EMG episode was determined. The best classification 

result was 99.75% for ELM which gave better accuracy than ANN, SVM, LR and 

LDA. Omer Alcin et al.[56], proposed method is composed of signal 

decomposition, feature extraction and feature classification. The signal 

decomposition is carried out using the wavelet packet transform (WPT). A one-

dimensional local binary pattern (LBP) is used to code the approximation and 

detail coefficients of the decomposed EMG signals. The support vector machine 

(SVM), decision tree, linear discriminant, k-nearest neighbors (k-NN), boosted 

and bagged tree ensemble classifiers are used in the classification stage. N. 

Sukumar et al.[57], proposed an efficient method based on variational mode 

decomposition (VMD) is proposed for identification of physical activities of 

sEMG signals. VMD is an adaptive and non - recursive signal decomposition 

method which decomposes sEMG signals into several modes. Extracted features 
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are fed into the multiclass least squares support vector machine (MC-LS-SVM) 

classifier with radial basis function (RBF) in order to classify normal physical 

actions of surface EMG signals. The performance of obtained results shows better 

classification accuracy of 98.17%. 

 

Suman Samui et al, focused on data acquisition, pre-processing, feature extraction 

and classification along with their feasibility in practical scenarios regarding 

implementation and reliability. They have demonstrated Deep Neural Network 

(DNN) based classification system for the upper limb position invariant 

myoelectric signal. The classification of eight different hand movements is 

performed using a fully connected feed-forward DNN model and also compared 

with the existing machine learning tools. The time domain power spectral 

descriptors (TDPSD) are used as the feature set to train the DNN classifier. The 

experimental results in various analysis frameworks demonstrate that DNN based 

system can outperform the other existing classifiers such as k-Nearest Neighbour 

(kNN), Random Forest, and Decision Tree. The average accuracy obtained 

among the five subjects for DNN, SVM, kNN, Random Forest and Decision Tree 

is 98.88%, 98.66%, 90.64%, 91.78%, and 88.36% respectively [25]. Toledo-

Pérez used SVM to classify the EMG signals. The paper includes the accuracy, 

the number of signals or channels used, the way the authors made the feature 

vector, and the type of kernels used and also includes a compilation about the 

bands used to filter signals, the number of signals recommended, the most 

commonly used sampling frequencies, and certain features that can create the 

characteristics of the vector [27].  

Fahreddin Sadikoglu et al, talk about how EMG signals are usable in the 

applications of biomedical, clinical, modern human computer interaction and 

Evolvable Hardware Chip (EHW) improvement. Advanced methods are needed 

for perception, disassembly, classification and processing of EMG signals 
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acquired from the muscles. Objective of this paper is to show various methods 

and algorithms in order to analyse an electromyogram signal to ensure effective 

and efficient ways of understanding signal and its nature. The latest diagnostic 

methods include evaluating the patient’s story, blood tests, and muscle biopsies. 

System has been successfully implemented utilizing MATLAB software that can 

distinguish EMG signals from different patients [26].  

Eric Weston et al, evaluated the three passive upper-extremity exoskeletons 

relative to a control condition. Independent measures of exoskeleton, exertion 

height (overhead, head height), time, and their interactions were assessed. 

Dependent measures included changes in tissue oxygenation (DTSI) in the 

anterior deltoid and middle trapezius, peak resultant lumbar spine loading, and 

subjective discomfort in various body regions. The experimental task was not 

highly fatiguing to the subjects, denoted by low DTSI values across conditions. 

Results may vary for tasks requiring constant arm elevation or higher force 

demands. This study quantified the benefits of upper-extremity exoskeletons 

using NIRS, complementary to prior studies using EMG. The exoskeletons 

offered little to no physiological benefit for the conditions tested. However, the 

results may vary for a task with greater demand on the shoulders [22]. 

 

Pawel Herbin et al, shows that the exoskeleton of the upper limb is an external 

parallel kinematic chain to the human arm. The device is designed to apply a 

specific torque of interaction to the human body resulting from bilateral 

teleoperation or rehabilitation. The author presents the structure of the developed 

device and the control system of its joints. The construction of the joints drive 

system was performed based on the Bowden cable transmission. Based on the 

Bowden cable flexibility, it is possible to control the generated drive torque 

following the serial elastic actuator concept. They also showed the methods of 

estimating the torque of interaction with the operator based on the ExoArm 7-
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DOF exoskeleton dynamics model [17]. Chuang Liu et al, reviews the research 

on upper limb exoskeleton for hemiplegia rehabilitation. Under the condition of 

rehabilitation training for mild patients in the workspace of 7-DOF exoskeleton 

with uncertain trajectory, a control algorithm used for motion detection is carried. 

This paper shows the algorithm where the patient's operation can be detected by 

real-time data collected by Force/Torque sensors and encoders, so that 

quantitative assistance will be supplied by exoskeleton according to the patient's 

motion intention. The joint simulation of ADAMS and MATLAB proves the 

accuracy of trajectory tracking and the feasibility of the control strategy is 

verified by the experiment on 3-DOF translational manipulator platform [23]. 

 

Feilong Jiang et al, shows how the biceps and triceps alternatively act as agonists 

and antagonists to realize upper limb movement. Pneumatic artificial muscle 

(PAM), which is inflated and deflated with compressed air instead of water, has 

similar characteristics to those of human muscle. They wanted to find precise 

signal collection and control process and adopt the synergy control of PAM and 

upper limb. In this system, the biceps and triceps provide the main signals in 

synergy control, electrodes are pasted outside of biceps and triceps to sample their 

electromyogram signal (EMGs), and the mechanical structure and control system 

of the pneumatic exoskeleton are proposed. The envelope is taken to extract 

muscle contraction information through upper limb muscles in a static contraction 

experiment. Then, the processes of biceps and triceps EMGs feature changes 

including rapid swing, slow swing, and discontinuous swing under various loads 

are analysed during upper limb muscle dynamic contraction. The duty-ratio-

controlled variables can be divided into five levels, which correspond to exertion 

rating from powerless to very strong in two EMG characters. These can be 

reflected in a scatter diagram of duty-ratio-controlled variables and average EMG 

characters. A nonlinear relationship can be transferred into the continuous system 

by the polynomial interpolation method, solving the problem of saturation. The 
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net duty-ratio-controlled variables are adopted to control the on-off state and 

pulse-width modulation (PWM) duty ratio of the high-speed on-off valve. The 

forearm lifting up movement is unpowered and powered with various load EMGs, 

and elbow discontinuous swing angle overshoot is performed to analyse the 

coordination effect in a synergy control experiment [24]. 

 

The majority of the studies made were performed on a single user, focusing solely 

on the gesture classification. These studies are restrictive in practical sense 

because it is either focusing on just gestures, multi-user compatibility, or rotation 

independence. The variations in EMG signals due to these conditions present a 

challenge to the practical application of EMG devices, often requiring repetitious 

training per application. Fu zinvi et al, presented a review of works related to the 

practical issues of EMG with a focus on the EMG placement, and recent 

acquisition and computing techniques to reduce training. They also provided an 

overview of existing electrode placement schemes and compared the techniques 

and results of single-subject against multi-subject, multi-position settings [30]. 

Akira Furui et al, has utilized EMG signal to interface signals for prosthetic hands 

and information devices owing to its ability to reflect human motion intentions. 

An EMG pattern classification method incorporating a scale mixture-based 

generative model was used. A scale mixture model is a stochastic EMG model in 

which the EMG variance is considered as a random variable, enabling the 

representation of uncertainty in the variance. The proposed method is trained by 

variational Bayesian learning, thereby allowing the automatic determination of 

the model complexity. The comparison using public EMG datasets revealed that 

the proposed method outperformed the various conventional classifiers [29].   

 

Glowinski uses the kinematic modelling of an arm exoskeleton for human 

rehabilitation. The biomechanics of the arm was studied and the 9 Degrees of 

Freedom model was obtained. The model of upper arm was obtained by using 
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Denavit – Hartenberg notation. The exoskeleton human arm was modelled in 

MathWorks package. The optimal solutions were found applying a genetic 

algorithm. Two variants of motion with and the visualization of the change of 

joints angles were shown. By the use of genetic algorithms, movement trajectory 

with the Pareto-optimum solutions has been presented as well. Creating a utopia 

point, it was possible to select only one solution from Pareto-optimum results. 

The obtained results demonstrate the efficiency of the proposed approach that can 

be utilized to analyse the kinematics and dynamics of exoskeletons using the 

dedicated design process [28]. Redundancy resolution techniques have been 

widely used for the control of kinematically redundant robots. Maaroof et al, uses 

one of the redundancy resolution techniques that is employed in the mechanical 

design optimization of a robot arm. Although the robot arm is non-redundant, the 

proposed method modifies robot arm kinematics by adding virtual joints to make 

the robot arm kinematically redundant. The robot arm’s end-effector is fixed at 

critical positions while the redundancy resolution algorithm moves its joints 

including the virtual joints because of the self-motion of a redundant robot. 

Hence, the optimum values of the virtual joints are determined, and the design of 

the robot arm is modified accordingly [36].  

 

Simulators are being used more and more during the development of robotic 

systems due to the efficiency of the development and testing processes of such 

applications. These simulators save time, resources and costs, as well as enable 

ease of demonstrations of the system. Specifically, tools like the open-source 

Robotic Operating System (ROS) and Gazebo have gained popularity in building 

models of robotic systems. ROS is extensively used in robotics due to the pros of 

hardware abstraction and code reuse. The Gazebo platform is used for 

visualisation because of its high compatibility with ROS. Al-Rashid Agha et al, 

have integrated ROS and Gazebo to build an interface for the visualisation of the 

Katana Arm manipulator. Simulators for robots are used to build embedded 
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applications for any robot without having the need to depend on the actual device 

and the applications can even be transmitted onto the actual robot directly due to 

the functionality of the simulators [31].  

 

Similarly, the autonomous robots are playing an important role to solve the 

Simultaneous Localization and Mapping (SLAM) problem in different domains. 

To generate flexible, intelligent, and interoperable solutions for SLAM, it is a 

must to model the complex knowledge managed in these scenarios (i.e., robots 

characteristics and capabilities, maps information, locations of robots and 

landmarks, etc.) with a standard and formal representation. Some studies have 

proposed ontologies as the standard representation of such knowledge; however, 

most of them only cover partial aspects of the information managed by SLAM 

solutions. M. A. Cornejjo-Lupa made a model called OntoSLAM, which models 

all aspects related to autonomous robots and the SLAM problem, towards the 

standardization needed in robotics, which is not reached until now with the 

existing SLAM ontologies. Additionally, OntoSLAM was integrated into the 

Robot Operating System (ROS) and Gazebo simulator to test it with Pepper 

robots and demonstrate its suitability, applicability, and flexibility. Experiments 

show how OntoSLAM provides semantic benefits to autonomous robots, such as 

the capability of inferring data from organized knowledge representation, without 

compromising the information for the application and becoming closer to the 

standardization needed in robotics [32].  

 

An autonomous mobile robot must be able to generate a collision-free trajectory 

while avoiding static and dynamic obstacles from the specified start location to 

the target location. Machine learning, a subfield of artificial intelligence, is 

applied to create a Long Short-Term Memory (LSTM) neural network that is 

implemented and executed to allow a mobile robot to find the trajectory between 

two points and navigate while avoiding a dynamic obstacle. The input of the 
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network is the distance between the mobile robot and the obstacles thrown by the 

LiDAR sensor, the desired target location, and the mobile robot’s location with 

respect to the odometry reference frame. Using the model to learn the mapping 

between input and output in the sample data, the linear and angular velocity of 

the mobile robot are obtained. The mobile robot and its dynamic environment are 

simulated in Gazebo, which is an open-source 3D robotics simulator which is 

synchronized with ROS (Robot Operating System). The computational 

experiments show that the network model can plan a safe navigation path in a 

dynamic environment [35]. 

 

The fusion of different technologies is the base of the fourth industrial revolution. 

Companies are encouraged to integrate new tools in their production processes in 

order to improve working conditions and increase productivity and production 

quality. The integration between information, communication technologies and 

industrial automation can create highly flexible production models for products 

and services that can be customized through real-time interactions between 

consumer, production and machinery throughout the production process. The 

future of production, therefore, depends on increasingly intelligent machinery 

through the use of digital systems. The key elements for future integrated devices 

are intelligent systems and machines, based on human–machine interaction and 

information sharing. The implementation of shared languages that allow different 

systems to dialogue in a simple way is necessary. In this perspective, the use of 

advanced prototyping tools like Open-Source programming systems, the 

development of more detailed multibody models through the use of CAD 

software and the use of self-learning techniques will allow for developing a new 

class of machines capable of revolutionizing our companies. Rivera et al,  

presents a waypoint navigation activity of a custom Wheeled Mobile Robot 

(WMR) in an available simulated 3D indoor environment by using the Gazebo 

simulator. They tested the high-performance physics Open Dynamics Engine 
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(ODE) and the sensor feature present in Gazebo for prototype development 

activities. The integration tools available with Solidworks and MATLAB-

Simulink, well known commercial platforms of modelling and robotics control 

were explored [33]. 

 

Guowei Cui et al, aims to test and evaluate task planning algorithms. After 

building the environment and the service robot model, a 2D map is built. To make 

use of semantic navigation, they construct a topological map from the 2D map. 

Several functions are written to realize the robot's necessary actions, including 

navigation, grasping, placing, handing over, and searching person/object. They 

test the task planning system within the uncertain Gazebo environment [34]. 

 

Effective control of trunk muscles is fundamental to perform most daily activities. 

Stroke affects this ability also when sitting, and the Modified Functional Reach 

Test is a simple clinical method to evaluate sitting balance. Marchesi et al, 

characterizes the upper body kinematics and muscular activity during this test. 

They mainly focused on the analysis of muscles of the trunk and of the 

contralesional, not moving, arm. The bilateral activations of latissimus dorsi, 

trapezii transversalis and oblique externus abdominis were left/right asymmetric, 

for both test directions, except for the obliquus externus abdominis in the frontal 

reaching. Stroke survivors had difficulty deactivating the contralesional muscles 

at the end of each trial, especially the trapezii transversalis in the lateral direction. 

Core stability and proper trunk muscle control are fundamental in most daily 

living activities, such as standing up, sitting down, walking and stabilizing distal 

limbs. Both are necessary for sitting balance, to maintain stable posture and to 

shift the body weight inside the base of support while performing a variety of 

self-initiated actions, such as eating or taking a glass from the table. Following a 

stroke, the upper motor neuron syndrome induces abnormal muscular activations 
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and motor patterns, with phenomena categorized as “positive” or “negative” in 

relation, respectively [37]. 

Most humanoid robots are equipped with seven-degree-of-freedom (DoF) arms 

that allow them to be flexible in different scenarios. To date, no suitable approach 

has been developed for identifying appropriate human-like postures for a robotic 

arm with an offset wrist configuration. Y. Deng et al, proposed a novel algorithm 

that considers the movement of the human arm to consistently find a suitable 

human-like posture. A one-class support vector machine model is employed to 

classify human-like postures. Then, the algorithm uses the redundancy 

characteristic of a 7-DoF robotic arm with a linear regression model to enhance 

the search of human-like postures [38]. 

Modelling errors and robust stabilization/tracking problems under parameter and 

model uncertainties complicate the control of the flexible underactuated systems. 

A lightweight robot arm subject to external and internal dynamic effects was 

taken into consideration. The precise control of this kind of system demands an 

accurate system model and knowledge of all sources that excite unmodeled 

dynamics. The equations of motion for a flexible robot arm were derived and 

formulated for the large motion via Lagrange’s method. The goals were 

determined to achieve high-speed, precise position control, and satisfied accuracy 

by compensating the unwanted torque ripple and friction that degrades 

performance through an adaptive robust control approach. A 2-DOF flexible 

robot arm considering actuator dynamics was modelled, and the theoretical 

implication of the chattering-free sliding mode-adaptive linearizing algorithm, 

which ensures robust stabilization and precise tracking control, was designed 

based on the full system model including actuator dynamics with computer 

simulations. Stability analysis of the zero dynamics originated from the Lyapunov 

theorem was performed. The conceptual design necessity of nonlinear observers 

for the estimation of immeasurable variables and parameters required for the 
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control algorithms was emphasized [39]. In recent years, dual-arm robots have 

attracted more and more attention due to their advantages such as strong 

cooperation ability and high flexibility. With the improvement of real-time 

requirement of dual-arm cooperation, the inverse kinematics solution of robot 

becomes a key problem to be solved urgently. To solve the time-consuming 

problem of inverse kinematics of robot arm, a closed inverse kinematics solution 

algorithm for humanoid dual-arm robot was proposed by wang et al. The inverse 

kinematics of manipulator mainly includes geometric method, analytical method 

and numerical method. The geometric method is a special case of analytic method 

in some cases, and its applicability is weak. Analytical inverse kinematics of the 

manipulator can efficiently obtain all the inverse solutions of the manipulator in 

the desired position, but the manipulator must satisfy the Piper criterion. The 

numerical method has no special requirements for the joint number and structure 

of the manipulator [40]. 

The body articulation units, commonly referred to as body joints, play significant 

roles in the musculoskeletal system, enabling body flexibility. These articulation 

units suffer from several pathological conditions, such as osteoarthritis (OA), 

rheumatoid arthritis (RA), ankylosing spondylitis, gout, and psoriatic arthritis. 

There exist several treatment modalities based on the utilization of anti-

inflammatory and analgesic drugs, which can reduce or control the 

pathophysiological symptoms. Despite the success, these treatment modalities 

suffer from major shortcomings of enormous cost and poor recovery, limiting 

their applicability and requiring promising strategies. To address these 

limitations, several engineering strategies have been emerged as promising 

solutions in fabricating the body articulation as unit models towards local 

articulation repair for tissue regeneration and high-throughput screening for drug 

development. They have presented challenges related to the selection of 
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biomaterials (natural and synthetic sources), construction of 3D articulation 

models, architectural designs and the type of culture conditions [43]. 

Voluntary hand movements are usually impaired after a cerebral stroke, affecting 

millions of people per year worldwide. The use of hand exoskeletons for 

assistance and motor rehabilitation has become increasingly widespread. So D. 

Esposito et al, designed a model to be low cost, wearable, easily adaptable and 

suitable for home use. Most of the components of the exoskeleton are 3D printed, 

allowing for easy replication, customization and maintenance at a low cost. A 

strongly underactuated mechanical system allows one to synergically move the 

four fingers by means of a single actuator through a rigid transmission, while the 

thumb is kept in an adduction or abduction position. Force-myography was used 

instead of the standard electromyography to voluntarily control the exoskeleton 

with more simplicity. The user can activate the flexion/extension of the 

exoskeleton by a weak contraction of two antagonist muscles. The entire 

exoskeleton including batteries can be worn on the patient’s arm. The trajectories 

described by the phalanges of the natural and the exoskeleton finger were 

compared by means of cross-correlation coefficients; a similarity of about 80% 

was found. A rigid cylindric handlebar containing a load cell measured an average 

power grasp force of 94.61 N, enough to assist the user in performing most of the 

activities of daily living [41]. Optimal ergonomic design for consumer goods 

(such as garments and furniture) cannot be perfectly realised because of imprecise 

interactions between products and human models. Cheng Chi proposed a new 

body classification method that integrates human skeleton features, expert 

experience, manual measurement methods, and statistical analysis (principal 

component analysis and K-means clustering). The method enables the 

classification of upper bodies into a number of levels at three key body segments. 

From several experiments, they found that the proposed method can lead to more 

accurate results than the classical classification methods based on three-
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dimensional (3 D) human model and can provide semantic knowledge of human 

body shapes [42].  

CY Lee talked about how the natural human motion was modelled using a three-

dimensional simulation involving a biped robot. Exoskeleton assistance was 

examined through the extraction and analysis of kinematic and dynamic 

parameters. The present findings can serve as a reference for a study on 

exoskeleton design in which user effort is considered. A biped robot simulator of 

human gait was constructed. A participant’s movement was recorded using a 

Vicon motion capture system. The effect of exoskeleton assistance on gait 

performance was evaluated under admittance control for user interaction [44]. 

Wearable pressure sensors are highly desirable for monitoring human health and 

realizing a nice human–machine interaction. CS/MXene/PU sponge/PVA - based 

3D pressure sensor is developed to simultaneously achieve wearability, 

washability, and high sensitivity in a wide region. In the force-sensitive layer of 

the sensor, MXene and CS are fully attached to the PU sponge to ensure that the 

composite sponge has remarkable conductivity and washability. Benefiting from 

the highly resistive PVA-nanowire spacer, the initial current of the sensor is 

reduced significantly so that the sensor exhibits extremely high sensitivity (84.9 

kPa–1 for the less than 5 kPa region and 140.6 kPa–1 for the 5–22 kPa region). The 

sensor has an excellent fast response time of 200 ms and a short recovery time of 

30 ms, as well as non-attenuating durability over 5000 cycles. With the high 

sensitivity in a wide range, the sensor is capable of detecting multiple human and 

animal activities in real time, ranging from the large pressure of joint activities to 

a subtle pressure of pulse. Overall, such a multifunctional pressure sensor can 

supply a new platform for the design and development of wearable health-

monitoring equipment and an efficient human–machine interface [45]. 
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3.1: SYSTEM BLOCK DIAGRAM 
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Figure 3.1.1: Block Diagram 
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3.2: WORKING PRINCIPLE: 

The system block diagram in Figure 3.1.1 shows the overview of the whole 

process. This is the working of the upper limb exoskeleton. The model is fully 

automated and does not require any manual inputs. This model uses the Myoware 

EMG sensor placed at the 7 areas of the arm for the acquisition of raw 

electromyogram signals. These signals are acquired in 7 channel mode using the 

Arduino board and Arduino IDE to view the waveforms. Medical grade surface 

electrodes were used to extract the signals from the human arm which was then 

stored in our own database for further execution. The database acquired is 

classified using various machine learning models. The classification model is 

trained using other databases to get better accuracy for training and testing. The 

outputs from the models are than given to the ROS – Gazebo system for running 

of the motors and other various joints according to the pre-defined movements 

and positions of the arm from the classification model. The upper limb 

exoskeleton 3D model is designed in Solidworks and is structured to have 7 DOF 

movements which will replicate the arm and shoulder joint movements and have 

more flexibility of the human arm. The 3D file is given for 3D printing to get the 

final base of our model. This model is made with proper dimensions to fit 

perfectly and comfortably on the human arm for easy use and should be cost 

effective. 
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Block Diagram Description: 

The first part of the system is to collect the signals from the human arm. The 

signals are collected using a sensor called Myoware Muscle Sensor. It’s an 

advance sensor which has a lots of features like the inbuilt 3 electrode connectors 

which are the Mid-muscle Electrode, End of Muscle electrode and the Reference 

Electrode as seen in Figure 3.2.1 so that everything is in for easy use.  

 

Figure 3.2.1: Electrode Connectors 

The electrodes are placed on the arm in specify places to extract the signals. Out 

of the 3 surface electrodes connected, 2 of them are placed on the muscle area to 

record the signals and the other one is the ground connection to be placed on bone 

area. For 7 channel data collection we placed the electrodes and sensors on 7 main 

muscle places of the arm are Bicep Brachii, Brachialis (Above Elbow), Tricep 

Brachii, Brachioradialis (Below Elbow), Extensor Carpi Radialis Longus 

(Exterior Forearm), Flexor Carpi Radialis (Inner Forearm), Flexor Carpi Ulnaris 

(Wrist). The proper placement of sensor is shown in Figure 3.2.2 to get accuracy 

and better signal values.  
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Figure 3.2.2: Sensor Placement 

When the muscle is flexed in a certain way, the sensor acquires and converts the 

EMG signals from physical parameters to electric analog signal through the 

surface electrodes. This analog signal can be read by the Arduino board to view 

the results on the Arduino IDE. 

The Arduino board is connected to the sensor with 3 pins. The main pin is the 

signal pin from the Myoware board to the analog pin. The other 2 pins are the 

+5V and ground pin as seen in Figure 3.2.3. Using the Arduino board the analog 

signals from the sensor are connected to the analog pin of the Arduino board so 

it can read the values. The script is written to read the analog value at the pin 

assigned which converts the analog signal to digital signal. This digital signal can 

be viewed in the serial plotter of the Arduino IDE software and also as values in 

the serial monitor. The analog values from the ADC are converted to millivolts 

or volts which are displayed on the serial monitor of the IDE software for the data 

to be viewed. This data from the serial monitor can be pasted in a text file for 

later. 
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Figure 3.2.3: Sensor to Arduino Connection 

 

For the database classification section of this system, we use the raw text files 

from the database which are separated subject wise as well as each individual 

action performed. In each text file there are approx. 10000 rows taken over a 

period of 15 seconds and has 8 columns which are the 8 channels from the 

database where 8 sensors were placed to acquire the data from the subjects. The 

8 sensors are placed on the upper arms (biceps and triceps), and upper legs (thighs 

and hamstrings) namely at Right bicep (Channel 1), Right tricep (Channel 2), Left 

bicep (Channel 3), Left tricep (Channel 4), Right thigh (Channel 5), Right 

hamstring (Channel 6), Left thigh (Channel 7) and Left hamstring (Channel 8). 

Through these sensors the data was recorded for 20 actions. Out of those 20 

actions 10 were normal and 10 were aggressive actions.  

 

All the data from the text files were raw so they were filtered using the Savitzky-

Golay filter in MATLAB. The filter is applied to a set of digital points for 

smoothing the data to get better signals. This processed data is saved in text file 

like the original data. Now from the text file the feature extraction is done in 
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python using the code of sliding window and after extraction of feature it is saved 

in as csv file. This csv file is than used for the classification of the data. The data 

from these files are divided into normal and aggressive. There are 3 types of 

models that were used for classification. They are Logistic Regression, random 

Forest and Naïve Bayes. Before giving this data to the classification models it has 

to be standardized to get better data for the models. Due to the poor dimension 

ratio, four cross validations in which there is training models on three subjects 

and testing on the one left out in the subject in each loop. Using these methods, 

we obtain the accuracies for the different classification models. 

 

The ROS-Gazebo part in this system is used to design the simulation of the 

robotic movement of the upper limb exoskeleton. Here the Robot Operating 

System is used to get the relevant packages to be used to make the model. There 

is a URDF code written which has all the relevant links and connectors like the 

revolute joints and fixed links to make a simulation to make the model move and 

depict a real system. The rviz software is used to show the inside controls of the 

robotic model and the gazebo actually shows the simulation. Inverse kinematics 

are used for the calculations of joint parameters to handle the orientation and 

positions. The model can be made to show many degrees of freedom. This data 

can be used to move the motor and control the exoskeleton arm with all the data. 

 

For the 3D design of the arm exoskeleton, we used solidworks. In the software 

we decide a drawing layout for the entire arm. It is a tap down approach to 

assemble all the back part to the curve which is done by a layout sketch or the 

geometry of other part. We created a layout in the assembly slide and we draw 

the parts of the arm, the back, curve, and the side parts. This is then converted 

into sketch entities. We also made holes for the motors which can be used for the 
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movement. From the sketch the entire arm is assembled together. So after that we 

applied the fillet and give a proper appearance to it. The fillet creates internal or 

external face on the part and the same slide is taken from the sketch part and 

dropped onto the layout. After that we built a wrist support stand. We went to 

shapes and took a small rod for the support of the wrist and hand. The joints are 

made by drawing slot to join the joints. The curve was made like an arc in the 

part file so then we construct the arc. Finally, all these parts are assembled 

together and the whole arm is ready. So, with this all components of arm designed 

in various modules to obtain the final designed model. 
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3.3 EMG SENSOR CIRCUIT 

The Myoware Muscle Sensor measures, filters, rectifies, and amplifies the 

electrical activity of a muscle and produces an analog output signal that can easily 

be read by a microcontroller, enabling novel, muscle-controlled interfaces. This 

muscle sensor measures a muscle’s activity by monitoring the electric potential 

generated by muscle cells. This is referred to as electromyography (EMG). The 

sensor amplifies and processes the complex electrical activity of a muscle and 

converts it into a simple analog signal that can easily be read by any 

microcontroller with an analog-to-digital converter (ADC), such as an Arduino or 

even a Maestro servo controller. 

The internal circuit diagram is shown below in Figure 3.3.1 

 

Figure 3.3.1: Signal conditioning steps. (a) Difference between first and second 

electromyographic signals, (b) signal rectification, (c) signal smoothing, (d) 

variable signal amplification. 
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The Figure 3.3.1 shows the internal circuit of the Myoware Muscle sensor. In 

order to acquire the EMG signal, a three-electrode configuration (two differential 

input and a ground reference) is used. Since the EMG voltage range detected by 

electrodes is very low and the signal is very noisy due to external sources such 

skin thickness and small vibrations so it is necessary to amplify and filter the 

EMG signal appropriately using an analog-to-digital converter (ADC).  

 

In order to carry out the signal conditioning operations, the board includes several 

active and passive electronic components that allow the EMG signal conditioning 

so it can be acquired by the ADC of the microcontroller. The circuit is mainly 

composed of operational amplifiers and passive components such as resistors, 

capacitors, diodes and all the operational amplifiers are powered with a dual 

power supply. The signal conditioning includes the following operations: (i) The 

calculation of the difference between first and second electromyographic signals 

(Figure 3.3.1 (a)), (ii) Signal rectification (Figure 3.3.1 (b)), Signal smoothing 

(Figure 3.3.1 (c)), and Variable signal amplification (Figure 3.3.1 (d)). 

 

The first step as seen in Figure 3.3.1 (a) is using a wide supply range instru-

mentation amplifier, with rail-to-rail output - the AD8226. This operational 

amplifier calculates the difference between the signals V+ and V- and amplifies 

the difference of a factor K which depends on the resistance present between pins 

2 and 3 which is a resistor of 240 Ω guarantees a signal amplification. 

 

The second step Figure 3.3.1 (b) consists of rectifying the output signal from the 

OP-AMP. Before the rectification circuit, a capacitor was inserted in order to 

couple the AC signal and remove the DC components. Specifically, by using a 

capacity of 0.01 μF, spectral components below 106 Hz were suppressed. Then, 

the obtained signal was rectified by a diode network and two Junction gate Field-

Effect Transistor (JFET) - input operational amplifiers (TL084). In this step, the 



 

45 
 

negative signal was reversed and transformed into a positive signal (full-wave 

rectification), thus allowing the calculation of the EMG signal power. 

 

The third step Figure 3.3.1 (c) is useful to calculate the amplitude envelope shape 

of the signal in order to give an effective indication of the EMG signal power. 

This is implemented with an active first-order low-pass filter, using the same 

TL084 OP-AMP. The low pass filter has a cut-off frequency at about 2 Hz, and 

therefore, the signal is smoothed by removing the high-frequency spectral 

components.  

 

Finally Figure 3.3.1 (d) is necessary to further amplify the smoothed signal to 

adapt it to the full-scale value input range of the ADC. This operation is 

performed by another TL084 OP-AMP configured as an inverting amplifier. The 

amplification level is set by the potentiometer located on the OP-AMP feedback 

network. The signal resulting from this last stage is read by the ADC. 

 

Table 3.3.1: Electrical Specification of Myoware Muscle Sensor 

 

Table 3.3.1 
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3.4: DATABASE DETAILS 

The database is called ‘EMG Physical Action Dataset’ acquired from UCI 

Machine Learning repository [58]. The dataset was provided by ‘Theo 

Theodoridis from the School of Computer Science and Electronic Engineering at 

the University of Essex’.  The protocols that were followed while acquiring the 

EMG data are that there were three male subjects and one female subject (age 25 

to 30). Throughout 20 individual experiments, each subject had to perform ten 

normal and ten aggressive activities. The subject’s performance has been 

recorded by the Delsys EMG apparatus, interfacing human activity with 

myoelectrical contractions.  

 

The data acquisition process involved eight skin-surface electrodes placed on the 

upper arms (biceps and triceps), and upper legs (thighs and hamstrings). The 

overall number of electrodes is 8, which corresponds to 8 input time series one 

for a muscle channel (ch1-8). Each time series contains approx. 10000 samples 

(approx. 15 actions per experimental session for each subject). Each file in the 

dataset contains in overall 8 columns 

 

A segment defines a body segment or limb. Right arm (R-Arm), Left arm (L-

Arm), Right leg (R-Leg), Left leg (L-Leg). A channel corresponds to an electrode 

attached on a muscle. 

 

A pair of muscles that corresponds to a segment: R-Bic: right bicep (C1), R-Tri: 

right tricep (C2), L-Bic: left bicep (C3), L-Tri: left tricep (C4), R-Thi: right thigh 

(C5), R-Ham: right hamstring (C6), L-Thi: left thigh (C7) and L-Ham: left 

hamstring (C8) 
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There are 20 classes of which 10 are normal and 10 aggressive physical actions. 

● Normal: Bowing, Clapping, Handshaking, Hugging, Jumping, Running, 

Seating, Standing, Walking, Waving 

● Aggressive: Elbowing, Frontkicking, Hammering, Headering, Kneeing, 

Pulling, Punching, Pushing, Sidekicking, Slapping 

 

Database Details: 

Subjects 

Gender 

No. Of  

Subjects 

Sensor 

Place On 

No. Of 

Channels 

No Of 

Readings 

No Of 

Times 

Action  

Performed  

Availability  

Of  Data 

Male 3 Hand & 

Leg 
8 10000 15 Public 

Female 1 

 

Data Set 

Characteristi

cs: 

Time-Series 
Number of 

readings: 

Approx. 

10000 
Area: Physical 

Attributes 

Characteristi

cs: 

Real 
Number of 

Channels:  
8 

Associated 

Tasks: 

Classificatio

n 
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4.1: EMG SIGNAL ACQUISITION AND PROCESSING 

Electromyography (EMG) is a technique for evaluating and recording the 

electrical activity produced by skeletal muscles. EMG is performed using an 

instrument called an electromyograph to produce a record called an 

electromyogram. An electromyograph detects the electric potential generated by 

muscle cells when these cells are electrically or neurologically activated. The 

signals can be analysed to detect abnormalities, activation level, or recruitment 

order, or to analyse the biomechanics of human or animal movement. Needle 

EMG is an electrodiagnostic medicine technique commonly used by neurologists. 

Surface EMG is a non-medical procedure used to assess muscle activation by 

several professionals, including physiotherapists, kinesiologists and biomedical 

engineers. In Computer Science, EMG is also used as middleware in gesture 

recognition towards allowing the input of physical action to a computer as a form 

of human-computer interaction.  

EMG testing has a variety of clinical and biomedical applications. Needle EMG 

is used as a diagnostics tool for identifying neuromuscular diseases, or as a 

research tool for studying kinesiology, and disorders of motor control. EMG 

signals are sometimes used to guide botulinum toxin or phenol injections into 

muscles. Surface EMG is used for functional diagnosis and during instrumental 

motion analysis. EMG signals are also used as a control signal for prosthetic 

devices such as prosthetic hands, arms and lower limbs. Paraspinal sEMG, also 

referred to as paraspinal EMG scanning, has been explored as a technique to 

evaluate abnormal patterns of electrical activity in the paraspinal muscles in 

individuals with back pain symptoms such as spasm, tenderness, limited ROM, 

or postural disorders. The technique is performed using electrodes placed on the 

skin surface, with recordings made at rest, in various positions, or after a series 

of exercises. 
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4.1.1: Electrodes, Placement and Preparation 

Skin Preparation: 

● Thoroughly clean the skin of any oils, creams, dirt, dead skin etc. 

● Use water to clean the area and ensure skin is fully dry before placing the 

electrodes on the skin. 

● If hairy, use beard trimmers or scissors to clip the hair. Do not shave the area 

as this cause tiny micro abrasions which will make the stimulation 

uncomfortable. 

● Ensure there are no wrinkles on the electrodes when placed on the skin 

 

Electrode Size: 

Any muscle lying under an electrode will be stimulated. Therefore, select the 

correct size to ensure only the muscles you want to target are stimulated. 

Standard sizes are: 

● 1.25 inch/3.2cm round: Consider these smaller electrodes for smaller 

muscles e.g., around the thumb. 

● inch/5cm round: Most commonly used size. 

● by 3.5 inch/5cm by 9cm rectangular: Consider these large rectangle 

electrodes for larger muscles such as hamstrings and quadriceps 

  

Looking after your electrodes: 

● The key to longevity of electrodes is slowing down the drying out of them 

when not in use. 

● When removed from the skin, slightly moisten the sticky side of the electrode 

(a damp fingertip works well). 

● Place the clear backing back on the sticky side after moistening. 

● Place the electrodes back in their bag for storing. 

● Typically, standard electrodes will last about 30 applications.  
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Electrode Placement – Most commonly used: 

● Wrist and Finger extension: 1 lead with 2 electrodes. Place 1 electrode just 

up from the wrist on the finger extensor motor point and place the 2nd 

electrode further up the forearm on the tendinous part. 

● Grasp - Finger flexion with thumb flexion and adduction: 1 lead with 2 

electrodes. Place 1 electrode near the wrist on the underside of the forearm 

and the 2nd electrode over the fleshy part at the base of the thumb. 

● Alternating between Wrist/Finger extension and Wrist/Finger flexion: 2 

leads. First lead is the same electrode placement for wrist and finger 

extension. The second lead has one electrode placed near the wrist on the 

underside of the forearm and the 2nd electrode about midway up the 

underside of the forearm. 

● Elbow flexion: 1 lead, 2 electrodes. Both electrodes placed mid upper arm 

on the biceps muscle. Ensure they have a minimum of 2 fingers space 

between them. 

● Elbow extension: 1 lead, 2 electrodes. Both electrodes placed on the back 

of the upper arm on the triceps muscle. Ensure they have a minimum of  2 

fingers space between them. 

● Shoulder Subluxation: 2 options available. Option 1 is with 1 lead and 2 

electrodes where 1 electrode is placed on supraspinatus (the fleshy part just 

up from the shoulder blade) and 1 electrode on posterior deltoid (the back 

of the upper arm, just beneath the subluxation gap). Option 2 is with 2 

leads. Set up lead 1 as per option 1 above. On lead 2 place 1 electrode on 

the middle of the upper arm and the 2nd electrode on the front of the upper 

arm; both positioned just beneath the subluxation gap. 
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4.1.2: EMG SIGNAL ACQUISITION  

 

Electromyography (EMG) is a diagnostic procedure that evaluates the health 

condition of muscles and the nerve cells that control them. These nerve cells are 

known as motor neurons. They transmit electrical signals that cause muscles to 

contract and relax. An EMG translates these signals into graphs or numbers, 

helping doctors to make a diagnosis. 

  

 

Figure 4.1.2.1: Muscle contraction 

 

The electrical activity picked up by the electrodes is displayed on an oscilloscope. 

An audio-amplifier is used so the activity can be heard. EMG measures the 

electrical activity of muscle during rest, slight contraction, and forceful 

contraction. Muscle tissue does not normally produce electrical signals during 

rest. When an electrode is placed, a brief period of activity can be seen on the 

oscilloscope. 
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Figure 4.1.2.2: Muscle signal 

 

How EMG is measured? 

Surface EMG assesses muscle function by recording muscle activity from the 

surface above the muscle on the skin. Surface electrodes are able to provide only 

a limited assessment of muscle activity. Surface EMG can be recorded by a pair 

of electrodes or by a more complex array of multiple electrodes. More than one 

electrode is needed because EMG recordings display the potential difference 

between two separate electrodes. 

 

Figure 4.1.2.3: Basic EMG acquisition method 
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4.1.3 : RAW DATA PROCESSING IN MATLAB 

 

Data collection and source 

The source of our dataset is ‘EMG Physical Action Dataset’ found on UCI 

Machine Learning repository. The dataset was provided by ‘Theo Theodoridis 

from the School of Computer Science and Electronic Engineering at the 

University of Essex’. The data was obtained from an experimental study done at 

Essex involving three male and one female subject (Age 25 – 30) who have 

experienced aggression in scenarios such as physical fighting. The subjects were 

asked to perform the following ten normal and ten aggressive activities: 

 

Normal: Bowing, Clapping, Handshaking, Hugging, Jumping, Running, Seating, 

Standing, Walking, Waving. 

Aggressive: Elbowing, Front Kicking, Hammering, Headering, Kneeing, Pulling, 

Punching, Pushing, Side kicking, Slapping 

 

The performance of each subject was recorded using an EMG apparatus which 

involved placing eight skin-surface electrodes on different muscles of the 

subjects: R-Bic: right bicep, R-Tri: right tricep, L-Bic: left bicep, L-Tri: left 

tricep, R-Thi: right thigh, R-Ham: right hamstring, L-Thi: left thigh, L-Ham: left 

hamstring. 

 

The eight electrodes take continuous records of muscles for each activity. There 

are about 10,000 samples per activity, with a sampling frequency of 200Hz and 

about 15 actions in each experimental session for each subject. One data frame 

records activity for one action. Since there are 20 actions per subject, and there 

are four subjects, we have a total of 80 data frames. A single data frame represents 

an action which contains approximately 10,000 rows and eight columns 
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representing each channel. The aggressive actions vary from normal actions in 

terms of frequency, amplitude and signal pattern. 

 

Raw Data Visualization and Processing 

To see how the data looks like we use a python script to visualize the raw data in 

jupyter notebook using a Python script. 

 

Figure 4.1.3: (a) Sub1 Standing and (b) Sub1 Hammering 
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The difference between the muscle signals of normal and aggressive activities 

regarding both pattern and amplitude scale can be seen in the Figure 4.1.3 (a & 

b). The data is noisy and unclean because the electrical signal interacts with blood 

vessels and tissues between the skin and muscle. 

 

Using MATLAB, we rectified the data by converting the signal to a single 

polarity, to ensure that signals don’t get disrupted during analysis. The Savitzky-

Golay filter was applied to smoothen the data and eliminate noise. A Savitzky-

Golay filter is a digital filter that can be applied to a set of digital data points for 

the purpose of smoothing the data and to increase the precision of the data without 

distorting the signal. This is a process known as convolution where by fitting 

successive sub-sets of adjacent data points with a low-degree polynomial by the 

method of linear least squares. When the data points are equally spaced, an 

analytical solution to the least-squares equations can be found, in the form of a 

single set of "convolution coefficients" that can be applied to all data sub-sets, to 

give estimates of the smoothed signal, (or derivatives of the smoothed signal) at 

the central point of each subset. The method, based on established mathematical 

procedures, was popularized by Abraham Savitzky and Marcel J. E. Golay, who 

published tables of convolution coefficients for various polynomials and subset 

sizes in 1964. The method has been extended for the treatment of 2D and 3D data. 

 

Applications: 

The data consists of a set of points {xj, yj}, j = 1, ..., n, where xj is an independent 

variable and yj is an observed value. They are treated with a set of m convolution 

coefficients, Ci, according to the expression 
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For example, for smoothing by a 5-point quadratic polynomial, m = 5, i = −2, 

−1, 0, 1, 2 and the jth smoothed data point, Yj, is given by 

 

where, C−2 = −3/35, C−1 = 12 / 35, etc. There are numerous applications of 

smoothing, which is performed primarily to make the data appear to be less noisy 

than it really is. The following are applications of numerical differentiation of 

data. 

When calculating the nth derivative, an additional scaling factor of may be 

applied to all calculated data points to obtain absolute values. The data which we 

get after  Savitzky-Golay filter is clean and processed. 

 

Moving average: 

A moving average filter is commonly used with time series data to smooth out 

short-term fluctuations and highlight longer-term trends or cycles. It is often used 

in technical analysis of financial data, like stock prices, returns or trading 

volumes. It is also used in economics to examine gross domestic product, 

employment or other macroeconomic time series. An unweighted moving 

average filter is the simplest convolution filter. Each subset of the data set is fitted 

by a straight horizontal line.  

 

Feature engineering in time series: 

In supervised learning, feature engineering aims to scale strong relationships 

between the new input and output features. The time series modelling or 

sequential modelling there is no input variable to the model or any output 

variable. Since the features of data and methods about the time series modelling 

work in a different nature, this data consists of time features in the data with some 

values that are changing with the time feature. 
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By looking at such data the features of any time series data are the time or the 

main feature used in modelling is time and that is also responsible for predicting 

good results. In time series it is required to perform feature engineering with the 

time variable. 

 

Tsfresh library: 

Feature engineering plays a crucial role in many of the data modelling tasks. This 

is simply a process that defines important features of the data using which a model 

can enhance its performance. In time series modelling, feature engineering works 

in a different way because it is sequential data and it gets formed using the 

changes in any values according to the time. 

 

Tsfresh package: 

tsfresh is an open-source python package that helps in feature engineering of time 

series data. The time series is sequential data so this package can also be used 

with any kind of sequential data. One thing that is mandatory about the data it 

should have generated using an independent variable. For example, in time-series 

data the time variable is an independent variable. 

Utilizing this tool, we can extract features and perform analysis based on the new 

insights. Feature extraction is also helpful in making clusters from the time series 

or we can also perform classification and regression tasks using feature 

extraction. The package is compatible with pandas library for data manipulation 

and also it is compatible with the sklearn library that helps us in providing various 

machine learning models. 
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IMPLEMENTATION: 

After the installation of the tsfresh, we can use the package. We have to extract 

time-series features from each of action data frames to feed it to classification 

models. Each action data frame contains the particular action performed about 15 

times so there are 15 crest and troughs of the wave in the data. The individual 

time- series actions is divided into many smaller windows and extracted features 

for each window using sliding/moving window approach. After every fixed 

interval of record, the features are extracted using sliding - window approach. 

 

The features extracted from the windows will represent the original data. There 

have approximately 10,000 records in each action data frame, so we considered 

the following three combinations of extracting features: 

● Action window of size 500 records sliding after every 50 records. 

● Action window of size 800 records sliding after every 80 records. 

● Action window of size 1000 records sliding after every 100 records. 

For all three combinations, we extracted all possible time-series features tsfresh 

could calculate. So each action data frame was converted into a new factorized 

data frame with 6305 columns and different rows. 

 

Modelling Methods: 

We did classify actions into normal and aggressive. Since there are 10 normal and 

10 aggressive actions for each subject, we assigned the label ‘0’ to normal and 

‘1’ to aggressive actions and stacked them together to get a single data frame 

representing each subject. The classification was done using the following 

models: All the features in our data are numeric, and we have binary output so 

Logistic Regression was used. Random Forest classifier was used since we could 

easily interpret the importance it gives to different features.  

The amount-to-dimensionality ratio is very low. To avoid overfitting, we used 

Linear Logistic regression and Naive Bayes are used. Random Forest classifier 
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was unaffected by the difference in scales between the features in a high 

dimension dataset. Thus, Logistic Regression, Random Forest, and Naive Bayes 

are the classification models. We also used a default random choice model to 

compare the performance of our models. 

 

Standardization: 

Normalizing the dataset is required before machine learning models can be used. 

The muscle activation varies between the subjects when performing the same 

action as each subject vary in terms of age, gender and strength. If normalization 

was not executed, the performance of the models would have been affected as the 

difference in scales of the features prevent the models from learning data better. 

Standardization of all subject is done using mean and variance of subject. Scikit-

learn standard scalar used to convert data into standard normal distribution. 

 

Scikit Learn: 

Scikit-learn (formerly scikits.learn and also known as sklearn) is a free software 

machine learning library for the Python programming language. It features 

various classification, regression and clustering algorithms including support-

vector machines, random forests, gradient boosting, k-means and DBSCAN, and 

is designed to interoperate with the Python numerical and scientific libraries 

NumPy and SciPy. Scikit-learn is a NumFOCUS fiscally sponsored project. 

The scikit-learn project started as scikits.learn, a Google Summer of Code project 

by French data scientist David Cournapeau. Its name stems from the notion that 

it is a "SciKit" (SciPy Toolkit), a separately-developed and distributed third-party 

extension to SciPy] The original codebase was later rewritten by other developers. 

In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent 

Michel, all from the French Institute for Research in Computer Science and 

Automation in Rocquencourt, France, took leadership of the project and made the 

first public release on February the 1st 2010. Of the various scikits, scikit-learn 
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as well as scikit-image were described as "well-maintained and popular" in 

November 2012. Scikit-learn is one of the most popular machine learning 

libraries on GitHub. Scikit-learn is largely written in Python, and uses NumPy 

extensively for high-performance linear algebra and array operations. 

Furthermore, some core algorithms are written in Cython to improve 

performance. Support vector machines are implemented by a Cython wrapper 

around LIBSVM; logistic regression and linear support vector machines by a 

similar wrapper around LIBLINEAR. In such cases, extending these methods 

with Python may not be possible. Scikit-learn integrates well with many other 

Python libraries, such as Matplotlib and plotly for plotting, NumPy for array 

vectorization, Pandas dataframes, SciPy, and many more. 

 

Four-fold cross-validation: 

Database has poor amount to dimensionality ratio. Thus, we require four-fold 

cross validation in which there is training models on three subjects and testing on 

one left out the subject in each loop. For each cross-validation loop: 

Calculated the confusion matrix, accuracy, recall, false-positive rate, true-

positive rate and precision at 50% cut-off. There is also ROC curve and 

corresponding AUC value at each time to assess the models at different cut-off 

values. There is an overall ROC curve generalizing the performance of models. 

Accuracy and ROC curve are two important metrics for choosing a particular 

model. Accuracy is the metric that will tell us how correctly the models can 

classify the unseen labels and informs us of the model’s generalization capability. 

ROC curves tell us the overall performance of the model irrespective of the cut-

off threshold selected and hence tell us about the utility of the model. 
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Cross-validation (statistics): 

Cross-validation, sometimes called rotation estimation or out-of-sample testing, 

is similar model validation techniques for assessing how the results of a statistical 

analysis will generalize to an independent data set. Cross-validation is a 

resampling method that uses different portions of the data to test and train a model 

on different iterations. It is mainly used in settings where the goal is prediction, 

and one wants to estimate how accurately a predictive model will perform in 

practice. In a prediction problem, a model is usually given a dataset of known 

data on which training is run (training dataset), and a dataset of unknown data (or 

first seen data) against which the model is tested (called the validation dataset or 

testing set). The goal of cross-validation is to test the model's ability to predict 

new data that was not used in estimating it, in order to flag problems like 

overfitting or selection bias and to give an insight on how the model will generalize 

to an independent dataset. 

One round of cross-validation involves partitioning a sample of data into 

complementary subsets, performing the analysis on one subset (called the training 

set), and validating the analysis on the other subset (called the validation set or 

testing set). To reduce variability, in most methods multiple rounds of cross-

validation are performed using different partitions, and the validation results are 

combined (e.g. averaged) over the rounds to give an estimate of the model's 

predictive performance. 

 

Exhaustive cross-validation: 

Exhaustive cross-validation methods are cross-validation methods which learn 

and test on all possible ways to divide the original sample into a training and a 

validation set. 
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LOGISTIC REGRESSION: 

 

In statistics, the (binary) logistic model (or logit model) is a statistical model that 

models the probability of one event (out of two alternatives) taking place by 

having the log-odds (the logarithm of the odds) for the event be a linear 

combination of one or more independent variables ("predictors"). In regression 

analysis, logistic regression (or logit regression) is estimating the parameters of a 

logistic model (the coefficients in the linear combination). Formally, in binary 

logistic regression there is a single binary dependent variable, coded by an 

indicator variable, where the two values are labelled "0" and "1", while the 

independent variables can each be a binary variable (two classes, coded by an 

indicator variable) or a continuous variable (any real value). The corresponding 

probability of the value labelled "1" can vary between 0 (certainly the value "0") 

and 1 (certainly the value "1"), hence the labelling] the function that converts log-

odds to probability is the logistic function, hence the name. The unit of 

measurement for the log-odds scale is called a logit, from logistic unit, hence the 

alternative names. 

 

Binary variables are widely used in statistics to model the probability of a certain 

class or event taking place, such as the probability of a team winning, of a patient 

being healthy, etc., and the logistic model has been the most commonly used 

model for binary regression since about 1970.  Binary variables can be 

generalized to categorical variables when there are more than two possible values 

(e.g., whether an image is of a cat, dog, lion, etc.), and the binary logistic 

regression generalized to multinomial logistic regression. If the multiple 

categories are ordered, one can use the ordinal logistic regression (for example 

the proportional odds ordinal logistic model). The logistic regression model itself 

simply models probability of output in terms of input and does not perform 
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statistical classification (it is not a classifier), though it can be used to make a 

classifier, for instance by choosing a cut-off value and classifying inputs with 

probability greater than the cut-off as one class, below the cut-off as the other; 

this is a common way to make a binary classifier. 

 

Logistic regression is used in various fields, including machine learning, most 

medical fields, and social sciences. For example, the Trauma and Injury Severity 

Score (TRISS), which is widely used to predict mortality in injured patients, was 

originally developed by Boyd et al. using logistic regression. Many other medical 

scales used to assess severity of a patient have been developed using logistic 

regression. Logistic regression may be used to predict the risk of developing a 

given disease (e.g. diabetes; coronary heart disease), based on observed 

characteristics of the patient (age, body mass index, results of various blood tests, 

etc.). The technique can also be used in engineering, especially for predicting the 

probability of failure of a given process, system or product. It is also used in 

marketing applications such as prediction of a customer's propensity to purchase 

a product or halt a subscription, etc. In economics it can be used to predict the 

likelihood of a person ending up in the labour force, and a business application 

would be to predict the likelihood of a homeowner defaulting on a mortgage. 

Conditional random fields, an extension of logistic regression to sequential data, 

are used in natural language processing. 
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RANDOM FOREST: 

 

Random forests or random decision forests is an ensemble learning method for 

classification, regression and other tasks that operates by constructing a multitude 

of decision trees at training time. For classification tasks, the output of the random 

forest is the class selected by most trees. For regression tasks, the mean or average 

prediction of the individual trees is returned. Random decision forests correct for 

decision trees' habit of overfitting to their training set. Random forests generally 

outperform decision trees, but their accuracy is lower than gradient boosted trees. 

However, data characteristics can affect their performance. 

 

The first algorithm for random decision forests was created in 1995 by Tin Kam 

Ho using the random subspace method, which, in Ho's formulation, is a way to 

implement the "stochastic discrimination" approach to classification proposed by 

Eugene Kleinberg. An extension of the algorithm was developed by Leo Breiman 

and Adele Cutler, who registered "Random Forests" as a trademark in 2006 (as 

of 2019, owned by Minitab, Inc.).The extension combines Breiman's "bagging" 

idea and random selection of features, introduced first by Ho and later 

independently by Amit and Geman in order to construct a collection of decision 

trees with controlled variance. 

 

Random forests are frequently used as "blackbox" models in businesses, as they 

generate reasonable predictions across a wide range of data while requiring little 

configuration. The general method of random decision forests was first proposed 

by Ho in 1995. He established that forests of trees splitting with oblique 

hyperplanes can gain accuracy as they grow without suffering from overtraining, 

as long as the forests are randomly restricted to be sensitive to only selected 

feature dimensions. A subsequent work along the same lines concluded that other 

splitting methods behave similarly, as long as they are randomly forced to be 
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insensitive to some feature dimensions. Note that this observation of a more 

complex classifier (a larger forest) getting more accurate nearly monotonically is 

in sharp contrast to the common belief that the complexity of a classifier can only 

grow to a certain level of accuracy before being hurt by overfitting. The 

explanation of the forest method's resistance to overtraining can be found in 

Kleinberg's theory of stochastic discrimination. 

 

The early development of Breiman's notion of random forests was influenced by 

the work of Amit and Geman who introduced the idea of searching over a random 

subset of the available decisions when splitting a node, in the context of growing 

a single tree. The idea of random subspace selection from Ho was also influential 

in the design of random forests. In this method a forest of trees is grown, and 

variation among the trees is introduced by projecting the training data into a 

randomly chosen subspace before fitting each tree or each node. Finally, the idea 

of randomized node optimization, where the decision at each node is selected by 

a randomized procedure, rather than a deterministic optimization was first 

introduced by Thomas G. Dietterich. 

 

The proper introduction of random forests was made in a paper by Leo Breiman. 

A method of building a forest of uncorrelated trees using a CART like procedure, 

combined with randomized node optimization and bagging. This paper combines 

several ingredients, some previously known and some novel, which form the 

basis of the modern practice of random forests, in particular: 

● Using out-of-bag error as an estimate of the generalization error. 

● Measuring variable importance through permutation. 

The report also offers the first theoretical result for random forests in the form of 

a bound on the generalization error which depends on the strength of the trees in 

the forest and their correlation. 
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NAIVE  BAYES: 

 

In statistics, Naive Bayes classifiers are a family of simple "probabilistic 

classifiers" based on applying Bayes' theorem with strong (naive) independence 

assumptions between the features (see Bayes classifier). They are among the 

simplest Bayesian network models, but coupled with kernel density estimation, 

they can achieve high accuracy levels. 

 

Naive Bayes classifiers are highly scalable, requiring a number of parameters 

linear in the number of variables (features/predictors) in a learning problem. 

Maximum-likelihood training can be done by evaluating a closed-form 

expression, which takes linear time, rather than by expensive iterative 

approximation as used for many other types of classifiers. 

 

In the statistics literature, naive Bayes models are known under a variety of 

names, including simple Bayes and independence Bayes. All these names 

reference the use of Bayes' theorem in the classifier's decision rule, but naive 

Bayes is not a Bayesian method. 

 

Naive Bayes is a simple technique for constructing classifiers: models that assign 

class labels to problem instances, represented as vectors of feature values, where 

the class labels are drawn from some finite set. There is not a single algorithm for 

training such classifiers, but a family of algorithms based on a common principle: 

all naive Bayes classifiers assume that the value of a particular feature is 

independent of the value of any other feature, given the class variable. For 

example, a fruit may be considered to be an apple if it is red, round, and about 10 

cm in diameter. A naive Bayes classifier considers each of these features to 

contribute independently to the probability that this fruit is an apple, regardless 

of any possible correlations between the colour, roundness, and diameter features. 
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In many practical applications, parameter estimation for naive Bayes models uses 

the method of maximum likelihood; in other words, one can work with the naive 

Bayes model without accepting Bayesian probability or using any Bayesian 

methods. Despite their naive design and apparently oversimplified assumptions, 

naive Bayes classifiers have worked quite well in many complex real-world 

situations. In 2004, an analysis of the Bayesian classification problem showed 

that there are sound theoretical reasons for the apparently implausible efficacy of 

naive Bayes classifiers. Still, a comprehensive comparison with other 

classification algorithms in 2006 showed that Bayes classification is 

outperformed by other approaches, such as boosted trees or random forests. An 

advantage of naive Bayes is that it only requires a small number of training data 

to estimate the parameters necessary for classification. 
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4.2: ROS and Gazebo 

Gazebo Model: 

Fig 4.2.1: A arm model simulated in Gazebo 

 

Fig 4.2.2: A arm in Gazebo after manual control 
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The Gazebo model is an application in the robot operating system where in the 

user can build their own structure using predefined blocks such as square, 

triangle, rectangle, circle and so on.  

The Figure 4.2.1 and 4.2.2 show the model in gazebo. These blocks can be 

arranged in x,y,z plane. The blocks can be moved in any space by giving proper 

joints angle. The blocks may be moving or may be at static place. The blocks can 

also be moved by giving proper rotation, revolute, prism etc. We took blocks such 

as cylinder and square joints which represents 5 DOF arm and can be joint using 

proper links. By giving proper parameters to joints we could move the arm. 

 

Rviz Execution: 

Fig 4.2.3: 5 DoF model movement 
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Fig 4.2.4: Different model axis 

 

Assume that we know the starting point of the robot, a desired final point of the 

robot, the geometrical description of the robot and geometrical description with 

the motion panning is the technique to find an optimum path that moves the robot 

gradually from the start. Figure 4.2.3 and 4.2.4 show the model in Rviz and the 

DoF movement by manual control. 

In case of a robotic arm, the motion planner finds the trajectory consisting of joint 

spaces of each joint in which the links of the robot should never collide with the 

environment, avoid self-collision between two links and also not violate the joints 

limits.  

 

Degree of Freedom (DoF): 

A ‘Degree of Freedom’ (DoF) as it relates to robotic arms, is an independent joint 

that can provide freedom of movement of the manipulator, either in a rotational 
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or translational (linear) sense. For every geometric axis that a joint can rotate 

around or extend along, this is counted as a Single Degree of Freedom.  In theory, 

there are quite a few types of joints that provide varying numbers of degrees of 

freedom in terms of rotation and translation (see the chart below). In practice, 

however, most robotic arms will be made up of a series of joints that provide one 

degree of freedom. The two most common joints are: 

● Revolute Joint: Providing one degree of rotational freedom 

● Prismatic Joint: Providing one degree of linear freedom 

 

 

Figure 4.2.5: Human arm DoFs 

 

As seen in Figure 4.2.5, the shoulder joint has 3 degrees of freedom: front and 

back flexion, internal and external expansion, internal and external rotation, the 

elbow joint with 1 degrees of freedom: flexion, the forearm with 1 degrees of 

freedom: pronation, supination, and the wrist with 2 degrees of freedom: back 

bends, surround.  

 



 

73 
 

Types of Different Joints Used in Robots: 

1. Revolute (Rotary) Joints Provide One degree-of-freedom (DOF) for the Robot 

Links: A revolute joint is like a door hinge. It provides one DOF of motion 

between two bodies that it connects. The rotation is around the joint axis, and 

the positive rotation can be determined using the right-hand rule.  

2. Linear (sliding) Joints Provide One degree-of-freedom (DOF) for the Robot 

Links: A linear, sliding, or prismatic joint provides a linear motion between 

two links. It will again provide only one DOF between two links: Linear 

(sliding) Joints Provide One degree-of-freedom for the Robot Links.  

3. Universal Joints Provide Two Degrees of Freedom for the Links they Connect: 

It is the universal joint, which is two revolute joints with joint axes orthogonal 

to each other thus, it can provide two rotational DOFs around roll and pitch 

axes that are x and y axes. 

4. Spherical Joints Provide Three Degrees of Freedom Between the Connecting 

Links: The spherical, ball-and-socket, or shoulder joint can provide three 

DOFs, which are two degrees of freedom of the joint plus spinning about the 

joint axis. 

5. Cylindrical Joints Provide Two Degrees of Freedom Between the Connecting 

Links: It is a cylindrical joint that can provide an independent translation and 

rotation about a single fixed joint axis; thus, it has two DOFs.  

6. Helical Joints Provide One Degree of Freedom Between the Rigid Bodies they 

Connect: The joint is the helical, or screw joint that provides a simultaneous 

rotation and translation about a screw axis and can provide one degree of 

freedom. The difference between this joint and the cylindrical joint is that in 

the cylindrical joint, the rotation and translation are independent, thus 

providing us with 2 DOFs, but in the helical joint, this motion is simultaneous, 

so it only has 1 DOF.  
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KINEMATICS 

Kinematics is a branch of classical mechanics that describes the motion of points, 

bodies (objects),and systems of bodies(groups of objects) without considering the 

forces that caused the motion. Kinematics, as a field of study, is often referred to 

as the "geometry of motion" and is occasionally seen as a branch of mathematics. 

A kinematics problem begins by describing the geometry of the system and 

declaring the initial conditions of any known values of position, velocity and/or 

acceleration of points within the system.  

 

Kinematics studies the motion of bodies without consideration of the forces or 

moments that cause the motion. Robot kinematics refers the analytical study of 

the motion of a robot manipulator. Formulating the suitable kinematics models 

for a robot mechanism is very crucial for analysing the behaviour of industrial 

manipulators. 

 

Kinematics is used in astrophysics to describe the motion of celestial bodies and 

collections of such bodies. In mechanical engineering, robotics, and 

biomechanics kinematics is used to describe the motion of systems composed of 

joined parts (multi-link systems)such as an engine, a robotic arm or the human 

skeleton. Kinematic analysis is the process of measuring the kinematic quantities 

used to describe motion. In engineering, for instance, kinematic analysis may be 

used to find the range of movement for a given mechanism and working in 

reverse, using kinematic synthesis to design a mechanism for a desired range of 

motion. 
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Forward of kinematics: 

Forward Kinematics refers to the use of the kinematic equations of a robot to 

compute the position of the end-effector from specified values for the joint 

parameters. The forward kinematic equations can be used as a method in 3D 

computer graphics for animating models.  

The essential concept of forward kinematic animation is that the positions of 

particular parts of the model at a specified time are calculated from the position 

and orientation of the object, together with any information on the joints of an 

articulated model. So for example if the object to be animated is an arm with the 

shoulder remaining at a fixed location, the location of the tip of the thumb would 

be calculated from the angles of the shoulder, elbow, wrist, thumb and knuckle 

joints. Three of these joints (the shoulder, wrist and the base of the thumb) have 

more than one degree of freedom, all of which must be taken into account. If the 

model were an entire human figure, then the location of the shoulder would also 

have to be calculated from other properties of the model.  

Forward kinematic animation can be distinguished from inverse kinematic 

animation by this means of calculation - in inverse kinematics the orientation of 

articulated parts is calculated from the desired position of certain points on the 

model. It is also distinguished from other animation systems by the fact that the 

motion of the model is defined directly by the animator - no account is taken of 

any physical laws that might be in effect on the model, such as gravity or collision 

with other models.  

 

Inverse Kinematics: 

In computer animation and robotics, inverse kinematics is the mathematical 

process of calculating the variable joint parameters needed to place the end of a 

kinematic chain, such as a robot manipulator or animation character's skeleton, in 
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a given position and orientation relative to the start of the chain. The reverse 

process that computes the joint parameters that achieve a specified position of 

end-effector is known as inverse kinematics.  

 

Inverse kinematics is also used to recover the movements of an object in the world 

from some other data, such as a film of those movements, or a film of the world 

as seen by a camera which is itself making those movements. This occurs, for 

example, where a human actor's filmed movements are to be duplicated by an 

animated character. 

 

In robotics, inverse Kinematics makes use of the kinematics equations to 

determine the joint parameters that provides desired position for each of the 

robot's end-effectors. Specification of the movement of a robot so that its end-

effectors achieve the desired tasks is known as motion planning. Inverse 

kinematics transforms the motion plan into joint actuator trajectories for the 

robot.  

 

The movement of a kinematic chain, whether it is a robot or an animated 

character, is modelled by the kinematics equations of the chain. These equations 

define the configuration of the chain in terms of its joint parameters. Forward 

kinematics uses the joint parameters to compute the configuration of the chain, 

and inverse kinematics reverses this calculation to determine the joint parameters 

that achieve a desired configuration.  

 

While analytical solutions to the inverse kinematics problem exist for a wide 

range of kinematic chains, computer modelling and animation tools often use 

Newton's method to solve the non-linear kinematics equations. Other applications 

of inverse kinematic algorithms include interactive manipulation, animation 

control and collision avoidance.  
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4.3: 3D Design and Development 

3D design is the process of using computer-modelling software to create an object 

within a three-dimensional space. This means that the object itself has three key 

values assigned to it in order to understand where it exists within the space. The 

object can be created from simple shapes all the way up to complex high-polygon 

models. A polygon is one triangle, and it takes many triangles to make a circle or 

complex object. 

We designed a models to give wide flexibility and also fit perfectly for the 

average person and be comfortable to wear and use. The model was designed in 

Solidworks. 

 

Figure 4.3.1: Back part of the model 

Figure 4.3.1 is the back plate of the model which is used to support the weight of 

the whole exoskeleton system. This plate will be attached to the body with some 

belts around the chest area. There will be a motor connected to the at one end of 

the plate where it will also be connected to the shoulder curve part of the model 

for more flexibility. 
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Figure 4.3.2: Shoulder curve of the model 

Figure 4.3.2 is the shoulder curve part of the exoskeleton which gives support and 

more freedom for the movement of the shoulder joint. It is connected to the bicep 

part of the model. 

 

 

Figure 4.3.3: Bicep Part of the model 
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Figure 4.3.3 is the bicep part of the model which will also be connected to the 

shoulder curve part along with motors and the other end is connected to the arm 

part of the model along with another motor. This will act like the main load 

bearing support.  

 

 

Figure 4.3.4: Hand part of the model 

Figure 4.3.4 is the fore arm part of the model which has a handle bar where the 

wrist will be positioned for support. This will help with elbow movement for 

activities like eating and waving. 
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Figure 4.3.5: Handle part of the model 

Figure 4.3.5 is the handle bar for the support of the wrist. It is small and light 

weight and it is helpful for resting of the wrist. 

 

 

Figure 4.3.6: Demo motor of the model 
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Figure 4.3.7: Final Model 

 

Figure 4.3.6 is just a sample demo which represents the motor and the Figure 

4.3.7 is the entire 3D model of the exoskeleton designed and developed in 

Solidworks using various individual parts and connecting them together to form 

the final model. 
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4.4: Hardware Setup 

Myoware Muscle Sensor 

The Myoware Muscle Sensor from Advancer Technologies measures, filters, 

rectifies, and amplifies the electrical activity of a muscle and produces an analog 

output signal that can easily be read by a microcontroller, enabling novel, muscle-

controlled interfaces. This muscle sensor from Advancer Technologies measures 

a muscle’s activity by monitoring the electric potential generated by muscle cells. 

This is referred to as electromyography (EMG). The sensor amplifies and 

processes the complex electrical activity of a muscle and converts it into a simple 

analog signal that can easily be read by any microcontroller with an analog-to-

digital converter (ADC), such as an Arduino or even a Maestro servo controller. 

As the target muscle group flexes, the sensor’s output voltage increases. The 

exact relationship between the output voltage and the muscle activity can be fine-

tuned using an on-board gain potentiometer. 

 

The Myoware Muscle Sensor is an updated version of Advancer Technologies’ 

older Muscle Sensor v3 with a number of improvements, notably single-supply 

operation (no need for a negative voltage supply) and built-in snap connectors for 

electrodes. Other new features include a raw EMG output, reverse power 

protection, a power switch, and LED indicators. In order to attach to skin, the 

sensor requires three electrodes (not included) that snap into the sensor’s snap-

style connectors, which make it easy to attach and detach electrodes. Two 

connectors are located directly on the PCB, and the third is located at the end of 

the attached reference electrode cable. 
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Figure 4.4.1: Sensor Layout 

 

 

Figure 4.4.2: Sensor with Surface Electrodes 

 

 

Analog to digital conversion: 

The digitization process of the analog signal is carried out with an Analog to 

Digital Converter (ADC). Nowadays, the ADC has become a common 

component of modern electronic devices. Their use has become highly varied and 

widespread. Before using the ADC, its specifications, advantages and limitations 

have to be analysed in order to select the most appropriate one for the application.  

Control of the motor will be developed after the EMG signal is converted into 

digital format. A particular ADC has a specific range of conversion i.e. there are 
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maximum and minimum levels defined for an ADC over which it can operate. 

An ADC can convert the analog signal over a certain number of bits. The number 

of bits which an ADC can convert is known as its “quantization scheme”. If an 

ADC has a defined range and a quantization scheme of ‘n-bits’. After the EMG 

signal has been amplified up to a suitable level, the range of an ADC should be 

selected so that it can comprehend a particular voltage level. The number of 

quantization bits is important, as they determine the resolution of the ADC. The 

more the number of quantization bits, the less will be resolution of the ADC; the 

more it will help in control purposes. The ADC sampling rate is also a key 

consideration. It should be kept as large as possible so that the data loss of EMG 

is kept at a minimum. 

 

The ADC on the Myoware Sensor is AD8648 

The AD8648 is a quad, rail to-rail, input and output, single supply amplifier 

featuring low offset voltage, wide signal bandwidth, and low input voltage and 

current noise. The combination of 24 MHz bandwidth, low offset, low noise, and 

very low input bias current makes these amplifiers useful in a wide variety of 

applications. Filters, integrators, photodiode amplifiers, and high impedance 

sensors all benefit from the combination of performance features. AC 

applications benefit from the wide bandwidth and low distortion. The AD8648 

family offers high output drive capability, which is excellent for audio line drivers 

and other low impedance applications. Applications for the part include portable 

and low powered instrumentation, audio amplification for portable devices, 

portable phone headsets, bar code scanners, and multipole filters. The ability to 

swing rail to rail at both the input and output enables designers to buffer CMOS 

ADCs, DACs, ASICs, and other wide output swing devices in single-supply 

systems.  
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Surface Electrodes: 

 

Figure 4.4.3 

Surface EMG electrodes provide a non-invasive technique for measurement and 

detection of EMG signal. The theory behind these electrodes is that they form a 

chemical equilibrium between the detecting surface and the skin of the body 

through electrolytic conduction, so that current can flow into the electrode. These 

electrodes are simple and very easy to implement. Application of needle and fine 

wire electrodes require strict medical supervision and certification. Surface EMG 

electrodes require no such formalities. Surface EMG electrodes have found their 

use in motor behaviour studies, neuromuscular recordings, sports medical 

evaluations and for subjects who object to needle insertions such as children. 

Apart from all this, surface EMG is being increasingly used to detect muscle 

activity in order to control device extensions to achieve prosthesis for physically 

disabled and amputated population. Surface EMG has some limitations Since 

these electrodes are applied on the skin, hence, they are generally used for 

superficial muscles. Crosstalk from other muscles is a major problem. Their 

position must be kept stable with the skin otherwise, the signal is distorted. 
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EMG signal acquisition circuit diagram: 

 

Figure 4.4.4: Sensor to Arduino Connection 

 

The connection from the Myoware sensor to the Arduino is shown in Figure 4.4.4 

which was used to display data and waveforms on the Serial Plotter and Monitor. 

 

 

Figure 4.4.5: Dual sensor to Arduino Connection 
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The Figure 4.4.5 shows the connection made to obtain dual channel sensor data. 

This is where two Myoware sensors are connected to the Arduino board and the 

signals are given to the two analog pin which can display both the outputs on the 

Serial Monitor and the Serial Plotter. 

 

Servo motor control using Myoware sensor:  

 

 

Figure 4.4.6: Servo Motor control using Sensor 

 

The Figure 4.4.6 and 4.4.7 shows the connections to the motor. Using the 

Myoware sensor we obtain the values and use the data to make the motor move 

on flexing of the muscles.  
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Figure 4.4.7 

 

The Figure 4.4.8 is showing the connection of connecting motors using the motor 

driver control board. 

 

Figure 4.4.8: Multiple Motor control using Sensor 
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Servo Motor: 

 

Figure 4.4.9 

 

This High-Torque MG996R Digital Servo features metal gearing resulting in 

extra high 10kg stalling  torque  in  a  tiny  package.  The  MG996R  is  essentially  

an  upgraded  version  of  the famous  MG995  servo,  and  features  upgraded  

shock-proofing  and  a  redesigned  PCB  and  IC control system that is make 

much accurate than its predecessor. The gearing and motor have also been 

upgraded to improve dead bandwidth and centring. The unit comes complete with 

30cm wire and 3 pin 'S' type female header connector that fits most receivers. 

This high-torque standard servo can rotate approximately 120 degrees (60 in each 

direction). The MG996R Metal Gear Servo also comes with a selection of arms 

and hardware. 

 

DC Worm Gear Motors: 

These simple motors have some great characteristics which make them suitable 

for a wide range of applications. They are generally low speed but capable of 

extremely high torque. Worm drives offer a break feature which means when 

there is no power applied to the worm drive, the load cannot turn the motor. They 

offer a right-angle gearbox for practical mounting in tight spaces. 
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A worm gear drive consists of two elements: 

1. Driving element: Screw 

2. Driven element: Helical gear 

Driving element is called Worm and Driven element is called Worm gear or 

Worm Wheel. Worm gear drives are typically used for transmission of power 

between two non-parallel and non-intersecting shafts. 

 

Figure 4.4.10 

Working: The worm continuously rotates and drives the worm wheel. Worm and 

worm gear from a lower pair as they have sliding contact with each other. In a 

worm gear drive, power is always transmitted from worm-to-worm wheel. Power 

cannot be transmitted from worm wheel to worm. This phenomenon is called self-

locking. It is highly useful in many applications. Velocity ratio is determined by 

the number of teeth on worm gear and the number starts on Worm. Power 

transmission decreases with increase in velocity ratio. 
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Motor Driver Module: 

L298N: The L298N is an integrated monolithic circuit in a 15- lead Multi watt 

and PowerSO20 packages. It is a high voltage, high current dual full-bridge driver 

de-signed to accept standard TTL logic level sand drive inductive loads such as 

relays, solenoids, DC and stepping motors. Two enable inputs are provided to 

enable or disable the device independently of the in-put signals. The emitters of 

the lower transistors of each bridge are connected together rand the corresponding 

external terminal can be used for the connection of an external sensing resistor. 

An additional Supply input is provided so that the logic works at a lower voltage. 
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5.1: RESULTS 

MYOWARE SENSOR OUTPUT WAVEFORMS 

 

Graph 5.1.1: Single Channel 

The above graph shows the output in single channel mode when sensor is placed 

at the biceps where it was flexed twice. 

 

 

Graph 5.1.2: Dual Channel (Normal) 
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Graph 5.1.3: Dual Channel (Flex) 

 

Graph 5.1.2 and 5.1.3 shows the output obtained in Dual Channel mode where 

one sensor was connected to bicep (Blue) and the other sensor was connected to 

tricep (Red). Graph 5.1.2 shows the action was performed twice to get the two 

peaks in the signal and Graph 5.1.3 shows the muscle being flexed more than 

normal to get the signal. 
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DATABASE ANALYSIS 

 

Figure 5.1.1: Raw Data 

The Figure 5.1.1 shows the Raw data of the 8 channels of one of the action from 

the subject that was randomly selected and viewed in MATLAB. 

 

Figure 5.1.2: Processed Data 

The Figure 5.1.2 shows the Processed data of 8 channels viewed in MATLAB. 
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Accuracies obtained from database processing with different techniques: 

1. For 500 window size and 50 step size: 

 

Table 5.1.1: Average Accuracy 

 

Graph 5.1.4: Average Accuracy Graph 

Table 5.1.1 and Graph 5.1.4 show the average accuracies obtained using Four 

Cross Validation method. This accuracy is the average of 4 different 

combinations. 
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2. For 800 window size and 80 step size: 

 

Table 5.1.2: Average Accuracy 

 

Graph 5.1.5: Average Accuracy Graph 

Table 5.1.2 and Graph 5.1.5 show the average accuracies obtained using Four 

Cross Validation method. This accuracy is the average of 4 different 

combinations. 
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3. For 1000 window size and 100 step size: 

 

Table 5.1.3: Average Accuracy 

 

Graph 5.1.6: Average Accuracy Graph 

Table 5.1.3 and Graph 5.1.6 show the average accuracies obtained using Four 

Cross Validation method. This accuracy is the average of 4 different 

combinations. 
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Rviz Output: 

 

Figure 5.1.3: Rviz Simulation 

The above figure shows the output of the model in Rviz. It is a 5 DoF model. The 

node controller is used to adjust and move the arm to different locations. Since 

it’s a 5 DoF model it can be moved and changed position to fit different purpose 

it can be used for. To move the arm a code can be written or the controller can be 

used in this case. 
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3D model output in Solidworks: 

 

Figure 5.1.4: 3D model in Solidworks 

The Figure 5.1.4 was the model made in solidworks which was then given to the 

Don Bosco College of Engineering for 3D printing the model and getting it in the 

physical form for further assessment. 

Figure 5.1.5 is the shoulder part of the printed model. This is the connection 

between the back plate and side plate. 
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Figure 5.1.5: Shoulder part 

 

Figure 5.1.6: Back plate 

The back plate the main support to the body at the back which can be seen in 

Figure 5.1.6 and will help with the overall strength of the model. This back plate 

is joint to the side plate as seen in Figure 5.1.7 which is near the biceps and will 

have a motor attachment at the joints for movement. 
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Figure 5.1.7: Side plate 

 

Figure 5.1.8: Lower arm plate 

This lower arm plate supports the area which is connected to the wrist handle to 

get the support and movements. 

 

 

Figure 5.1.9                     Figure 5.1.10 
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The Figure 5.1.9 and Figure 5.1.10 shows the different parts of the 3d printed 

model joint together to form the whole piece which can have the various 

movements. 

 

 
Figure 5.1.11: Complete model 

The complete model was printed and assembled to show how the connection 

look and how the model feels and weights to check for comfort and strength. 

Figure 5.1.11 shows the front view of the model. 
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5.2: CONCLUSION 

The purpose of this project was to design and develop an upper limb exoskeleton 

using EMG signals which is capable of giving support to the arm and help with 

rehabilitation of the arm. The classification model was made for normal and 

aggressive actions and the data was reviewed further. The simulation was carried 

out in gazebo and rviz software which is used for the path finding and the 

movement of the arm and the 3D model was designed in solidworks software to 

support the whole project. Although the overall system of exoskeleton was not 

led to completion, the success in implementing various sub systems proves that 

there is a possibility of the practical implementation of the project after many 

trials. 
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APPLICATIONS 

Rehabilitation robots have become important tools in stroke rehabilitation. 

Compared to manual arm training, robot-supported training can be more 

intensive, of longer duration and more repetitive. Therefore, robots have the 

potential to improve the rehabilitation process in stroke patients. Whereas a 

majority of previous work in upper limb rehabilitation robotics has focused on 

end-effectors-based robots, a shift towards exoskeleton robots is taking place 

because they offer a better guidance of the human arm, especially for movements 

with a large range of motion. 

  

The exoskeleton arm is found to be useful in diverse situations as mentioned 

below: 

● Disabled people can regain the use of their limbs using the exoskeleton. 

● The exoskeleton can be used as a means of rehabilitation. 

● Industrial workers, dock workers and loaders who are engaged in jobs 

which entail lifting of heavy loads on a daily basis are empowered by the 

exoskeleton. 

● Nurses who have to carry heavy patients can effectively do so with the 

exoskeleton. 

● Exoskeletons have become widely popular in the military field as well, 

helping soldiers to carry armaments over challenging terrain. 
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LIMITATIONS 

● Due to limited power supply, we cannot put motors with more torque and 

weight capacity. 

● There can be issues with the surface electrodes since they are one time use. 

● They cannot stretch or expand and are fixed in size. 

● The measurement of the arm needs to be perfect since there shouldn't be any 

mistake done while 3-D printing the arm because it's expensive to make the 

model again and again and is time consuming. 

● Due to the limitation of the EMG sensor, we would not get the same reading 

frequently as there would be a lot of noise because of the surface of the skin 

and electrode texture. 

● Limited Motion Range where unlike in a human being who has a large range 

of motions that they can perform, certain flexibility. If they have an 

exoskeleton attached to their frame some movement will be restricted.  
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FUTURE WORKS 

Exoskeletons have remarkable potential. But there is still a lot of work to be done 

to reduce the cost and increase the movements it can make along with the increase 

in power supply. Exoskeleton power supplies must be light, reliable and long-

lasting. That combination of qualities is difficult to achieve and very expensive. 

 

In the future we can change the control of the design of the model to make it 

better. A pressure sensor can also be used to get feedback. Furthermore, we can 

try our best to interface it to the brain and make it work with the brain waves. We 

can also design our own EMG sensor to make it cheaper along with an appropriate 

control system to do the entire exoskeleton. We are thinking of designing lower 

limb exoskeleton for the people who are having lower limb issues. 
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APPENDIX 

 

ARDUINO UNO Board: 

 

 

The Arduino Uno is an open-source microcontroller board based on the 

Microchip ATmega328P microcontroller and developed by Arduino.cc. The 

board is equipped with sets of digital and analog input/output (I/O) pins that may 

be interfaced to various expansion boards (shields) and other circuits. The board 

has 14 digital I/O pins (six capable of PWM output), 6 analog I/O pins, and is 

programmable with the Arduino IDE (Integrated Development Environment), via 

a type B USB cable. It can be powered by the USB cable or by an external 9-volt 

battery, though it accepts voltages between 7 and 20 volts. It is similar to the 

Arduino Nano and Leonardo. 
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SPECIFICATIONS: 

Supply current: 9 mA 

Microcontroller ATmega328P 

Operating Voltage 5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limit) 6-20V 

Digital I/O Pins 14 (of which 6 provide PWM output) 

PWM Pins 6( Pin 3, 5, 6, 9, 10, and 11) 

Analog Input Pins 6 

Communication protocol UART x 1, SPI x 1, I2C x 1 

DC Current per I/O Pin 20 mA 

DC Current for 3.3V Pin 50 mA 

ICSP Header 2 

Flash Memory 32 KB (ATmega328P) of which 0.5 KB 

used by the bootloader 

SRAM 2 KB (ATmega328P) 

EEPROM 1 KB (ATmega328P) 

Clock Speed 16 MHz 

LED_BUILTIN 13 

Power Sources Power Jack, USB port, Vin pin 

Length 68.6 mm 

Width 53.4 mm 

Weight 25 g 
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MYOWARE MUSCLE SENSOR 

 

Dimensions 

Size: 2.1″ × 0.8″ 

Weight: 7.5 g 

 

General Specifications 

Minimum operating voltage: 2.9 V 

Maximum operating voltage: 5.7 V 

Reverse voltage protection?: Y 

 

● Adjustable gain 

● Both EMG envelope and raw EMG outputs available 

● Embedded electrode connectors – electrodes snap directly into MyoWare 

(alternatively, external electrode cables can be connected) 

● LED Indicators – one power LED, and one LED that brightens when the 

muscle is flexed 

● Power switch 

● Reverse voltage protection 

● Two mounting holes  
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HIGH TORQUE DC GEARED MOTOR 10RPM 

 

 

 

Stall Torque<kgcm> 120 

Shaft Diameter <mm> 6 

Gear Box Diameter <mm> 37 

Shaft Length <mm> 30 

Motor Length <mm> 63 

Weight In Grams 180 

Gear Box Ratio 1:1620 
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DC Worm Gear Motors 

 
The worm continuously rotates and drives the worm wheel. Worm and worm gear 

from a lower pair as they have sliding contact with each other. In a worm gear drive, 

power is always transmitted from worm-to-worm wheel. Power cannot be 

transmitted from worm wheel to worm. This phenomenon is called self-locking. It 

is highly useful in many applications. Velocity ratio is determined by the number of 

teeth on worm gear and the number starts on Worm. Power transmission decreases 

with increase in velocity ratio. 
 

Specifications 
 

● DC 12V Worm Gear Motor. 

● Metal Net Weight 360gms. 

● Rated Current 0.06A. 

● Rated Torque 35kg.cm. 

● Reduction Ratio 1:634. 

● No Load Speed-Geared Box 5r/min. 

● Motor 3500rpm 

● Gear Box Shaft Size 8x14mm/0.3”x0.55”(DXL). 

● Female Thread Diameter 3mm/0.12” 

● Motor Body Size 55x30mm/2.2”x1.2”. 

● Gear Box Size 58x40x30mm/2.3”x1.6”x1.2”(LxWxH). 

Cable length 18cm/7”. 

Item weight 399g. 

Product dimension 17.8x11.8x4.2cm. 
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L298N Motor Driver (DUAL FULL-BRIDGE DRIVER) 

The L298 is an integrated 

monolithic circuit in a 15-lead multi 

watt and powerSO20 packages. It is 

a high voltage, High Current Dual 

Full Bridge Driver designed to 

accept standard TTL logic Levels 

and Drive inductive loads such as 

relays , solenoids, DC and  Stepping 

Motors. Two enable inputs are 

provided to enable all disable that 

device independently of the input signal. The emitter of the lower transistors of 

each bridge are connected together and the corresponding external terminal can 

be used for the connection of an external sensing register. An additional supply 

input is provided so that the logic works at a lower voltage. 
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Features 

● Operating supply voltage upto 46V. 

● Total DC current up to 4A. 

● LOW saturation Voltage. 

● Over temperature Protection. 

● Logical “0” input voltage up to 1.5v (high noise immunity). 

INPUT 1 INPUT 2 ACTION 

LOW LOW Motor Breaks and Stops* 

HIGH LOW Motor Breaks and Stops* 

LOW HIGH Motor turns backward 

HIGH HIGH Motor Breaks and Stops* 

  

 

To coast a motor to a slower stop, apply a low signal to the enable 1 line. L298N 

circuit used to drive inductive/magnetic loads.one of the lacking features of the 

unit is the lack of parasitic(flywheel) diodes to deal with voltage spikes. D1-D8 

are used for this purpose. They can be 1N5819 or 1N4007 Diodes. 

 

The four power amplifiers and grouped in pairs of two with individual enable pins 

(ENA,ENV) and individual current sense pins.(CSA,CSB) for each pair. The 

current sense pins in general can be tied to ground, but one can insert a low value 

register, whose voltage reading is proportional to current. ENA,ENB and In1-In4 

are all standard 5v TTL logic making connection to most micro  controllers easy. 

ENA will turn on A1 and A2 when with a digital HIGH (5v) and off when LOW 

(0v) the corresponding outputs will be floating when OFF. Same is true of ENV. 
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MG996R Servo Motor 

 

 

This High-Torque MG996R Digital Servo features metal gearing resulting high 

10kg stalling  torque  in  a  tiny  package.  The  MG996R  is  essentially  an  upg

raded  version  of  the famous  MG995  servo,  and  features  upgraded  shock-

proofing  and  a  redesigned  PCB  and  IC control system that is make much 

accurate than its predecessor. The gearing and motor have also been upgraded to 

improve dead band width and centring. The unit comes complete with 30cm wire 

and 3 pin 'S' type female header connector that fits most receivers. This high-

torque standard servo can rotate approximately 120 degrees (60 in each 

direction). The MG996R Metal Gear Servo also comes with a selection of arms 

and hardware to get you set up nice and fast. 

 

 

 

 



 

124 
 

Specifications  

 

● Weight: 55 g  

● Dimension: 40.7 x 19.7 x 42.9 mm approx.  

● Stall torque: 9.4 kgfcm (4.8 V), 11 kg fcm (6 V)  

● Operating speed: 0.17 s/60º (4.8 V), 0.14 s/60º (6 V) 

● Operating voltage: 4.8 V a 7.2 V 

● Running Current 500 mA  

● Stall Current 2.5 A (6V)  

● Dead band width: 5 μs  

● Stable and shock proof double ball bearing design 

● Temperature range: 0 ºC –4.8 V a 7.2 V– 900 mA (6V) double ball bearing 

design55 ºC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


