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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-
ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: " Study of Mathematical Models for
Dengue,Tuberculosis & Covid-19." This survey is divided into four chapters. Each
chapter has its own relevance and importance. The chapters are divided and defined in a

logical, systematic and scientific manner to cover every nook and corner of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of the Mathematical

modelling in Epidemiology

SECOND CHAPTER:

This chapter deals with mathematical modelling of dengue.In this topic we have dis-
cussed some basic properties ,talked about reproduction number and studied stability

analysis of the model.

THIRD CHAPTER:

This chapter focuses on the mathematical representation of tuberculosis dynamics. Within
this discussion, we have explored fundamental characteristics, delved into the concept of

the reproduction number, and conducted an analysis of the model’s stability.
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FOURTH CHAPTER:

In this chapter, we’ve delved into the mathematical portrayal of the dynamics surrounding
COVID-19. Throughout our exploration, we’ve examined the foundational traits, delved

into the notion of the reproduction number, and scrutinized the stability of the model.

Keywords: equilibrium points; Reproduction number ; local stability; global sta-

bility;
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ABSTRACT

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of the Mathematical

modelling in Epidemiology

SECOND CHAPTER:

In this model, once an individual recovers from the infection or disease, they are assumed
to be immune and cannot be reinfected. However, this immunity is specific only to the
virus strain that caused the initial infection; recovery from one strain does not confer

immunity against the other three strains.

The model is simplified into a two-dimensional planar system. It is observed that the
endemic state is considered stable if the basic reproductive number (Ry) of the disease
exceeds one. This finding is consistent with the results obtained from a transmission

model incorporating immunity.

THIRD CHAPTER:

This study delves into the analysis of three distinct tuberculosis models: SIR, SEIR, and
BSEIR Mathematical Models. It investigates the progressive enhancement in realism
from one model to the next. Our focus extends to examining the stability of these models
concerning their equilibrium points. Through our analysis, we identify the specific

conditions under which these models exhibit stability.

FOURTH CHAPTER:

The COVID-19 pandemic, emerging in 2019, represents one of the most severe global
health crises in recent memory due to its rapid spread and high mortality rates. Its

impact surpasses that of previous outbreaks like MERS in South Korea and SARS in
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the Middle East, instilling fear and concern worldwide. To understand and predict
the dynamics of this deadly disease, we are developing a dynamic model. Through
mathematical techniques such as the Routh-Hurwitz criteria and the construction of
Lyapunov functions, we aim to assess both local and global stability. This analysis will
provide insights into the stability of disease-free and diseased states, offering crucial

information for effective control measures.
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Chapter 1

Introduction

A differential equation is a mathematical equation that involves an unknown function
and one or more of its derivatives with respect to an independent variable. The equation
expresses a relationship between the function and its rates of change, reflecting how the

function evolves or behaves over the given variable.

system of differential equation:
A system of differential equations involves multiple equations, each describing the rate
of change of one or more dependent variables with respect to an independent variable.
These systems are commonly used to model complex relationships where the behavior

of one variable is dependent on the behavior of others.
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The general form of a system of a n first-order ordinary differential equations (ODEs)

is often written as:

dx
d—t]:-fl(xlsza"':xfht)
dx,
—dt :fg(xl,xz,..-exmf)
dxy
dt :fn(xlax&---;xmf)

Here, xi,x2,...,x, are the dependent variables, 7 is the independent variable (often
representing time), and fi, f2,..., f, are functions defining the rates of change of the

corresponding variables.

Mathematical Modelling:
Mathematical modelling is the process of describing a real world problem in mathemati-
cal terms, usually in the form of equations, and then using these equations both to help

understand the original problem, and also to discover new features about the problem.

Epidemiology:

Epidemiology is the branch of medical science that deals with the study of the distribution
and determinants of health-related events or conditions in populations, and the applica-
tion of this study to control health problems. It involves the systematic investigation of
the factors that influence the occurrence and spread of diseases, injuries, or health-related

events within specific populations.



Dengue:
Dengue is a mosquito-borne viral infection caused by the dengue virus, primarily trans-
mitted to humans by the Aedes mosquitoes. Symptoms include high fever, severe

headache, pain behind the eyes, joint and muscle pain, fatigue, rash .

Tuberculosis:
Tuberculosis (TB) is an infectious disease that most often affects the lungs and is caused
by a type of bacteria. It spreads through the air when infected people cough, sneeze or

spit. Tuberculosis is preventable and curable.

Covid-19:

Covid-19 stands for Coronavirus Disease 2019. It’s an infectious illness caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in
December 2019 in Wuhan, China. This virus primarily spreads through respiratory
droplets and can cause a wide range of symptoms, from mild respiratory issues to severe
illness, and can lead to complications or death, particularly in older adults or those with

underlying health conditions.

Formulation of a mathematical model:
The formulation of a mathematical model using differential equations involves expressing

the relationships between variables in a system in terms of differential equations

Reproduction number:
The reproduction number, often denoted as Ry , is a crucial epidemiological concept

used to measure the transmission potential of an infectious disease within a population.



4 Introduction

Specifically, Ry represents the average number of secondary infections produced by one

infected individual in a completely susceptible population

Equilibrium points:
The equilibrium points represent the states where the system is at rest, as the rates of
change are zero at those points. Analyzing the stability and behavior of the system

around these equilibrium points is crucial for understanding its dynamics.

Endemic Equilibrium :
The endemic equilibrium represents a stable state in the population where the disease
persists at a non-zero level. In this equilibrium, there is a balance between the rates of

infection and recovery, leading to a constant, non-zero prevalence of the disease.

Disease-Free Equilibrium :

The disease-free equilibrium represents a state in the population where no individuals
are infected with the disease. At this equilibrium point, all compartments related to
the disease (such as susceptible, infected, and recovered) have constant values, and the

spread of the disease is not occurring.

Stability analysis:
Stability analysis helps to understand whether small perturbations from an equilibrium
point lead to convergence (stable behavior) or divergence (unstable behavior) over time.

There are two main types of stability: local stability and global stability.



Local stability :
Local stability focuses on the behavior of solutions in the immediate vicinity of a specific
equilibrium point. It examines how small perturbations from that equilibrium point

evolve over time.

Global stability:
Global stability considers the behavior of the entire system over its entire state space. It
examines whether all trajectories in the system, regardless of initial conditions, converge

to a specific equilibrium point.






Chapter 2

Analysis of Dengue Disease

2.1 Introduction

Mathematical models have found extensive application across diverse fields of infectious
disease epidemiology. Since the early 1900s, researchers have engaged in mathematical
modeling of dengue disease transmission within both human and vector populations.
Notable contributions include works by L. Esteva and C. Vargas [4], Z. Feng and J.X.
Velasco-Hernandez[5], Gideon A. Ngwa and William S. Shu [6], and N. Nuraini, E.
Socewono, and K.A. Sidarto [7],[8],[9].

Numerous studies have explored infection models within human populations, con-
ducted by researchers such as H.W. Hethcote and J.W. Van Ark [10],[11]. These models
serve a variety of purposes, including comparing, planning, implementing, evaluating,

and optimizing detection, prevention, therapy, and control programs.

7
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Furthermore, epidemiological modeling plays a crucial role in designing and analyz-
ing epidemiological surveys. It helps in identifying essential data to collect, detecting

trends, making broad predictions, and estimating forecast uncertainties.

2.2 Esteva and Vargas mathematical Model for Dengue

Fever Transmission

Formation of model

Let Py and Py represent the sizes of the human and vector populations, respectively. We
consider that the human population remains constant over time. This implies that the

birth rate and death rate of the human population are equal, both denoted by ny.

dP,
The vector population is assumed to be governed by d—r" =A—mbP
I R drP,
To get equilibirium point we equate “;* =0
SA=nP,=0
.p _ A
SR = Ny

Therefore vector approaches to A’:‘—V as t tends to infinity.

The host population is divided into susceptible individuals denoted by Sy, infected indi-
viduals denoted by 7y, and recovered individuals denoted by Hp. The vector population,
due to its short lifespan, is divided into susceptible vectors represented by Sy and infected
vectors represented by Iy .

Schematic diagram of the model is :
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NuPy

Iy

}

'IHSH TIHIH TIHHP TI.,SV Ny Iy

Model involving both populations are

‘f_:f i %%bsﬂfv — NSk
ddif = :’)—ngva — (M + Al
%’3 = Ayly — NuHp

‘% =A- %bs‘vfﬂ — Sy

% _ ﬁ—ﬁbsm — il

with two conditions Py = Sy + 1y +Hp and Py = Sy + 1y
where ,

Py =Total host population

Su = number of susceptible in the host population

Iy = number of infected in the host population

H), = number of immunes in the host population

Py = Total vector population

Sy = number of susceptible in the vector population

Iy = number of infected in the vector population

Nu= The birth or death rate in the host population

(2.1)
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1= The death rate in the vector population

Y1 = The transmission probability from vector to host

Ay = The recovery rate in the host population

Ap = The transmission probability from host to vector

b = The biting rate of the vector

A = The recruitment rate.

The subset T defined by the equations Sy + Iy +H, = Py and Sy +1y = % is an invariant

region for system (2.1), because any solution starting in T satisfies

d dPy
—(Sy+Ily+H,)=——=0
dr(H+H+ ) dt
and
d
—(Sv+fv)=0

dt

Therefore, all paths approaches T. Therefore, it is enough to study the asymptotic behavior

of solutions of (2.1) in invariant set T

2.2.1 Positivity of solutions

To show that Sy > 0,1y > 0,Hp > 0,5y > 0,1, > 0

dSH YH
H _ ey I8 p
7 — ety PHbSHf NHSH
dSH '}’H
> S toncl =
It bSHf NuSH
dSH ’}’H
I,
= ( b +Nu)SH
das
4 (yHbI + Ny )dt

SH—
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Y

InSy > — (==
nayy =~ (PH

bl, +ny)t +c*

S > CCXP(‘(}%Mv +Mu)t)

CASy =0
dly — Yu
— = —bSyl, — Al
o = py b (Me + Aw )l
dly
e Al
dr = (Na + A ) I
dly

> —(Ny + An)dt
Iy
Inly > —(Mg+Ag)t+c*

Iy > chp(—(ﬂH —|—/1H)I)

Ay =0

dHp

—— = Ayly — nyH,
aF Hig — NHp
dHp

—— > _nyH

dr = Nuitip

—— 2> —Npydt
InHp > —ngt +c*

Hp > cexp(—nHr)

dSy Ap
— =A——>bSyIly —n,S,
dt PH VI — My
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dSy Ag

— > ——bSyly — NS,
dt = Py VIiH ThSL
dSy A

— > —(—bl, )
dr = (PH H+M)
dSy A

— > —(—bI v)d
5, 2 (PH H+1y)dt

A
InSy > —(ZZbly +n)t +¢*
Py

i
Sy cexp(—(P—jbIH + M)t

Sy >0
dl, A
— = —bSyly — 1,
dt Py SVl =
dl,
Zt > —mly
dl,
T = —dt
Inl, > —nyt+c*

I, > cexp(—mt)

S.Syp =01y >20,Hp > 0,5y 20,1, >0

2.2.2 Boundedness of the solution

To show that Q = {(Sy, Iy, Hp,Sv,ly) € R‘i; Py = constant, Py < ?’;‘—1}

dPy B dSy u dly dHp
dt dt dt @ dt
dPy

_ M= R
o = NPy PHbSHIv NuSH
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also,

YH

+ —bSul, — (Mu + Au )l
Py

+ Auly — MuHp

dPb;
d—f = NP — N (Su + 1w + Hp)
dP; .
= NPy — NPy
dt
dPy
sl P
dt

.. Py = constant

dpy dSy dly

dt  dt * dt

dPy A
—=A——5bSvIg— 1,5,
dt PH VIiH nvx

A
+ 2B pSyly — 1,
Py

dPy

—=A-1, I
= M(Sy +1v)
dPy

g =A—MnFy

NowA —n,B, > 0ifA > nFy

which is ni > By

i.e_’%szHVzO

Therefore it can be concluded that P, is bounded as

A
w2k 20

Therefore % is an upperbound of Py

Therefore Q = {(Sy.lu.Hp,Sv.ly) € R.; Py = constant, Ay < %}
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2.2.3 Reduction of system of differential equations

Substituting,

Sy Iy Hp Sy Iy .
A= 5=y YT g =5 "':T} Z=T (22)
we get,
x+y+u=1, v+z=1
consider the equation ,
dSH YH
—— =Ny Py — —bSyl, — xS
at NutH Py H NHOH
then substituting (2.2) in the above equation:
d(xPH) Y A
= — —b(xPy)(—2z) — P
o NuPu PHb(’C H)(mc) Nu(xPr)
dx oz '}beA
dr M py 2T X
dx YubA
bA
Let o) = L5
Pyny
dx
S = 1 —x)—ogxz 2.3
i Nu (1 —x) —oyx (2.3)
Consider the equation,
dly Yy
— = —bSyl, — Al
5 Byt (N + Ay

then substituting (2.2) in the above equation:

d(yPa) M A4
= PHb(xPH)(nvz) (Ne + An ) (YPu )
dy _ygbA
& = B (Mu +An)y

Let cp = Ny + Ay
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4y o o
Jo— = o xz— '
di 142 2y
Consider the equation,
dHp
—— = Ayly — nyH,
- Auly —nuHp
then substituting (2.2) in the above equation:
d(uP;
(L;’rH) = At (YPu) — N (uPy)
d
d;; = Ay —Nuu
d(1-x—y)
ot A S WV {ivm e
5 HY—NMu(1—x—y)
dx dy
B W Y T
o gp = ) Na(l—x—y)
dx dy

Nu (1 —x) — ogxz+ oyxz — oy = —Agy + N — XN — YNH

20=0

Therefore this equation is eliminated

Consider the equation,

dSy Ap
-_— = A - _bS I - 'L}S"J
dr By e

then substituting (2.2) in the above equation:

d(4:v) A A
dt

v

dv }ug _
primilae P—Hb((.PPH)‘) — M
dv

E = _A.Bbvy + nl’(i e V)

:—;._ ; — —
dr+dr HY +Ne — XNy —YNH

(2.4)

A
=A— Eb(ﬂ_)((yPH)v) = nv(a")
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dv

— = —Agbvy e
ar BOVY + T2
Letoz = bly and oy = 111%
dv ozvy + O,
_— = — vy
di 3Vy 4z
d(1—2)
= — l— J
= o3(1 —2)y+ ouz
5 iy 2.5)
S g 8 Z)y — 04z .
Consider the equation,
dIl" lB
— = —bSyily —nil,
it Py vig — Ty

then substituting (2.2) in the above equation:

A,
4.9 _ Pb ) (0P) ~ ()

dt Py
dz
— =bAg(l —2)y—1Mz
T B( )y My
dz
So—=03(1—-2)y—
5 3(1 —2z)y — o4z

Therefore, the system is reduced to:

dx

E:nh:(]—x)—a]xz

dy

= . 2.6
5 = iz oy (2.6)
dz

= = 1_2 =
o 03(1 —2)y—ouz
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Where ,
oty = ’]/HbA }
Pyny
0 = Ny + An,
O3 = blg,
0y = TNy

2.2.4 Equilibrium points

To find equilibrium points of the system of differential equations, we equate the deriva-

tives to zero:

dx dy dz
dt dt dt

T]H(l —x) —aixz=0

Ny — NEX — Xz = 0

Nu = x(Ny + 0uz)

= H (2.7)
Mu + 012

Sogxz— oy =0

a1Xz = 0y
o xz

y=—

(25}
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Nt 2

o H%IR 2.8
y %M+ 0a2) (2.8)

(1 —z)y—auz=0

Nuoz

o3(l —z)(————)—ouz=0
3( )(az(nH‘f‘alZ))
NH O
a3(l —z2)—————0y)z=0
(as( )Ctz(TIH+O£|Z) )
o103 NH
z=0 or | —7)————ay =0
az( )?IH+0€1Z %
o) 03 NH
'z=0 or —(1—z)———— =
052( NH + 02 ™
z=0 or ai(1—z2)ny = mou(Nu + a12)
z=0 or oo3Ny — o 03NEZ= 004Ny + O 0 0uNHZ
cHel G g A — BT (2.9)
0 (NH0G + 004)
If z=0 then x=1 and y=0

.. disease-free equilibrium pointis D; = (1,0,0)

i 2= (003 — 00 ) Ny dhien,

o (npos+ opoy)
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NH
(a0 — 0520&4)7?1{)
o (o3 + 0 oy)

X =

NH + O (

1
o 03— 00y
NHO3 + 00y

X =
14

NH OB + 004
NHOG + 00 + 0 03 — 0 0y

Therefore
_ NH 03+ 00y
Ny o3+ +0103

((alas — 004) Ny

oy (N 03 + 00y)
(003 — 004)NH
o (NH0G + 0 0l)

MNH 0

o (N + o (

o) 03 — 0 0y

y= NG+ 004
) 03 — O 0y

NHO3 + 00y

N (

_ N (0003 — 0 0y)
(NG + 0204 + 04 0 — ) Ol4)

Therefore
_ nu(onos —0pou)
0ro3(Ne + )

19
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..endemic equilibrium point is

a3+ 0 o403 — 0 a 03 — o
Dz:(xogyo,zo):(”” 3oy Nu(oo—omay) (003 hm)nﬂ)

Naoz++o03’ os(Ng+a;) "o (Npos+ 00y)

Therefore, we get two equilibrium points Dy = (1,0,0) and D> = (xo,Y0,20)-

2.2.5 Reproduction number

We use next generation matrix method to find reproduction number. In F we put those
terms from equation (2.6) which helps in growing secondary infection and in V we put

all other terms with opposite signs.

— 0 XZ —nu(l—x)
F= o Xz V= chry
o3(1—2)y oz

Then by taking the jacobian of above we get,

-0z 0 —0oX ng 0 0
Jr=1 oyz 0 ouax |sIv=10 o 0
0 w(l-z) oy 0 0 o

0 0 — o MH 0 0

Jro) =10 0 o |JIvip)=10 o O

0 oz O 0 0 oy
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O Oy
0

-1

B:JF(DHJV(D])

0 0
—MNu Oy 0
0 —1NH 0
0 0
|
-= 0
1
0 ~ %]
a
0O 0 &L
a
0O 0 —a'
o
b 5 o

We can get the characteristic equation by solving

Therefore, we have

det(B—AI) = ‘B—M‘ =0

o
i @
o T
0 -1 -%/=0
s

then the characteristic equation of the above matrix we get,

21
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o0
0204

S A=0 or A=+

So, the reproduction number (Rp) is determined by the greatest eigenvalue:

o0
0 Oy

Ro =

2.3 Transmision model excluding immunity

2.3.1 Formation of model

Let Py and Py represent the sizes of the human and vector populations, respectively. We
consider that the human population remains constant over time. This implies that the

birth rate and death rate of the human population are equal, both denoted by ng.

dP!
The vector population is assumed to be governed by d—; =A—n,P,
i s g 3 P, __
To get equilibirium point we equate (d_r =0
5 A = n\.'P.r = 0
LB=of

Therefore vector approaches to Niv as t tends to infinity.

The host population is divided into susceptible individuals denoted by Sy, infected
individuals denoted by /. The vector population, due to its short lifespan, is divided
into susceptible vectors represented by Sy and infected vectors represented by Iy .

Here we take into account that there are various type of viruses identified regarding
dengue .If a person is recovered from dengue it does not imply that person is immune to

other type of dengue .And we assume the immune sub population is negligible. Schematic
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diagram of the model is :

NPy

P
f

Zsuly Iy ‘

iy

UHSH ;{HIH "HIH WFSV ny IV

Model involving both populations are

ds
= Py — Y—HbSHIV —NuSu + Anly
dt Py
dl
= y—HbSHIv A= (T]H—l- ZH)IH
dt Py
(2.10)
v _ g By — .S
ol Py vIig — Nyoy
d}v AB
— = _bS I - ];Iv
it Py vig —1

with two conditions Py = Sy + Iy and Py = Sy + Iy
where ,
Py =Total host population
Sy = number of susceptible in the host population
Iy = number of infected in the host population
Py = Total vector population
Sy = number of susceptible in the vector population

Iy = number of infected in the vector population
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Nu= The birth or death rate in the host population

ny= The death rate in the vector population

Yu = The transmission probability from vector to host

Ay = The rate at which infected become susceptible

Ap = The transmission probability from host to vector

b = The biting rate of the vector

A = The recruitment rate.

The subset T defined by the equations Sy + Iy = Py and Sy + Iy = % is an invariant

region for system (2.10), because any solution starting in T satisfies

d dPy
& i =2 g
dr(H‘i‘ H) %

and

d
_— I =
e (Sy+1Iy)=0

Therefore, all paths approaches T.
Therefore, it is enough to study the asymptotic behavior of solutions of (2.10) in invariant

setT

2.3.2 Positivity of solutions

To show that Sy > 0,1y > 0,5y > 0,1, = 0

ds

s = T]HPH — Y—HbSHL.- - T]HSH + Z.HIH
dt Py

dSH YH

> —=bSyl, —nuS
dt — Py & NHH
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dSH Y

T = ( b1+nH)
ds

EOH <, (yHb!+nH)dr
SH

ISy = (yHbl )+t

Sy > cexp(—(gbﬂ:+ Nu)t)

N

dl

d—;" - ;—”bsﬁl — (e + M)
dly

Bl I

i = (Mg + Am) 1y

dl
[—H > — (N + Ay )dt
H

Inly > — (Mg +Ag)t+c*

Iy > chp(—(ﬂH —|—/1,q)t)

w2 0]

dSV Ag
=A——>bSyl v

B Py vig —mS

da% > —@bsvfﬂ MySy

dS
e (—¢m+nd

Sy > cexp(h(—bfﬂ +My)t)
Py
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. SV

A
=

d‘rv )LB y

¥ = 22 pSyly —nul,
dt Py bivia n
dl,

cl P

dt — n

dl,

I_!'I 2 _n‘pdt

].ni‘v 2 —T?\_»I _!_CX
Iy 2 Cexp(—nlf)

., I\r>0

S8 20,0l 20,85y 20,1, >0

2.3.3 Boundedness of the solution

To show that Q = {(SHalH-.SV;!V) = ]R_}l-’ Py = constant, Py < #—l}

apy _dSy | dly
dt  dt dt

dPH H
7 =NuPy — y_bSHl\-’ — NSy + Auly
t Py
i
+ 0 Syt — (1 + g
H
dPy
= NaPy — N (Su +1n)
dPy
o o Py — NP
di Nuty — Nty
a _

dt
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.. Py = constant

also,

dpy _dSy  dly

dt  dt | dt
dPy A
— = A— —bSvlg —n.S,
dt P R
Ap
+_bSVIH _nl’11’
Py
dPy
—=A—-—1.(5 I
= Nv(Sy +1v)
dPy
R :A“- W
g Py

NowA —n,P > 0if A > n, Py

which is /- > Py

ief>Sy+1Iv>0

Therefore it can be concluded that Py is bounded as
4 >R >0

Therefore % is an upperbound of Py

Therefore Q = {(Sy, Iy, Hp,Sy,ly) € Ri; Py = constant, Fy < %}

2.3.4 Reduction of system of differential equations
Substituting,

S 1 S I
D A (2.11)

=" Y J’ = H
Py Py
we get,

x+y=1 , viz=1
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consider the equation ,

ds

i Nu Py — Y—HbSva — NSy + Anly
dt Py

then substituting (2.11) in the above equation:

d(xPH) YH (A )
EXH) _ Py — Y pxPy) ( 22) = nu(xP
i Nu Py Py (xPy) ", N (xPy)

+ Asi (yPu)
% =N — Eﬁx" = Nux+ Ay
% =nu(l—x)— I,iﬁszrAHy
d(ld: y) _ Ny — ﬁﬁ (L—=y)z+Any
j—f _ Ee‘;:(l —¥)z— (A +Ma)y
bA
Let o = ;gnv

and op = Ay +Nu

dy
— =01l —y)z—apy 212
- 1(1—y)z— apy (2.12)
Consider the equation,
dly — Yu
— = —bSyl, — I,
g~ py Sk (Ma + Y )ln
then substituting (2.11) in the above equation:
d(yPu) Yu A
= —p{xPy)l—z)— P,
7 Py (x H)(nv?) (e + V) (YPH)

dy  YubA
dt B PHTL.-

xz— (M + )y
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dy
—=0oy(l—y)z— 2.13
7 1(1-y) 2y (2.13)
Consider the equation,
dSy Ap
— =A— —bSylyg —1n,S,
dt PH vin—1

then substituting (2.11) in the above equation:

A
%ﬁ =A- i—jb(%)((ypff)“) - nv(%w
L ﬁ—jb((ypﬁ)v) —
% = —Agbvy+n,(1—v)
g = —Agbvy+ 1M,z

Letots =bAp and oy = nv

dyv
— = —03Vy+ 042

dt
d(1-7z)
=—o3(1—2)y Z
7 3(1—2)y+ o0y
dz
Z—oa(l=2)yv— 2.14
S 3(1 —z)y— 04z (2.14)
Consider the equation,
dl, Ap
— = —bSvly — nui,
d PH SV H — Ml

then substituting (2.11) in the above equation:

d(dz) 2
% - %b(%)((y}’”)v) _nv(%z)

‘= bAp(1—z)y—nz
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Therefore, the system is reduced to:

d
d—y =0o(l—y)z— oy
’ (2.15)
D _ (1 —2)y— ouz
dt 3 :
Where ,
iy = ']/HbA,
Pyny

0 =Ny + A,

03 = bAg,

Oy =Ny

2.3.5 Equilibrium points

To find equilibrium points of the system of differential equations, we equate the deriva-

tives to zero:

dy dz
dt  dt

a|(1 —}’)Z— (ngzo

Oy
e ol 2.16
T o(1-y) )

oz(o (1 —y) —y)y— a0y =0
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o(l1—2)y—oz=0
o3(a — oy — agy)y — 040y =0
y(oyos — ooy —oposy — opoy) =0

Sy=0 or y=ai03—a103y— ozy— 00y =0

003 — 00
sy=0 or y=———
003+ 00y
" v=0 or 03— 00y
“ > os(oq + o)
If y=0 then z=0
.. disease-free equilibrium pointis D = (0,0)
If y — w then:
o5 + )

(alas—am)
| —————
o (o + o)
4 (1— (alaa—azou))
ocg(cc1+(x2)

L o (003 — poy)
oq(aon —os — 003+ 0 oy)

_ O(0n 03— 00y)
00 0 ( 03 + 04)

Therefore
03 — 00
oy (03 + o)

r=
LY

.".endemic equilibrium point is

0103 — 00 003 — 052054)

D == 3 = g
2 = (30, 20) (oz3(a1+a2) )

31
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Therefore, we get two equilibrium points D; = (0,0) and D, = (yg, 20).

2.3.6 Reproduction number

We use next generation matrix method to find reproduction number. In F we put those
terms from equation (2.15) which helps in growing secondary infection and in V we put
all other terms with opposite signs.

o (l—y)z oy
F: ) '.'v:

o3(1—z)y 04z

Then by taking the jacobian of above, we get

o)z o (1—y) a 0
Jr= vy =
(1 —z) o3y 0 oy

Then evaluating above with respect to disease free equilibrium point, we get

0 o a 0
Jr(py) = 5l Jv(py) = 5
(04} oy
P U L
VD) ooy
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-1 [25]
JV[DI) 0 1
o

(04

 _|?

B= JF{D] }JV(D]) = (04} 0

05}

We can get the characteristic equation by solving

det(B—AI) = ‘B_;U‘ =0

Therefore, we have
o
A a}
=)
o
b B |
125)

then the characteristic equation of the above matrix we get,

22T _g
O Oy

oo
4 smseshe S50
00

So, the reproduction number (Ry) is determined by the greatest eigenvalue:

o) 03
00

33
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2.3.7 Linearisation of system with respect to equilibrium points

Jacobian of the linearised system is denoted as J:

—Oiz— 0y O —0y

03 — 03z —03y— 04

Linearisation of the system with respect to equilibrium point D = (0,0) yields the

Jacobian matrix:

—0 0O

O3 —04

Linearisation of the system with respect to equilibrium point D, = (yy,zo) yields the

Jacobian matrix;

o0z — O o 05— o
o 103 2064)_a2 o — o ( 103 2064)
Fo= o (05 + 0y) as(oy + o)
< o103 — O 0l o063 — O Uy
oG—g(————) —opy(————) —
0 mra)) P am ) ™
-0 03+ o o 0z —
103 + 20&4_062 a — oy (T 2054)
Iy = o3+ oy oz (o) + o)
- e (cxla_a.—ocgoq) —0103 + 00y
P (s + ) o+
consider
— 0 03 + 00y iy

O3 + 0y
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003+ 0004 — 003 — 004
O3 + 04

o) + O

O3 + 04

= —o3(

)

consider
0 03 — Ol Oy

g —ul oz(og + )

)

RO+ 0 00 — Q30T + 0 0 0
o3 (0 + )

. 00 03+ Oy
o3 0+ 0

)

consider
0 03 — Ol Oy
az — o5

] 061(053+064))

0goy + 000304 — 050 + L0304
ay (o + o)

0304 0+ 0
o o3+ 0u

)

consider
—0 03+ 00y
o + 0o

_ — 003+ 0 Oy — O Oy — Q2 Oy
o + 0o

= —0 (

o + 0y
o+ 00

i o+ 0o o0 [ 0+ 0y
J A 03+ Oy (0] o+ 0p
o=

OC3O£4(OC1+052 _a (a1+a4
o o3 + 0 ! oy + 0

)
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2.3.8 Stability Analysis

Theorem 2.3.8.1. The Dengue disease-free equilibrium Dy = (0,0) of the system is

locally asymptotically stable if Ry < 1 and unstable if Ry > 1.

Proof. : In order for the equilibrium point of the system to be stable, the eigenvalues

must be negative or have a negative real part.

—0n O
Denote J| = B =

03 —04

We can get the characteristic equation by solving

det(B—AlI) = ‘B—M’ =0

Therefore,

Therefore,

A*+ (0 + 0)A + ooy — 0o =0

is the characteristic equation.

Using Rauth Hurwitz criterion ,a second degree polynomial with all coefficients positive

will obviously have negative roots

clearly oo+o0y >0 and
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0oy — 003 >0 <

)03

<] <—
Ol Oy
O O3

< | =
O Oy

Ro<1
.. Disease free equilibrium point is locally asmptotically stable iff Ry < 1,otherwise it is
unstable. OJ

Theorem 2.3.8.2. The Dengue disease-present equilibrium (endemic equilibrium) Dy =

(v0,z0) of the system is asymptotically stable if Ry > 1 and unstable if Ry < 1.

Proof. : Denote

—o 0+ 0k o0 [ O304

3\ tay a3 \o+oy
0304 [ O-+00 —Q o +0y
o \ 0t+oy o+

We can get the characteristic equation by solving

det(C— Al) = ‘c—u‘ =0

Therefore,

O3+ 0y (07 o +0n

— (M) A am (m)

o O3+ 0y o)+ 00

() (82



38 Analysis of Dengue Disease

o + O oy + 00 o + o o +
(A +as 1T 02 YA+ o 1T 04 )— 1000304 (0] + 0 11+ 0
O3+ 0y o + O 0300 o3+ 0y o+ o

o+ 0y o+ 0
.'.12+a( )+a( )A+aa—a —0
(o o+ 3 o+ 04 ) 1 O3 20l

o) (o + o) + o3( 0 + 0)?

A+ogon—onoy =0
(i + o) (on+oq) )T 0108~ 020

o AP

then the characteristic equation of above matrix we get

13+agl+a|a3—a2a4 =0

oy (05 +ay)*> +os(oy +on)?
(on +ap) (03 + o)

where ag =

Using Rauth Hurwitz criterion ,a second degree polynomial with all coefficients positive

will obviously have negative roots

Clearly we can see that ap >0 and

Q103 — 00y >0 —

o &
143 1
O Oy
oo
£>1
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Ry > 1

.. Endemic equilibrium point is locally asmptotically stable iff Ry > 1,otherwise it is

unstable. O






Chapter 3

Analysing of Tuberculosis

3.1 Introduction

The paper discusses the impact of Tuberculosis (TB) on health, politics, and the economy,
emphasizing the importance of mathematical models in understanding and controlling
epidemics. It traces the history of epidemic modeling, particularly focusing on TB,
and highlights the role of vaccination in preventing the spread of the disease. The
study introduces three epidemiological models (modified SIR, SEIR, and BSEIR) to
analyze TB dynamics in Turkey, considering factors like birth and death rates, exposed
individuals, and prevention. The models are calibrated using real data from the World
Health Organization, revealing that the basic reproduction number (Rg) for all models
is less than 1, indicating controlled disease spread. The stability analysis demonstrate
that the model incorporating vaccination (BSEIR) provides realistic predictions. The

first study on the mathematical modelling of the spread of disease was proposed by

41
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Bernoulli in 1766[12].Kermack and McKendrick[13] proposed a deterministic model to
describe SIR.Chavez and Feng [14] focused on four models to understand the disease
transmission dynamics of TB. Yali Yang et[15] evaluated the cost of control strategies by
using an SEIR model. Side[16] proposed a SIR and an SEIR models for TB and analysed
these models. Zhang [17]set up a new mathematical model for TB in China using the
data from January 2005 to December 2012. Xu [18]proposed a mathematical model
to investigate the control and precautions in Guangdong of China. Liu [19] proposed
a mixed vaccination strategy that is the combination of constant vaccination and pulse
vaccination. Egbetade and Ibrahim [20]set up a new mathematical model incorporating
treatment, migration and vaccination. Rangkuti [21]explained the spread of TB in
North Sumatera Indonesia using VSEIR, which was created by adding the vaccination
parameter to the SEIR model. Egonmwan|[22] formulated a mathematical model that
incorporates vaccination of newborn children and older susceptible individuals into the

transmission dynamics of TB in a population.

3.2 Mathematical Modelling of Tuberculosis through

SIR model

3.2.1 Formation of model

Assuming the total population remains constant over time which implies that the
birth rate and death rate are same. This model contains three compartments suscep-
tible,infected,recovered. susceptible are those individuals who are not infected but they

can get the infection,infected are those individuals who has the tb infection and can
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transmit the disease,Recovered are those who are recovered from tb and are immune to

the disease.

bN
i R
S Te/N, T, R
L A
uS(t) uift) HR(t)

.. Nonlinear system of differential equations is

ds(t) BS(1)I(t)

- =bN— ===~ —uS(1)
di(t) BS(t)I(t) _
e (Y+wp)I(1)
dR(r) . _

— = Y6) - pR(r)

with 1nitial conditions

§(0) >0,1(0) >0, R(0) >0

where,

N = Total population
S(t) = number of susceptible individuals

I(t) = number of infected individuals

3.1
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R(t) = number of recovered individuals
b = The birth rate of the population
u = The death rate of the population
B = The transmission rate

Y = The recovery rate

Total population is denoted by N = S(¢) + I(t) + R(t)
B is the rate at which disease is transmitted from infected individuals to susceptible.y is
the rate at which infected individuals are recovered.vertical transmission are not taken

into account in this model.

3.2.2 Positivity of solutions

Theorem 3.2.2.1. If S(0) > 0, I(0) > 0, R(0) > 0, then the solutions of the system of

equations S(t), I(t), R(t) are positive for all t > 0.

Proof. :
IS0y, BSON) g,
d50),_BSOT) g
LIPS
(oo BI0
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50) > cexp(~(P )

-.|8(t) >0

dl(t)  BS(t)I(r)
d N
)

4O > i)
)

— (Y+w)I(r)

4
!
dI(t

I(1)
Ini(t)

IV

—(v+u)dt

v

—(r+m)t+c

~)

(t) = cexp(—(y+u)r)
~|I() >0

45
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3.2.3 Boundedness of the solution

Theorem 3.2.3.1. All feasible solutions S(t), I(t), R(t) of the system of equations are

bounded by the region Q = {(8(t),1(t),R(t)) € R3; N = constant}.

Proof. :

dN _ dS(t) L di(t) M dR(1)

dt  dt dt dt

dN o BSOIW) BS()I(r)
a Ay T

dN _ - _

e DN —u(S(@)+1(t)+R(t))
a'_N
dt
ﬁ
dt
d_N
dr

—(y+w)I(t) +vI(t) — uR(t)

.. N = constant

Q= {(8(t),I(t),R(t)) € R3 ;N = constant }is feasible region.

L]
3.2.4 Reduction of system of differential equations
Substituting,
50 T RO
S() =22 1) =2, R@)="4 (3.2)
we get,

1=8(t)+1(t)+R(t)
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Consider the equation,

then substituting (3.2) in the above equation:

d(NS(t))
dt

S(1)

dr

S()

dt

S(t)

dt

Consider the equation,

dI(t)

47

BSOIO) _ 5

N

BNS(t))(NI(1))
N

b—BS(0)I(t) — uS(r)

u—BS)I(t) —uS(r)

= bN —

— UNS(1)

—BS@)1(t) +u(1-5(@))

dt

then substituting (3.2) in the above equation:
d(NI(1))

B 5(2;@) —(y+ )

dt
1(r)

Consider the equation,

_ BINS(0))(NI(2))
N

(y+u)NI(r)

- = BS@)I(r) = (y+m)l()

dR(t) - ’
— 2 = YI(1) — uR(1)
then substituting (3.2) in the above equation:
d(NR(1
ARE) — ywre) - n(vR©)
dR(1)

vI(t) — uR()
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WZ3O0=TO) — yrs) - (1 -5y - 100)
ds(t) di(t)
—— g = YO —puS@) +pI)

BS@)I(t) — u(1—S(t)) = BS@)I(t) + (v +p)I(t) = VI(t) — u+ uS(t) +pl(r)

2.0=0

Therefore, the system is reduced to:

%%lz—ﬁﬂﬂﬂﬂ+u0—ﬁﬁn
%glzﬁﬂnuﬂ—wy+uﬂﬁ)

(3.3)

3.2.5 Equilibrium points

To find equilibrium points of the system of differential equations, we equate the deriva-

tives to zero:

dsS(t) (1)

:-—:0

dr dr
—BS(O)1(t) +u(1—S(t)) =0
—BS(O)I(1) +p—pS(t) =0
p=5S(t)(BI(t)+p)

. _ H

80 =g (3.4)
also,

1oy = #0=S) as)

BS()
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BSW)I(t) = (y+m)I(t) =0
(BS(1) = (y+u))I(t)

S A(t)=0o0r BS(t)—(y+u)=0

0

() =0or S(t) = ”T“

If I(r) = 0, then
S(t)=1

.". disease-free equilibrium point is D = (1,0)

= MB=T=H)

Blu+y)
.*.endemic equilibrium point is Dy = (S3,15)
where S5 = 1/—|-,u’ and I = HB=y=h)
B Blu+7)

. we get two equilirium points Dy = (S7,17) = (1,0) and D> = (83,15)

3.2.6 Reproduction number

49

(3.6)

We use the next generation matrix method to find the reproduction number. In F we put

those terms from equation (3.3) which help in growing secondary infection, and in V' we
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put all other terms with opposite signs.

-BSOIO| | |-u(1-50)

BSI(t) | (y+m)I(0)

—BI@t) —BS() po 0

JFp= , vy =
BI(t)  BS() 0 7y+u

1
AZJF(DI)JV{DI}: 5 B

We can get the characteristic equation by solving

det(A— Al = ‘A - ;u’ =)
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4

B
HTY

then the characteristic equation of the above matrix we get,

P

u+y
AA——)=0
H+Y
o B
s A=00rAd=—"—
u+vy

So we choose the greatest eigenvalue to get the reproduction number as Ry = m

3.2.7 Linearisation of system with respect to equilibrium points

—BI(t) - —BSQ)
Bit) B-v—m

Linearisation of the system with respect to equilibrium point D| = (S7,17) = (1,0) gives

The Jacobian of the linearized system is denoted as J =

the Jacobian matrix
=

0 B-y—u
Linearisation of the system with respect to equilibrium point D, = (53,1;) gives the

Ji =

Jacobian matrix

_uBﬁ—?—u)_H _Blr+m)
7= B(u+7) P

® uB(B—v—u) Bt
B(u+y) P
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[ S G e

_BB-y—pt+u+y e
b= u-vy

pB-v—u) "
[ n+y
B e
B n+y
HB—y—u)
| Bty

3.2.8 Stability Analysis

In order to the equilibrium point of the system to be stable ,the eigenvalue must be

negative or have negative real part.

Denote /1 = B = i P
0 B-y—u

We can get the characteristic equation by solving

det(B—AI) = }B—}U’ =0

—H—2 —B i
B  B—¥—u-A
S (u+A)(B-y—u—-A)=0

—UB+ Y+ P+ UA —BA+ YA+ A +A% =0

S AP+ AQ2u — B+ 7)A +u* 4+ uy— uB = Ois the characteristic equation.
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Using Rauth Hurwitz criterion ,a second degree polynomial with all coefficients positive

will obviously have negative roots

WHuy—pp >0 =

H+7Y—B>0 =
B

— <1 =
H+Y

Ry<1

Also,

2u—B+7>0 <=

U—B+7>0
B

— <] =
u+y

Ry<1

Therefore, the disease-free equilibrium point is locally asymptotically stable if and only

if Ry < 1; otherwise, it is unstable.

_HB
Denote J, =C = ¥ i
W(B—y—u) 0
HA+Y

We can get the characteristic equation by solving

det(C— AT) = ‘c_;u‘ =0
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Therefore,
up
Sty A —r-n -0
B{B—y—u) _
H+Y A
The characteristic equation is:
wrpt TR

Alternatively, it can be written as:

)L%ﬂﬂur —y—u)=0
S u(p—y—n)

Using Rauth Hurwitz criterion ,a second degree polynomial with all coefficients positive

will obviously have negative roots

UP—y—n)>0

B—y—u>0 =

L>l —
HAY
Ro>1
also,
KB
HT+Y

.". Endemic equilibrium point is locally asymptotically stable iff Ry > 1,otherwise it is

unstable.
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3.3 Mathematical Modelling of Tuberculosis through

SEIR model

3.3.1 Formation of model

Assuming the total population remains constant over time which implies that the birth
rate and death rate are same.

This model contains four compartments susceptible,exposed,infected,recovered. suscep-
tible are those individuals who are not infected but they can get the infection,exposed are
those individuals who are infected but symptoms are not seen and they cannot spread
disease as of now,infected are those individuals who has the tb infection and can transmit
the disease,Recovered are those who are recovered from tb and are immune to the disease.

Schematic diagram of the model is:

bN

-' }L!mmv_w,m._ £ E(t)m R(t) |
| , i |

uS(t) ME(t) Hift) HR(t)
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.". Nonlinear system of differential equations is

s . BSOIt)
a _bi\i__ o — uS(t)
di_fr) 55(21(” —(e+WEQ) (3.7)
(%(:J =eE(t) — (y+w)(t)
dR(1) n 5

with initial conditions

$(0) > 0,E(0) >0,1(0) >0, R(0) >0
where,

N = Total population
S(t) = number of susceptible individuals
E(t) = number of exposed individuals
I(t) = number of infected individuals
R(t) = number of recovered individuals

b = The birth rate of the population

1 = The death rate of the population

B = The transmission rate

€ = rate at which the exposed individuals become infected

¥ = The recovery rate
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Total population is denoted by N = §(¢) + E(¢) +1(t) + R(t)
B is the rate at which disease is transmitted from infected individuals to susceptible.y
is the rate at which infected individuals are recovered.€ is the rate at which exposed

individuals become infected.vertical transmission are not taken into account in this

model.

3.3.2 Positivity of solutions

Theorem 3.3.2.1. If 5(0) >0, E(0) >0, I(0) > 0, R(0) > 0, then the solutions of the

system of equations S(t),E(t), I(t), R(t) are positive for all t > 0.

Proof. :

450) _,y_85010) g
450) ,_BSON) g0,
B0 > B0 1 s
% > —(%ﬂt)dr
ins(e) > ~(BRD 4 pyr et
50) 2 cexp(~ (PN )
St)>0

e+ U)E(r)
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dE(t)
dt
dE (1)

E(t)

> —(e+M)E()

> —(e+p)dt

PO _ e)— (r+-w))
T > —(r+wite)

dI(t)

f_(r)_ > —(y+p)dt

Inf(t) > —(y+p)t+c

I(t) > cexp(—(y+u)r)

S| I(2) >0

=
=

(1)
dt
dR(t)
dt
dR(1)
R(1)

— (1) - uR(1)

v

—UR(1)

> —Hdt

InR(t) > —ut +c*

R(t) = cexp(—pt)

SUAR() >0

Analysing of Tuberculosis
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3.3.3 Boundedness of the solution

Theorem 3.3.3.1. All feasible solutions S(t),E (1), I(t), R(t) of the system of equations
are bounded by the region Q = {(S(t),E(t),I(t),R(t)) € RY; N = constant}.

Proof. :

AN dS(t) dE(r) dI(r) dR(r)
dr*dr+dr+dr+dr

dN - BSWI(t) o . BS(0)I()
F R T o i

(e+M)E(t) +eE() — (v+m)I(t)

+¥I(1) — uR(r)

dN = . = -
=5 =bN —u(S(t)+E(t)+1(t)+R(t))
dN

— = bN — uN

dt #

dN

o (b—u)N

dN

T =)

.. N = constant

2Q={(8(t),E(t),I(t),R(t)) € R* ;N = constant }is feasible region.
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3.3.4 Reduction of system of differential equations

Substituting,
~ S(r) _E() _ 1) _R()
Slr)= N E(t)= N Ii= N R(t) = N (3.8)
we get,
1=8t)+E(t)+I(t)+R()
Consider the equation,
% — bN— ﬁg(gf ® _ s

then substituting (3.8) in the above equation:

d(NS(1)) B(NS(2))(NI(t))
F N

S(t) =

— - =b=BS()1(t) — uS(1)
S@) _

- =R BSOI() — pS(0)
S(r)

dt

== = —BS)I(t) +pu(1—S(1))

— UNS(t)

Consider the equation,

dE(1)  BS)I(1)
dt N

—(e+u)E()

then substituting (3.8) in the above equation:

dNE() _ BNS(1)(NI(1))
0 B e+ INE(D)

P psioyit) — e+ mE)
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Consider the equation,

dI(t . _
P _ e2) - (r+ i)
then substituting (3.8) in the above equation:
dNI(t
) _ enE() - (r+ mNI0)
dI(t
A — ) - (r+wi0)
Consider the equation,
dR(r) _
o = VI(6) = uR()

then substituting (3.8) in the above equation:

d(N;j@) — ¥(NI(t)) — u(NR(r))
%Et_) = yI(t) — uR(t)
d(1 —SSB—*'U)) = yi(t) — (1= S(6) — (1))
ds(t) dl(r)
—— g = YO — p+uS) +pi ()

BS()I(t) — (1 — () — BSWI(1) + (y+ W)I(e) = YI(1) — -+ pS() + I (t)

5.0=0



62

3.3.5 Reproduction number

Analysing of Tuberculosis

Therefore, the system is reduced to

4SW) _ _gso)i(e) + u(1 - S(1)
dt

dE(r) P
- =BSWI() — (e +mE()

%’) = eE(1) — (y+ p)I(0)

We use next generation matrix method to find reproduction number.

In F we put those terms from equation (3.9) which helps in growing secondary infection

and in V we put all other terms with opposite signs.

B (e+u)E(t)
—€E(t)+ (v+m)I(r)
£+ 0
Jy = 2
—&  y+u
e+u O
Jv(p,)
—& Y+u
1
=E 0

(e+m)(r+u) 71+H
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£p p

=l
A=Jppylyipy = | ETHIHR) T+
0 0

We can get the characteristic equation by solving

det(A — AI) = ‘A—M‘ =0

Therefore,
e, B
(e+p)(y+n) Y+i|(=0
0 —A

Then the characteristic equation of the above matrix we get,

-1 ep K o
(e+u)(r+u)

ep
(u+y)(e+u)

S A=0 or

So, the reproduction number (Ry) is determined by the greatest eigenvalue:

_ ep
(MY (e+u)

Ry

63
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3.3.6 Equilibrium points

To find equilibrium points of the system of differential equations, we equate the deriva-

tives to zero:

ds(t) dE(r) dI(t)
dt — dt  dt

—BS()I(1) + (1= S(t) =0
—BS(0)I(t) +p — uS(r) = 0

w = S(6)(BI() + )

0

e M
S(t) = i (3.10)

also,

I(t) = R(L—4g)) (3.11)

BS(1)

BS(0)I(t) — (e +H)E(t) =0

BS()I(z)
e+

E{f)=

B(—t——)i(r)
Y TOR"

e+ U

B = (E&ix) (ﬁf'{r()tlﬂ) G-12)
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E(t) — (y+u)I(t) =0

E(t) = M (3.13)
also, I(r) = i(z
0= (555) (%5) (o)
Rl ()’i#) (eiHJ (Bl(r;ﬂt) G149
S I(t)=0 or 1:%
~I(0)=0 or I(t)= ‘”—(R”ﬁ—_l) (3.15)

.. disease-free equilibrium point is D; = (1,0,0)

If (1) = @é"—l)

, then
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K(Ro—1)
Be(e+pu)
(y+u)(e+p)

_ p(Ro—1)

S8 = — (3.17)

.-.endemic equilibrium point is D, = (55, E5,15)

1 Ryp—1
where $=—, E5= KRy ),
Ry Ro(e+ )

.. we get two equilirium points Dy = (S7,E{,I7) = (1,0,0) and D, = (S5, E3,15)
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3.3.7 Linearisation of system with respect to equilibrium points

Jacobian of the linearised system is denoted as J:

[ pi)-p 0
I=| By —(e+m)
I 0 €

—BS(t)
Bs()
e

Linearisation of the system with respect to equilibrium point D| = (S7,E{,I{) = (1,0,0)

yields the Jacobian matrix:

—1 0 —P
=10 —(e+p) B
0 € ~—/

Linearisation of the system with respect to equilibrium point D> = (S5, E3, ;) yields the

Jacobian matrix:

_B(p(RE—I))_ﬂ 0 _B(RLU)-
= (M) —e+w B(s)
0 € —Y—H |
0
n=|uRo-1) ~(etn)
L. P & —YTH
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3.3.8 Stability Analysis

Analysing of Tuberculosis

In order for the equilibrium point of the system to be stable, the eigenvalues must be

negative or have a negative real part.

Denote Jj =B=| 0 —(e+pu) B

e —Y-u

We can get the characteristic equation by solving

det(B—Al) = ‘B—M’ =)

Therefore,

—ji—A
0
0

0
—(e+u)—24

£

-B
B
—Y—p—A4

(L+A) (A +p+e)(A+pu+y)—Be)=0

is the characteristic equation.

Therefore, A = —por (A+u+¢€)(A+u+7y)—pe=0

Therefore, A = —pt or A2+ (€ +2U + Y)A +ey+eu+uy+u>—Be =0

Therefore, A = —pror A2+ (e +2u + YA +y(e+p) +u(e+un)—Be=0

Therefore, A = —p or A2+ (e +2u+ YA+ (e+ ) (y+B) —(e+u)(y+B)Ry =0

cA=—por A2+ (e4+2u+ A+ (e+u)(y+B)(1—Rp) =0 (3.18)
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Using the Routh—Hurwitz criterion, a second degree polynomial with all coefficients

positive will obviously have negative roots:

e+20+Y>0
also (e+u)(y+PB)(1—Rp) >0 <—
1—Ry>0 <—

Ry < 1

Therefore, the disease-free equilibrium point is locally asymptotically stable if Ry < 1;

otherwise, it is unstable.

—JU,RD 0 _REO
Denote o =C= | u(Ry—1) —(e+u) RE
0

0 € ==

We can get the characteristic equation by solving

det(C—AI) = ‘C—M‘ =0

Therefore,
“HRo— A 0 b
Ro
pRo-1) ~(e+utd) B =0
0
0 € —(y+u+A)
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The characteristic equation is:

ep
Ry

B

"R

—(HRo+A)((e+p+A)(y+u+A) (ue(Ro—1))=0

—(URo+A)((e+u+A)(y+u+A)—(e+p)(r+u) —u(e+u)(r+1)(Ro—1)=0
(MRo+A)((e+u+A)(r+u+A)— (e+u)(y+u) +u(E+p)(Y+1)(Ro—1)=0
(LR +A)((e+1)(Y+1) +(E+ 1A+ Y+ A +A% = (e+p) (y+1)) + (e +1)(Y+1)(Ro—1) =0
(HRo+A)((e+p) (Y+1) +(E+I)A+(Y+R)A+A% —(e+ ) (v+1)) +1(e+ 1) (y+1)(Ro—1) =0
(URo+A) (A + (e+2u+Y)A) + p(e+p) (7 + 1) (Ro—1) =0
AP+ (e4+2u+7)A2 + uRA> + uRo(e+2u+ YA +p(u+€)(u+7)(Ro—1) =0
A3+ (e+y+ (24 Ro))A%+ URo(+2u+ YA+ (1 +€) (L +7)(Ro—1) =0 (3.19)

Theorem 3.3.8.1. (Routh-Hurwitz Stability Criterion) Given the polynomial,
PA)=A"+a A" . 4 ap A +ap;

where the coefficients a; are real constants (i = 1,...,n), define the n Hurwitz matrices

using the coefficients a; of the characteristic polynomial:

= |a]
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ay 1 0
Hy= a3 ay ay|:
as dasg az
a; 1 0 ... 0
az a» ay ... 0
Hn =
0 ... 0 ... a,

where aj = 0 if j > n. All the roots of the polynomial P(A) are negative or have a

negative real part if and only if the determinants of all Hurwitz matrices are positive;

det(H;) >0, j=12,...,n.

.. Routh-Hurwitz Stability Criterion for n =3

det(H;) = |q| = a1 >0

a; |

det(H,) = =aiaz—az >0
as a
ay 1 0

det(H3) = |a3 ar a| =a3(aiaz—a3z) >0

0 0 a3

Here a;=¢€+y+u(2+Ry)

ar = ,LLR{)(S +2u+ }’)
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az=p(p+e)(H+y)(Ro—1)

det(H;) = a| = dai =&+ y+u(2+Ry) >0

a; 1
det(H>) = =aiay—a3 = (€+Y+1(2+Ro))URo(e+2u+7y) —pu(u+€)(1+7)(Ro—1)
az dp

= UR((e+21+7)* + pRo(e+21 +7)) — (i + &) (L + V)Ro + (1 + €) (1 +7)
= UR((L+€) +(u+7)*)+2u(u+e)(u+7)Ro—p(pn+€)(H+Y)Ro+ (1 +€)(H+7)
= uRy((H+€)*+(u+7))+u(u+e)(u+Y)Ro+pu(u+e)(u+7) >0

ay 1 0
det(H3) = a3 a» a| =a3(a1a2 —a3)

0 0 a3

c.det(Hs) = az(ajap —az) >0
+— a3 >0
= pp+e)(p+7rR—1)>0
< Ry—1>0

<— Ry>1

.". Endemic equilibrium point is locally asymptotically stable iff Ry > 1, otherwise it

is unstable.
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3.4 Mathematical Modelling of Tuberculosis through

BSEIR model

3.4.1 Formation of model

Here we are investigating the action of BCG vaccination on TB disease. This model
consists of five compartments: BCG vaccinated, susceptible, exposed, infected, and
recovered. BCG vaccinated individuals are those who have been vaccinated and are
within the BCG vaccination period. Susceptible individuals are those who have not been
infected but are at risk of contracting the infection. Exposed individuals are infected
but do not exhibit symptoms and are not currently able to transmit the disease. Infected
individuals have active TB infection and can spread the disease. Recovered individuals
are those who have recuperated from TB and are immune to the disease.

Schematic diagram of the model is :

kBtt){—\fﬂm(W }th)J = .
N |I
1 | | |

uS(t) HE(t) uit) di(t) HR(t)
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Nonlinear system of differential equations is

4B) _ Ap—kB(r)

as(e) BS()I(1)
S0 — )+ A1 —p) -
dE(t)  BS(1)I(1)

10 _BSOID e 4 pyeg)
M) — B @)~ (y+u+d)0)
RO — 1)~ urie)

with initial conditions
B(0)>0; S(0)>0; E(0)>0; I1(0)>0; R(0)>0

where,

N = Total population

Analysing of Tuberculosis

— usS()

(3.20)

B(t) = number of BCG vaccinated individuals who are in the BCG protection period

S(t) = number of susceptible individuals
E(t) = number of exposed individuals
(1) = number of infected individuals

R(t) = number of recovered individuals

p = probability of the newborns vaccinated successfully (0 < p < 1)

A = recrutement rate at which newborns are vaccinated

k = The rate at which vaccinated individuals become susceptible again

b = The birth rate of the population

i = The natural death rate of the population
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d = The disease induced death rate of the population
B = The transmission rate
€ = rate at which the exposed individuals become infected

¥ = The recovery rate

Total population is denoted by N = B(t) + S(¢) + E(t) +1(t) +R(t)

The positive effect of BCG vaccination is limited ,the vaccinated successfully individuals
become suscetibe again by rate k. 3 is the rate at which disease is transmitted from in-
fected individuals to susceptible.y is the rate at which infected individuals are recovered.e
is the rate at which exposed individuals become infected.vertical transmission are not
taken into account in this model.

During the BCG protection period, individuals will remain uninfected even upon expo-
sure to infected individuals, as the vaccination confers immunity to all of them.

Given that the effectiveness of the vaccination is believed to last for approximately 10
to 15 years and the mortality rate among children is around 1%, we neglect the natural

death rate within the BCG vaccinated subgroup.

3.4.2 Positivity of solutions

Theorem 3.4.2.1. IfB(0) >0,5(0) >0, E(0) > 0, 1(0) > 0, R(0) > 0, then the solutions

of the system of equations B(t),S(t),E(t), I(t), R(t) are positive for all t > 0.
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Proof. :

dB(t)
dt

digf) > _kB(r)

dB(t)

B0 > —kdt

InB(t) > —kt +c*

=Ap—kB(t)

B(t) > cexp(—kt)

| B(t) >0

dS(t) S(t)I(t)
e

— = kB(D)+A(1—p) -

50, _BSOI0)
ase) , _ B
dr — N

asi) > *(% + p)di

S(t)
ins(e) > (P00 4
(¢

pI
N

+1)S(r)
+ *
_|_.

S(t) = cexp(—( )

S 08(1) >0

dE(D) _ BSOI0)
d~ N
W > (e +mEQ)

dE(t
E(t)

—

> —(e+u)dt

Analysing of Tuberculosis

us(r)

—(e+R)E(1)
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InE(t) > —(e+u)t+c*

E(t) 2 cexp(—(e+p)1)

E(t)>0
‘ﬂ_(:) — eE(t) — (y+p+d)I(t)
ﬂ(:) > —(y+u+d))
dl(1)

Inf(t) > —(y+u+d)t+c*

(1) > cexp(—(y+p+d)i)

“11(t) >0

~.B(1) > 0,8(1) > 0,E(t) > 0,(t) > 0,R(r) > 0

W
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3.4.3 Boundedness of the solution

Theorem 3.4.3.1. All feasible solutions B(t),S(t),E(t), I(t), R(t) of the system of
equations are bounded by the region Q = {(B(t),S(t),E(t),I(t),R(t)) € R3; N =
B(t)+S(t) +E(t) +1(t) +R(r) < 3 }.

Proof. :

dN dB(t) dS(t) dE(t) dI(t) dR(t)
& @ @ T ad T d

% — Ap—kB(t) +kB(t) + A(1 — p)
BS()I(1) BS@)I(s)
_T—;LS(I)—!—T
—(e+p)E(t)+€E(1)
— (y+p+d)I(t)+yI(t) — uR(?)
% =A—u(S(t)+E@)+1(t)+R(t)) —di(t)
‘ff_?’éA_#(s(r)+E(f)+1(f)+R(’))
g <A—puN
AN
- <dt
In|A — pN| <t+c
—u -

—In|A—puN| < pt+c’
In|A—puN| > —pi—c
[A—UN| > c"exp(—ur)

case(i) : A— uN > c"exp (—ut)
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A—exp(—ut) > c*uN

A _coptcp) 2

Att =0
——c¢ > N(0)
A
i.e N(0) < i —c
A
N(O) — ; < —pt e
i.e N(0)— A <c
) -2y > -
= (V(0) = ) exp(—ur) > —cexp(—ur) > N
N < 5= (N(O) = )exp(—
< (V) — ) exp ()
N <+ (V(O) = ) exp ()
case(ii):

A—uN < —cexp(—ut)
A+c"exp(—ut) < uN
% +cexp(—ut) <N
N> £~+cexp(—,ur)

Atr=0:

79

(3.21)
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N(0) > éJru::
il

~(V(0) = ) exp(—ur) < cexp (—p1)

% —(N(0) - L—\) exp (—put) < %+ cexp (—ui)
<N
% —(N(0)— %) exp (—pur) <N

but we want only upperbound ,therefore

limN(f) < lim 8 + (N(0) — L—\)exp(—ut)

{—o0 1—vee I

climsupN(r) < A
- u

S N=B(t)+S8(t)+E(t)+1(t)+R(r) < -}

==

Therefore we get the region which is given by the set

(3.22)

Q={(B(t),8(t),E(t),I(t),R(t)) RS ; N=B(t)+S(t)+E(t)+1(t) +R(t) < %} which

is a positively invariant set.

g
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3.4.4 Equilibrium points

To find equilibrium points of the system of differential equations, we equate the deriva-

tives to zero:

dB(r) _dS(r) _dE(r) _dl(r) _dR(r) _

dt dt dt dt dt
Ap—kB(t) =0
B(t) = % (3.23)

BSWIO) g

&B(r) +A(1 - p) - B2 ~0
k%w\m—p)—w—usu):o
A=A 4y —o
i B1(t)+
():% (3.24)



82 Analysing of Tuberculosis

B
—S8(2)l
i A0
E+U
B A
g ()
N'B
E(t) = fo;l;*”
C BAIO)
EO) = GBI+ m e+ o) 523

EE(t)—(y+un+d)I(t)=0

BAI(t)
(BI(t)+Nu)(e+u)

0

&( )= (r+r+ad)()

_ B » eBA 3 _
SI)=0 o B TN e+ ) (y+u+d)=0 (3.26)

cA(@)=0 or eBA—(BI(r)+Np)(e+u)(y+pu+d)=0

S I(t)=0 or eBA-BI(t)(e+pn)(y+u+d)+Nue+p)(y+pu+d)=0

ePA—Nu(e+u)(y+p+d)

Bletm)(y+ptd) 627

S A@)=0 or I(t)=

Yi(t) —puR(t) =0
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If 1I(r)=0, then

B(f) = 2P

s(r) =

7

k
A
T
=Q,

R(t)=0

.". disease-free equilibrium point is D; = (b}, s],e7,i],7]) = (

Ap A
k' u

EBA—Nu(e+p)(y+u+d)

IfI(r) =

Be+u)(y+p+d)
Ap
B(f) = T.
NA
S(t) = ——,
®) Bis+Nu
BA;
E(t)= -
0= BE+Nw T
i
R(t)=—=
(t) r
.. endemic equilibrium point is
Ap  NA BAiS

Dy = (b3,53,€5,13,13) = (

k'’ Bis+Nu' (Biz+Np)(e+p)

523

83

(3.28)

=15, then

'ﬂZ)
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Therefore, we get two equilibrium points D = (b}, s].€},7},7]) and
Dy = (b3,85,€5,15,75).

dN _ dB(t) " dS(t) " dE(t) . dI(r) + dR(r)

Als
" dt dt dt dt dt dt

= Ap—kB(t) +kB(t) + A(1 - p)

BSOIO) g, BSOIC)
—(e+M)E(t)+EE(1)

—(Y+u+d)I(t)+7I(t) — uR(t)
=A—u(S@)+E®@)+1(t)+R())—dl(r)

=A—UN+uB(t)—dI(t)

dN
Now putting ={)

dr

S A—UN+uB(t)—dl(t) =0

Substituting D; in above we get,
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i\p
k

Ly=A (Hup)
u k

SA-uUN+p—=0

3.4.5 Reproduction number

We use next generation matrix method to find reproduction number. In F we put those
terms from equation (3.20) which helps in growing secondary infection and in V we put

all other terms with opposite signs.

o [MSOIO] (e+m)E()
0 —€E(t)+ (y+u+d)l(t)
0 Bsi e+ 0
Jo = NS () = i
0 0 —& y+u+d
0 EA E+u 0
Jr(py) = » Jvpy) =
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BA
ﬁﬁ+up) E+u 0
Jron=1 u' & » vy = .
—€ +H+
5 5 Y+ U
k
kfﬂ E+ U 0
Jr(py) = P, vy =
0 0 —€& y+u+d
1 y+u+d 0O

JoL o=
V(DJ} (£+ﬂ)('}’+#+d) £ e_i_u

— 0
o - e+
V(D) € 1
(e+u)(y+u+d) y+u+d
ePk Bk
_1 - ’
A=Tppylylyy = | WPTR(EFW)(Y+R+d) (p+R)(y+u+d)
0 0

We can get the characteristic equation by solving

det(A— Al = ‘A—M’ =0
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Therefore, we have

ek L Bk
(up+k)(e+u)(y+u+d) (up+k)(y+u+d)| —g
0 —3

then the characteristic equation of the above matrix we get,

’ ek
(up+k)(e+u)(y+u+d)

eBk B
& (1 - (Mp+k)(8+#)(?’+ﬁ-+d)) =0

- ; ek
i N (17 W17 conyrarnyy

So, the reproduction number (Ry) is determined by the greatest eigenvalue:

eBk
up+k)(e+u)(y+u+d)

RU:(

3.4.6 Linearisation of system with respect to equilibrium point

Jacobian of the linearised system is denoted as J:

<k 0 0 0 0 |
¥ =Lit=p O “Bse)y o
J=10 Bty —(e+n)  Es@) 0
0 0 € —(y+u+d) 0

0 0 0 ¥ —u
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Linearisation of the system with respect to equilibrium point Dy = (b],s],e],i],7]) =

(%;"35 ﬁ,O, 0,0) yields the Jacobian matrix:

[k 0 0 0 0 |
Kk —u 0 = 0
C=[0 0 —(e+p) = 0
0 0 e —(y+p+d) 0

0 0 0 % —q

3.4.7 Stability Analysis

In order for the equilibrium point of the system to be stable, the eigenvalues must be
negative or have a negative real part.

We can get the characteristic equation by solving

det(C— Al = ‘c—u‘ =0

Therefore,
—k—A 0 0 0 0
ko —u—2 0 e 0
0 0 —(e+E+A) o 0 |=0
0 0 £ —(y+u+d+24) 0
0 0 0 Y —U—A
A
(k4+A) (A1) ((e+p+A)y+u+d+A)— Bi) =0

Nu
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is the characteristic equation.

Therefore, Ay = —kor A = —p or A3 = —pu or (8+u+7u)(’}/+u+d+k)~§;—$ =0

BeA
(E+p+A)(y+u+d+A) i ="
A
(e+m)(r+p+d)+(e+ A+ (r+u+dd+22 B _g
A
A2 +ad+a,=0 (3.29)
Whel‘e,al :]/+2Ju+d+£(12:(£+u)(y+lu+d)_§[%

Using the Routh—Hurwitz criterion, a second degree polynomial with all coefficients

positive will obviously have negative roots:

a1 =YyY+2u+d+€e>0 and

eA
.sz2=(.€+Jut)(}”muter)—}?V—‘u >0 —

(e4+u)(y+u+d) > % =
BeA
(& ()

Bek

k+up

(e+pu)(y+u+d) >

(e+u)(y+u+d) >

| > Epk —
(up+k)(e+p)(y+p+d)

1 >Ry

Ry<1
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Therefore, the disease-free equilibrium point is locally asymptotically stable if Ry < 1;

otherwise, it is unstable.



Chapter 4

Analysis of covid 19

4.1 Introduction

In late 2019, the emergence of the novel Coronavirus, named COVID-19, posed a
significant threat to the international community due to its rapid spread and high mortality
rate. The World Health Organization (WHO) was alerted to cases of idiopathic pulmonary
infections in Wuhan, China, on December 31, 2019. By January 7th, Chinese authorities
identified the cause as a new virus, 2019-nCoV. Mathematical modeling of COVID-19 is
crucial for understanding its spread and evaluating containment measures like quarantine.
Given China’s high population density, it serves as a significant case study. Various
mathematical models have been developed to analyze infectious diseases, including
COVID-19. These models help in reducing the number of infections by predicting spread

patterns.
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Specifically, the review mentions studies by M. Tahir et al.[23] and Zhi-Qiang Xia
et al.[24], which developed mathematical models for MERS-CoV and analyzed factors
contributing to disease spread, such as the basic reproduction number (Ry) and control
measures. Additionally, A. Naheed et al.’s [25]research on population models for SARS
examined the impact of diffusion on disease transmission and stability analysis of

numerical solutions.

The model considers human-to-human transmission via direct contact with infected
individuals. Local and global stability analyses of the model are conducted. The paper is
structured with sections on model formulation, equilibrium analysis, stability analysis,

conclusion.

4.2 Mathematical Modelling of Covid 19 through SEIHR

model

4.2.1 Formation of model

This model consists of five compartments: susceptible, asymptomatic infected or having
mild infection, infected,hospital and recovered. Susceptible individuals are those who
have not been infected but are at risk of contracting the infection.Asymptomatic infected
or having mild infection are at the initial stage og infection and can spread the disease.
Infected individuals have active covid virus and are quarantined themselves or have
hospitalised . Recovered individuals are those who have recuperated from covid and are

immune to the disease.
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OE

SE

S uE ul 5,1 HR
Nonlinear system of differential equations is
ds(r) SE
A A B
dt P N a3
dE(t) ,SE
5 =P N (L+o+0)E
d;—f)mg—(mual); @)
dH (t
1) - (uty+oH
R
ddgt) =YH+0E — uR

with initial conditions
$(0)>0, E(0)>0, 1(0)>0, H(0)>0, and R(0)>0

where,

N = Total population
S(z) = number of susceptible individuals
E (1) = number of asymptomatic infected or mildly infected individuals
(1) = number of infected individuals
R(t) = number of recovered individuals

A = new birth rate of the population
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0, = death of infected individuals due to covid 19

0, = death of hospitalised individuals due to covid 19

p = The natural death rate of the population

B = The transmission rate

0 = rate at which asymptotic individual recover

o = rate at which asymptotic individual become infected
A = rate at which infected individuals hospitalised

Y = The recovery rate of hospitalised individuals

Total population is denoted by N = S(¢) + E(t) +I(t) + H(t) + R(t)

In the model, A denotes the birth rate of susceptible individuals, reflecting the rate at
which new individuals enter the population. The parameter 3 signifies the transmission
rate from susceptible individuals to those who become asymptomatic or develop mild
symptoms due to interactions and contacts. The rate of natural mortality across all
compartments is represented by p. o denotes the rate at which asymptomatic or mildly
symptomatic individuals transmit the infection to others who develop symptoms. A
signifies the transmission rate from individuals with symptoms to those who require
hospitalization. 7y represents the transmission rate from hospitalized individuals to
those who eventually recover. 6 captures the rate at which asymptomatic or mildly
symptomatic individuals develop immunity and recover without requiring hospitalization.
The parameters §; and & correspond to the death rates of infected individuals and
hospitalized cases, respectively. In this model it is assumed that infected people are not
recovering unless they hospitalise themselves.Also it is assumed that once people recover

they will not get infection back again.
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4.2.2 Positivity of solutions

95

Theorem 4.2.2.1. IfS(0) >0, E(0) >0, I(0) > 0,H(0) > 0, R(0) > 0, then the solutions

of the system of equations S(t),E(t), I(t), H(t) ,R(t) are positive for all t > 0.

Proof. :

ds(t) SE

I e
BO > —sBE +m)
ds(1)

> (B

InS(t) > —(B%Jr,u)wc*

(1) > cexp(~(B s + 1))

S(t) >0
dE(t)  ,SE
digr) >—(u+o+0)E
d;(?)) > —(u+o+0)dt

mE(t) > —(u+a+0)t+c*

E(t) > cexp(—(u+a+0)t)

|E(t) >0
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%{9 =aE—(U+A+61)]
%(:) > —(u+A+6)I
dI(t)

0 > —(U+A+6)dt

Inl(t) > —(U+A+6)t+c"

I(t) > cexp(—(u+A+8))1)

| I() >0

d'j,t(r) =AM —(u+7+&)H

dH (1) S
dt  —

d;(g) > —(+ 7+ &)t

—(u+y+6)H

InH(t) > —(u+7+&)t+c

H(t) > cexp(—(u+y+&)t)

S| H(t) >0




4.2 Mathematical Modelling ot Covid 19 through SEIHR model 97

28(0) 2 0,E(2) =2 0,1(t) =0,H(t) = 0,R(t) = 0

4.2.3 Boundedness of the solution

Theorem 4.2.3.1. All feasible solutions S(t),E(t), 1(t),H(t), R(t) of the system of
equations are bounded by the region Q = {(S(t),E(t),I(t),H(t),R(t)) € R ; N =

S()+E@) +1(t)+H(r)+R(r) < £}

Proof. :

dN  dS(t) B dE(t) i dl(t) i dH (1) 5 dR(r)

dr —  dt dt dt dt dt
dN SE

L T T

dt ﬁN M

E
+ﬁS——(,u+tx+9)E

N
+oE—(U+A+6)]
+ Al —(u+y+6)H

+YH+ 6E — uR

dN
s =A—u(S+E+I+H+R)— 61— &H
dN

—~ SA—p(S+E+I+H+R)

AN
B kgl
ar =HTH

dN
<
A_#N_dr

In|A— uN|
—p

§t+6
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—In|A — uN]| S,LLH—C”
In|A—uN| > —ut—c
|A—uN| > c"exp(—ut)
case(i): A— uN > c"exp (—ut)
A—exp(—pt) = c"uN

% —cexp(—ut) >N

Atr=0:

A
——c>N(0
i (0)

LeNO) 22—
u
N(O)—é <—c<c
u
LN =2
u

(W)= Dy e

u
3—@«(0) —ﬁ)exp(—,ur) > 3 —cexp(—pt) > N
AN< 3—(N(0)—£)CXP(—M

A A
S TG = dexp ()

N <

= >

+(N(0)— ﬁ)m(—m) 4.2)

case(il):

A—uN < —c"exp(—ut)

A+ c"exp(—ut) < uN
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3 +cexp(—ut) <N

N> 3 +cexp (—ut)

Att=0:
N(O)Eé-l—c
i

N(O)—ézcz—c

u

A

S.NO)——>—¢
=,

—(N(0) - g)expt—ur) < cexp(—put)

3 — (N(0) - %)exr’(—ur) < % T cexp(—put)
<N
ﬁ—wm)—ﬁ)exp(—m <N

but we want only upperbound ,therefore

. A A
lim N(7) < AT (N(0) — E)em(—w)
. A
3 ',ILH;SUPN(I) < E

SN=S()+E@)+I()+H(t)+R(1) < —}

==

Therefore we get the region which is given by the set

Q= {(S(t),E(t),I(t),H(t),R(t)) € R; N =S(t)+E(t)+1(t)+H(t) + R(t)

which is a positively invariant set.
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(4.3)

A
Ay

O
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4.2.4 Reduction of the system

Since first three equations in system (4.1) are independents of the variables H and R

.Hence, the dynamics of equation system (4.1) is equivalent to the dynamics of equation

system:
ds(r) SE
5 Tl
dE(t) SE
=B — 4.4
o ﬁN (L+a+0)E (4.4)
§%Q:aa_m+x+&ﬂ

4.2.5 Reproduction number

We use next generation matrix method to find reproduction number.
In F we put those terms from equation (4.4) which helps in growing secondary infection

and in V we put all other terms with opposite signs.

ig2 ’ (L+a+0)E

0| —OE+ (B4 A+8)I

Then by taking the jacobian of above we get,

S
2 0 +o+6 0
Jp = Py Fy=|F
0 0 —o p+A+ 9
BA
M p+a+0 0
e RN R
0 0 - u+A+8
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ot 1 p+A+8 0
V) "~ (u+a+0)(u+A+8)

o u+o+06

1
J" _ p+o+0 0
V(D))

o 1
(U+a+8)(u+A+01) pH+A+O

BA
Nu(u+a+6)

0 0

=
B= JF{DlJJV(Di)

We can get the characteristic equation by solving
@dB—AH:wB_A4:U

Therefore, we have

then the characteristic equation of the above matrix we get,

3 BA _
A NMp+a+m1_0
BA )
AlA— =
( Nu(p+a+6)
SA=0 or A

Nu(p+o+8)
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So, the reproduction number (Ry) is determined by the greatest eigenvalue:

BA
Nu(p+oa+0)

Ry =

4.2.6 Equilibrium points

To find equilibrium points of the system of differential equations, we equate the deriva-

tives to zero:

dS(1) _ dE(t) _ dI(t)

dt dt dt =0
SE
A=BE +u)s 4.5)
_( N u 3
A
. B (4.6)
BE+u
E
= §=ﬁﬁ+#
A E
s H=Py
N A
E= E(E ~ i) (4.7)

SE
B —(H+a+0)E=0

E(By —(u+a+6)=0
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Bl o ﬁgf{n+a+m=ﬁ

N

E=0 or S=
B

(L+a+0) (4.8)

OE —(U+A+6)=0

aF

= 4.9
u+A+94 )
If E =0, then
B2
H
I=0
. ags . . . * * ¥ A
.. disease-free equilibrium point is D = (s}, e],i]) = (E,O,O)
N
If .S:E(,u-l—a-i—ﬂ),then
E—ﬂ( a — M)
B (F(n+a+0))
A u

E=—— __EN 4.10

p+o+6 p (+10)
a A u

I= ——N 4.11

u+a+&(u+a+9 B ) S

consider

N N AB
S==(pt+ta+8)=—=——
ﬁ(# ) B 1Ry
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A
S=——
HRo
consider
A H NURy 1
= _ N = _ BN
u+o+6 p B B
u
E=N—=(Ry—1)
B
consider

a A u
I'= —=N
H+A+ 6 (,u+a+6 B )

UNo
= —————F——F5<(Ro—1
Blu+ire) oY
.".endemic equilibrium point is
Kk wk A “’ ;UN(X
Dy = (s3,65,05) = — N> (Ro— 1), ——F——<~
2l (uRD gV purara)

Analysis of covid 19

(4.12)

(4.13)

(4.14)

(Rb——1)>

Therefore, we get two equilibrium points D = (s7,e],i}) and Dy = (s3,€5,15).

4.2.7 Linearisation of system with respect to equilibrium points

Jacobian of the linearised system is denoted as J:

PE_u Bs 0
J=| Bg Bs_(u+a+0) 0

0 o —(u+A+0)
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Linearisation of the system with respect to equilibrium point D| = (s7,e],i]) = (ﬁ,{), 0)

yields the Jacobian matrix:

BA

h=10 BA—(u+a+0) 0
0 o —(U+A+6)

Linearisation of the system with respect to equilibrium point Dy = (s53,€5,i3) yields the
Jacobian matrix:

~RVG(Ro— 1)~ p EY(u+a+0)) 0
= %(N%(Ro—l)) E(N(u+a+0)—(u+a+0) 0
I 0 o —(Ju+/1+6.)_
—uRy —(u+oa+6) 0 »
Jo=|u(Ry—1) 0 0
0 o —(u+A+8)

4.2.8 Stability Analysis

Local Stability:

Theorem 4.2.8.1. The COVID-19 disease-free equilibrium D = (s, e},i}) of the system

is asymptotically stable if Ry < 1 and unstable if Ry > 1.

Proof. : In order for the equilibrium point of the system to be stable, the eigenvalues

must be negative or have a negative real part.
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A
Denote Jj =B = | ( %ﬁ—(p+a+9) 0
0 o —(U+A+8)

We can get the characteristic equation by solving

det(B—¢{I) = ’B— g;‘ =0

Therefore,
-pn-¢ g8 0
0 BA(u+a+0)-¢ 0 =0
0 o —(u+A+6;)-¢
Therefore,
BA
M+ (G- —(u+ta+8)-0)((p+A+8)+8)=0

Nu
is the characteristic equation.

Therefore, {; = —por §; = f,—ﬁ—(,f.l—l—OH—G) orz=—(U+A+38))

BA

Consid =—— 6
onsider &, N (L+o+0)

=Ro(u+a+06)—(u+oa+80)

=(u+a+06)(Ry—1)
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Here ) and {; are clearly negative and

bHh <0
(H+o+0)(Rp—1) <0 —
Ry—1<0 <

Ry < 1

Therefore, the disease-free equilibrium point is locally asymptotically stable if Ry < 1;

otherwise, 1t 1s unstable. ]

Theorem 4.2.8.2. The COVID-19 disease-present equilibrium (endemic equilibrium)

D, = (s3,€5.13) of the system is asymptotically stable if Ry > 1 and unstable if Ry < 1.

—MRy —(u+a+0) 0
Proof. : Denote J, =C = [(Ry—1) 0 0
0 o —(U+A+6)

We can get the characteristic equation by solving

det(C—CI) = ‘(;_ g;‘ =0

Therefore,

—URy—§ —(L+a+0) 0
H(Ro—1) -6 0 =0
0 o —(U+A+8)-¢
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The characteristic equation is:

(U+A+6+E) (MR + )+ (u+a+0)u(Ry—1)) =0

Therefore §; = —(U+A+68;) or (URo+E)E+(u+a+0)u(Ry—1)=0

Therefore {; = —(u+A+38;) or &>+ uRel +(u+o+0)u(Ry—1)=0

Now consider {2+ uRo{ + (U + o+ 0)u(Ry—1) =0

Using Rauth Hurwitz criterion ,a second degree polynomial with all coefficients positive

will obviously have negative roots.

We can clearly see that uRy > 0 and

(L+o+0)u(Ry—1) >0 <
Ry—1>0 <

Ry >1 «—

.. Endemic equilibrium point is locally asymptotically stable iff Ry > 1, otherwise it is

unstable. O
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Global Stability:

Theorem 4.2.8.3. The COVID-19 disease-free equilibrium Dy = (s, e},i}) is globally

asymptotically stable in Q if Ry < 1 and unstable otherwise.

Proof. : Let the following Lyapunov function:
V:IT=+R

V(S,E)=5((S—So) +E)* + §(2u+a+0)E
where I' = {(S,E) € I'/S > 0,E > 0}.

Firstly, to show that V (S, E) is positive definite:

Case (i): when (S—Sp)+E <0Oor>0
then

%((S—So) +E)?>0

S V(S,E) >0

Case (ii): when (S—Sy)+E =0

then

1

5((5=S0) +E)2 =0
but

N

E(2u+a+9)E >0

- V(S,E)>0

And at the disease-free equilibrium point S = Sy and E =0,

~V(S,E)=0 < S=SpandE=0
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. V(S,E) is positive definite.

Then, the time derivative of the Lyapunov function is given by:

‘—WS;’E) [(S—So) +F](di£)+d'zfr))+ﬁ(u+ +9)%
:[(S—S{))+E](Ahﬁﬁ—u5+ﬁﬁ—(p+a+9):€)
+%(u+a+9)d‘§§r)
=[(S—So)+E](A—uS—(u+a+6)E )+g(u+a+9)dﬂt)
~ (5 50) + £} (uSh— S — (u + @+ 0)E) + -+ o+ )0
— (5 0)+ £ (~(S—50)~ (u+ @+ 0)) + 5 (u-+a+ )
=—p(S—50)* — (1 +t+0)(S—So)E — u(S—So)E — (U + o+ 6)E?
+%(u+a+9)d‘z£r)
=—JU,(S—S[)) (#+C€+9) —(2u+a+0)(S—Sy)E
+%(u+a+8) dft)
=—u(S—S0)> — (u+a+0)E?

A N (B

+Qu+a+0) [EE—SEJrE(N—(quaJrB)EN

= —u(S—50)*— (u+a+6)E?

A N
+Q2u+a+0) {EE—SEJrSE—B(eraJrB)E]

=—u(S—So)* — (L +a+6)E

+Ru+a+0)E [g—%(p+a+6)}
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=—u(S—5So0)*— (u+a+0)E?

N N
B—E(H+a+9)]

= —pu(S—80) — (L+a+0)E*+ (2u+a+60)E(1L+ a+8)

dV (S,E)
————=<0
ot g7 <
L AV(S.E)
' dt
dV

Z:() if and only if S=5jand E = 0.

+(2u+a+6)E[Ry(n+ o+ 80)

(Ro—1)

==

for Ry—1<0

<0 for Rp<l1

Hence, by LaSalle’s invariance principle, the disease-free equilibrium point is globally

asymptotically stable in Q. U






Chapter 5

Conclusion

In chapter two we constructed a continuous mathematical framework, labeled as the
transmission model without immunity, to simulate the advancement of Dengue disease
within a population. Within this framework, we highlighted a critical parameter known
as the basic reproduction number, represented as Ry. This parameter serves to quantify
the disease’s potential for dissemination and provides insights into the dynamics of
the system. we found out that when the equilibrium point is situated at the origin, it
signifies local stability if the reproduction number is below one. In such instances,
the disease tends to diminish over time and eventually dies out. Conversely, if the
reproduction number exceeds one, the endemic equilibrium point indicates local stability.

This suggests that the disease persists within the population at an endemic level.

In Chapter Three, we delve into the transmission patterns of tuberculosis (TB),
employing three distinct epidemic models: the SIR, SEIR, and BSEIR models. Initially,
the research focuses on a modified version of the SIR model, where population size

remains constant and birth and death rates are equal. Subsequently, the SEIR model,
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incorporating an exposed group, is examined. Finally, a more comprehensive model,
the BSEIR, is explored, incorporating vaccination rates, offering enhanced predictive
capabilities compared to the other models. The findings suggest that the BSEIR model
yields more precise predictions. The research also entails mathematical analyses of all
three models, including stability assessments and the calculation of the reproduction
number (Ry). The Ry plays a pivotal role in characterizing the dynamic behavior of
the models. When the equilibrium point resides at the origin, achieving local stability
requires an Ry below one, indicating a decline and eventual extinction of TB over time.
Conversely, an Ry exceeding one suggests local stability at an endemic equilibrium point,

indicating the persistence of TB within the population at a steady level.

In chapter four we developed a continuous mathematical framework, denoted as
SEIHR, to model the progression of the COVID-19 disease within a population. One key
parameter we identified is the basic reproduction number, denoted as Ry, which charac-
terizes the potential spread of the disease and informs us about the system’s behavior.
By employing stability analysis techniques for nonlinear systems, we investigated the
behavior of the COVID-19 disease model. Specifically, we examined both local and
global stability properties. Local asymptotic stability at the disease-free equilibrium
is achieved when the value of Ry does not exceed unity . Conversely, if Ry exceeds 1,
the equilibrium representing the presence of COVID-19 becomes locally asymptotically
stable. To demonstrate the global stability of the disease-free equilibrium, we utilized a
Lyapunov function. Our analysis revealed that the disease-free state is globally asymp-
totically stable under the condition that Ry < 1. This implies that in scenarios where
the basic reproduction number remains below or equal to 1, the COVID-19 epidemic is

effectively controlled, and the population tends towards a state free of the disease.



Chapter 6

Further scope

Utilizing data gathered from hospitals and relevant institutions, we can conduct numerical
simulations to obtain precise outcomes aligned with the data utilized. This approach
proves beneficial in formulating accurate predictions aimed at effectively managing and

containing outbreaks within specific regions.

In particularly we can take data from Goa for diseases like dengue ,tuberculosis
,covid-19 and can separately find analysis of the models . Which will help us to know

more about the these disease in Goa and to control these diseases.
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