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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-

ject: MAT - 651 Discipline Specific Dissertation of the program M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: "Application of Graph Theory in Air

Traffic ". In this survey, each section of the chapter uses a graph theory based algorithm

to solve the problem of graph partitioning, and find partitions of the graph with respect

to the given objective.

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of the DAC (Dynamic

Air Configuration) problem, which deal with the formation of new sectors of a given

air network, with the presence of different constraints which effect the formation of the

flight paths, sectors and network.

SECOND CHAPTER:

This chapter deals with DAC method using which the data of air network and sectors to

form a weighted graph, then the graph partitioning of the weighted graph is then done

with the help of Voronoi diagrams to form a new weighted graph according to required

objectives. The k-means algorithm is then used to partition the graph into subgraphs and

finally the weights are balanced to reduce the workload of each sector.

THIRD CHAPTER:

The paper presents a new method for DAC which is based on a weighted graph model
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by applying GWGC algorithm and ODLB algorithm in combination with a Heuristic

algorithm to partition a given airspace into sectors while also taking in accounts different

parameters and objectives.
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ABSTRACT

Air travel being a prominent mode of travelling we have an increased number of

flights travelling each day, with the increase in flights there is also an increase in casu-

alties, time delay and other issues that have made air traffic control and management a

very crucial part of air traffic. There is a need of managing the air traffic in real time by

changing routes, while maintaining the air traffic so as to minimize the casualties and

other problem faced during the flight while also using the routes optimally with a safe

network and inturn improving the service provided.

The main aim of this article is to study the application of graph theory in DAC (Dynamic

Air Configuration), study the methods to create a new flight network within a given time

frame and with the data provided to us, methods to find optimal edge cut to improve

the workload balance between airports is also studied, with the use of graph partitioning

on weighted graphs, using the likes of voronoi diagrams to form different sectors these

sectors are used to form new subgraphs using the K-means algorithm.

Keywords: Air traffic, DAC, Weighted graphs, Edge cut, Voronoi diagram, graph

partitioning, sectors, K-means algorithm.
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Chapter 1

INTRODUCTION

In air traffic management since there are only several controllers it becomes impossible to

put all air crafts under surveillance, flying in the whole air space of a nation, the airspace

is usually divided into smaller regions known as sectors, and each sector is under the

observation of one or more controllers. In this manner the air craft count is not supposed

to exceed the controllers ability to monitor.

Figure 1.1: Sectors in Air Space

1
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The configuration of the fixed sectors correspond to the way that relatively few

aircraft fly along the fixed air routes. The airspace characterized by fixed air routes and

fixed sectors is referred to as a structured and static one. With the improvement and

innovation in air traffic, routes structure and demands have changed over the years, while

a big number of flights traverse through the same routes simultaneously at different flight

levels, there is an increase in the number of flight delay and they arise due to various

reasons such as bad weather and traffic congestion. The solution to this problem can be

attained partly by improving the method in which the flight changes its air routes, instead

of following fixed routes during the flight at all times. Consequently the sector counts

and boundary vary with traffic change. This is a dynamic airspace configuration problem

(DAC).

Dynamic airspace configuration (DAC), is an encouraging concept proposed to convert

airspace sectorization from the structured and static airspace to a dynamic one capable

of accommodating dynamically changing traffic demand. A lot of research on DAC

has been carried out, and most scholars completed DAC by describing the airspace as a

model and then adopting a proper algorithm to partition the airspace into sectors.

Due to the graph model being embedded with information on underlying topological

structure of the airspace, it usually helps to consider the factors such as air routes and key

points, i.e., airports, crossing points as well as waypoints for DAC. Therefore, the graph

model is preferred in this study [1]. Furthermore, we also consider traffic flows along air

routes which are used to compute the workloads. The workloads can be assigned as the

edge weights and the vertex weights. Such topological structure with traffic flows can

be described as a weighted graph mathematically. Thus, the weighted graph model is

adopted for DAC here. And it is different from the traditional weighted graph that only

edges are assigned with weights, here we obtain an undirected graph with the weights on

both vertices and edges, where traffic information incorporated. This is the key feature of

our graph model. The airspace has several constraint that are taken into account. These
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constraints must be used while forming the sectors.

The first is workload constraint. The constraint points out that the workload of each

sector should be below a threshold and the workloads of those sectors are balanced, it

also ensures that workload of each sector does not exceed the controller’s capacity to

control the aircrafts while the workloads are evenly distributed among designed sectors.

The second is geometric constraints consisting of the route based convexity constraint,

connectivity constraint and minimum distance constraint. The convexity indicates that

an aircraft should not enter the same sector twice.

Figure 1.2: Convexity Constraint

The connectivity constraint is that a sector is not fragmented.

Figure 1.3: Connectivity Constraint

The minimum distance constraint means that the distance between the sector bound-

aries and the key points as well as the distance between the boundaries and the air routes

is not less than a given minimum value.
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Figure 1.4: Distance Constraint

The geometric constraints ensure that the controller have adequate time to control

the aircraft and to solve conflicts which may happen. These constraints are critical to

ensure the safety of aircrafts. Hence, the above constraints are considered thoroughly in

the study [3].

There are a several metrics for workload such as traffic mass, aircraft count, dynamic

density, and so on [1]. Computing workload metrics other than aircraft count might have

taken more factors into accounts. However, there is no evidence that Traffic Mass and

dynamic density are more effective than aircraft count for DAC. Workload metric other

than aircraft count might be prohibitive in practical application. Thus, aircraft count is

adopted as workload metric in this study.

DAC method based on a weighted graph model is developed in the study. We set up

a weighted graph model for a given airspace which accurately describes the airspace

structure information and traffic data. The procedure begins with constructing an undi-

rected graph model for the given airspace, of which the vertices represent the key points

such as airports, waypoints, and the edges represent the air routes. [2] The, vertices are

then used as the sites of Voronoi diagram which divides the airspace into units called

cells, and aircraft counts of both cell and air route are computed. By assigning both the

vertices and the edges with those aircraft counts, a graph model is built up. Furthermore,

in order to facilitate the discussion, the graph model is simplified into a weighted graph

model whose vertices have a one-to-one relationship with Voronoi cells. Accordingly the
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airspace configuration problem is described as a weighted graph partitioning problem.

Furthermore the paper develops a graph partitioning algorithm that divides the weighted

graph model into sub-graphs. The algorithm mixes general weighted graph cuts (GWGC)

algorithm, with optimal dynamic load balancing (ODLB) algorithm in the following

manner. After the Cuts Algorithm partitions graph model into sub-graphs, the load

balancing algorithm together with the Heuristic algorithm transfers aircraft count to

achieve workload balancing among the sub-graphs. Finally, the cells corresponding to

each sub-graph are combined together into a sector. Besides, the method attempts to

design the sectors with the objective of balancing workload, minimizing coordination

workload as well as satisfying geometric constraints. [3, 7, 6, 4],

1.1 Voronoi Diagram

Voronoi diagrams in general deal with the following problem that for a given set S of

n points(sites) in a plane, we try to associate with each point sϵS a region consisting

of all the points in the plane that are closer to s than any other point s̃ϵS , which in

mathematical terms is given by,

Vor(s) = { p: distance(s,p) ≤ distance (s̃, p),∀s̃ϵS } where Vor(s) is the voronoi region

of a point s.

1.1.1 Voronoi Diagram for Various Cases

When S consists of a single point, the region for the point in the whole plane.

When S consists of two points the Voronoi diagram is given by.
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Figure 1.5: Set of Two Points

The Voronoi diagram for the two point set in figure1.5 S ={ s1, s2 } consists of two

half planes divided by the ray, which is the perpendicular bisector of the line segment

s1, s2. Note that the two regions are not disjoint, but overlap at the set of points equidistant

from both points of the ray. We define the bisection of s1, s2, as the set of all the points

b(s1, s2) = {xϵR : ∥xs1∥ = ∥xs2∥}.

Theorem 1.1 [5] All points on the half plane containing s1 and delimited (having

fixed boundaries or limits) by the perpendicular bisector l of s1s2 are closer to s1 than s2.

Proof: Consider a point p in the half-plane containing s1. We can construct two right

triangles △s1 pb and △s2 pb. They both share a sidepb and s1b is shorter than bs2 since

∥s1m∥ = ∥s1b∥+ ∥bm∥ and ∥s1m∥ = ∥s2m∥. The hypotenuse of △s1 pb, s1 p is shorter than

s2 p by the Pythagorean theorem. Therefore p is closer to s1 than s2.

□

from theorem 1.1 we can conclude that the set of all the points in the half plane of s1

can be given byh(s1, s2) = { x: ∥xs1∥ < ∥xs2∥ }. As shown in figure1.6
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Figure 1.6: Points on a Half Plane

Figure 1.7: Voronoi Diagram for Three Points

The figure1.7 shows a Voronoi diagram for three points, and the geometry used in

it’s construction. We start by joining each pair of vertices by a line. We then draw the

perpendicular bisectors to each of these lines. These three bisectors must intersect, since

any three points in the plane define a circle. We then remove the portions of each line

beyond the intersection and the diagram is complete. The point where the three rays

intersect belongs to the Voronoi regions for all three points. This point is also called the
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center of the circle.

Theorem 1.2 [5] The intersection of three perpendicular bisectors of s1, s2 and s3 is

the center of the circle containing s1, s2 and s3.

Proof: The point from the perpendicular is equidistant from the two points it bisects.

Therefore the segments s1b and s2b are equal. Angles ∠s1bc and ∠s2bc are right angles

and both triangles share the side bc. Therefore the triangles must be congruent and their

hypotenuses r1 and r2 are equal. A similar argument can be made between s3 and either

of s1 or s2, therefore point c is equidistant from s1, s2 and s3 and is thus the center of the

circle containing s1, s2 and s3. □

Figure 1.8: Center of The Circle

1.1.2 Voronoi Regions/Cells

There are many methods available to construct a voronoi region for a given point s of the

set S . So we begin by taking all of the perpendicular bisectors of the segments connecting

s to the remaining members of S . we can use these planes to delimit (set, mark, or draw

the boundaries of something) half planes. The intersection of all half planes containing s

is the Voronoi region for s, or we can start with the segments connecting s to all remaining
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members of S . We then gradually extend lines outward along the perpendicular bisector

of these segments until they intersect.

Figure 1.9: Voronoi Region

Note that the points which do not contribute to the region are not necessarily the

furthest away, as in figure1.10

Figure 1.10: Contribution of Sites
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1.1.3 A Complete Voronoi Diagram

A Voronoi diagram is the union of all the Voronoi regions in the set: Vor(S ) =∪sϵS Vor(s)

Figure 1.11

The figure1.11 is a Voronoi diagram for a set of 11 points.

1.1.4 Properties of Voronoi Diagrams

Convex hull: A set Y is said to be convex if for any a,b ϵ Y , every point on the straight

line segment joining them is also in Y . The convex hull of a set of points X in Euclidean

space is the smallest convex set containing X.

Theorem 1.3. [5] For the Vor(P) of a set of points P the following hold.

• Voronoi vertices. A point q is a vertex of Vor(P) iff its largest empty circle, called

Cp(q) contains three or more sites on its boundary.
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• Voronoi edges. The bisector between sites p1 and p2 defines an edge of Vor(P)

iff there is a point q on the bisector such that Cp(q) contains both p1 and p2 on its

boundary but no other sites.(Then all such points q are on the Voronoi edge).

Proof: For the first property, suppose there is a point q such that Cp(q) contains three or

more sites on its boundary. Let p1, p2, .., pt be these sites. Since the interior of Cp(q) is

empty point q must be on the boundary of each of Vor(p1),Vor(p2), ..,Vor(pt). Hence

point q is a vertex of Vor(P).

On the other hand, assume pointq is a vertex ofVor(P). Then q is incident to at least

three edges, and hence incident to at least thee Voronoi cells Vor(p1),Vor(p2),Vor(p3),

p1, p2, p3 ϵ P. Voronoi vertex q is equidistant to p1, p2, p3 and there cannot be another

site closer to q. Hence, Cp(q) is an empty circle containing three or more sites on its

boundary.

Figure 1.12

For the second property, suppose there is a point q on the bisector between sites p1

and p2 such Cp(q) contains p1 and p2 on its boundary but no other sites. The dist(q,p1) =

dist(q,p2) < dist(q,px) for any other sit px ϵ P-{p1, p2}. Henceq lies on an edge ofVor(P)

that is defined by the bisector of p1 and p2. On the other hand let the bisector of p1 and

p2 define a voronoi edge. Then the largest circle of any point q on this edge must contain

p1 and p2 on its boundary and no other sites.
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Figure 1.13

Theorem 1.4.[5] The circle containing Voronoi vertex v and passing through the

three points s1, s2 and s3 is empty.

Proof: Let s1, s2 and s3 be the three points of S corresponding to the voronoi vertex v.

If C(v) contains another point s4 then s4 must be nearer to v than any of s1, s2 or s3.In

this case v must be contained by the voronoi region for s4 and not contained in any other

region for s1, s2 or s3, by definition of a Voronoi region. However this is a contradiction

since v is infact common to the Voronoi regions for s1, s2 and s3.

Figure 1.14: Circle passing Through Three Points

1.2 Graph Partitioning/Clustering

Given a weighted graph G = (V,E,W) where V,E are the vertex and the edge sets respec-

tively and W is a weighted adjacency matrix of the graph G.
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The graph partitioning problem asks for the subsets of nodes V1, ...,Vk that partition the

node set V, i.e V1∪ ...∪Vk = V, Vi∩V j = ∅ ∀i , j. .

It also asks for partitioning (cut) of the graph into two or more partitions(clusters). Where

the size of the cut is the number of edges being cut.

Here an edge that runs between blocks is also referred to as the cut edge.

Figure 1.15

here in figure1.15 we have a graph divided into three partitions and each partition has

3 cut edges between (A,B) and (A,C).

Let us denote the cut(A,B) to be the sum of the edge weights between A and B in

other words. cut(A,B) =
∑

iϵA, jϵB wi j.

1.2.1 Weighted Ratio Cut

Minimum Cut Problem: To find a graph partition such that the number of edges between

two sets is minimized. We accomplish this by using the following objective. The red cut

has 1 cut edge and blue cut has 2 cut edges, which provides us with an unsatisfactory

partitioning. To avoid this we use the objective called ratio cut.
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Ratio cut: The ratio is a objective which minimizes the edge cut between two graphs.

which is given by RCut(G) = minV1,V2,....,Vk

∑k
c=1cut (Vc,V/Vc)

|Vc|
.

for example we have

Figure 1.16: Graph With Multiple Cuts

Cut(Red) = 1 edge and the green cut has Cut(Green) = 2 .

Their ratio cuts are given by :

Ratio-Cut(Red) = 1
1 +

1
8 =

9
8 = 1.125

Ratio-Cut(Green) = 2
5 +

2
4 =

18
20 = 0.9

this gives us the better partition the green cut being the better one in this case, as it

has lower ratio cut value.

1.2.2 Matrix Format

We reformulate the objective into a matrix format as follows. Let xc be an indicator

vector for a partition c, i.e xc= 1 if the partition c contains vertex i and 0 otherwise.

let D = diag(d1,d2, ..,dr) be the diagonal degree matrix. obtained by summing the
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columns in an adjacency matrix.

The product xT
c xc = |c|, and xT

c (D−A)xc gives us the number of cut edges between c and

its complement, where A is the adjacency matrix of the graph G, the matrix D−A is also

the Laplacian matrix of the graph and hence D−A = L.

we illustrate this using an example below.

Figure 1.17

We have partitioned the graph in figure1.17 into two clusters, cluster C and A respec-

tively. xT
C = [1,1,0,0,1,1], |C| = 4 i.e the order of c is 4, the number of cut edges in this

particular example is 2. we will verify this using matrices. The adjacency matrix

A =



0 1 0 0 1 0

1 0 1 0 0 1

0 1 0 1 0 0

0 0 1 0 1 0

1 0 0 1 0 1

0 1 0 0 1 0


, the laplacian matrix L = D−A =



2 −1 0 0 −1 0

−1 3 −1 0 0 −1

0 −1 2 −1 0 0

0 0 −1 2 −1 0

−1 0 0 1 3 −1

0 −1 0 0 −1 2


,

the product xT
c xc = 1+1+1+1 = 4 = |C| = 4 which is the order of the partition C.

xT
c Lxc = 2, which is the no.of cut edges of the partition.
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1.2.3 Matrix Form of The Ratio Cut

The ratio cut objective is given by min
V1,V2,....,Vk

∑k
c=1

cut(Vc,V/Vc)
|Vc|

, from the above definitions

we get xT
c xc =|Vc|, cut(Vc,V/Vc)= xT

c Lxc .

The new ratio cut is given by :min
∑k

c=1
xT

c Lxc

xT
c xc
=
∑k

c=1 xT
c Lxc, where x = xc

(xT
c xc)

1
2

, Now the

above can be written as the minimization of trace(X
T

AX), where the c-th column of X is

xc.

1.2.4 General Weighted Graph Cuts

The ratio cuts was an objective defined for graphs with edge weights only, now we define

the objective for weighted graphs with, vertex weights as well.

WCut(G)= min
V1,V2,....,Vk

∑k
c=1cut (Vc,V/Vc)

w(VC)

1.2.5 Matrix Form of GWGC

We proceed by expressing WCut(G)= min
V1,V2,....,Vk

∑k
c=1

cut(Vc,V/Vc)
w(VC) as a trace optimisation.

With the same definitions as above the matrix D, A and L also using using the W the

weighted adjacency matrix.With w(VC) = xT
c Wxc

min
∑k

c=1
cut(Vc,V/Vc)

w(VC) =
∑k

c=1
xT

c Lxc

xT
c Wxc

=
∑k

c=1 xT
c Lxc., where x = xc

(xT
c Wxc)

1
2

WCut(G) = min xT
c Lxc, which can be expressed as a trace minimization,which is

further written as minY trace (X
T

AX) minY trace(YT W
−1
2 LW

−1
2 Y) where Y = W

1
2 X
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1.2.6 Kernel K-Means Algorithm

K-means clustering is a method for grouping n observations into K clusters. It aims to

assign each observation to the cluster with the nearest mean or centroid. The goal is to

minimize the sum of squared distances between the data points and their corresponding

cluster centroids, resulting in clusters that are internally homogeneous and distinct from

each other. K-means is a centroid-based algorithm or a distance-based algorithm, where

we calculate the distances to assign a point to a cluster. In K-Means, each cluster is

associated with a centroid. The main objective of the K-Means algorithm is to minimize

the sum of distances between the points and their respective cluster centroid. The goal

of the optimization process is to find the best set of centroids that minimizes the sum

of squared distances between each data point and its closest centroid. This process is

repeated multiple times until convergence, resulting in the optimal clustering solution.

We now demonstrate the k means algorithm.

Given a given some data that we plot on a line, our objective here is to group them

into 3 clusters, implying that k in this case is 3.

Figure 1.18: Data Points on a Number Line

Next we randomly select 3 different data points, these points will be our initial

clusters.

We then measure the distance between the first point and the three initial cluster.

Then we assign the color of the nearest cluster to the point in this example we choose the
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Figure 1.19

point to be color blue, we then continue the same process with the other cluster till each

one of the points has been assigned one of the three colors, according to their distance

between these clusters.

Figure 1.20

After assigning the colors ours resulting figure is as follows.

Figure 1.21

In this step we find the mean values for each cluster.

We then use the means as the cluster points and then proceed as in figure1.22,

clustering the points according to their distances, and then coloring them, this is done for

each step, we stop if we get the same clustering as we had got previously.

so we have obtained the same clustering as in figure1.23 hence we stop. Now we

shall deal with points in a plane and how the algorithm operates there.
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Figure 1.22

Figure 1.23

Figure 1.24

Now in a plane, given the number of clusters in our case its 3, we select 3 random

points as our cluster point and then proceed by taking a point and then we find its

eucledian distance between each of those cluster point, and then assign it the color of the

nearest cluster.
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Figure 1.25

Figure 1.26

After clustering we then find the center of each cluster, and repeat the same procedure

as we have done on a line.
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1.2.7 The Working of Kernel k-Means Algorithm

Given a set of vectors a1,a2, ...,an the k- means algorithm seeks to find partitions π1, ..,πk

that minimize the objective function.

D(πk
c=1) =

∑k
c=1
∑

aiϵπc ∥ai−mc∥
2 ,where mc=

∑
aiϵπcai ai

|πc|

Note that the c-th cluster is denoted by πc, a clustering or a partitioning by πk
c=1 by

the centroid or the mean of the cluster is denoted by mc.

A disadvantage of standard k-means is that clusters must be separated by a hyperplane;

this follows from the fact that squared euclidean distance is used as the distortion measure.

To counter this, kernel k-means issues a function to map points to a higher-dimensional

feature space. When k-means is applied in this feature space, the linear separators in the

feature space correspond to nonlinear separators in the input space. The kernel k-means

objective can be written as a minimization of :

D(πk
c=1) =

∑k
c=1
∑

aiϵπc ∥ϕ(ai)−mc∥
2 ,where mc=

∑
aiϵπcai ϕ(ai)
|πc|

If we expand the computation ∥ϕ(ai)−mc∥
2 in the objective function we can obtain

the following.

ϕ(ai).ϕ(ai)−
2
∑

a jϵπc ϕ(ai).ϕ(a j)

|πc|
+

∑
a j,alϵπc ϕ(a j).ϕ(al)

|πc|2

Thus only inner products are used in the computation of the Euclidean distance

between a point and a centroid. As a result, if we are given a kernel matrix K, where Ki j

= ϕ(ai).ϕ(a j) . We can compute distances between points and centroids without knowing

explicit representations of ϕ(ai) and ϕ(a j).
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1.2.8 Weighted kernel k-means Algorithm

We now introduce a weighted version of the kernel k-means objective function. The

weighted kernel k-means objective function is expressed as:

D(πk
c=1) =

∑k
c=1
∑

aiϵπc wi∥ϕ(ai)−mc∥
2 ,where mc=

∑
aiϵπcai wiϕ(ai)∑

aiϵπc wi

And the weights wi are non-negative. Note mc represents the best cluster representative

since.

mc = argminz
∑

aiϵπc wi∥ϕ(ai)− z∥2

As before, we compute distances only using inner products, since ∥ϕ(ai)−mc∥
2 equals

ϕ(ai).ϕ(ai)−
2
∑

a jϵπc w jϕ(ai).ϕ(a j)∑
a jϵπc w j

+

∑
a j,alϵπc w jwlϕ(a j).ϕ(al)

(
∑

a jϵπc w j)2

Using the kernel matrix K, the above may be rewritten as:

Kii−
2
∑

a jϵπc w jKi j∑
a jϵπc w j

+

∑
a j,alϵπc w jwlK jl

(
∑

a jϵπc w j)2

1.2.9 Weighted Kernel k-means as Trace Maximization

We first consider the weighted kernel k-means objective, and express it as a trace maxi-

mization problem. Let sc be the sum of the weights in cluster c, i.e sc =
∑

aiϵπc wi. Define

the n × k matrix Z:
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Zic =


1

s
1
2
c

if aiϵπc

0 otherwise

Clearly, the columns of Z are mutually orthogonal as they capture the disjoint cluster

memberships. Suppose Φ is the matrix of all ϕ(a) vectors and W is the diagonal matrix

of the weights. It can then be verified that column i of the matrix ΦWZZT is equal to the

mean vector of the cluster that contains ai. Thus, the weighted kernel k-means objective

may be written as:

D(πk
c=1) =

∑k
c=1
∑

aiϵπc wi∥ϕ(ai)−mc∥
2

D(πk
c=1) =

∑n
i=1 wi∥Φ.i− (ΦWZZT ).i∥2

Where Φ.i denotes the i-th column of the matrix Φ. Let Y = W 1
2
Z; observe that Y is a

orthonormal matrix ( Y
T

Y = Ik ). Then we write the objective function as :

D(πk
c=1) =

∑n
i=1 wi∥Φ.i− (ΦW

1
2 YY

T
W
−1
2 ).i∥2.

=
∑n

i=1 ∥Φ.iw
1
2
i − (ΦW

1
2 YY

T
).i∥2

= ∥Φ.iW
1
2 − (ΦW

1
2 YY

T
).i∥2

Using the fact that trace(AAT ) = trace( AT A ) = ∥A∥2F , trace(A+B) = trace(A)+trace(B)

and trace(AB) = trace(BA) we have :

D(πk
c=1) = trace( W

1
2ΦTΦW

1
2 −W

1
2ΦTΦW

1
2 YY

T
−YY

T
W

1
2ΦTΦW

1
2 +YY

T
W

1
2ΦTΦW

1
2 YY

T
)

= trace(W
1
2ΦTΦW

1
2 ) - trace(Y

T
W

1
2ΦTΦW

1
2 Y)
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We note that the kernal matrix K is equal to ΦTΦ and that trace( W
1
2 KW

1
2 ) is a

constant. Therefore the minimization of the weighted kernel k-means objective function

is equivalent to:

maxY trace(Y
T

W
1
2ΦTΦW

1
2 Y)

Where Y is an orthonormal n × k matrix that is proportional to the square root of the

weight matrix W.



Chapter 2

DAC METHOD

2.1 Construction of The Weighted Graph

For a given airspace, we assume that the static structure information includes air routes

and key points such as airports, waypoints and crossing points is known in advance.

According to the structure information, we set up an undirected graph G, we have a graph

G =G(V,E), where the vertex set V = {1,2, ...,n} consists of the key points. The edge

set E = {(i j) : i, j ϵ V} represents the air routes. Aircraft count will be adopted as the

workload metric. Both vertices and edges in the undirected graph can be assigned with

those aircraft counts, and hence forming our graph model.

For the vertices and edges of the graph being assigned with weights, a Voronoi

diagram D is built as in figure 2.1, whose sites(points) are the vertices of the undirected

graph. D decomposes by its borders the airspace into a series of units called as Voronoi

cells(regions), Ci (i = 1,2, ...,n).

25
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Figure 2.1

Figure 2.2

As one can see in figure 2.2 that each cell corresponds only to one site. Thick lines

represent borders of cells, and thin lines represent air routes. In the above fig2.2, 1,2,..., 9

represents vertex index (1),(2),..., (8) represents the vertex weight[1],[2],...,[8] represents

the edge weight. We can see that there may be a case that some of the sites or the air

routes are close to the cell borders. This leads to a result that some of the designed sectors

will not satisfy the minimum distance constraint. If the sector boundaries coincide with

those borders, so the borders have to be removed. The cells that are adjacent to those

borders are combined into new cells.
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Figure 2.3

The vertex vi represents the cell Ci. The weight on the vertex vi represents the aircraft

count wi in the corresponding cell Ci. The edge ei j represents all the air routes between

cells Ci and C j. The edge weight wi j describes the sum of aircraft counts along all the air

routes between the cells Ci and C j. For Gw all aircraft counts on vertices are represented

as a vector w. All aircraft counts along the edges among the cells are described by a

matrix W .

when the airspace is described as Gw, the DAC problem with the objective of bal-

ancing sector workloads, minimizing the coordination workload, this problems are then

converted into graph partitioning problems of maximizing the sub-graph weight balance,

minimizing the edge weight among the sub-graphs Gi′ (i = 1,2, ...K).

The DAC objective can be described mathematically as a graph partitioning objective

by the following functions. min
G1′

w ,G2′
w ,....,Gk′

w

∑k
c=1

cut(Gi′
W ,GW/Gi′

W )

w(Gi′
W )

Subject to w(Gi′
W) = w(G j′

W),

w(Gi′
W)=
∑

Vc∈Gi′
W

wc

cut(Gi′
W ,GW/Gi′

W) =
∑

Vc∈Gi′
W ,Vd<Gi′

W
wcd
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Here, w(Gi′
W) is the weight of the ith sub graph. is the no of sectors which can be

determined by total aircraft count of the given airspace Acount and the maximum aircraft

count of a sector S count as follows. k = ⌈Acount
S count
⌉.

2.2 Partition of The Weighted Graph Model

After obtaining our graph from the given data we name the graph as Gw = {Vw,Ew,w,W}

where Vw = v1,v2, ..,vn is a vertex set and Ew = {ei j : vi,v j ∈ Vw} is an edge set in which

ei j is the edge connecting vi and v j.

Our graph being a weighted graph, with the vertices and edges having weights where the

weights represent the air craft count during a specified time period.

Each vertex weight is given by wi (i=1,..,r) where r ≤ n, n is the no. of vertices in the

graph Gw.The edge weights are given by wi j . now all the vertex weights(aircraft counts)

are represented by a vector w = [w1,w2, ...,wr]T , and the W =[wi j]r×r, wi j = w ji is the

matrix describing the aircraft counts along all the edges, the matrix W is a adjacency

matrix with values being the edge weights or a weighted adjacency matrix.

Figure 2.4
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The given figure2.4 represents a weighted graph as defined above, now here the

vector w is given by w = [5,7,4,3,5,8,6,4]T .

The matrix W is as follows,where we start with vertex weight 5 and move anticlockwise

where the next vertex has weight 7 and so forth.

W =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 5 0 0 0 0 0 4

5 0 3 0 0 0 0 0

0 3 0 3 0 0 0 2

0 0 3 0 3 0 0 0

0 0 0 3 0 3 1 0

0 0 0 0 3 0 5 0

0 0 0 0 1 5 0 3

4 0 2 0 0 0 3 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2.2.1 Partitioning Gw by GWGC Algorithm

GWGC- general weighted graph cuts algorithm. In this section we will use the GWGC

algorithm to partition the graph Gw into k subgraphs Gi′
w (i = 1,2, ...,k). The algorithm

can achieve an objective an objective defined as J = min
G1

w,G2
w,....,Gk

w

∑k
i=1cut

(Gi
W ,GW/Gi

W )
w(Gi

W )
this

is general weighted graph cuts problem and its solution is designed as follows.

Step 1. We create a diagonal matrix T whose entries are obtained by summing all

entries in the corresponding column of the matrix W. We compute the Laplacian matrix

L = T −W.

Step 2. si =
1√
wi

(i = 1,2,3, ...,r), S = diag(s1, s2, s3, ...., sr ) and calculate C = S ×L×S .

Step 3. Calculate the eigen values of C, assume that they are λ1 = 0 ≤ λ2 ≤, ......,≤ λr in

ascending order.

Then, use k-means algorithm to cluster k vectors corresponding to eigenvalues from λ1
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to λk . From k clusters we can get a series Gi
w (i = 1,2, ...,k) that holds connectivity.

When Gw is partitioned into a series of sub-graphs by GWGC algorithm, the sub-graphs

meet the property which follows the objective.

2.3 Calculating the Vertex Weights to be Transferred by

ODLB Algorithm

After partitioning the graph Gw into k subgraphs we move onto achieve the following

objective given by w(Gi
w) = w(G j

w), i.e the sum of the vertex weights in each subgraph

should be made equal, to accomplish this task we need to transfer vertex weights, be-

tween subgraphs meaning we will be changing the aircraft counts in each subgraph.

We will now implement the ODLB (optimal dynamic load balancing) algorithm to bal-

ance the vertex weights in each subgraph that we have obtained. The ODLB algorithm

gives the direction in which the vertex is moved as well as the amount of the vertex

weight to be transferred.

We proceed further by showing an example.

Provided that by means of GWGC algorithm Gw is partitioned into four subgraphs

G1
w,G

2
w,G

3
w,G

4
w and accordingly the weights of the four subgraphs will be given.

Our objective is to achieve w(Gi
w) = w(G j

w) i.e the sum of the vertex weights in each

subgraph must be made equal.

In order to achieve the objective above we transfer weights denoted as xi j from w(Gi
w) to

w(G j
w), along the cut edges between the subgraphs, if subgraphs do not have cut edges in

between them then vertex weights cannot be transferred among them.

Next the average weights per sub graph is as follows, w = w(G1
w)+w(G2

w)+w(G3
w)+w(G4

w)
4 .

Which nothing but the mean of the vertex weights of the 4 subgraphs.

We suppose that the weight will be shifted along the direction from the sub-graph with
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small index to the sub-graph with large index. The former is called the head of the

direction and the latter is called the tail.

So, F is defined as. Fi j =


1 if sub graph i is the head of the direction of shift

−1 if sub graph j is the tail of the direction of shift

0 otherwise

Figure 2.5

We get the following equations,

x12+ x13+ x14 = w(G1
w)−w

−x12+ x23 = w(G2
w)−w

−x13− x23+ x34 = w(G3
w)−w

−x14− x34 = w(G4
w)−w
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Furthermore the equation can be described as Fx = b ,where b = [w(G1
w)−w,w(G2

w)−

w,w(G3
w)−w,w(G4

w)−w]T , x =[x12, x13, x14, x23, x34]T and F =



1 1 1 0 0

−1 0 0 1 0

0 −1 0 −1 1

0 0 −1 0 −1


w(G1

w) = 18, w(G2
w) = 10, w(G3

w) = 14, w(G4
w) = 6

w = w(G1
w)+w(G2

w)+w(G3
w)+w(G4

w)
4

w = 12

x12+ x13+ x14 = 6

−x12+ x23 = −2

−x13− x23+ x34 = 2

−x14− x34 = −6

Since our example is on a smaller scale we can find the solutions manually keeping

in mind that sum of all vertex weights of subgraphs should be w = 12, hence transfers

are made.

This is a system of linear inhomogeneous equations to be solved, where there are five

variables and four equations. The knowledge of linear algebra verifies that there are

infinite solutions to the equations. Among solutions, the solution for the migration of

less weight is preferred.

To solve such a problem we follow the procedure.
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given Fx = b,

Step 1. Calculate w = 1
k
∑k

i=1 w(Gi
w), and b = [w(G1

w)−w,w(G2
w)−w, .....,w(Gk

w)−w]T .

Step 2. Construct the matrix of subgraphs F, and calculate matrix L = FFT . x = FT d

where is x vector. Then by substituting x in Fx = b, we get FFT d = b.

Step 3. Construct a linear equation system Ld = b and solve it for d. One can conclude

that from the sub-graph i to j is obtained by FT d. New weights transfers obtained from

the above method are given by.

Figure 2.6

From the ODLB algorithm, we know a fact thatxi j may be a negative value or positive

value. The positive value means the weights move from Gi
w to G j

w while a negative value

means the weights move from G j
w to Gi

w. In addition, xi j may not be the integers, but

decimals. However, xi j is the aircraft count, this means xi j is integer. So the measure

must be taken to deal with the problem by rounding xi j to be a whole number.
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2.4 Transferring the Vertices

Using the ODLB algorithm we found xi j (weight to be transferred among two subgraphs

). So that the sum of the vertex weights in each subgraph can be made equal. Now we

provide the vertices in each subrgaph that need to be transferred.

The two subgraphs in the diagram are separated by

a dotted line. In this example are subgraph the sum

of the vertex weight of each subgraph is not balanced.

We intend to transfer five weights from the left sub-

graph to the right. When both weights of v1 and v2

are 5, which vertex should be transferred, v1 or v2

?.

So we begin by selecting one of the two vertices in no

particular order. When v1 is moved to the right subgraph, the

edge weight connecting two sub-graphs will decrease. The

change in the edge weight can be gotten from the follow-

ing equation: 8-(1+2+1) = 4, this means that coordination

workload (cut edge weight) will be reduced. Since after

transferring the vertex the subgraph changes and so do the

cut edges.
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similarly when v2 is moved the edge weight does not change anymore. As the gain

here can be given by 4-4 = 0

Now we check for v3, here the gain being 5-6 = -1, this is the worst vertex to be

transferred as it increases the gain by 1.
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The change in the edge weight for the vertex migration is called the gain. The

equation is generalized to calculate the gain gd for the vertex vd. gd =
∑

vdϵGi
w,v f ϵG

j
w

wd f

-
∑

vd ,veϵGi
w,

wde.

The algorithm is as follows. firstly, according to xi j, we can determine the migra-

tion direction of the vertices. Let the set of vertices in Gi
w adjacent to G j

w adjacent be

denoted as Bi j. The sum of the weights corresponding to the vertices in Bi j be ai j.the gain

gd of vd in Bi j be determined by gd =
∑

vdϵGi
w,v f ϵG

j
w

wd f -
∑

vd ,veϵGi
w,

wde. The vertices in

Bi j are sorted according to their gains by a descending order. The vertex in Bi j the vertex

with the largest gains is transferred to G j
w, and the procedure is repeated according to the

descending order. If ai j < xi j, after transferring all the vertices in Bi j, the procedure above

can continue until the required xi j has been satisfied for new vertices in Gi
w adjacent

to G j
w will appear after migrating all vertices in Bi j. In this we can get a series of new

subgraphs Gi′
w (i = 1,2, ...k) from Gi

w with equalized w(Gi′
w).

The new subgraphs Gi′
w (i = 1,2, ...k) satisfy the properties as follows. w(Gi′

w) =w(G j′
w ),

Gw =
⋃k

i=1 Gi′
w, Gi′

w∩G j′

W = ∅.??
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ANALYSIS AND CONCLUSION

The paper has presented a new method for DAC based on a weighted graph model

by applying GWGC algorithm and ODLB algorithm in combination with a heuristic

algorithm inspired from the gain of K-L algorithm to partition given airspace into sectors

achieving the objective of balancing the workloads and of minimizing the coordination

workloads among the designed sectors.

1. The designed sectors have balanced aircraft count while coordination workload is

minimized

2. The designed sectors satisfy geometrical constraints, such as convexity constraint,

connectivity constraint and minimum distance constraint.

3. And more importantly, the low traffic results in fewer sectors as compared to the

current airspace configuration. The consequence being reduction in the number of

controllers, and thereby the administrative expense reduced.

37
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