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PREFACE

This Project Report has been created as a part of the MAT-651 Discipline Specific Dis-

sertation for the M.Sc. in Mathematics program during the academic year 2023-2024.

It focuses on the topic "Exploring domination in graph structures: a comprehensive

analysis" and is divided into four chapters, each systematically covering different aspects

of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of graph domination

and its historical context.

SECOND CHAPTER:

The chapter delves into the domination number of various graphs, including Fan [Fm,2],

Diamond Snake [Dn], Banana tree [B(m,n)], and Coconut tree [CT (m,n)], to Firecracker

[F(m,n)]. It also examines trees without duplicated leaves, establishing the minimum and

maximum orders of such trees ensuring a certain domination number. Furthermore, it dis-

cusses Mycielski graphs µ(G), Crib graphs C(G), and Modified Mycielski graphs µ∗(G).

THIRD CHAPTER:

The chapter discusses total domination in graph theory, exploring different graph op-

erators such as S(G) and R(G) and to determine the total domination number of new

graphs. It also introduces the concept of total co-independent domination and total

co-independent dominating sets. The chapter further discusses total domination in Gener-

alized Petersen graphs P(n,1) and P(n,2) and introduces minimal total dominating sets
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of these graphs. Additionally, it covers total equitable domination and determines the total

domination number and total equitable domination number of certain path-related graphs.

FOURTH CHAPTER:

The Chapter delves into specific cases of domination numbers within graph structures. It

examines the domination number of the snare graph of a graph S(G) and the Lollipop

graph Lm,n, providing insights into their structural properties and the minimum number

of vertices needed to dominate these graphs effectively. Additionally, it explores the total

domination number of a special case of the Lollipop graph denoted as Lm,1 shedding

light on its unique characteristics and the implications for total domination within this

graph family. Furthermore, the chapter explores the total domination number of tadpole

graphs Tm,n and the crib graph of the path Pn.
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ABSTRACT

Graph theory is an active field in modern mathematics, with domination theory at its

forefront, representing a key area of exploration. A set D of vertices in a graph G = (V,E)

is called a dominating set of G if every vertex in V −D is adjacent to some vertex in D.

The domination number γ(G) of a graph G is the minimum cardinality of the dominating

set in G. A set D ⊆ V is a total Dominating Set of G if every vertex of G has at least a

neighbour in D. The total domination number denoted by γt(G) is the cardinality of the

smallest total dominating set in G. A subset D of V (G) is called an Equitable Dominat-

ing Set if for every v ∈ V (G)−D ∃ a vertex u ∈ D ∋ uv ∈ E(G) and |d(v)−d(u)| ≤ 1,

where d(v) and d(u) denotes the degree of vertex v and u respectively. The minimum

cardinality of such dominating set is called the equitable domination number of G which

is denoted by γe(G). A dominating set that satisfies both criteria is termed a total equi-

table dominating set, and the total equitable domination number, denoted by γt
e(G), is

the smallest cardinality of such a set in G.

The main aim of this article is, in general, to prove some basic results concerning

the above-defined domination concepts. In particular, the article seeks to compute the

domination number and total domination number for various families of graphs.

Keywords: Dominating set, Domination number, Total dominating set, Total domina-

tion number, Equitable domination, Total equitable dominating set and Total equitable

domination number.
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Chapter 1

INTRODUCTION

1.1 Background

Graph theory, a vibrant branch of modern mathematics offers a rich tapestry of concepts

and applications that permeate diverse fields. From engineering and the physical sciences

to social dynamics and biology, its relevance is undeniable. Within this realm, one finds

a plethora of intriguing areas, including graph coloring, matching theory, domination

theory, graph labeling, and algebraic graph theory, each contributing to the theoretical

depth and practical utility of the discipline.

At its core, domination theory has emerged as a focal point of research, embodying the

essence of graph theoretic exploration. Its origins can be traced back to the illustrious

Euler, who, in 1736, etched his name in history by solving the Konigsberg Bridge

Problem, thereby laying the groundwork for both graph theory and topology. Since then,

domination theory has evolved into a cornerstone of modern graph theory, captivating

the minds of mathematicians.

The inception of dominating sets, a fundamental concept within domination theory, can

be attributed to Claude Berge in 1958. These sets, defined within the context of graphs,

1



1.1 Background 2

represent subsets of vertices with the remarkable property that every vertex is either

included in the set or adjacent to it. While the historical lineage of domination theory

finds resonance in the realms of chess, with its roots intertwined in Queens Problem

which captivated minds in the 1850s.

Queen’s Problem : (Mention by Ore)

In 1850s, Several chess players were interested in the minimum number of queens such

that every square on the chess board either contains a queen or is attacked by a queen

(recall that a queen can move any number of squares horizontally, vertically, or diagonally

on the chess board).

The question arose was "How to place a minimum number of queens on a chessboard so

that each square is controlled by at least one queen ?"

Using graph theory to model this problem, the Queens graph (figure 1) is formed by

representing each of the 64 (8 × 8) squares of the chessboard as a vertex of a graph G.

Two vertices (squares) are adjacent in G if each square can be reached by a queen on the

other square in a single move. Obviously, to solve the queen’s problem we are looking

for the minimum number of queens that dominate all the squares of the chessboard

that is domination number. (Note that many variations on this problem are formed by

considering different chess pieces and different size chessboards).

Figure 1.1: Queen’s Dominating the Chessboard



1.1 Background 3

This problem laid the groundwork for the exploration of domination theory, offering

a tangible application for its principles. By employing graph theory to model such

scenarios, we unveil the elegance of its applicability in addressing real-world challenges.

For another motivation of this concept, consider a bipartite graph (Figure 1.2) where one

part represents people, the other part represents jobs, and the edges represent the skills

of each person. Each person may take more than one job. One is interested to find the

minimum number of people such that jobs are occupied. As shown in Figure 1.2, {X, W}

form a minimum size dominating set.

Names of Persons Jobs

X A

BY

Z

W

C

D

Figure 1.2: Dominated Jobs

Yet, the allure of domination theory extends far beyond the confines of chess and job

allocation. Its tendrils reach into myriad domains, from facility location problems in

logistics, where the optimization of travel distance or service coverage is paramount, to

representative selection in political science and network monitoring in telecommunica-

tions. Indeed, the versatility and breadth of domination theory underscore its significance
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in addressing real-world challenges and illuminating the intricate connections that per-

meate our world.

In the late 1950s and 1960s, the study of domination in graphs saw significant devel-

opment, with Claude Berge’s groundbreaking book on graph theory introducing the

coefficient of external stability, now known as the domination number. Concurrently,

Oystein Ore pioneered the terms "dominating set" and "domination number," denoted

by δ (G), in his 1962 work. Building on these foundations, Cockayne and Hedetniemi,

in 1977, established the notation γ(G) to represent the domination number. These lu-

minaries, including Berge, Ore, Cockayne, and Hedetniemi, profoundly influenced the

landscape of graph theory, leaving an indelible mark on mathematical inquiry through

their innovative concepts and enduring contributions.

1.2 Definitions:
Definition 1.2.0.1. A set D of vertices in a graph G = (V,E) is called a dominating set

of G, if every vertex in V −D is adjacent to some vertex in D.

Definition 1.2.0.2. The domination number γ(G) of a graph G is the minimum cardinal-

ity of the dominating set in G.

Definition 1.2.0.3. The floor function of a real number x is the greatest integer less than

or equal to x and is denoted by ⌊x⌋.

Suppose that n ≤ x < n+1, where n is an integer, then ⌊x⌋ = n.

Definition 1.2.0.4. The ceiling function of a real number x is the lowest integer greater

than or equal to x and is denoted by ⌈x⌉.

Suppose that n−1 < x ≤ n, where n is an integer, then ⌈x⌉ = n.

Definition 1.2.0.5. The cardinality of V (G) is called the order of G and is denoted by

|G|.
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Definition 1.2.0.6. The (open) neighbourhood NG(v) of a vertex v is the set of vertices

adjacent to v in G and the (close) neighbourhood NG[v] is NG[v] = N(v) ∪ {v}.

Definition 1.2.0.7. The union of two disjoint graphs G1 and G2 is the graph G1 ∪G2

with vertex set V (G1 ∪G2) = V (G1) ∪ V (G2) and edge set E(G1 ∪G2) = E(G1) ∪

E(G2).

Definition 1.2.0.8. A forest is a graph with no cycles and a tree is a connect forest.

Definition 1.2.0.9. The degree of v is the cardinality of NG(v) and is denoted by degG(v).

Definition 1.2.0.10. A vertex is said to be a leaf if degG(v) = 1.

Definition 1.2.0.11. A set D ⊆V is a Total Dominating Set of G if every vertex of G

has at least a neighbour in D.

Definition 1.2.0.12. The Total Domination Number of G is denoted by γt(G) is the

cardinality of minimum TD - set of G.

Definition 1.2.0.13. A subset D of V (G) is called an Equitable Dominating Set if for

every v ∈ V (G)−D ∃ a vertex u ∈ D ∋ uv ∈ E(G) and |d(v)−d(u)| ≤ 1, where d(v)

and d(u) denotes the degree of vertex v and u respectively.

Definition 1.2.0.14. The minimum cardinality of equitable dominating set is called the

Equitable Domination Number of G and is denoted by γe(G).

Definition 1.2.0.15. A dominating set which is both Total and Equitable is called total

equitable dominating set and is denoted by γt
e(G).

Observation 1.2.0.16. (ref.[1]) It is known that

γt(Pn) = γt(Cn) =


n
2 +1; if n ≡ 2(mod4)

⌈n
2⌉; otherwise

Theorem 1.2.0.17. (ref. [2]) For n ≥ 3, γ(Pn) = γ(Cn) = ⌈n
3⌉.



Chapter 2

DOMINATION NUMBER

2.1 Domination Number of Different Type of Graphs

Definition 2.1.0.1. A Fan graph Fm,2 = Km + P2 where Km is the empty graph (consisting

of m isolated nodes with no edges) and P2 is the path graph on two nodes.

Definition 2.1.0.2. A Fire Cracker F(m,n) is a graph obtained by the series of intercon-

nected m copies of n stars by linking one leaf from each.

Definition 2.1.0.3. The graph G consists of collection of n cycles C4, these cycles

are connected in such a way that any two adjacent cycles share a common vertex, the

resulting graph is called a diamond snake graph and it is denoted by Dn. A diamond

snake has 3n+1 vertices and 4n edges, where n is the number of blocks in the diamond

snake. A snake is an Eulerian path that has no chords.

Definition 2.1.0.4. A banana tree B(m,n) is a graph obtained by connecting one leaf of

each of m copies of n-star graph with a single root vertex ’v’. Note that edges contain

pendant nodes are called tree leaves.

Definition 2.1.0.5. A coconut tree CT (m,n) is the graph obtained from the path Pm by

appending n new pendant edges at an end vertex of Pm.

6
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Theorem 2.1.0.6. The domination number of any fan graph Fm,2 is 1, where m ≥ 1.

Proof. let G ∼= Fm,2 be a fan graph on m+2 vertices with 2m+1 edges and let D be a

minimum dominating set of graph G.

By definition of the fan graph, the graph G = Km + P2 where Km is the empty graph

(consisting of m isolated nodes with no edges) and P2 is the path graph on two nodes.

Let V (P2) = {u,v}. There are 2 nodes available in path P2 of fan graph, so that if we

choose any one vertex from the path P2 then all the other vertices of G are dominated by

our chosen vertex.

So we will get a minimum dominating set and its cardinality is the domination number

of the graph and hence the Dominating Set D of G = {u} or {v}.

∴ the domination number of graph G is 1. i.e. γ(G) = 1.

Example: 2.1.0.7. The fan graph F4,2 is shown in Figure 2.1 below.

1 2

3

4 5

6

Figure 2.1: Fan Graph F4,2

D = {1} or {2} and γ(F4,2) = 1

Theorem 2.1.0.8. For any firecracker graph F(m,n), the domination number is m, where

n ≥ 2.

Proof. Let G ∼= F(m,n) be a firecracker graph on mn vertices with (mn)−1 edges and

let D be a minimum dominating set of graph G.
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By definition of firecracker graph, the graph is obtained from series of interconnected m

copies of n stars by linking one leaf from each.

For each of the n starts, if we choose all of the central vertices as one set, it will dominate

all the other vertices of G.

So we will get a minimum dominating set and its cardinality is the domination number

of graph G.

∴ the domination number of G is m. That is γ(G) = m.

Example: 2.1.0.9. The dominating set and the domination number of the firecracker

graph F(2,4) is shown in Figure 2.2 below.

3

1 2

4

7

5 6

8

Figure 2.2: Firecracker Graph F(2,4)
D={3,7} and γ(F(2,4)) = 2

Theorem 2.1.0.10. For any diamond snake graph Dn, the domination number is n+1,

where n ≥ 1.

Proof. Let G ∼= Dn be a diamond snake graph on 3n+1 vertices with 4n edges and let D

be a minimum dominating set of graph G.

By definition of the diamond snake graph, the graph G consists of collection of n cycles

C4, these cycles are connected in such a way that any two adjacent cycles share a common

vertex, where n is the number of blocks in the diamond snake.
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If we choose any one of the vertices of degree 2 from the first and the last copies of G,

then we choose all common vertices which are shared by consecutive cycles of G.

So we will get a minimum dominating set and its cardinality is the domination number

of graph G.

∴ the domination number of G is n+1.

That is γ(G) = n+1.

Example: 2.1.0.11. The dominating set and the domination number of the diamond

snake graph D2 is shown in Figure 2.3 below.

1

2 3

4

5

6

7

Figure 2.3: Diamond Snake Graph D2

D ={2,3,6} and γ(D2) = 3

Theorem 2.1.0.12. For any Banana tree B(m,n), the domination number is γ(G) =

m+1, where m ≥ 1, n ≥ 3.

Proof. Let G ∼= B(m,n) be a banana tree on (mn)+1 vertices with mn edges and let D

be a minimum dominating set of graph G.

By definition of the banana tree, the graph is obtained by connecting one leaf of each of

m copies of a n star graph with a new single root vertex ’v’.

We distinguish 3 cases to obtain the domination number of graph G.

Case 1: The domination number of banana tree graph B(m,1) is shown in Figure 2.4

below.
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v

v1 v2 vm

Figure 2.4: Banana Tree Graph B(m,1)
D = {v} and γ(G) = 1

Case 2: The domination number of banana tree graph B(m,2) which is shown in Figure

2.5 below.

v

v1 v2 vm

u1 u2 um

Figure 2.5: Banana Tree Graph B(m,2)

D = {v1,v2,. . . ,vm} and γ(G) = m.

Case 3: Let G ∼= B(m,n), where n ≥ 3.

Moreover deg(v) = ∆(G). So ’v’ must be included in any minimum dominating set of G.

For G, if we choose the apex vertices of every star graph it will dominate all the other

vertices except single root vertex.
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Hence γ(G) = m + |{v}| = m+1.

∴ the domination number of G is m+1.

Example: 2.1.0.13. The dominating set and the domination number of the banana tree

graph B(2,5) is shown in Figure 2.6 below.

1

2 3

4

5

6

7 8

9

10

11

Figure 2.6: Banana Tree Graph B(2,5)

D ={5,10,11} and γ(B(2,5)) = 3

Theorem 2.1.0.14. For any coconut tree CT (m,n), the domination number is 1 + ⌈m−2
3 ⌉,

where m ≥ 1, n ≥ 1.

Proof. Let G ∼=CT (m,n) be a coconut tree on m+n vertices with m+(n−1) edges and

let D be a minimum dominating set of graph G.

By definition of coconut tree, the graph is obtained from the path Pm by appending n new

pendent edges at an end vertex v1 (say) of Pm.

Clearly the vertex v1 must be included in any minimum dominating set, since deg(v1) =

∆(CT (m,n)).

In G, v1 dominates all pendant vertices attached with v1.
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∴ the domination number of G is 1 + γ(Pm−2) = 1 + ⌈m−2
3 ⌉.

Hence γ(G) = 1 + ⌈m−2
3 ⌉.

Example: 2.1.0.15. The dominating set and the domination number of the coconut tree

graph CT (4,7) is shown in Figure 2.7 below.

v1 v2 v3 v4

u1 u2 u3 u4

u5 u6 u7

Figure 2.7: Coconut Tree CT (4,7)
D ={v2,v4} and γ(CT (4,7)) = 2

2.2 Domination Number of Trees
Definition 2.2.0.1. Two distinct vertices u and v are called duplicated in G if NG(u) =

NG(v).

Definition 2.2.0.2. A vertex of G is a support vertex if it is adjacent to a leaf in G.

Definition 2.2.0.3. A dominating set of cardinality γ(G) in G is said to be a γ-set.

Definition 2.2.0.4. A γ-set containing all support vertices of G is called a γU - set.

Notation: L(G) and U(G) are the collection of all leaves and support vertices of G

respectively.
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Lemma 2.2.0.5. If uv is an edge of a connected graph G and G−uv = G1 ∪ G2 then

γ(G) ≤ γ(G1) + γ(G2).

Proof. Suppose uv is an edge of a connected graph G and G−uv = G1 ∪ G2.

let Si be a γ-set of Gi for i = 1,2.

Suppose S = S1 ∪ S2.

Then N[S] = N[S1 ∪S2] = N[S1] ∪ N[S2] = V (G).

So S is a dominating set of G.

Thus γ(G) ≤ |S| = |S1| + |S2| = γ(G1) + γ(G2).

Lemma 2.2.0.6. If G is a graph with at least three vertices then there exists a γU -set of

G.

Proof. Suppose G is a graph with at least three vertices and let S be a γ-set of G.

If S is a γU -set of G, then we are done.

So we assume that A = U(T )−S ̸= /0, and let B = L(T ) ∩ N(A).

Then B ⊆ S and |B| ≥ |A|.

Let S′ = (S−B) ∪ A.

Then N[S′] = V (G).

So S’ is a dominating set of G.

Thus |S| = γ(G) ≤ |S′| = |S| - |B| + |A| ≤ |S|, the equalities hold and S′ is a γU -set of

G.

Lemma 2.2.0.7. If x and x′ are two duplicated leaves adjacent to the same support vertex

in a graph G then γ(G− x′) = γ(G).

Proof. Suppose x and x′ are two duplicated leaves adjacent to the same support vertex in

a graph G and let G′ = G− x.
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If S is a γU -set of G then S is a γU -set set of G′.

So γ(G− x′) = γ(G′) = |S| = γ(G).

Observation 2.2.0.8. Lemma 2.2.0.7 implies that the maximum order of a tree T with

γ(T ) = k is infinite. Consequently, attention is directed towards trees devoid of duplicated

leaves. The objective becomes determining the minimum order of such trees with γ(T ) =

k and subsequently characterizing them.

Theorem 2.2.0.9. If T is a tree with at least two vertices and γ(T ) = k where k ≥ 1 then

|T | ≥ 2k.

Proof. Suppose T is a tree with at least two vertices and γ(T ) = k where k ≥ 1.

let S be a γ - set of T .

Then N[S] = V (G) = N[V (T )−S].

So S′ = V (T )−S is a dominating set of T .

Hence |S′| ≥ k and |T | = |S| + |S′| ≥ k+ k = 2k.

Lemma 2.2.0.10. Let T be a tree with at least two vertices and γ(T ) = k where k ≥ 1. if

|T | = 2k then T has no duplicated leaf.

Proof. Let T be a tree of order 2k and γ(T ) = k where k ≥ 1.

suppose that there exist two distinct leaves x and x′ adjacent to y in T , by Lemma 2.2.0.7.

then γ(T − x′) = γ(T ) = k.

Note that T ′ = T − x′ is a tree.

By theorem 2.2.0.9. |T | ≥ 2k.

Thus |T | = |T ′| + 1 ≥ 2k+1 .

This is a contradiction, we complete the proof.
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Theorem 2.2.0.11. Let T be a tree with at least two vertices and γ(T ) = k, where k ≥ 1.

If |T |= 2k, then V (T ) = U(T ) ∪ L(T ) and |U(T )| = k.

Proof. We prove this theorem by induction on k ≥ 1.

If k = 1, then T = P2 and If k = 2, then T = P4.

Its true for k = 1 and k = 2.

Let k ≥ 3. Assume that it’s true for all k′ < k.

Suppose that T is a tree of order 2k and γ(T ) = k.

Let Pi : xi, yi, z,w,u, ... be a longest path of T , where |Pi| = m ≥ 5 and i = 1, ...,a.

By Lemma 2.2.0.10. , then |N(yi)∩L(T )| = 1 for every i.

Let A = {y1,...,ya}.

If m = 5 , then a = k−2. Thus z ∈ U(T ) and U(T ) = A∪ {z,w}.

So its true for m = 5.

Thus we assume that m ≥ 6.

Claim 1: z ∈U(T ).

Suppose that z /∈U(T ), then N(z) = A∪{w} and

H = T −N[A] is a tree of order |H|= |T |− (2a+1) = 2(k−a)−1 ≥ 3.

By Theorem 2.2.0.9. , γ(H) ≤ k−a−1.

Note that z ∈ N(A).

By Lemma 2.2.0.5. , k = γ(T ) ≤ |A| + γ(H) ≤ a + (k−a−1) = k−1.

This is a contradiction , so z ∈U(T ).

Let z′ be the leaf of z in T and T ′ = T - (N[A]∪{z,z′}) and T ′ = T −V (T ′).

Then T is a tree of order |T ′| = |T | - (2a−2) = 2(k−a−1) ≥ 3.

By Theorem 2.2.0.9. , γ(T ′) ≤ k−a−1.

Note that zw is an edge of T such that T − zw = T ∗ ∪ T .

by Lemma 2.2.0.5, K = γ(T ) ≤ γ(T∗) + γ(T ) ≤ (a+1)+ (k−a−1) = k.

The equality hold, γ(T ′) = k−a−1.
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Hence T ′ is a tree of order |T ′| = 2(k−a−1) and γ(T ′) = k−a−1, by induction

hypothesis V (T ′) = U(T ′) ∪L(T ′).

Claim 2: w ∈ U(T ′)

Suppose that w /∈ U(T ′) , then w ∈ U(T ′) and T ” = T ′−{w} is a tree of order |T ′′|

= |T ′| - 1 = 2(k− a− 1) - 1 ≥ 2. Hence by Theorem 2.2.0.9. , we have that γ(T ′′) ≤

k−a−2.

Note that w ∈ N(z) and T −wu = (T −V (T ′′)) ∪ T ′′. By Lemma 2.2.0.5. , K = γ(T ) ≤

γ (T −V (T ′′)) + γ(T ′′) ≤ (a+1) + (k−a−2) = k−1.

This is a contradiction, so w ∈ U(T ).

Observation 2.2.0.12. The maximum order of trees T without duplicated leaves and

γ(T ) = k has been established. Subsequently, the tree of maximum orders have been

characterized.

Definition 2.2.0.13. Let Ω(k) be the collection of trees T which holds the following

Properties:

• T has no duplicated leaves.

• γ(T ) = |U(T )| = k.

• For each v ∈ U(T ), δ (v) = min {d(u,v) : u ∈ U(T )} = 3, where d(u,v) is the

distance between u and v.

Lemma 2.2.0.14. Suppose T ∈ Ω(k), then T is a tree without duplicated leaves of order

|T | = 4k−2 and U(T ) is a γU set of T , where γ(T ) = |U(T )| = k.

Theorem 2.2.0.15. Suppose T is a tree without duplicated leaves and γ(T ) = k, where k

≥ 1. Then |T | ≤ 4k−2. The inequality holds iff T ∈ Ω(k).
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Proof. Proof by induction on k.

It’s true for k = 1, so we assume that k ≥ 2.

Suppose that T is a tree without duplicated leaves and γ(T ) = k such that |T | is as large

as possible.

By lemma 2.2.0.14. , then we obtain that |T | ≥ 4k−2.

Let S be a γU - set of T .

Since |T | is as large as possible, we obtain that S = U(T ) and N[u] ∩ N[v] = φ for u ̸= v

in S.

Thus |V (T )−{U(T )∪L(T )}| ≤ 2(|S| - 1) = 2k−2.

Hence 4k− 2 ≤ |T | = |U(T )∪L(T )| + |V (T )−{U(T )∪L(T )}| ≤ 2k + 2(|S| - 1) =

4k−2.

The inequalities hold, γ(T ) = |U(T )| = |L(T )| = k and |V (T )−{U(T )∪L(T )}| =

2(|S| - 1) = 2k−2.

That is T ∈ Ω(k).

2.3 Domination Number of Certain Mycielski Type of

Graphs
2.3.1 Mycielski Graph:

The Mycielski graph of a graph G with vertex set V (G) = {v1,v2,...,vn} is the graph

which is obtained by applying the following steps:

1. Corresponding to each vertex vi in V (G), introduce a new vertex ui and let U = {ui

: 1 ≤ i ≤ n}. Add edges from each vertex ui of U to the vertex v j if viv j ∈ E(G).

2. Take another vertex w and add edges from w to all vertices in U .

The New graph thus obtained is called the Mycielski graph of G and is denoted by µ(G).
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Theorem 2.3.1.1. For any mycielskian graph with 2n+1 vertices γ[µ(Pn)] = γ(Pn) + 1

for n ≥ 2.

Proof. Proof by induction on n.

for n = 2; γ[µ(P2)] = 2 = γ(P2) + 1.

Assume the statement holds for n = k; k ≥ 2. i.e γ[µ(Pk)] = γ(Pk) + 1.

We want to show that the result holds for n = k+1.

Consider the mycielski graph µ(Pk+1).

This graph is obtained by adding one vertex to Pk and adding a vertex uK+1 to the

V(µ(Pk)).

So the V(µ(Pk+1)) = {v1,v2,...,vk+1,u1,u2,...,uk+1,w}

The domination number of µ(Pk+1) by considering the following 2 cases:-

Case 1: The added vertex is dominated by a vertex in Pk.

In this case the domination number remains the same.

i.e. γ[µ(Pk)] = γ(Pk) + 1.

Case 2: The added vertex dominates a vertex in Pk.

In this case the domination number increases by 1 as compared to µ(Pk).

Since the added vertex contribute one to the dominating set.

hence γ[µ(Pk+1)] = γ(Pk) + 1 or γ(Pk+1) + 1 depending on which case applies.

Hence by induction, the statement holds ∀ n ≥ 2.
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Example: 2.3.1.2. The Mycielski graph of the path P6 is shown in Figure 2.8. below.

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5 u6

w

Figure 2.8: Mycielski graph of (P6)
γ[µ(P6)] = 3

2.3.2 Crib Graph:
The crib graph of a given graph G with V (G) = {v1,v2,...,vn} is the graph which is

obtained by applying the following steps:

1. Corresponding to each vertex vi in V (G), introduce a new vertex ui and let U = {ui

: 1 ≤ i ≤ n}. Add edges from each vertex ui of U to the vertex v j if viv j ∈ E(G).

2. Take another vertex w and add edges from w to all vertices in both U and V .

The new graph thus obtained is called the crib graph of G and is denoted by C(G).

Theorem 2.3.2.1. For any crib graph with n vertices domination number is 1.

i.e. γ(C(Pn)) = 1.

Proof. Consider the structure of the crib graph C(Pn) where Pn is a path on n vertices.

In crib graph C(Pn) we have 2n+1 vertices that includes n vertices from the path Pn,

n vertices from the set U = {ui : 1 ≤ i ≤ n} and one additional vertex w.
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i.e. V (C(Pn)) = {v1,v2,...,vn,u1,u2,...,un,w}.

Note that w is connected to all vertices in the path Pn and to the vertices from the set U .

Thus D = {w}.

hence γ(C(Pn)) = 1.

Example: 2.3.2.2. The Crib graph of of the path P5 is shown in Figure 2.9. below.

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

w

Figure 2.9: Crib Graph of P5

γ[C(P5)] = 1

2.3.3 Modified Mycielski Graph:

Let G be a triangle free graph with V (G) = {v1,v2,...,vn}. We define the modified myciel-

ski graph µ∗(G) of G as the graph such that V (µ∗(G)) = {v1,v2,...,vn,u1,u2,...,un,w1,w2,

...,wn} and with edges that follows the below mentioned rules:

1. viv j ∈ E(µ∗(G))⇐⇒ viv j ∈ E(G).

2. wiw j ∈ E(µ∗(G))⇐⇒ viv j ∈ E(G).

3. wiu j ∈ E(µ∗(G))⇐⇒ uiv j ∈ E(G).

4. ∀ i = 1,2,...,n; viv j ∈ V (µ∗(G)).



2.3 Domination Number of Certain Mycielski Type of Graphs 21

Theorem 2.3.3.1. For any modified mycielski graph γk(µ∗(G)) = 2 γk(G).

Proof. Proof by induction on k.

Let D be a dominating set of G.

Construct a dominating set D′ for µ∗(G) as follows:

• For each vertex vi in G, add both ui and wi to D′.

• For each vertex vi in G, if vi is in D, then add vi to D′.

Clearly, |D′|= 2|D|, so γ1(µ
∗(G)) = 2γ1(G).

Assume the statement holds for k = n, i.e., γn(µ
∗(G)) = 2γn(G).

To Prove: γn+1(µ
∗(G)) = 2γn+1(G).

Let D be a dominating set of size γn+1(G).

We want to construct a dominating set D′ of µ∗(G) such that |D′|= 2γn+1(G).

Consider the construction of µ∗(G):

• Each vertex vi in G has corresponding vertices ui and wi in µ∗(G).

• Let D′ contain all the vertices from D that correspond to vertices in G.

• For each vertex vi in G, add both ui and wi to D′.

Now, let’s analyze D′:

• Every vertex in G is dominated by D.

• For each vi in G, ui’s are adjacent to vi, so they dominate vi.

• Additionally, ui and wi are adjacent to each other, ensuring that they dominate each

other as well.

• Therefore, D′ is a dominating set for µ∗(G), and |D′|= 2γn+1(G).

Hence, by the principle of mathematical induction, the theorem holds ∀ positive integers

k. Thus, γk(µ
∗(G)) = 2γk(G) for any positive integer k.
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Example: 2.3.3.2. The Modified Mycielski graph of P5 is shown in Figure 2.10. below.

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

w1 w2 w3 w4 w5

Figure 2.10: Modified Mycielski Graph of P5

γk(µ∗(G)) = 4 = 2 γk(G)



Chapter 3

TOTAL DOMINATION NUMBER

3.1 Total Domination in Graph Operators

Definition 3.1.0.1. For a graph G = (V,E): the Subdivision Operator, denoted by S(G),

acts on G by replacing each of its edges by a path of length two.

NOTATION:

If G = (V,E), where V = {v1, ...,vn} then S(G) = (V ′,E ′) where V ′ = V ∪ {vi, j: vi,v j ∈

E, i < j} and E ′ = {vivi, j,v jvi, j: vi,v j ∈ E, i < j}. To avoid writing all the time i < j,

we will consider vi, j = v j,i.

Example: 3.1.0.2. The graph G and S(G) of G is shown in Figure 3.1 and Figure 3.2

below respectively.

v1 v2

v3v4 v5

Figure 3.1: Graph G

23
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v1 v2

v3v4 v5

v1,4 v2,3

v1,2

v3,4 v3,5

v2,5

Figure 3.2: S(G) of G

The following corollary might be useful when we do not know the independence number.

Corollary 3.1.0.3. Let G be a graph with order n, which is not a complete graph then

γt(S(G)) ≤ ⌊3n
2 ⌋ - 1.

Observation 3.1.0.4.

It is known that γt(Pn) = γt(Cn) =


n
2 +1; if n ≡ 2(mod 4)

⌈n
2⌉; otherwise

Since S(Cn) = C2n, the total domination number of the transformation of this graph is
γt(S(Cn)) = n+1 when n ≡ 1(mod 2) [if n ≡ 3(mod 4) then 2n ≡ 2(mod 4)] and γt(S(Cn))

= n.

Theorem 3.1.0.5. For a wheel graph Wn with n vertices, we have γt(S(Wn)) = 2 +

γt(P2n−3).

Proof. Let V (G) = {v1,v2, ...,vn}, where v1 is the center of wheel graph.

If Do is a minimum total dominating set in the path with vertices v2,3,v3,v3,4,v4, ...,

vn,vn,2, then D = {v1,v1,2} ∪ Do is a total dominating set in S(Wn), so γt(S(Wn)) ≤ 2 +

γt(P2n−3).
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Let D be a minimum total dominating set in S(Wn) such that v1,v1,2 ∈ D.

Since this set must contain a total dominating set in the path in which its vertices are

v2,3,v3,v3,4,v4, ...,vn,vn,2 then |D| = ≥ 2 + γt(P2n−3).

If v1 does not belong to D then v2,v3, ...,vn must belong to D.

Moreover, as {v2,V3, ...,vn} is an independent set, we need ⌈n−1
2 ⌉ more vertices, and

then |D| > 2 + γt(P2n−3).

Example: 3.1.0.6. The total domination number of S(W5) is shown in Figure 3.3 below.

v2 v3

v4v5

v1

v2,3

v3,4

v1,2

v2,5

v4,5

v1,5 v1,4

v1,3

Figure 3.3: S(W5) of W5

γt(S(W5)) = 6 = 2 + γt(P2n−3)

Theorem 3.1.0.7. For the complete graph Kn, we have γt(S(Kn)) = ⌈3n
2 ⌉ - 1.

Proof. We denote V (Kn) = {v1, ...,vn}.

Now if n is an even number then the set {v1,2,v2,v3,v3,4,v4, ...,vn−1,vn−1,n,vn} is a total
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dominating set and if n is odd number, the set

{v1,2,v2,v3,v3,4,v4, ...,vn−2,vn−2,n−1,vn−1,vn,v1,n} is a total dominating set.

Then γt(S(Kn)) ≤ ⌈3n
2 ⌉ - 1.

Now let D be a minimum total dominating set in S(Kn).

If ∃ vi /∈ D, then to dominate vs,i with s ̸= i, it is necessary to have vs ∈ D for s ̸= i.

As vi must be dominated by D ∃ j ̸= i ∋ vi, j ∈ D.

Since vs ∈ D for every s ̸= i, and it is an independent set in S(Kn) for every two of those

vertices we need another vertex in D connecting them.

Therefore |D| ≥ n + n−2
2 = 3n

2 - 1.

Finally if {v1, ...,vn} ⊆ D, since this is an independent set in S(Kn), D must contain at

least n
2 more vertices, so |D| ≥ n + n

2 ≥ ⌈ 3n
2 ⌉ + 1.

Example: 3.1.0.8. The total domination number of S(K4) is shown in Figure 3.4 below.

v1

v3

v2 v4

v1,2

v2,3

v1,4

v3,4

v2,4

v1,3

Figure 3.4: S(K4) of K4

γt(S(K4)) = 5
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Definition 3.1.0.9. For a graph G = (V,E): the Operator R(G), acts on G by adding a

new vertex corresponding to each edge of G and by joining each new vertex to the end

vertices of the edge corresponding to it.

Example: 3.1.0.10. The graph G and R(G) of G is shown in Figure 3.5 and Figure 3.6

below.

v1 v2

v3v4 v5

Figure 3.5: Graph G

v1 v2

v3v4 v5

v1,4 v2,3

v1,2

v3,4 v3,5

v2,5

Figure 3.6: R(G) of G

NOTATION:

If G = (V,E), where V = {v1, ...,vn} then R(G) = (V ′,E ′) where V ′ = V ∪ {vi, j: vi,v j ∈

E, i < j} and E ′ = E ∪ {vivi, j,v jvi, j: vi,v j ∈ E, i < j}.

To avoid writing all the time i < j, we will consider vi, j = v j,i.
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Definition 3.1.0.11. A total dominating set D of G is called a Total Co-independent

dominating set if the set of vertices V −D is a non-empty independent set.

Definition 3.1.0.12. The minimum cardinality of any total co-independent dominating

set is the Total Co-independent domination number and is denoted by γt,coi(G).

Theorem 3.1.0.13. For any graph G with order n ≥ 3, we have γt(G) = γt,coi(G).

Proof. If D is a total co-independent dominating set in G, it is a total dominating set in

G and any edge contains a vertex of D and then it is a total dominating set in R(G).

∴ γt(G) ≤ γt,coi(G).

Now, let D be a minimum total dominating set in R(G).

If vi, j ∈ D for some 1 ≤ i < j ≤ n, then vi ∈ D or v j ∈ D.

If for instance vi ∈ D , we take D′ = (D - {vi, j})
⋃

{v j}, which is also a minimum total

dominating set in R(G).

Doing that with any vertex vi, j ∈ D, we obtain a TD - set D′ ⊆ V in both graphs R(G)

and G such that any edge in E contains a vertex of D′, so D′ is a total co-independent

dominating set of G.

γt,coi(G) ≤ D = |D| = γt(G).

Proposition 3.1.0.14. Let G be a graph with order n and independence number α(G).

Then n−α(G)≤ γt(R(G))≤ 2(n−α(G)).

Proposition 3.1.0.15. Let G be a graph with order n, size m, minimum degree δ and

maximum degree ∆. Then,

max
{

nδ

∆+δ−1 ,
2m+nδ

3∆+δ−2

}
≤ γt(R(G))≤ n−1.

Moreover γt(R(G)) = n−1 iff G is Kn,P3,C4,C5.
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Definition 3.1.0.16. A Hair in G is an edge uv ∈ E(G) such that d(u) = 2 and d(v) = 1.

Proposition 3.1.0.17. If L(G) is the number of leaves of a graph G with order n, and

∃ a vertex v, such that it is not a leaf, nor a support vertex nor adjacent to a hair then

γt(R(G))≤ n−L(G)−1.

Proof. If L = {u ∈ V : d(u) = 1}, then the set D =V − (L∪{v}) is a TD - set in G.

Since v is neither a support vertex nor adjacent to any hair, and L ∪ {v} is an independent

set, we have that D is a total co-independent dominating set in G.

∴ γt(R(G)) ≤ |D| = ≤ n−L(G)−1.

Observation 3.1.0.18. The upper bound in Proposition 3.1.0.17. is attained, for instance,

if we take any graph G with minimum degree δ (G)≥ 2, and we add a leaf to every vertex

in G except one.

Proposition 3.1.0.19. Let G be a graph with order n, minimum degree δ ≥ 2 and

independence number α(G). Then γt(R(G))≤ n−δ +1 iff α(G)≥ δ −1.

Proof. If α ≥ δ −1 and we take an independent set A = {v1,v2, ...,vδ−1} then every ver-

tex v ∈ V −A satisfies dV−A(v) ≥ 1, and then V −A is a total co-independent dominating

set in G, so γt(R(G))≤ n−δ +1.

On the other hand if α ≤ δ −2,

by Proposition 3.1.0.14.

we have γt(R(G))≥ n−α(G)≥ n−δ +2.

Corollary 3.1.0.20. Let G be a graph with order n, minimum degree δ ≥ 2, and inde-

pendence number α(G). The following conditions hold:

1. If α(G) = δ (G) - 1, then γt(R(G)) = n−α(G)
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2. If α(G) ≥ δ , then γt(R(G)) = n−δ +1.

Theorem 3.1.0.21. Let G be a graph with order n, minimum degree δ and maximum

degree ∆. If n ≥ (δ −3)∆+δ +2, then γt(R(G))≤ n−δ +1.

Proof. Let v1 be any vertex in the graph such that δ (v1) = δ , we take any vertex

v2 ∈V −{v1} adjacent to N(v1).

Note that {v1,v2} is an independent set and |N[v1]∪N[v2]| ≤ δ + 1 + ∆.

Now since G is a connected graph, ∃ v3 ∈V −{v1,v2} adjacent to N(v1) ∪ N(v2) and

then we have that {v1,v2,v3} is an independent set and |N[v1]∪N[v2]∪N[v3]| ≤ δ + 1 +

2∆.

We can continue this process to obtain an independent set

A = {v1,v2, ...,vδ−1}.

Using Corollary (3.1.20.) we conclude that γt(R(G))≤ n−δ +1.

Observation 3.1.0.22.

1. The upper bound in Theorem 3.1.0.21. is attained, for instance if we consider a

complete graph G1 with 5 vertices v1, ...,v5, a (2r− 2) - regular graph G2 with

vertices u1,u2, ...,u2r (r ≥ 3), and the graph G = (V,E) with order n = 2r+5 such

that V = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {v1u1,v2u2}. In such a

case α(G) = 3, δ (G) = 4, ∆(G) = 2r−1, n = (δ (G)−3)∆(G)+δ (G)+2, and

γt(R(G)) = n−δ (G)+1.

2. For cycle graph Cn, wheel graph Wn and complete graph Kn with n vertices we

have,
γt(R(Cn)) = ⌈2n

3 ⌉,

γt(R(Wn)) = ⌈n+1
2 ⌉,

γt(R(Kn)) = n−1.



3.2 Total Domination in Some Path Related Graphs 31

3.2 Total Domination in Some Path Related Graphs
Definition 3.2.0.1. The square of a graph G denoted by G2 has the same vertex set as

that of G and the two vertices are adjacent in G2 if they are at a distance of 1 or 2 apart

in G.

Theorem 3.2.0.2.

I f G = Pn
2 then γt(G) =


2⌊n

7⌋+1; i f n ≡ 1 or 2(mod 7)

2⌈n
7⌉; i f n ̸≡ 1 or 2(mod 7).

Proof. Let V (Pn) = {v1,v2, ...,vn} = V (G) where dG(v1) = dG(vn) = 2, dG(v2) = dG(vn−1)

= 3 and dG(vi) = 4, ∀i ∈ {3,4,5,...,n−2}.

If D is any total dominating set of G then it is obvious that v3 ∈ D as dG(v3) = 4 = ∆(G).

To prove the result we consider the following two cases:

Case I: n ≡ 1 or 2(mod 7).

We construct a set of vertices D as follows:

D =


{v7i+3,v7i+5/0 ≤ i ≤ ⌊n

7⌋−1}
⋃
{vn−1}; i f n ≡ 1(mod 7)

{v7i+3,v7i+5/0 ≤ i ≤ ⌊n
7⌋−1}

⋃
{vn−2}; i f n ≡ 2(mod 7)

Then |D| = 2 ⌊n
7⌋ + 1.

Also D is a total dominating set of G as D has no isolated vertex.

Further D is a total minimum dominating set of G.

Claim: |D| is minimum.

Any v ∈ D will dominate maximum number of distinct vertices of G as dG(v) = 4 =

∆(G).

∴ any set containing the vertices less than that of |D| cannot be a TD - set of G.
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Hence γt(G) = 2⌊n
7⌋ + 1, when n ≡ 1 or 2(mod 7).

Case II: n ̸≡ 1 or 2(mod 7).

We construct a set of vertices D as follows:

D =


{v7i+3,v7i+5/0 ≤ i ≤ ⌊n

7⌋}; i f n ≡ 0 or 5 or 6(mod 7)

{v7i+3,v7i+5/0 ≤ i ≤ ⌊n
7⌋−1}

⋃
{vn−1,vn}; i f n ≡ 3 or 4(mod 7)

Then |D| =2 ⌈n
7⌉.

Also D is a total dominating set of G as D has no isolated vertex.

Further D is a total minimum dominating set of G.

Claim: |D| is minimum.

Any v ∈ D will dominate maximum number of distinct vertices of G as dG(v) = 4 = ∆(G).

∴ any set containing the vertices less than that of |D| cannot be a TD - set of G.

Hence γt(G) = 2 ⌈n
7⌉

Example: 3.2.0.3. The square graph of P7 and its total domination number is shown in

figure 3.7. below.

v1 v2 v3 v4 v5 v6 v7

Figure 3.7: The Graph P7
2

γt(P7
2) = 2

Theorem 3.2.0.4.

I f G = Pn
2 then γt

e(G) =


2⌈n

7⌉+1; i f n ≡ 0 or 6(mod 7)

2⌈n
7⌉ ; otherwise.
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Proof. If D is any total equitable dominating set of G then it is obvious that v2 ∈ D,

as |dG(v1)−dG(v2)| = 1 and |dG(v2)−dG(v3)| = 1.

To prove this result we consider the following cases:

Case I: n ≡ 0 or 6(mod 7).

We construct a set of vertices D as follows:

D =


{v7i+2,v7i+4/0 ≤ i ≤ ⌈n

7⌉−1}
⋃
{vn−1}; i f n ≡ 0(mod 7)

{v7i+2,v7i+4/0 ≤ i ≤ ⌈n
7⌉−1}

⋃
{vn}; i f n ≡ 6(mod 7)

Then |D| = 2⌈n
7⌉ + 1.

Also D is a total dominating set of G as D has no isolated vertex and D is also an equitable

dominating set of G as for any v ∈ V (G)−D ∃ a vertex u ∈ D such that uv ∈ E(G) and

|dG(u)−dG(v)| ≤ 1.

Further D is a minimum total equitable dominating set of G.

Claim: |D| is minimum.

Any v ∈ D will dominate maximum 4 vertices as dG(v2) = 3 and dG(vi) = 4 = ∆(G) ∀ 3

≤ i ≤ n−2.

Hence γt
e(G) = 2 ⌈n

7⌉ + 1.

Case II: n ̸≡ 0 or 6(mod 7).

We construct a set of vertices D as follows:

D=


{v7i+2,v7i+4/0 ≤ i ≤ ⌊n

7⌊−1}
⋃
{vn−2,vn}; i f n ≡ 1 or 2 or 3 or 4(mod 7)

{v7i+2,v7i+4/0 ≤ i ≤ ⌊n
7⌋}; i f n ≡ 5(mod 7)

Then |D| = 2 ⌈n
7⌉

Also D is a total dominating set of G as D has no isolated vertex and D is also an equitable
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dominating set of G as for any v ∈ V (G)−D ∃ a vertex u ∈ D such that uv ∈ E(G) and

|dG(u)−dG(v)| ≤ 1.

Further D is a minimum total equitable dominating set of G.

Claim: |D| is minimum.

Any v ∈ D will dominate maximum 4 vertices as dG(v2) = 3 and dG(vi) = 4 = ∆(G) ∀ 3

≤ i ≤ n−2.

Hence γt
e(G) = 2 ⌈n

7⌉.

Example: 3.2.0.5. The graph P7
2 and its total equitable domination is given in Figure

3.8. below.

v1 v2 v3 v4 v5 v6 v7

Figure 3.8: The Graph P7
2

γt
e(P7

2) = 3

Definition 3.2.0.6. Let G = (V (G),E(G)) be a graph with V (G) = S1 ∪S2 ∪ ...∪St ∪T ,

where each Si is a set of all the vertices having same degree (at least 2 vertices) and T =

V (G)−
n⋃

i=1
Si. The degree splitting graph DS(G) is obtained from G by adding vertices

w1,w2, ...,wt and joining to each vertex of Si for 1 ≤ i ≤ t.

Theorem 3.2.0.7. If G is the graph obtained by degree splitting of Pn then

γt(G) =


n−1; i f n = 3, 4

4; i f n > 4.

Proof. The path Pn have two pendant vertices and remaining n−2 vertices of degree two.

Then V (Pn) = {vi : 1 ≤ i ≤ n} = S1∪S2 where S1 = {v1,vn} and S2 = {vi : 2 ≤ i ≤ n−1}.
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To obtain G from Pn add two vertices x and y corresponding to S1 and S2 respectively.

Thus V (G) = V (Pn) ∪ {x,y} and E(G) = E(Pn) ∪ {xvi: vi ∈ S1} ∪ {yv j: v j ∈ S2}.

Suppose D is any total dominating set of G. Then y ∈ D as ∆(G) = n−2 = dG(y).

D =


{v1,v2}; i f n = 3

{v1,v2,v3}; i f n = 4.

Then |D| = n−1. Also D is a minimum total dominating set of G.

Hence γt(G) = n−1, for n ≤ 4.

For n > 4 we construct a dominating set D = {y,v1,v2,vn−1} with |D| = 4.

Hence D is a minimum total dominating set of G.

Claim: |D| is minimum.

∆(G) = n− 2 = dG(y) will dominate maximum number of vertices of G, {v2,vn−1}

dominates {v1,vn} while v1 and vn dominates x.

Thus γt(G) = 4, ∀ n > 4.

Example: 3.2.0.8. The degree split graph of P7 and its total domination number is shown

in Figure 3.9 below.

v1 v2 v3 v4 v5 v6 v7

y

x

Figure 3.9: The Degree Split Graph of P7

γt(DS(P7)) = 4
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Theorem 3.2.0.9.

γt
e(G) =


3 ;if n = 4

⌊n
3⌋+2 ;if n ≥ 5.

Proof. If D is any total equitable dominating set of G then it is obvious that v1 ∈ D, as

|dG(v1)−dG(v2)| = 1 and |dG(v1)−dG(x)| = 0.

To prove this result we consider the following cases:

Case I: n = 4

We construct a set of vertices as D = {v1,v2,v3}.

Then |D| = 3. Also D is a total dominating set of G as D has no isolated vertex and D

is also an equitable dominating set of G as for any v ∈ V (G)−D ∃ a vertex u ∈ D such

that uv ∈ E(G) and |dG(u)−dG(v)| ≤ 1.

Further D is a minimum total equitable dominating set of G.

∴ |D| is minimum and hence γt
e(G) = 3.

Case II: n ≥ 5

We construct a set of vertices D as follows:

D =


{v3i+2,v7i+4/0 ≤ i ≤ ⌊n

3⌋−1}
⋃
{y,vn−1,vn}; i f n ≡ 0 or 2(mod 3)

{v3i+2,v7i+4/0 ≤ i ≤ ⌊n
3⌋−1}

⋃
{y,vn}; i f n ≡ 1(mod 3)

Then |D| = ⌈n
3⌉+2.

Also D is a total dominating set of G as D has no isolated vertex and D is also an equitable

dominating set of G as for any v ∈ V (G)−D ∃ a vertex u ∈ D such that uv ∈ E(G) and

|dG(u)−dG(v)| ≤ 1.

Claim: |D| is minimum.

Assume that D−{v} is a minimum total equitable dominating set of G for any v ∈ D.
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For a vertex v, |dG(u)−dG(v)| ≥ 1. This is a contradiction to D−{v} is a total equitable

dominating set of G.

Thus D is a minimum total equitable dominating set of G.

Example: 3.2.0.10. The degree split graph of P7 and and its total equitable domination

number is shown in Figure 3.10 below.

v1 v2 v3 v4 v5 v6 v7

y

x

Figure 3.10: The Degree Split Graph Of P7

γt
e(DS(P7)) = 5

3.3 Total Domination in Generalized Petersen Graphs

Definition 3.3.0.1. Let n,k be the positive integers such that n ≥ 3 and 1 ≤ k ≤
[n

2

]
.

The Generalized Petersen Graph P(n,k) is the graph whose vertex set is {ai,bi: 1 ≤ i

≤ n} and whose edge set is {{ai,bi},{ai,ai+1},{bi,bi+k} : 1 ≤ i ≤ n}.

NOTE: We take outer vertices as u1,u2, ...,un and inner vertices as v1,v2, ...,vn.
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3.3.1 Total Dominating Set of the Generalized Petersen Graphs

P(n,1):
Theorem 3.3.1.1. The minimum total dominating set for the generalized Petersen graphs

P(n,1) with n ≥ 3 except n = 7 is given by

T D =

u1+3i, i f 0 ≤ i < ⌈n
3⌉

v1+3i, i f 0 ≤ i < ⌈n
3⌉.

u1 u2

u3un

u4un−1

v1 v2

v3vn

vn−1
v4

Figure 3.11: Generalized Petersen Graph P(n,1)

Proof. let n ≥ 3 and n ̸= 7.

The vertex u1+3i dominates the vertices u3i, u3i+2 and v1+3i for 1 ≤ i < ⌈n
3⌉ (addition

modulo i); and the vertex v1+3i dominates the vertices v3i, v3i+2 and u1+3i for

1 ≤ i < ⌈n
3⌉ (addition modulo i).

For i = 0, the vertex u1 dominates the vertices u2, un and v1; and the vertex v1 dominates

the vertices v2,vn and u1.
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As i ranges from 0 to ⌈n
3⌉, the minimal TD - set thus obtained is

T D =

u1+3i, i f 0 ≤ i < ⌈n
3⌉

v1+3i, i f ≤ i < ⌈n
3⌉.

Example: 3.3.1.2. Consider the generalized Petersen graph P(6,1). Let u1,u2, ...,u6

be the outer vertices and v1,v2, ...,v6 be the corresponding inner vertices. By applying

Theorem 3.3.1., the minimum total dominating set of P(6,1) is {u1,u4,v1,v4}.

u1

u2

u3u4

u5

u6

v1

v2

v3v4

v5

v6

Figure 3.12: Generalized Petersen Graph P(6,1)

Example: 3.3.1.3. Consider the generalized petersen graph P(7,1) when n = 7, as

shown in Figure 3.13. below. Let u1,u2, ...,u7 be outer vertices and v1,v2, ...,vn be inner

vertices. The vertex u1 dominates the vertices u2,u7 and v1; the vertex u2 dominates the

vertices u1,u3 and v2; the vertex u7 dominates the vertices u1,u6 and v7; The vertex v4

dominates the vertices v3,v5 and u4; and the vertex v5 dominated the vertices v4,v6 and

u5. Thus a set of vertices {u1,u2,u7,v4,v5} dominates every vertex of P(7,1). Thus the

minimum total dominating set is {u1,u2,u7,v4,v5}.
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u1

u2u7

u3

u4

u6

u5

v1

v2v7

v3v6

v5 v4

Figure 3.13: Generalized Petersen Graph P(7,1)

3.3.2 Total Dominating Set of the Generalized Petersen Graphs

P(n,2):

Theorem 3.3.2.1. The minimum total dominating set for the generalized Petersen graph

is given by

1. For n even , n > 8 there are two cases:
(a) n ̸≡ 2(mod 6);

T D =

u1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

v1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

(b) n ≡ 2(mod 6);

T D =


u1+3i, i f 0 ≤ i ≤ ⌈n

3⌉

v1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

vn−2
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2. For n odd, n > 5 there are two cases:

(a) n ≡ 0(mod 3) or n ≡ 1(mod 3);

T D =

u1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

v1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

(b) n ≡ 2(mod 3) ;

T D =


u1+3i, i f 0 ≤ i ≤ ⌈n

3⌉

v1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

vn−2

u1 u2

u3un

u4un−1

un−2
u5

v1 v2

v3vn

vn−1
v4

vn−2 v5

Figure 3.14: Generalized Petersen Graph P(n,2)
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Proof. 1. For n even, n > 8 there are two cases:

case (a): n ̸≡ 2(mod 6)

The vertex u1+3i dominates the vertices u3i, u3i+2 and v1+3i for 1 ≤ i ≤ ⌈n
3⌉

(addition modulo i); and the vertex v1+3i dominates the vertices v3i−1, v3i+3 and

u1+3i for 1 ≤ i ≤ ⌈n
3⌉ (addition modulo i)

For i = 0, the vertex u1 dominates the vertices u2, un and v1; and the vertex v1

dominates the vertices v3,vn−1 and u1.

We get the TD - set of P(n,2) ∀ values of i, 0 ≤ i ≤ ⌈n
3⌉ as

T D =

u1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

v1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

case (b): n ≡ 2(mod 6)

The vertex u1+3i dominates the vertices u3i, u3i+2 and v1+3i for 1 ≤ i ≤ ⌈n
3⌉ (addi-

tion modulo i); and the vertex v1+3i dominates the vertices v3i−1, v3i+3 and u1+3i

for 1 ≤ i ≤ ⌈n
3⌉ (addition modulo i)

For i = 0, the vertex u1 dominates the vertices u2, un and v1; and the vertex v1

dominates the vertices v3,vn−1 and u1.

and also the vertex vn−2 dominates the vertices vn−4,vn and un−2.

We get the TD - set of P(n,2) for all values of i, 0 ≤ i ≤ ⌈n
3⌉ as

T D =


u1+3i, i f 0 ≤ i ≤ ⌈n

3⌉

v1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

vn−2
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2. Let n be odd and n > 5. There are two cases:

case (a): n ≡ 0(mod 3) or n ≡ 1(mod 3)

The vertex u1+3i dominates the vertices u3i, u3i+2 and v1+3i for 1 ≤ i ≤ ⌈n
3⌉

(addition modulo i); and the vertex v1+3i dominates the vertices v3i−1, v3i+3 and

u1+3i for 1 ≤ i ≤ ⌈n
3⌉ (addition modulo i)

For i = 0, the vertex u1 dominates the vertices u2, un and v1; and the vertex v1

dominates the vertices v3,vn−1 and u1.

We get the TD - set of P(n,2) ∀ values of i, 0 ≤ i ≤ ⌈n
3⌉ as

T D =

u1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

v1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

case (b): n ≡ 2(mod 3)

The vertex u1+3i dominates the vertices u3i, u3i+2 and v1+3i for 1 ≤ i ≤ ⌈n
3⌉

(addition modulo i); and the vertex v1+3i dominates the vertices v3i−1, v3i+3 and

u1+3i for 1 ≤ i ≤ ⌈n
3⌉ (addition modulo i).

For i = 0, the vertex u1 dominates the vertices u2, un and v1; and the vertex v1

dominates the vertices v3,vn−1 and u1; and also the vertex vn−2 dominates the

vertices vn−4,vn and un−2.

We get the TD - set of P(n,2) for all values of i, 0 ≤ i ≤ ⌈n
3⌉ as

T D =


u1+3i, i f 0 ≤ i ≤ ⌈n

3⌉

v1+3i, i f 0 ≤ i ≤ ⌈n
3⌉

vn−2
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NOTE:

The values 5, 6 and 8 of n are not included in the above theorem. Here we have given

separately the TD - set of P(5,2), P(6,2) and P(8,2).

1. Consider the generalized Petersen graph P(5,2) given in Figure 3.15 below. Let

u1,u2, ...,u5 be the outer vertices and v1,v2, ...,v5 be the corresponding inner ver-

tices. The vertex u1 dominates the vertices u2,u5 and v1; the vertex v1 dominates

the vertices v3,v4 and u1; the vertex v3 dominates the vertices v1,v5 and u3 ;

and the vertex v4 dominates the vertices v1,v2 and v4. Thus the set of vertices

{u1,v1,v3,v4} dominates every vertex of P(5,2). Thus the minimal total dominat-

ing set is {u1,v1,v3,v4}.

u1

u2u5

u4 u3

v1

v5 v2

v4 v3

Figure 3.15: Generalized Petersen Graph P(5,2)

2. Consider the generalized Petersen graph P(6,2) given in Figure 3.16 below. Let

u1,u2, ...,u6 be the outer vertices and v1,v2, ...,v6 be the corresponding inner ver-

tices. The vertex u1 dominates the vertices u2,u6 and v1; the vertex u4 dominates
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the vertices u3,u5 and v4; the vertex v1 dominates the vertices v3,v5 and u1 ;

and the vertex v4 dominates the vertices v6,v2 and u4. Thus the set of vertices

{u1,v1,u4,v4} dominates every vertex of P(6,2). Thus the minimal total dominat-

ing set is {u1,v1,u4,v4}.
u1

u2u6

u5 u3

u4

v1

v6 v2

v5 v3

u4

Figure 3.16: Generalized Petersen Graph P(6,2)

3. Consider the generalized Petersen graph P(8,2) given in Figure 3.17 above. Let

u1,u2, ...,u8 be the outer vertices and v1,v2, ...,v8 be the corresponding inner ver-

tices. The vertex u1 dominates the vertices u2,u8 and v1; the vertex u4 dominates

the vertices u3,u5 and v4; the vertex v1 dominates the vertices v3,v7 and u1 ; the

vertex v4 dominates the vertices v6,v2 and u4; the vertex v6 dominates the vertices

v4,v8 and u6; and the vertex v7 dominates the vertices v1,v5 and u7. Thus the set of

vertices {u1,v1,u4,v4,v6,v7} dominates every vertex of P(8,2). Thus the minimal

total dominating set is {u1,v1,u4,v4,v6,v7}.
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u1

u2

u8

u7

u3

u4

u6

u5

v1v8

v2

v3

v7

v6

v5 v4

Figure 3.17: Generalized Petersen Graph P(8,2)

4. In the above Theorem 3.3.2.1., we note that the total dominating set of the cases

a(1) and a(2) are the same and for the cases b(1) and b(2) also the total dominating

sets are the same.

Example: 3.3.2.2. Consider the generalized Petersen graph P(10,2) in Figure 3.16

below, illustrate the Theorem 3.3.2.1. Let u1,u2, ...,u10 be the outer vertices and

v1,v2, ...,v10 be the corresponding inner vertices. Here n = 10 by applying Theorem

3.3.2.1.(case a(1)), the minimal total dominating set of P(10,2) is

{u1,u4,u7,u10,v1,v4,v7,v10}.
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u1

u2

u10

u9

u8 u3

u7 u4

u6 u5

v1v10

v2

v3

v9

v4

v8

v6 v5

v7

Figure 3.18: Generalized Petersen Graph P(10,2)



Chapter 4

PROPOSED THEOREMS

This chapter introduces and proves theorems concerning the domination number and

total domination number of various graph structures. It explores the domination number

of the Snare graph of the path Pn, as well as the domination number of a Lollipop graph

Lm,n and the total domination number of a specific case of Lollipop graph denoted as

Lm,1, where m ≥ 3. Additionally, the chapter discusses the total domination number

of Tadpole graph Tm,n where m ≥ 3 and n ≥ 1, as well as the total domination number

of the crib graph of the graph G.

4.1 Domination Number & Total Domination Number

of Lollipop Graph

Definition 4.1.0.1. The (m,n)−Lollipop graph is the graph obtained by joining the

complete graph Km to the path Pn with a bridge.

Theorem 4.1.0.2. The domination number for lollipop graph Lm,n is γ(Lm,n) =

⌊n+1
3 ⌋ + 1 for m ≥ 3; n ≥ 1.

Proof. Let G ∼= Lm,n be a lollipop graph on m+n vertices and m(m−1)
2 + n edges.

Let S be a dominating set of Pn .

48
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Now consider the vertex v that is connected to all vertices in Km adding v to S creates a

set S′ such that |S′| = |S| + 1.

Since S dominates all vertices in Pn and vertex v dominates all vertices in Km. Hence S′

dominates all vertices in Lm,n.

∴ γ(Lm,n) ≤ ⌊n+1
3 ⌋ + 1 .

Now, let S be a dominating set of Lm,n.

Since S is a dominating set v must belong to S as v dominates vertices in Km and

removing v from S leaves a set S′ that dominates path Pn making S′ a dominating set of

Pn.

Hence |S′| = |S| - 1.

i.e. |S| = |S′| + 1.

Thus ⌊n+1
3 ⌋ + 1 ≤ γ(Lm,n).

hence γ(Lm,n) = ⌊n+1
3 ⌋ + 1 for m ≥ 3; n ≥ 1.

Example: 4.1.0.3. The dominating set and the domination number of the lollipop graph

L4,2 is shown in Figure 4.1 below.

v1

v2

v3

v4 v5 v6

Figure 4.1: Lollipop Graph L4,2

D(L4,2) = {v4,v5} and γ(L4,2) = 2
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Theorem 4.1.0.4. Total domination number of a Lollipop graph Lm,1 is 2 for m ≥ 3.

Proof. Let G ∼= Lm,1 be a lollipop graph on m+1 vertices and m(m−1)
2 + 1 edges.

Let Dt be the minimum TD - set of G.

By definition The (m,1)−Lollipop graph is the graph obtained by joining the complete

graph Km to the path P1 with a bridge.

So the vertex v where Km is joined to P1 by a bridge will have ∆(G).

∴ v ∈ Dt and hence γt(Lm,1) = 1 + γt(P1) = 1 + 1 = 2.

∴ γt(Lm,1) = 2 for m ≥ 3.

Example: 4.1.0.5. The total dominating set and the total domination number of L4,1 is

shown in the figure 4.2 below.

v1

v2

v3

v4 v5

Figure 4.2: Lollipop Graph L4,1

D(L4,1) = {v4,v5} and γt(L4,1) = 2

4.2 Total Domination Number of Tadpole Graph

Definition 4.2.0.1. The (m,n)− tad pole graph is the graph obtained by joining a cycle

graph Cm to the path graph Pn by a bridge.

Theorem 4.2.0.2. The total domination number of the tadpole graph Tm,n is

γt(Tm,n) =


γt(Cm)+(n+1

2 ); n ≡ 3(mod 4)

γt(Cm)+ ⌊n
2⌋; otherwise.
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Proof. Let G ∼= Tm,n be a tadpole graph on m+n vertices and m+n edges.

We will prove the theorem by considering two cases based on the residue on n mod 4.

Case 1: n ≡ 3(mod 4)

In the dominating set of the cycle graph include the vertex where Cm is connected to Pn

by a bridge.

Then construct a dominating set by selecting every two adjacent vertices along the cycle,

leaving two vertices uncovered.

This ensures that all vertices of the cycle are dominated, resulting in γt(Cm) vertices

selected.

For the path graph Pn start the domination from the second vertex.

Then select every two consecutive vertices, along the path while skipping two vertices

and maintain the pattern throughout the path.

This selection strategy guarantees that every vertex in the path has a neighbour in the

selected set.

Thus we select (n+1
2 ) vertices from the path.

∴ γt(Tm,n) = γt(Cm) +(n+1
2 ); n ≡ 3(mod 4)

Case 2: n ≡ 0 or 1 or 2(mod 4)

The selection of vertices from the cycle graph is same as in case 1.

For the path graph start the domination from the third vertex of the path graph.

Then select every two consecutive vertices along the path while skipping two vertices

and maintain this pattern throughout the path.

∴ γt(Cm) + ⌊n
2⌋; otherwise.
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Example: 4.2.0.3. The dominating set and the domination number of the tadpole graph

T6,3 is shown in Figure 4.3 below.

v1

v2

v3v4

v5

v6

v7 v8 v9

Figure 4.3: Tadpole Graph T6,3

D(T6,3) = {v1,v2,v4,v5,v8,v9} and γ(T6,3) = 6 = γt(C6) + (4+1
2 )

4.3 Total Domination Number of Crib Graph
[ref. Sec. 2.3.2 for construction]

Theorem 4.3.0.1. Let G be any graph of order n, then the total domination number of

crib graph of G is 2. i.e. γt(C(G)) = 2.

Proof. In the crib graph C(G) of G let ui; i=1,2, ...,n be the new vertices introduced so

that uiv j ∈ E(C(G)) iff viv j ∈ E(G).

Let w be the vertex of C(G) which is adjacent to all the vertices ui and vi; i = 1,2, ...,n.

Define the TD-set to consist of vertex w and any other vertex of C(G) say v1.

Since every vertex of C(G) has atleast one neighbour in Dt= {w,v1}, Dt is a total

dominating set of C(G).

Hence γt(C(G)) = 2.
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Example: 4.3.0.2. The Crib graph of the path P5 is shown in Figure 4.4 below.

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

w

Figure 4.4: Crib Graph of P5

γt[C(P5)] = 2

4.4 Snare Graph of a Graph

The Snare Graph of a given graph G with V (G) = {v1,v2,...,vn} is the graph which is

obtained by applying the following steps:

1. Corresponding to each vertex vi in V (G), introduce 2 new vertex ui and wi and let

U = {ui: 1 ≤ i ≤ n} and W = {wi: 1 ≤ i ≤ n}. Add edges from each vertex ui of

U and wi of W to the vertex v j if viv j ∈ E(G).
2. Take another vertex X and add edges from X to all vertices in both U and W .

The new graph thus obtained is called the Snare graph of G and is denoted by S(G).

Theorem 4.4.0.1. For any snare graph with 3n+1 vertices γ[S(Pn)] = γ(Pn) + 1 for

n ≥ 2.

Proof. Let D be a minimum dominating set of the path graph Pn, where |D|= γ(Pn).

In the snare graph S(Pn), each vertex in D dominates its corresponding vertices in the

sets U and W .
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• Construction of Domination Set for Snare Graph:

Start with the domination set D of Pn, the vertex X is added to the domination set,

as it dominates all vertices in both U and W . Thus, the resulting domination set

for S(Pn) is D′ = D∪X , where |D′|= γ(Pn)+1.

• Minimality of Domination Set for Snare Graph:

Any vertex v ̸∈ D′ must either reside in U , W , or be non-adjacent to any vertex in

D′. If v belongs to U or W , it is dominated by its corresponding vertex in D′. If v

is non-adjacent to any vertex in D′, it must be adjacent to X , as X dominates all

vertices in U and W . Therefore, D′ is a dominating set of S(Pn).

Since D′ is a dominating set of S(Pn) with |D′|= γ(Pn)+1, the proof establishes

that γ[S(Pn)] = γ(Pn)+1 for n ≥ 2

Example: 4.4.0.2. The Snare graph of P5 is shown in Figure 4.5 below.

w1 w2 w3 w4 w5

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

X

Figure 4.5: Snare Graph of P5

γ(P5) = 3 = γ(P5) + 1



Chapter 5

ANALYSIS AND CONCLUSION

In Chapter 2, the domination numbers of diverse types of graphs is ascertained, all of

which are finite, undirected, and devoid of loops and multiple edges. Additionally, we

delved into the detailed analysis of domination numbers within trees without duplicated

leaves, establishing both their minimum and maximum orders, thereby providing a char-

acterization of trees at these extremities. Furthermore, we have explored the domination

numbers of specific graph constructions such as the Myceilski graph, crib graph, and

modified Myceilski graph. Notably, the proofs for the Myceilski graph and modified

Myceilski graph were contributed by us.

In Chapter 3, we explored the application of graph operators in determining the total

domination number of new graphs, specifically examining how operators S(G) and R(G)

operate on given graphs to produce new ones. Additionally, the concept of total co-

independent dominating sets and total co-independent domination number is discussed.

We have also discussed the total domination number of generalized Petersen graphs and

introduced the notion of minimum total dominating sets. Moreover, the total domination

numbers in path-related graphs, the concept of total equitable domination arising from the

combination of total domination and equitable domination, including the determination
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of the total equitable domination number of paths is also discussed. Further research

directions, such as exploring the combination of parameters associated with domination

theory using the studied unitary operators S(G) and R(G) is suggested. Furthermore,

we also suggest focusing on excluded values of n in the context of total domination in

generalized Petersen graphs and extending the analysis to other graph types. Another

intriguing investigation would involve determining the total equitable domination number

of different families of graphs.

In Chapter 4, we delved into the construction of Snare graph and examined the domi-

nation number of these graphs. Additionally, we investigated the domination number

of Lollipop graphs and determined the total domination number of a specific class of

Lollipop graphs denoted as Lm,1. Furthermore, the chapter explored the total domination

number of tadpole graphs Tm,n and the crib graph of the path Pn. It’s noteworthy that all

the theorems presented in this chapter were proved by us.
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