Polyoxmetalates based nano composites: Synthesis and Applications

A M.Sc. Dissertation report by: Trusha P. Kouthanker

School of Chemical Sciences Goa University Goa 403206 April 2022 Polyoxmetalates based nano composites: Synthesis and application's

A DSESSERTION REPORT

Submitted in Partial Fulfillment

Of

The degree M.Sc. (Analytical Chemistry)

By

Trusha P. Kouthanker

To the

School of Chemical Sciences

Goa University

Goa 403206

April 2022

CERTIFICATE

This is to certify that **TRUSHA P. KOUTHANKER** of M.Sc.(Analytical Chemistry) has successfully completed dissertation work on the topic *"POLYOXMETALATES BASED NANO COMPOSITES :SYNTHEIS AND APPLICATIONS"* in the year 2021-2022, it is further certified that this project is the individual work of the candidate.

Dr.vidhyadatta vernekar

Dean of SCS,

Goa University

Dr. Savita Kundaikar Guiding Teacher SCS,Goa university

INDEX

Sr. No.	Title	Page No.	
Ι	Introduction	5	
II	Table for synthesis and applications for	8	
	polyoxometalate based nano composites		
III	Brief about the synthesis and applications	12	
1	Hybrid material of nano composites	12	
2	Nano composite based sensors	12	
3	Antimicrobial agent	13	
4	Short review of gold nanoparticle	14	
5	Synthesis procedure of	15	
	polyoxymethylene(POM)Silver (Ag)		
	nanocomposites		
6	Synthesis of Ag Nanoparticles	16	
7	Sensor based on platinum Nanoparticle	17	
IV	Discussion and Conclusion	19	
V	Acknowledgment	20	
VI	Reference	21	

I. Introduction

There been many research work going on, on Polyoxometalates. The recent study says of multifunctional imaging and Photothermal therapy of Polyoxometalates in year 2020[1] (POMs) are a type of inorganic Polyanionic clusters bearing an architecture consisting of oxygen atoms and primary transition metals, such as Ta, Nb, W, V, and Mo in their maximum state of oxidation they significantly consist of different heteroatoms including As, Si, P, and Ge. It is possible to distinguish between the molecular oxides of POMs and most metal Oxides. MO_x coordination polyhedral are called addenda ions structures contain MO_6 octahedral most commonly, but in some cases MO_5 pentahedral and MO_4 tetrahedral elements also exist. One of the p-block elements can be the heteroatom, Xn^+ .

Among the basic constructions of POMs, two main forms of POMs are Dawson (X/M =2/18) and Keggin (X/M =1/12).[2] They have electronic application in fields such as gas and chemical sensors, electrochromic displays, capacitors, and electrochemical cells.POMs can be used in different application as biotechnology, medicine, nanotechnology, materials science and catalysis.[3] POMs act like a redox catalyst in many different areas such as analytical chemistry, catalysis and medicine. Such as this methods is adsorption of POM on the electrode by dip coating, the electrode position of POM on the electrode surface another method involves, trapping the POMs into conducting polymers accumulated on the electrode surface by utilizing the interaction with conducting polymers. Although studies on sensor applications of POM/conducting polymers composite structure in literature are very limited, the constructing of sensors that utilize superior properties of the POM clusters could provide a numerous advantages in term of sensitivity, selectivity and detection limits.

In recent years conductive polymers have been widely used in amperometric sensor applications for determination of some analytes such as glucose, cholesterol, ethanol. For detection of glucose, electroactive monomers containing the free amine functional group such as SNS-NH₂, m(SNS-NH₂),HKCN,(TBT₆-NH₂) have been synthesized and polymerized on the graphite electrode.[4] Nanocomposite materials have received a great deal of attention of the design, fabrication, and functionalities.[4]

In optics, most of POMs are weakly or even not luminescent. However, the incorporation of them into POMs has put some unique optical property for the materials, as the luminescence of rare-earth metal ions is known to be sensitive to the environment. Several special rare-earth atoms have been added in POMs with different structural morphologies.[5]

Due to their properties such as fast, reversible, multi-electron transfer reactions, unique structural and optical properties, Polyoxometalates (POMs) among various electrocatalytic nanoparticles have the ideal characteristic for sensor applications.

A new research area has been made with the excellent performance like high sensitivity, selectivity and low detection limits of glucose sensors obtained by using POM. For the last few years, carbon-based materials have been extensively used as appropriate matrices for POM compounds because of their electrical conductivity, powerful affinity and good chemical stability. Carbon-based material such as MWCNT are intergrated with excellent features originating from the fast redox transitions of the POM compound and are used as supporting material for POM in the development of the sensor.[6]

Polyoxometalates (POMs) were used, together with Chitosan (CS), to obtain hybrid nanoaggregates. Three typical POMs were efficiently assembled into nanoparticles of few hundred nm diameter, featuring entangled ribbons substructure. POMs have been extensively employed as catalysts for the oxidative degradation of pollutants and for the oxidation of organic substrates.

Several different classes of POMs have been reported as efficient antimicrobial agents in a number of different formulations: polyoxotungstates were used to inhibit the growth of *methicillin*-resistant *Staphylococcusaureus*, since they depress the formation of a penicillin-binding protein with low affinity for *b-lactam*[7]

using nanoparticles can lead to better impact and performance.[8]

The building blocks are often very different in terms of their structure, composition, and physical/chemical properties of a nanocomposite.

Potential synergies deriving from their combinations yields multi-functional composite materials with extraordinary versatility and a wide range of potential applications are combined with the diversity of the constituents. Polyoxometalates (POMs), a huge class of metal oxygen clusters of the early transition elements, are some of the most promising building blocks for nanocomposite materials. POMs have an unmatched range of physical and chemical properties that arise from their seemingly endless variety of molecular structures and Sizes. There are additional properties or functionalities of these molecules have been reported including super acidity, photo or electrochromism , magnetism , and ionic conductivity . However, one of the main properties of polyoxometalates and the one most relevant to this review is their unique electrochemical redox behavior. These molecules shows high stability of their oxidation and reduction states and can participate in fast reversible electron transfer reactions.[4]

Polyoxometalates (POMs) have been found to be good end-capping ligands for gold nanoparticles (AuNPs). Polyoxometalates (POMs) are discrete negatively charged inorganic metal oxide clusters with fascinating properties and applications in various research areas ranging from catalysis to medicine and biology. This is because POM clusters represent a great family of compounds which exhibit a wide range of shapes, sizes and topologies. Due to their polyanionic nature, structural diversity and redox properties, POMs also have been used as end-capping ligands for nanoparticle Synthesis.[9]

In recent decades, increasing interest has been devoted to design and fabrication of novel intercalation composite materials with a variety of desirable physical and chemical properties.[10]

At a molecular level with complementary properties nanocomposite hybrid materials represent an excellent approach to disperse two different compounds, and put them to work for a specifific application.[11]

II .Table for synthetic details and application of polyoxometalate based nano composites.

Sr.	compounds	Synthesis details/	applications	Reference
no.		conditions		
1	fCNFs-POM Cs, P, Mo, and O that form the POM, and C from fCNFs. Cs ₃ PMo ₁₂ O ₄₀ (POM)	Reflux2.5MHNO ₃ / dry 100°C 2 h. malic acid(POM) / solid-state method. nanocomposite CNFs 50%w of POM salt/fCNFs sonicated in DMF (dimethyl formamide) 20 min ultrasound bath, of POM and sonicated /20 min/vacuum-fifiltered/ Millipore filter, dried at 100°C/1 hr.	Hybrid material to work for a specific application	[11]
2	Lcys-SiW ₁₂ microtubes		Enhancing the redox process between L-cysteine and Alkaline gas chemical sensors developed using Lays-SiW ₁₂ microtubes.	[4]
3	Hexagonal boron nitride (2D-hBN) nanosheets		Electrochemical behavior of electrodes was studied	[12]
4	f Na ₃ PW ₁₂ O ₄₀ on TiO ₂	Na ₃ PW ₁₂ O ₄₀ on TiO ₂ /Keggin type of PW ₁₁	Increased the sensor film detection sensitivity and response time photo-induced electron-hole separation,	[2]
5	H ₃ PW ₁₂ O ₄₀ (PTA) and graphene oxide (GO) nanosheets		The composition of PTA/ rGO film/ excellent electrocatalytic activity for	[2]

			the oxidized dopamine DA,	
6	(H ₃ PW ₁₂ O ₄₀ ,	Synthesized by	Functionalized multi-walled	[6]
	POM)	electro-polymerizing 100	carbon nanotubes	
		mM pyrrole	(MWCNs) sheets	
7	Hybrid POMs ((APy)		Amperometric sensor for	[2]
	₆ [H ₂ W ₁₂ O ₄₀])/carboxylic		hydrogen peroxide sensing	
	acid			
	-synthesized			
	SWCNT-based			
8	Only		Detection of H ₂ O ₂ . Fe3+	[2]
	transition-metal-functionali		and Cu2+	
	zed Dawson anions (M = D^{3+}		substituted in POM-doped	
	Fe^{3+} ,		polypyrrole films	
	$Cu^{2+}, Co^{2+})$			
	$([P_2W_{17}O_{61}M]n-)$			
9	Composition of POM/CP		Detection of NOx	[2]
Í	for gas sensing,			L-1
	demonstrating that the			
	nanostructured composition			
	of			
	POM/PPy			
10	Dawson anion		Oxidant to polymerize	[2]
	P ₂ Mo ₁₈		pyrrole in situ	
11	Keggin type		Detection of glucose	[6]
11	Keggin type K_7 [CoIIICoII(H ₂ O)W ₁₁ O ₃₉]	MWCNT synthesized by	Detection of glucose	[6]
	.15H ₂ O (Co-POM)	chemical vapor		
		deposition.		
		arpesition.		
12	POM/CaCO ₃		Elastic modulus and tensile	[8]
	nanocomposites		strength	
13	[H3PW12O40]	Impregnation	Photosensing of acetone	[13]
14	[H ₃ PMo ₁₂ O ₄₀]	Impregnation	Hydrodeoxygenatioand	[13]
			alkylation of phenolics	
15	Na7[PW11O39],	In situ templated sol-gel	Photocatalytic	[13]
	$K_6Na_2[SiW_{11}O_{39}],$	synthesis	degradation of	
	$K_6Na_2[GeW_{11}O_{39}]$ and		malic acid	
16	$\frac{K_6 Na[HBW_{11}O_{39}]}{[(PrrW_{10})(HO))(HO)}$			F103
16	$[\{\text{RuIV}_4(\text{OH})_2(\text{H}_2\text{O})_4\}(\gamma-\text{Si})]$	Fe ₂ O ₃ /FTO Impregnation	Photoanode for	[13]
	W ₁₀ O ₃₄) ₂]	onto a silylated electrode	water splitting	
17	$[H_3PW_{12}O_{40}]$ and	BiVO ₄ /FTO Impregnation	Photoanode for	[12]
1/	$[H_3PW_{12}O_{40}]$ and $K_6[CoW_{12}O_{40}]$	biv 04/r 10 impregnation	water splitting	[13]
18	$[H_{3}PW_{12}O_{40}]$	BiVO ₄ /FTO Impregnation	Photoanode for	[13]
10	LI I3I W 12040		water splitting	[13]
19	(C ₄ H ₁₀ ON) ₂₃ [HN(CH ₂ CH ₂	SnO ₂ (nanorods)/ITO	Photoelectrochemical gas	[13]
17	OH)3]10	Impregnation	sensing of	[12]
		r0	formaldehyde and	
			formaldehyde and	

	[H ₂ FeIII(CN) ₆ (α^2 -P ₂ W ₁₇ O ₆₁		methylbenzene	
	CoII) ₄]·27H ₂ O		detection	
20	[H ₅ PMo ₁₀ V ₂ O ₄₀]	ZnO (within a MOF)	Photoelectrochemical gas	[13]
		Impregnation	sensing devices for	L - J
		1 0	formaldehyde	
21	[H ₃ PMo ₁₂ O ₄₀],	g-C ₃ N ₄ (mesoporous),	Methanol oxidation	[13]
	$[H_3PW_{12}O_{40}],$	graphitic carbon		[]
	$(NH_4)_3[PMo_{12}O_{40}],$	(N-doped) and		
	$(NH_4)_3[PW_{12}O_{40}]$	activated carbon		
		Impregnation		
22	Na ₁₀ [Co ₄ (H ₂ O) ₂ (PW ₉ O ₃₄) ₂]	g-C ₃ N ₄ /FTO	Photoelectrochemical CO ₂	[13]
22		Hydrothermal	reduction	[10]
		Interaction-Hydroen	reduction	
		bonding		
23	[H4SiW12O40]	C ₃ N ₄ (KOH-modified,	Photocatalytic N ₂	[12]
23		functionalized)	fixation	[13]
		Impregnation	lixation	
		Interact-Covalent		
24				F 4 7
24	CNF and MWCNT	refluxing for 7 h / 2M		[4]
		HNO3 + 0.5 M H2SO4,		
		/sonicated / 50 or 75 wt%		
		/Keggin POM PMo ₁₂ O ₄₀		
		3(PMo ₁₂).		
25	POMs (NH4)6V10O28,	, NH4VO3 for	Antimicrobial agent	[7]
	$H_5PMo_{10}V_2O_{40}$ and	$(NH_4)_6V_{10}O_{28}, Na_2MoO_4$		
	$Na_4W_{10}O_{32}$	2H ₂ O and Na ₂ HPO ₄		
		12H ₂ O for		
		$H_5PV_2Mo_{10}O_{40}, Na_2WO_4$		
		$2H_2O$ for Na ₄ W ₁₀ O ₃₂ ,		
		sodium hydroxide and		
		glacial acetic		
		acid./Deionized water.		
26	TiO ₂ /PW ₁₁ Ti		Excellent acetone gas	[2]
77	2D-hBN		sensing capabilities	[10]
27	2D-nBN	ultra-violet light	Electroanalytical sensor	[12]
		$+H_3PW_{12}O_{40}$ (1 mL,		
		1.0 mM) /2DhBN		
		nanosheets /reduced POM		
		(1:1)/ mixed		
		for 3.5 h./1.0 mM H ₂ PtCl ₆		
		/sonicated		
		stirred -45 min dried at		
		80 °C for 3 h.		
28	Au/POM composites	Impregnation	Catalyst	[14]

29	K6[P2W17O61-	4-((11-(thio)-	Capping ligand	[15]
	(PO2C17H26SH)2]	undecyl)oxy)phenylphospho	11 0 0	
		nic acid and the		
		monolacunary		
		precursor K10[P2W17O61]		
		were combined by an acid-mediated		
		condensation reaction in		
		acetonitrile		
30	Ni-CoWO4 (NCW-NPs)	Ni(NO3)2.6H2O and		[16]
		Co(NO3)2.6H2O was		
		dissolved /water /heated at		
		50 °C for 30 min		
		Na2WO4.2H2O /heated/		
		30 min		
		centrifuged and		
		washed / product		
		air calcined at 600 °C with		
		a heating rate of 10		
		∘C/min for 5 h.		
31	Gold nanoparticles		Excellent catalytic	[17]
	(AuNPs)		properties for nitrite	
			oxidation	
32	AuNDs and smarkens	Crambana gulfida wag	Detect nitrite concentration	[17]
32	AuNPs and graphene	Graphene sulfide was	Detect mirite concentration	[17]
	sulfide (SG)	deposition on the glassy carbon electrode and then		
	nanocomposites	AuNPs were adsorbed on		
		the electrode by		
		electrostatic attraction		
33	Nano composites		Catalysis for water	[18]
	(Ag-Fe ₂ O ₃)		oxidation and for the	
			oxidation of carbon	
			monoxide	
34	Keggin-type	In virto synthesis	Anticancer treatment	[19]
	polyoxometalates			
	(POMs) [PW12O40]3-,			
	[TiW11CoO40]7-, and			
	[Ti2PW10O40]7-			
35	$K_6CoW_{12}O_{40}$	Anchored on TiO2	Prevent agglomeration	[20]
		through	and calcining	
		immobilizing in MIL-101		

III . Brief about the synthesis and applications mentioned above

1. Hybrid material of nano composites

They prepared nanocomposite hybrid materials based on previously oxidized carbon nanofibers (fCNFs) and polyoxometalates (POM) in year 2007. They analyzed fCNFs by XRD and TEM where observed that the presence of carbon nanocoils, and the removal of amorphous carbon and thinfibers. The nanocomposite hybrid sample (fCNFs-POM) microstructure was observed and analyses revealed the presence of Cs, P, Mo, and O that form the POM, and C from fCNFs. Confirmation shows the intact presence of both components that conform the hybrid, where their interaction was not evident, so the presume a chemisorption of POM onto fCNFs through carbonyl groups. Finally, solid-state symmetric super capacitor cells were assembled, showing higher capacitance values (120mF/g) for the cell with hybrid electrodes, revealing the pseudocapacitive contribution of POM aside from the double layer of CNFs.CNFs were functionalized in order to oxidize the surface and create carbonyl groups by means of a reflux procedure. Cs₃PMo₁₂O₄₀ (POM) was synthesized using a solid-state [11]

2.Nano composite based sensors(Keggin type K7[CoIIICoII(H2O)W11O39].15H2O (Co-POM))

They have studied analytical performance of (K_7 [CoIIICoII(H₂O)W₁₁O₃₉].15H₂O)/MWCNT composite for detection of glucose. Co-POM compound consisting of specific mixed-valence Co (III) and Co (II) structures is an influential for non-enzymatic sensor with high electrocatalytic activity toward the detection of glucose, there are many glucose sensor application studies have been published. However no paper has been reported on glucose sensing, using mixed-valence Co(III) and Co(II)K₇[CoIIICoII(H₂O)W₁₁O39].15H₂O.

When the structural properties of Co-POM are examined, it is manifests that, the oxidation process of central CoIII and the presence of the environmental CoII are the two main components that enables Co-POM to have considerable stability and catalytic activity. Accordingly, CoPOM as active sensing materials is appropriate to carbon based prodused electrochemical non-enzymatic glucose sensor. Due to synergistic effect of Co-POM and MWCNT, obtained novel sensor platform demonstrated short response time, good performance, high sensitivity and selectivity with linear range.[6]

3. Antimicrobial agent [$(NH_4)_6V_{10}O_{28}$, $H_5PMo_{10}V_2O_{40}$ and $NA_4W_{10}O_{32}$]

Polyoxometalates (POMs) were used, together with chitosan (CS), to obtain hybrid nanoaggregates. Three representative POMs were efficiently assembled into nanoparticles of few hundred nm diameter, featuring entangled ribbons substructure. The assemblies were characterized in solution by UV-Vis spectroscopy in order to establish suitable preparation and stability conditions, dynamic light scattering and f-potential. The nanoparticles were tested against E. coli in aqueous solution, showing a synergic activity of the heteropolyacidH₅PMo₁₀V₂O₄₀ and CS. For such components, a highly porous and antibacterial film was obtained upon lyophilisation of the colloidal mixture.

Low molecular weight CS (40–90 kDa), TPP, hydroquinone (HQ) and b-nicotinamide adenine dinucleotide. POMs (NH₄) $_{6}V_{10}O_{28}$, H₅PMo₁₀V₂O₄₀ and Na₄W₁₀O₃₂ were synthesized. Starting materials for POMs synthesis, NH₄VO₃ for (NH₄) $_{6}V_{10}O_{28}$, Na₂MoO₄2H₂O and Na₂HPO₄12H₂O for H₅PV₂Mo₁₀O₄₀, Na₂WO₄2H₂O for Na₄W₁₀O₃₂, sodium hydroxide and glacial acetic acid . Mueller–Hinton broth (OXOID), *agar–agar* (Sigma–Aldrich) and bacteriological peptone (OXOID) were used to carry out the antibacterial activity[7] tests. *E. coli* (ATCC 25922) was chosen as the test microorganism. Deionized water was produced by a Sartorius Arium water purification system.

4. Short review of gold nanoparticle

The role of polyoxometalates (POMs) in the synthesis and stabilization of gold nanoparticles (Au NPs)

is reviewed in light of many of the recent developments. The vitality of these hybrid materials is discussed with many examples of POMs and different synthesis techniques. Also, applications of these newly emerging hybrid materials in many different fields such as electrocatalysis, photocatalysis, biomass catalysis, oxidation of alkenes, bio-sensing, and medicinal use are highlighted. Limitations in these applications are indicated, and areas of future applications that could be explored in these wide ranging hybrid materials are described.

In recent years, the study of nanoparticles (NPs) has been a vast area of research owing to size-dependent chemical and physical properties which allow tuning of NP properties. Techniques for the synthesis of nanomaterials with a preset size, shape, and chemistry are the focus of many research groups. Metal NPs possess many interesting spectroscopic, electronic, optical, magnetic, catalytic, and chemical characteristics that result from their small size and high surface/volume ratio. In addition, the control of NP size and composition influences electronic structure and catalytic properties.

NPs are prepared through self-assembly into ordered and stable organizations mediated by surfactants, ligands,

and other different factors that are not always intuitive but are critical to reproducibility. Different hydrophobic compounds like alkylamines, alkanethiols, and cationic surfactants have been employed to induce NPs toward self organization, and different geometrical forms of gold nanoparticles (Au NPs) have been synthesized that have numerous applications for devices such as optical gratings, antireflective surface coatings, sensing, biodiagnostics, surface-enhanced Raman spectroscopy, and DNA detection .

The different forms of Au NPs are acknowledged as effective catalysts for industrially vital reactions including oxidations and hydrogenations and also different biological and biomedical applications. Capability of the Au NPs as oxidation catalysts highly depends upon size with smaller NPs as better catalysts. This observation makes the inhibition of sintering or aggregation of NPs an important objective, and much work has been devoted to NP supports as well as the support's influence on activity and recyclability. Polyoxometalates (POMs) possess high potential as supports for NPs as their stability is enhanced by high charge, as well as avoiding sintering of the NPs . However, there is little research to the point of mechanism for anions (especially POMs) in stabilizing and tuning the properties of Au NPs are concerned .[1]

5. Synthesis procedure of polyoxymethylene(POM)Silver (Ag) nanocomposites.

Materials

Polyoxymethylene (POM) was obtained by Yunnan, Yuntianhua Co., Ltd., Shanghai, China. The melt flow index of POM is 2.5 g/10 min at 230 °C with a standard weight of 2.16 kg, and the density of POM is 1.40 g/cm3. Silver nitrate (99.8%), oleic acid (99%), anhydrous ethanol (99.7%), n-propylamine (98%), and ascorbic acid (99.7%).

6. Synthesis of Ag Nanoparticles

The silver nitrate was reduced by ascorbic acid to prepare Ag nanoparticles, under the stability of oleic acid and n-propylamine. Therefore, the as-synthesized Ag nanoparticles were coated with a monolayer of surfactants consisting of oleic acid and the n-propylamine. The detailed preparation process and characterization of the Ag nanoparticles can be found in a previously published papers.

Preparation of POM/Ag Nanocomposites

By melting processing method in a torque rheometer POM/Ag nanocomposites were prepared.

The mixing process has continued for 10 min at 190 °C, and the roller speed was 60 rpm. In addition,

POM and Ag nanoparticles were both dried in vacuum oven overnight at 80 °C before melt processing to

get rid of moisture.

It was found that Ag nanoparticles easily aggregated in POM. In addition, when the content of Ag nanoparticles was low (≤ 1 wt%), it was difficult to observe larger-size clusters of Ag nanoparticles, and most of

the clusters of Ag nanoparticles were smaller than 200 nm. Simultaneously, the clusters of Ag nanoparticles separated from each other. However, when the content of Ag nanoparticles increased to 2 wt%, it easily formed the larger-size clusters of Ag nanoparticles (\geq 200 nm). This result proved that when the content of Ag nanoparticles was low (\leq 1 wt%), the monolayer surfactants on the surface of Ag nanoparticles had a strong effect and passivated the surface of Ag nanoparticles, which effectively inhibited the large-scale agglomeration of

Ag nanoparticles. However, when the content of Ag nanoparticles reached 2 wt%, they would be easily aggregated together due to monolayer surfactants of Ag nanoparticles with weak effect, which resulted in poor dispersion of Ag nanoparticles in POM. This result was consistent with the analysis result of SEM images of POM/Ag nanocomposites in theprevious paper [13]. Synthetic procedure is given in te figure 1. Below.

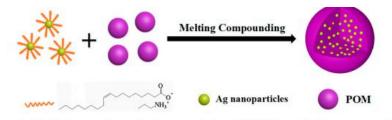


Figure 1. Synthesis procedure of polyoxymethylene (POM)/silver (Ag) nanocomposites.

7. Sensor based on platinum Nanoparticle

In this study, a novel electrochemical method as a conductive voltammetric sensor for determination of N-hy-droxysuccinimide was developed The N-hydroxysuccinimide sensor was achieved by carbon paste electrode (CPE) amplified with tri-component nanohybrid composite (Platinum nanoparticle/Polyoxometalate /Two dimensional hexagonal boron nitride nanosheets) (PtNPs/POM/2D-hBN) and 1-hexyl-3-methylimidazolium chloride (HMICl) as conductive mediators. A significant decrease (110mV) in the oxidation over voltage and significant increased (2.4times) in the current of the N-hydroxysuccinimide were observed using HMIC1-PtNPs/POM/2D-hBN/POMBNS/CPE. Further more. the HMIC1-PtNPs/POM/2D-hBN/POMBNS/CPE exhibited a good linearity from 0.1 to 300 µM and detection limit 60 nM for determination of N-hydroxysuccinimide. The capability to N-hydroxysuccinimide promote the electron exchange between and the HMIC1-PtNPs/POM/2D-hBN/POMBNS/CPE exhibited a novel analytical strategy for fabrication of water pollutant sensor..[12]

Polymer-dispersed liquid crystals (PDLCs) are widely used in electrically switchable windows. Their valuable advantages such as low operating voltage, high contrast ratio, requiring no extra optical elements (i.e. polarizer), quick electro optical response, no leakage of materials, simple fabrication, low-cost production and ease of processing make them more popular over other display technologies.[21]

IV. Discussion and Conclusion

The developments in nanostructured particles and nanocomposite materials have a large impact on our day today life applications, the present study provide overview of nanocomposite applications and method of synthesis. In this review, we have briefly described some of the previous studies, which provided different types of nanoparticles with advantages therein to prepare the nanostructured particles.

From the above data we can say that there are more application of sensors of nanocomposite materials. The hybrid materials are also can be the topic of discussion, there could be many applications. This review shows there is wide applications for the use of POM-based composites as sensors. The future growth of POM/nanocarbon compositions is not limited. It is also seen that nanocoposites are widely utilized in the fabrication of biomaterials and nanomaterials of which many applications have been explored and developed in fields such as material science, biology, medicine and nanotechnology. finally we conclude that by this review, detection sensors are most studied in nanocomposite of POMs and has a wide application and different methods ; Impregnation , deposition, electro polymerization, Pyrolysis ,sol-gel etc .and more applications to add.

ACKNOWLEGMENT

It is indeed a great sense of joy achieved to see this project completed. It has been very faithful and joyful learning experience for me. A project on which i have worked on, named *"Polyoxometalate based nano composites :synthesis and applications "*could have not been possible without significance guidance and a lot of hard work. The fruit of this hard work comes from good guidance, so i thank my project guide Dr. SAVITA KUNDAIKAR Ma'am who have helped me during the project and without his help this project would not have been possible.

Reference

- U. Jameel, M. Zhu, X. Chen, and Z. Tong, "Recent progress of synthesis and applications in polyoxometalate and nanogold hybrid materials," *J. Mater. Sci.*, vol. 51, no. 5, pp. 2181–2198, 2016, doi: 10.1007/s10853-015-9503-1.
- H. Khalilpour *et al.*, "Application of Polyoxometalate-based composites for sensor systems: A review," *J. Compos. Compd.*, vol. 3, no. 7, pp. 129–139, Jun. 2021, doi: 10.52547/jcc.3.2.6.
- [3] R. Ayranci, Y. Torlak, T. Soganci, and M. Ak, "Trilacunary Keggin Type Polyoxometalate-Conducting Polymer Composites for Amperometric Glucose Detection," *J. Electrochem. Soc.*, vol. 165, no. 13, pp. B638–B643, 2018, doi: 10.1149/2.1061813jes.
- [4] M. Genovese and K. Lian, "Polyoxometalate modified inorganic-organic nanocomposite materials for energy storage applications: A review," *Current Opinion in Solid State and Materials Science*, vol. 19, no. 2. Elsevier Ltd, pp. 126–137, Apr. 01, 2015. doi: 10.1016/j.cossms.2014.12.002.
- [5] M. Serhan *et al.*, "Total iron measurement in human serum with a smartphone," in *AIChE Annual Meeting, Conference Proceedings*, 2019, vol. 2019-November. doi: 10.1039/x0xx00000x.
- [6] R. Ayranci, Y. Torlak, and M. Ak, "Non-Enzymatic Electrochemical Detection of Glucose by Mixed-Valence Cobalt Containing Keggin Polyoxometalate/Multi-Walled Carbon Nanotube Composite," *J. Electrochem. Soc.*, vol. 166, no. 4, pp. B205–B211, 2019, doi: 10.1149/2.0581904jes.

- [7] G. Fiorani *et al.*, "Chitosan-Polyoxometalate Nanocomposites: Synthesis,
 Characterization and Application as Antimicrobial Agents," *J. Clust. Sci.*, vol. 25, no.
 3, pp. 839–854, 2014, doi: 10.1007/s10876-013-0685-x.
- [8] A. Z. Zakaria and K. Shelesh-Nezhad, "The effects of interphase and interface characteristics on the tensile behaviour of POM/CACO3 nanocomposites," *Nanomater*. *Nanotechnol.*, vol. 4, no. 1, 2014, doi: 10.5772/58696.
- [9] S. Martín, Y. Takashima, C. G. Lin, Y. F. Song, H. N. Miras, and L. Cronin,
 "Integrated Synthesis of Gold Nanoparticles Coated with Polyoxometalate Clusters," *Inorg. Chem.*, vol. 58, no. 7, pp. 4110–4116, Apr. 2019, doi: 10.1021/acs.inorgchem.8b03013.
- T. Li, H. N. Miras, and Y. F. Song, "Polyoxometalate (POM)-Layered Double
 Hydroxides (LDH) composite materials: Design and catalytic applications," *Catalysts*, vol. 7, no. 9, pp. 7–10, 2017, doi: 10.3390/catal7090260.
- [11] S. A. Mexicana de Física México Cuentas-Gallegos, A. Cuentas-Gallegos, M. Gonzales-Toledo, and M. Rincón, "Nanocomposite hybrid material based on carbon nanofibers and polyoxometalates," 2007. [Online]. Available: http://www.redalyc.org/articulo.oa?id=57028299017
- [12] H. Karimi-Maleh *et al.*, "An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples," *J. Mol. Liq.*, vol. 310, Jul. 2020, doi: 10.1016/j.molliq.2020.113185.
- [13] A. S. Cherevan, S. P. Nandan, I. Roger, R. Liu, C. Streb, and D. Eder,
 "Polyoxometalates on Functional Substrates: Concepts, Synergies, and Future Perspectives," *Advanced Science*, vol. 7, no. 8. John Wiley and Sons Inc., Apr. 01, 2020. doi: 10.1002/advs.201903511.

- [14] H. Li *et al.*, "Mercapto-functionalized porous organosilica monoliths loaded with gold nanoparticles for catalytic application," *Molecules*, vol. 24, no. 23, Nov. 2019, doi: 10.3390/molecules24234366.
- [15] C. Martin *et al.*, "Redox-Active Hybrid Polyoxometalate-Stabilised Gold Nanoparticles," *Angew. Chemie - Int. Ed.*, vol. 59, no. 34, pp. 14331–14335, Aug. 2020, doi: 10.1002/anie.202005629.
- [16] F. A. Alharthi *et al.*, "Hydrothermal Synthesis, Characterization and Exploration of Photocatalytic Activities of Polyoxometalate: Ni-CoWO 4 Nanoparticles Characterization and Exploration of Photocatalytic Activities of Polyoxometalate: Ni-CoWO 4," 2021, doi: 10.3390/cryst.
- [17] D. Li, T. Wang, Z. Li, X. Xu, C. Wang, and Y. Duan, "Application of graphene-based materials for detection of nitrate and nitrite in water—a review," *Sensors (Switzerland)*, vol. 20, no. 1. MDPI AG, Jan. 01, 2020. doi: 10.3390/s20010054.
- [18] N. Ross and N. Civilized Nqakala, "Electrochemical Determination of Hydrogen Peroxide by a Nonenzymatic Catalytically Enhanced Silver-Iron (III) Oxide/Polyoxometalate/Reduced Graphene Oxide Modified Glassy Carbon Electrode," *Anal. Lett.*, vol. 53, no. 15, pp. 2445–2464, 2020, doi: 10.1080/00032719.2020.1745223.
- [19] A. Manuscript et al., "RSC Advances".
- [20] M. Serhan *et al.*, "Total iron measurement in human serum with a smartphone," *AIChE Annu. Meet. Conf. Proc.*, vol. 2019-Novem, 2019, doi: 10.1039/x0xx00000x.
- [21] M. Jamil, F. Ahmad, J. T. Rhee, and Y. J. Jeon, "Nanoparticle-doped polymer-dispersed liquid crystal display," *Curr. Sci.*, vol. 101, no. 12, pp. 1544–1552, 2011.