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ABSTRACT 

The total synthesis of maremycins A, B, C1/C2, D1, and D2 is achieved starting from the natural 

amino acids L-isoleucine and S-methyl-L-cysteine, in which the total synthesis of maremycins B, 

C1/C2, and D2 is accomplished for the first time. The synthesis features a position-selective 

intramolecular bromination process for the synthesis of key chiral building block, a Pd-catalyzed 

indole synthesis for the preparation of (2S,3S)-b-methyltryptophan and hydroxylation of oxindoles 

by molecular oxygen. In addition, the protocol for conversion of maremycins A and B to maremycins 

C and D was improved. A concise synthesis of maremycins A and D1 has been accomplished via 

cycloaddition of a chiral cyclic nitrone with (E)-3-ethylidene-1- methylindolin-2-one as a key step. 

This synthesis clarifies the stereochemistry of the maremycins and is suitable for large-scale 

synthesis for biological screening.
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INTRODUCTION 
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            Maremycin D1                                                                  Maremycin D2 

 

Figure 1- structures of maremycins A-D 

Maremycins A (1), B (2), C1/C2 (3/4), D1 (5), and D2 (6) have a 3- substituted-3-hydroxy-2-

oxindole structural motif, which is present in many bioactive natural products and 

pharmaceutical lead compounds (Fig. 1)1. Maremycins A and B were first isolated from the 

culture broth of Streptomyces species B 9173 by Laatsch and coworkers in 

19952.Maremycins C1/C2 (3/4) as well as D1/D2 (5/6) are diastereomers and were isolated 

as two inseparable mixtures from Streptomyces sp. (GT 051237) by Grabley and co-workers 

in 20013. However, except maremycins B (2) and C (3/4) were reported to have a slight 

cytotoxicity to the L-929 mouse fibroblastoma cell line, K562 human leukemia cell line, and 

Hela human cervix carcinoma cell line (IC50 50.0 lg/mL), these natural products have not 

been found with other potential bioactivity so far. In 2008, Tamura reported the first total 

synthesis of maremycins A and D1 via [3+2] cycloaddition as the key step4  which confirmed 

the stereochemistry of the natural maremycins A and D1 and also established the 

stereochemistry of 2–4, and 6 

LITERATURE REVIEW 

With our ongoing study on the efficient synthesis of indole alkaloids5. we became interested 

in the synthesis of maremycins. Our synthesis was inspired by the proposed biosynthesis of 

the natural product and was based on biomimetic disconnections leading to two ‘amino 

acid’ subunits, L-cysteine and b-methyltryptophan (bMeTrp) (Scheme 1). It was clear that 

one of the main issues was the synthesis of b-MeTrp. In fact, the synthesis of b-MeTrp has 
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received extensive attention6 since it is an important structural moiety of a variety of 

natural products such as telomycin7, chaetoglobisins8, and FR9004529, is known to be the 

biosynthetic precursor of both streptonigrin10 and lavendomycin,11 has been used as a 

bioisostere of amino acid residue of peptide mimetic compounds in the field of peptide-

based drug design12, and has been used as a chiral catalyst for asymmetric Diels–Alder 

reaction13. Optically active bMeTrp has been prepared by either resolution of enantiomers 

or asymmetric synthesis14,15. The asymmetric synthesis includes (a) coupling indole with 

aziridine-2-carboxylate; (b) using Evans’ chiral auxiliaries;16 (c) functionalization of the cyclic 

tryptophan tautomer; (d) diastereoselective addition of the lithium salt of the Schöllkopf 

bis-lactim ether to indole derivatives.Herein, we describe a new synthetic route for the 

synthesis of (2S,3S)-b-MeTrp by using the palladium-catalyzed indole synthesis as key step. 

The (2S,3S)-b-MeTrp was successfully converted into maremycins A–D, in which the total 

synthesis of maremycins B, C1/C2, and D2 is accomplished for the first time. 

Our retrosynthetic analysis of maremycins A–D (1–6) is illustrated in Scheme 1. Maremycins 

D1 and D2 could be obtained by syn-elimination of the sulfoxide of the corresponding 

maremycin A sulfoxide and maremycin C as reported by Tamura. Maremycins C1/C2 (3/4) 

could be obtained by oxidation of maremycin B. In the forward sense, the formation of 

diketopiperazine ring of maremycins A and B could be obtained by the coupling of S-methyl-

L-cysteine (7) and the derivative of tryptophan (8 or 9) followed by intramolecular 

cyclization. Both amino acids 8 and 9 would be available by the oxidation of (2S,3S)-b-MeTrp 

10, which could be prepared by the palladium-catalyzed annulation of N-methyl 2- 

iodoaniline (11) and aldehyde (12). The synthesis of similar chiral aldehyde 12 has been 

reported by many other groups .However, all the existing methods have limitations because 

of the complicated operational procedures and low yields. In 2006, Corey and co-workers 

reported the synthesis of 5-hydroxy-isoleucine derivative 13 from 5-bromo-L-isoleucine 

derivative 14, which was prepared by using a light-initiated position-selective intramolecular 

bromination procedure as key step. We envisioned that the key chiral building block 

aldehyde 12 could be derived from 13 by functional group transformation 
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Scheme 1 – Retrosynthesis analysisof maremycins A-D 

Our synthesis commenced with the preparation of (2S,3S)-bMeTrp 10 as illustrated in 

Scheme 2. Bromide 14 was prepared from 15 following the Corey’s protocol17. Corey’s group 

reported that bromide 14 could be converted into alcohol 13 in a 91% yield by treatment 

with AgNO3 in THF/H2O (1:1). However, in our hand, treatment of 14 under the same 

reaction condition provided the desired alcohol 13 in only a 10% yield, together with the 

nitrate 16 in a 50% yield18. The attempts to perform the direct conversion of 14 to 13 with 

acceptable yield were not successful even after screening many reaction conditions. Since 

reduction of 16 with Zn dust/HOAc could afford the alcohol 13 in nearly quantitative yield19 

we next focused on the optimization of the synthesis of 16 from 14. Finally, under optimized 

conditions (AgNO3, anhydrous CH3CN), 16 was obtained as the sole product in a 96% yield. 

The unstable alcohol 13 was protected as its TBS ether to provide 17 (82%, three steps). 

Attempts to convert compound 17 into N,N-diBoc 18 with Boc2O/DMAP in various solvents 

(THF, CH2Cl2 or CH3CN) failed even by prolonging the reaction time or raising the reaction 
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Scheme 2- synthesis of (2S,3S) )-b–methyltryptophan. 

temperature. We speculated that the steric hindrance of b-methyl group may influence the 

reaction. Gratefully, when the reaction was carried out under solvent-free condition, it 

succeeded to afford 18 in a 95% yield. Desilylation of the TBS ether 18 with HF/Py in THF 

followed by Swern oxidation provided the desired aldehyde 12 in a 78% yield. 

Having succeeded in the synthesis of key chiral aldehyde 12, the stage was set for the Pd-

catalyzed indole synthesis to construct the indole core. Treatment of 12 and N-methyl 2-

iodoaniline (11) under standard conditions provided the desired (2S,3S)-b-MeTrp 10 in only 

a 30% yield. Comparing with the known substrates, the steric hindrance of b-methyl group 

would be responsible for the low yield. After extensive optimization of the reaction 

conditions, we found that removal of H2O produced during the formation of enamine (see 

Supplementary data) and the use of anhydrous DABCO were crucial to obtain higher yield 

(52%). X-ray analysis of crystalline 10 secured its absolute configurational assignment as 

(2S,3S). It is noteworthy that (2R,3S)-b-MeTrp 10a, the epimer of 10, was also obtained in a 
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9% yield, which was produced due to the long reaction time in the presence of base.21b The 

direct oxidation of indole 10 to the 3-hydroxy-2-oxindole turned out to be challenging due to 

the steric hindrance of the bmethyl group (Scheme 3).27 According to the reported protocol, a 

variety of oxidants such as IBX/CeCl3,  DMDO20, m-CPBA, NBS/tBuOH, and 

DMSO/(CH3SO2)2O32 were investigated. However, no desired product was obtained. 

Therefore, we started to explore the indirect strategy. Treatment of 10 with DMSO/HCl (12 

N) resulted in the oxidation of indole along with deprotection of the two Boc groups to 

afford the oxindole 19 as a 1.5:1 diasterisomer mixture in an 87% yield. Oxidation of 

oxindole 19 in an alkaline solution with O2 at 0   ͦC in the presence of P(OEt)3 proceeded 

cleanly and afforded the compounds 8 and 9 in 45% and 55% yields, respectively. The 

diastereoisomers 8 and 9 were separated by reversedphase column chromatography. 

Compound 8 has a higher polarity and its spectroscopic and physical properties (1 H and 13C 

NMR, ½a25 D were identical in all respects to the data of the key intermediate reported by 

Tamura. 

 

Scheme 3- . Synthesis of 3-hydroxy-2-oxindole. 
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Scheme 4- Synthesis of maremycins A (1) and D1 (5). 

Conversion of 8 to maremycin A (1) and D1 (5) was successfully carried out, and we made 

interesting observations (Scheme 4). Treatment of amino acid 8 with TMSCHN2 followed by 

condensation with N-Boc-S-methyl-L-cysteine (7) gave not only the desired methyl ester 20 

but also the lactone 21. In fact, ester 20 is unstable and easily converted into lactone 21 

under a variety of conditions. Fortunately, lactone 21 could also be converted into 

maremycin A (1) in an 86% yield following the same protocol (silica gel in boiling p-xylene) 

as reported for methyl ester 20. Although thermal elimination of sulfoxide from 22 in the 

presence of CaCO3 in refluxing toluene for 24 h could afford maremycin D1 (5) in a 70% 

yield (brsm), we found that the presence of CaCO3 is not necessary when methanol was 

used as the solvent, probably due to the poor solubility and reactivity of 22 in toluene. The 

reaction was completed in methanol at 50 ͦC in 30 min and provided 5 in a 94% yield. The 
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physical properties (1 H and 13C NMR, ½a25 D of the synthesized maremycins A (1) and D1 

(5) matched those reported for the natural products. Similarly, conversion of 9 to 

maremycins B, C, and D2 was shown in Scheme 5. Interestingly, treatment of compound 9 

with TMSCHN2 followed by condensation with N-Boc-S-methyl-L-cysteine gave only lactone 

23 in a 71% yield. Lactone 23 was readily converted into maremycin B (2) and maremycins 

C1/C2 (3/4), which was further transformed to maremycin D2 in methanol in a 75% yield. 

However, thermal elimination of maremycins C1/C2 (3/4) under the Tamura’s conditions 

(CaCO3 in toluene, reflux for 2 days), maremycin D2 was only obtained in less than a 10% 

yield. The spectroscopic and physical data of 2, 3, 4, and 6 were identical in all respects to 

the data reported in the literature, except the optical rotation of maremycin B (2). The 

optical rotation of synthetic 2 was ½a25 D = +78.3 (c 0.28, MeOH), while natural 2 was ½a25 

D = +2.9 (c 0.21, MeOH). In summary, we have accomplished the asymmetric total synthesis 

of maremycins A, B, C1/C2, D1, and D2 from the same precursor (2S,3S)-b-

methyltryptophan, in which the total synthesis of maremycins B, C1/C2, and D2 is 

accomplished for the first time. The synthesis features using three new synthetic 

methodologies, involving position-selective intramolecular bromination process for the 

synthesis of key chiral building block, the Pd-catalyzed indole synthesis for the preparation 

of b-methyl tryptophan and hydroxylation of oxindoles by molecular oxygen. In addition, the 

protocol for conversion of maremycins A and B to maremycins C and DCONC was improved. 
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Scheme 5- Synthesis of maremycins B (2), C1/C2 (3/4), and D2  

Synthesis of Maremycins A and D1 via Cycloaddition of a Nitrone with (E)-3-

Ethylidene-1-methylindolin-2-one 
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 Scheme6- Synthesis of maremycin A and D1 

 

A concise synthesis of maremycins A and D1 has been accomplished via cycloaddition of a 

chiral cyclic nitrone with (E)-3-ethylidene-1- methylindolin-2-one as a key step. This 

synthesis clarifies the stereochemistry of the maremycins and is suitable for large-scale 

synthesis for biological screening. 
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CONCUSION 

. In conclusion, we have accomplished the first synthesis of maremycins A  and D1 , 

featuring cycloaddition of cyclic nitrone 10 with (E)-3-ethylidene-1-methylindolin-2- 

one (9), and thereby conclusively determined the stereochemistries of the natural 

products 1 and 5. In addition, 5 has been fully characterized for the first time. This 

shortstep synthesis is expected to be suitable for obtaining large amounts of the 

natural products for biological screening. 
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