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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-
ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: " Elliptic Curve Cryptography." This
survey is divided into four chapters. Each chapter has its own relevance and importance.
The chapters are divided and defined in a logical, systematic and scientific manner to

cover every nook and corner of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of Number Theory and

basic Algebra, where few basic results and definitions are listed.

SECOND CHAPTER:

This chapter deals with Elliptic Curves . In this topic we discuss how Elliptic Curves
are defined. We also see how we geometrically interpret certain operations which then
further on are used to define The Group Law. Elliptic Curves on Finite fields forms the

base for Cryptography.

THIRD CHAPTER:

In this chapter we have introduced what is RSA, one of the most widely used cryptosys-
tems that are used till date. The main aim here was to Understand how the algorithm
works so that it is evident when we compare the difference in key size. We also see what

Diffie Hellman key Exchange Protocol is and about Discrete Logarithm Problem. We



i

solve examples using the same as well.

FOURTH CHAPTER:

This the main chapter in which we deal with Elliptic Curve Cryptography. Before heading
to ECC we see how Elliptic curve Diffie Hellman Key Exchange and Elliptic Curve
Discreete Logarithm Problem is defined. Further more we discuss the cyptography algo-
rithm and then see the majoy key comparison between RSA and ECC. AN application of

ECC that is Elliptic Curve Digital Signatures is also discussed in this Chapter.
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ABSTRACT

Elliptic Curve Cryptography (ECC) is one of the strongest and most efficient crypto-
graphic techniques in modern cryptography. Smaller ciphertexts, keys, and signatures
and faster generation od keys and signatures are key features of ECC.

Elliptic Curve is obtained from the Weierstrass Equation. Implementation of elliptic
curve in cryptography requires smaller chips size, less power consumption and increase
in speed. Diffie Hellman and Discrete Logarithm Problem are methods that are used in
Cryptography. Elliptic Curve Cryptography is a simple yet very efficient algorithm used
in encryption. The main aim of this article is to understand the simple working Rule
of Elliptic Curves and then further see how it is implemented in cryptography. We also
see the comparison between one of the most used algorithm RSA and Elliptic Curve

Algorithm. Elliptic Curve is also widely used in Digital Signature Algorithm.

Keywords: Elliptic Curve Cryptography (ECC); RSA code; Elliptic Curve Digi-
tal Signature Algorithm (ECDSA); Diffie Hellman Key Exchange Protocol; Discrete

Logarithm Problem
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Chapter 1

INTRODUCTION

1.1 Introduction

Number Theory

Number Theory is a branch of pure mathematics that is devoted to study of the integers
and arithmetic Functions.One of the important goal of number theory is to understand
different and interesting relations between sorts of numbers and to prove these relations
are true.

Elliptic Curve

Elliptic curves are curve that are defined by a certain cubic equation in two variables. The
set of rational solutions to this equation has an extremely interesting structure, including
a group law. The theory of elliptic curves was essential in Andrew Wiles’ proof of
Fermat’s last theorem. Computational problems involving the group law are also used in
many cryptographic applications, and in algorithms for factoring large integers.
Cryptography

Cryptography refers to secure information and communication techniques derived from
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mathematical concepts and a set of rule-based calculations called algorithms, to transform

messages in ways that are hard to decipher. We shall see more about this in Chapter 3.

1.2 Motivation

Elliptic Curves are a important part of Number Theory. The theory of elliptic curves
was essential in Andrew Wiles’ proof of Fermat’s last theorem. Elliptic curves also play
a major role in Cryptography. Elliptic Curve Cryptography (ECC) offers equivalent
security with lower computing power and battery resource usage And One of the most
important practical benefits is significantly reduced key sizes compared to other crypto

systems.

1.3 Basic Results and Definitions

Genus: Genus of curve determines its properties to a remarkable extent-in particular, by
the trichotomy g=0, g=1 0r g > 2.

Genus 1 : Genus 1 curves are simplest nontrivial algebric curves, they have very rich
structure. Elliptic curve genus being 1 indicates they have one handle/ one hole making
them equivalent to torus[5].

Rational Line A rational number is a quotient of two integers. A point (x,y) in the plane
is a rational point if both coordinates are rational numbers. A line is called rational line if
the equation of line can be written with rational numbers, i.e if equation is ax+by+c =0
a,b,c are rational. A line through them is rational. Also if you have two rational lines

their intersect is also rational.[6]
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Rational points on curve We say that conic is rational if we can write equation with

Rational numbers. To see intersection of rational line with Rational conic, if we use
analytical geometry to find coordinates of these points,we will come out with quadratic
equation for x coordinate of intersection. And if conic and line are rational, quadratic
equation will have rational coefficients. So points of intersection will be rational if and
only if roots of quadratic equation are rational.[6]

Group

A Group ( G, ) is a set G together with operation - satisfying following Axioms:
1. Closure: If x,y € Gthenx-yc G

2. Associativity: (x-y)-z=x-(y-z) forallx,y,z€ G

3. Identity : There exist an element e € G such thata-e=e-a=aforallae G

1 1

4. TInverse: For each a € G there is an element a— ! € G such that a-a '=a! - a=e

The number of elements of a group G is called its order. It is denoted by IGl.

Corollary 1.3.0.1. An elememt k is generator of Zy, iff gcd(k,n)=1

Some properties of mod function are as follow:

* Addition Property: (A+B) mod C = ((A mod C) + (B mod C)) mod C
* Mod of negative number(-A) mod C= (-A+C) mod C

* Multiplication Property : (A*B) mod C = ((A mOd C) *(B mod C))mod C

Modular Inverse: (A*A~1) 2 1 mod C



Chapter 2

ELLIPTIC CURVES

Definition 2.0.0.1. [7] An elliptic curve E (over a field K) is a smooth projective curve

of genus 1 (defined over K). given by:
E={(x,y)p*=x>+Ax+B}

where A and B belong to field such as R, C,Q,F,. There is also an requirement that the

discriminant

A = 4A3 + 27B% is non zero

Equivalently polynomial x* +Ax + B has distinct roots. This ensures that curve is non
singular.
We toss an extra point & that is "at infinity"
So set E is
E={(x,y):y* =X +Ax+B}U{0}
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2.1 Geometry of Curves

Geometry Of Elliptic Curves was referred from [5] Point Addition

1. Start with two points P and Q on E

2. Draw line L through P and Q.

3. Line L intersects cubic curve E in third point call it R.
4. Draw vertical line through R. It hits E at another point

5. We define the sum of P and Q on E to be the reflected point. We
denote it by P+ Q

We can see the visualisation in the following image:::

) P+Q

Figure 2.1: Point Addition
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Point Doubling

1. If we think adding P to Q and let Q approach P then line L becomes

tangent to E at P.

2. Then we take third intersection at pt R reflect across x- axis and call

resulting point P + P or 2P.

-2 2P

Figure 2.2: Point Doubling: here line L is tangent to E at P

Point at Infinity

1. Let P € E. We denote reflected point by -P.

2. Vertical line through P and -P doesn’t intersect E at third point. And

we need third point P + (-P).
3. Since there is no point in plane that works we create extra point &'
"at infinity".

Rule: & is a point on every vertical line.
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Figure 2.3: We denote point at infinity as &

2.2 Algebra of Curves

This section is referred from [7] Suppose we want to add points P} =

(x1,y1) and P, = (x2,y2) on the curve
E: y2 — X +Ax+B
Let line connecting P; and P, be
L:y=m(x—x1)+y
We find the intersection between curve E and line L by solving

(m(x—x1)+y1)> =x+Ax+B
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Upon solving we get

m?(x* — 2xxy +x7) 4 2my;x — 2my x| +y] = x> + Ax+ B
— 0=x> —m*x* 4 (2m*x; + 2my; +A)x + (B+2my x| —y3 —m?x?})
This is a cubic equation in x For any cubic polynomial x> + ax? + bx + ¢
and roots r,s,t then we have

X tax® +bx+c=(x—r)(x—s)(x—1) =x> — (r4+s+1)x>+ (st +rt +rs)x—rst

S.r+s+t=—a

hence if we know two roots we can obtain the third In our case we have

> —m*x? 4 (2mPx; + 2my; +A)x+ (B+2my x) —y3 —m?x3

= (x—x1)(x—x2)(x —x3)

— X3 :mz—xl — X2
Hence y3 = m(x3 —x1) — 1

The slope of L is given by

RV i P AP

X2 —X1
3x74+A
2y,

3
I

it P =n
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Summary Addition Algorithm for Py = (x1,y;) and P, = (x,y2) on curve
E: y?> = x> 4+ Ax+ B is given by

o If P, # Prandx; =xpthe P+ P, = O

eIfPA=P,andy; =0,then P+ P, =2P, =0

o If P1 75 Pzandxl 73)62

y2—Yy1
m:
X2 —X]

e If P =P, and y; =0, then

B 3x%+A
2y1

moreover P+ oo = P for all points P on E.

Example: 2.2.0.1. Given points P = (1,2) and P, = (3,4) on elliptic
curve y> =x> —Tx+10 find P, + P> and (P, + P>) + P>

Solution,

Let the third point of intersection be denoted by Q

Line passing through (1,2) and (3,4) is given by y = x+ 1

Substituting this in the equation of curve we get equation

x> —x? — 9x+9 = 0 whose factors are (x —1)(x —3)(x +3) =0

Thus x-coordinate of Q is -3 and y coordinate is -2. which is (-3,-2)

. Qli.eP, + P, is given by (-3,2).
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To find sum of (P + Py) + P, we perform similar procedure; line through
(-3,2) and (3,4) given by y = %x—k C.
solving we get roots (x — §)(x+3)(x—3) =050 R =(5,53)

R =P +PR)+P=1,-8)

® f : Line(Py1. Py) ad

=y=x+1
® Q=(3-2
@ Q=(32
O g : Line(Q. Q")

=x=-3
® h : Line(Q', Py) H /

= 0.3333333333333x + 3

¥ < -14 -12 =10 -8 -6 -4 —/0 2 4 6 8 10 12 14 16 18 20 22 24 2
h Q
R = (1 %) P &'/Z'ﬁ
9’27

@ 4

= (0.1111111111111, 3.037037C

-6
1 8 ¢

R=(z,—=
[0) (9 27) -8

= (0.1111111111111, -3.037037 -10
+ 12

14
= 16 eql

Figure 2.4: Representation

2.3 Group Law

Theorem 2.3.0.1. [7] Addition of points on elliptic curve E satisfies

following properties

1. Commutativity: P +P, =P, + P, VP,P, € E

2. Existence of Identity: P4+ 0 = PVP on E
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3. Existence of Inverse: Given point P on E 3P’ on E with P+P' = 0.
This point P' denoted as —P

4. Associativity: (Py+P)+P; = P+ (P, + P3) VP,P,,P; on E

In other words points on E forms an additive abelian group with O as

identity element.
Proof. The proof of commutativity follows from the formulas, as slope of
line through any two points calculated either way is the same. i1.e

Y2y Y1
X2 —X] X1 — X2

m

Also from the fact that line drawn through P; to P is the same as line
drawn from P to P;. Identity property holds by definition i.e If Py = P

and y; = 0, then
3x% +A
m =
2y1

moreover P+ oo = P for all points P on E.

For inverse let P’ be reflection of P across x axis then P+ P/ = o
Associative property can be visualized as law of composition.We start
with 2 points P; and P and perform certain procedure to obtain third
point P; + P». Then we repeat procedure with (P + P») and P; to obtain
(P, + P,) + P5. If we instead start by adding P, and P3 then computing

Py + (P, + P3) we obtain the same point.
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,

Figure 2.5: Visualization of Associative Law

[l

Definition 2.3.0.2. Elliptic Curve over Rationals For an Elliptic curve

defined as E = {(x,y)|y*> = x> +Ax + B} over the field Q.

Corollary 2.3.0.3. /7] If P and Q are rational points on an Elliptic curve,
so also is P+ Q.

Proof. The line L through P and Q has rational coefficients, this is also
true when P=Q and L is a tangent line. Upon substituting L in E we obtain
a cubic with rational coefficients and two rational roots. The third root of

P x Q, is rational as the third root can be obtained from the coefficient of
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x? of the cubic polynomial and the other two roots.The other coordinate is

rational via L. [
Definition 2.3.0.4. Elliptic Curve over finite field [4] An Elliptic curve
over a finite field [, is given by

E={(x,y)ly’ =x +Ax+B} mod p

together with imaginary point &’ and a,b € [, satisfying

A=4A%+27B* mod p 1S non zero

Elliptic curves over finite fields do not have a nice graph as in case of
Elliptic curve over Real Field. Here Elliptic curves are discrete points in
plane. So, geometric Representation is not the same as we geometrically
interpreted in terms of Real fields but the concept is the same we use same

addition operator with calculation done in modulo.
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Summary of the Algebra of the curve Addition Algorithm for P; =
(x1,v1) and P> = (x2,y>) on curve E: y> = x> + Ax+ B mod p is given by

o If P, # Prandx)y =xp the PL+P, = O

eIfPA=P,andy; =0,then P+ P, =2P =0

o If P1 75 Pzandxl # X2

Y2 — )1
m= mod p
X2 — X1
e If P, = P, and y; = 0, then
3x7+A
m=—1 mod p
2y1

moreover P+ oo = P for all points P on E.

Real Life Example : One of the real life example of Elliptic curve is curve
used for bitcoin named as secp256k1. this curve is given by y? = x> +7

which is defined over finite field Zys6_532_g77 [2]
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Example: 2.3.0.5. If P =(5,11) on elliptic curve y* = x>+ 2x+3 mod 17,
find 2P and 3P

Solution,

For P= (5,11) = (x1,y1) we have,

3 2
m= X ta mod p
2y,

_ 3x5%742

2x11

7542
= — 1
7 mod17

=12

mod17

Xy = mz—xl —x1 mod p
=122-5-5 mod 17
=134 mod 17
=15
yo=m(x; —x3)—y; modp
=12(5—-15)—11 mod 17
=—131 mod 17
=23
Thus point Q(x2,y2) = (15,5) and hence, 2P = (15,12). Next, to obtain 3P
we have 2P + P. where 2P = (15,12) and P= (5,11).
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Now,
m:yz_y1 mod p
X2 — X1
12—-11
= d 17
15—5 "

=1%10""  mod 17
=12

and x3 —m? —Xx1—xp mod 17
=122 —-5-15 mod 17
=124 mod 17
=5

and y3 =m(x; —x3) —y; mod 17
=12(5—-5)—11 mod 17
=—11 mod 17

=6

Hence we obtain 3P = P + 2P = (5,-6) = (5,11)
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Obtaining of points in finite field
Let us see how to obtain points of the curve defined by y> = x> +x+ 1.

Hence the points on the graph are: (2,0), (0,1), (0,10), (8,2), (8,9), (3,3),

x/y | ymod 11 | x> +x+1mod 11
0 0 1
1 1 3
2 4 0
3 9 9
4 5 3
5 3 10
6 3 3
7 5 10
8 9 4
9 4 2
10 1 10

(1,5),(1,6),(4,5),(4,6), (6,5),(6,6), (3,8).
. the order of the curve y? = x> +x+ lmod11 is 13.

Elliptic Curve over finite field

Figure 2.6: Graph of Elliptic curve over Finite fields



Chapter 3

CRYPTOGRAPHY

3.1 Introduction

This Chapter is mainly referred from [1]

Cryptography is the art of protecting and hiding information and communi-
cating through the use of codes and algorithms so that those for whom the
information 1s intended can read and process it. Cryptography was used
by people for transmission of information and had become increasingly
important in wars.

Cryptography’s history is very long. It had been discovered for about 400
years. Before 1949, classical codes were used in cryptography. Classical
codes have low intensity which states that they can be cracked easily.

Between 1950 and 1975 cryptography gradually entered into people’s

18
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mind and became a science. From then onwards till date, the key in cryp-
tography has made great progress. From that point forward, cryptography
began to divide into several branches.

Cryptography systems are of two types

* Private Key Cryptography also referred to as Symmetric Cryptogra-
phy
* Public key Cryptography also referred to as Asymmetric Cryptogra-

phy

We will be studying about the asymmetric i1.e. public key, algorithms of
public key cryptosystem are very different from symmetric algorithms.
Most public-key algorithms are based on number theoretic functions. This
is quite different from symmetric ciphers, where the goal is usually not to
have a compact mathematical description between input and Output.
Principle of Private Key Cryptography

A system is symmetric with respect to two properties:

1. The same secret key is used for encryption and decryption

2. The encryption and decryption function are very similar.

Principle of Public key cryptography

The use of public -key cryptography represents a major shifting from
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previous methodologies. Until recently, most cryptographies relied on
the fundamental tools of substitution and permutation. However , unlike
traditional single-key encryption, public key algorithms are based on
mathematical functions and are asymmetric in nature and require requiring
the usage of two keys. In order to overcome these drawbacks Diffie,
Hellman and Merkle had a revolutionary proposal based on the following
idea: It is not necessary that the key processed by the person who encrypts
the message is secret rather crucial part is that the receiver can only decrypt

using the secret key.

1. Each system generates a pair of keys.

2. Each system publishes its encryption key (public key) keeping its

companion key private.

3. If A wishes to send a message to B it encrypts the message using B’s

public key

4. When B receives the message, it decrypts the message using its
private key. No one else can decrypt the message because only B

knows its private key.
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3.2 RSA Cryptosystem

The R.S.A crypto scheme , sometimes referred to as the Rivest-Shamir-
Adleman algorithm is currently the most widely used asymmetric cryp-
tographic scheme, even though elliptic curves and discrete logarithm
schemes are gaining ground.

Using the R.S. A algorithm the keys are used together in one of the follow-

ing ways

* Encrypting with Public Key
Sending messages only the intended recipient can read.
Let us consider Bob encrypts a plain text message with Alice’s public
key, then Alice decrypts the cipher text message with her private
key. Since Alice is the only one with access to the private key, the

encrypted message cannot be read by anyone besides Alice.

 Signing with your private key.
Verifying that you’re the one who sent a message.
Alice encrypts a plain text message with her private key, then sends
the cipher text to Bob. Bob decrypts the cipher text with Alice’s
public key. Since the public key can only be used to decrypt messages
signed with Alice’s private key, we can trust Alice was the author of

the original message.
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In practice, RSA is often used together with a symmetric cipher such as
AES where the symmetric ciper does the actual bulk data encryption. The
underlying one way function of RSA is the integer factorization problem.
Multiplying two large primes is computationally easy but factoring the

resulting product is very hard.

3.2.1 RSA Encryption and Decryption

RSA encryption and decryption is done in integer ring Z, and modular
computation play a central role. RSA encrypts plain text x where we
consider the bit string representing x to be an integer in Z, = {0, 1,--- ,n—
1}. As a consequence the binary value of plain text x must be less than n.
The same holds for cipher text. Encryption with public key and decryption
with private key are shown below:

RSA Encryption: Given public key (n,e) = k,,;, and plain text x, the

encryption function is
y = ekpyp(x) = x° mod n

Where x,y € Z,
RSA Decryption: Given the private key d = k,, and cipher text y, the
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decryption function is
x=dky(y) =y! modn

Where x,y € Z,

In practice x,y,n and d are very long numbers, usually 1024 bit long or
more. The value e sometimes referred to as encryption exponent or public
exponent and the private key d is sometimes called decryption exponent
or private exponent. If Alice wants to send an encrypted message to Bob,
Alice needs to have his public key (n.e) and Bob decrypts with his private
key d.

3.2.2 Key Generation and Distribution

Output: public key k,,, = (n,e) and private key k,, = (d) where n is the

key size.

1. choose two large prime numbers p and q
2. Compute n = pq
3. Compute ¢(n) =(p—1)(g—1)

4. Select public exponent e € {1,2,3,-,¢(n) — 1} such that gcd(e,¢ (n))
= ],
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5. Compute private key d such that d x e = 1mod ¢ (n)

The condition ged(e,d(n)) = 1 ensures that the inverse of e exists modulo

¢ (n) so that there is always a private key d.

Example: 3.2.2.1. Here is an example of RSA encryption and decryption.
Parameters used here are relatively small, but this is made in order to
understand the basic idea of the RSA Algorithm.

Bob (the receiver) generates his public key (n,e) using method discussed

above
1. Choose p=3 and q=11
2. n=pqg=3*11= 33
3. ¢(n)=(3-1)(11-1)=20
4. Bob decides to choose e = 3 as his public key

5. d= eV mod 20 = 7 mod 20

SO we have Bob’s public key to be (33,3) and his private key to be (33,7)
Suppose Alice wants to send a message x=4 to Bob. She uses bob’s Public

key to encrypt her message. the message x=4 becomes

y = x’modn = 4’mod33 = 31mod33
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Bob receives text as y=31.

He uses his private key d=7 to decrypt the cipher text
xX= ydmodn =31"mod33 =4

Note that the private and public exponents fulfill the condition e xd = 3*7
= [ mod ¢(n)
Practical RSA Parameters are much larger. The RSA modulus n should be

at least 1024 bit long, which results in a bit length of p and q of 512.

3.3 Diffie-Hellman Key Exchange Protocol

The Diffie Hellman Key agreement protocol (1976) was the first practical
method for establishing a shared secret over an unsecured communication
channel. The point is to agree on a key that two parties can use for encryp-

tion, in such a way that an eavesdropper cannot obtain the key.

3.3.1 Diffie Hellman Algorithm

Steps in the Algorithm are as follows:

 Alice and Bob agree on a prime number p and a generator g
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* Alice chooses a secret number a, and sends Bob (g% modp)
« Bob chooses a secret number b, and sends Alice (g” modp)
* Alice computes (g” modp)® mod p

« Bob computes (g% modp)® mod p

Both Alice and Bob can use this number as their key. Notice that p and g

need not be protected.

Example: 3.3.1.1. * Alice and Bob agree on p= 23 and o« = 5
e Alice chooses X, = 6 and sends 5° mod 23 = 8 to Bob
e Bob chooses X}, = 15 and sends 5'° mod 23 = 19 to Alice.
e Alice computes 19% mod 23 = 2

e Bob computes 8' mod 23 = 2

Then 2 is the shared key.

Clearly a much larger values of a,b,and p are required An eavesdrop-
per cannot discover this value even if she knows p and g.
Suppose p is a prime of around 300 digits and a and b at least 100 digits

each
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Discovering the shared secret given g,p , (g*modp), (g?modp) would take
longer than lifetime of universe using the best known algorithm. This is
called Discrete Logarithm problem.

How can two parties agree on a secret value when all their messages
might be overheard by an eavesdropper? The Diffie Hellman algorithm
accomplishes this and is still widely used. With sufficiently large inputs

Diffie Hellman is very secure.

3.4 Discrete Logarithm Problem

Discrete Logarithm Problem (DLP) in Z,,, given is the finite cyclic group
Ly, of order p —1 and a primitive element o € Z,, and another element
B ez,

The DLP is the problem of determining the integer | < x < p—1 such
that

o* =B modp

An integer x must exist since alpha is a primitive element and each
group element can be expressed as a power of any primitive element. This
integer x is called discrete logarithm of 3 to the base & and can formally
write

x=1loggy B modp
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Computing discrete logarithms modulo prime is very hard problem if
the parameters are sufficiently large. Since exponentiation aPmod pis

computationally easy, this forms a one- way function.

Example: 3.4.0.1. For the prime p=1999 the ring Z, is a finite field and
the non zero elements of Z*, forms a group G under under multiplication

modulo p:

G:Z*P:{17277p_1}

Furthermore the element o = 3 is generator of G, also known as a primitive

element modulo p

G= {l,a,az,--- ,ocp_z}

It is easy to compute that
3789 >~ 1452 mod p

However it is not nearly easy to determine that x=789 given that x is in

the range 0 to 1997 and satisfies equation

3* = 1452 mod 1999



Chapter 4

CRYPTOGRAPHY USING EC

4.1 Introduction

[8] Elliptic curve Cryptography (ECC) is the newest member of the three
families of established public key algorithms of practical relevance intro-
duced. ECC has been around since the mid 1980’s. ECC provides the same
level of security as RSA or discrete logarithm systems with considerably
shorter operands (approximately 160-256 bit vs. 1024-3072 bit). ECC is
based on generalized discrete logarithm problem, and thus DL-protocols
such as Diffie- Hellman key exchange also done using elliptic curves.

ECC has performance advantages(fewer computations) and bandwidth ad-

vantages (shorter signatures and keys) over RSA and Discrete Logarithm

29
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(DL) schemes. The mathematics of elliptic curves are considerably more

involved than those of RSA and DL schemes.

4.1.1 Elliptic Curve Discrete Logarithm Problem

This section is referred from [1]. As discussed earlier DLP is the problem

of finding the number y given some base number g, where
x =g modp

for some large prime number p. Cryptography with an elliptic curve
defined over finite field ¥, has a similar problem, the problem of finding

integer k given a base point P where the point
Q =kP

here P,Q € E(F,),

This is called elliptic curve discrete logarithm problem or ECDLP.(Instead
of numbers, elliptic curve’s problem operate on points, and multiplication
1s used instead of exponentiation)

In other words given an elliptic curve E defined over a finite field F; and

two points P.Q € E(F,) find an integer k such that Q= kP.
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4.1.2 Elliptic Curve Diffie Hellman

[1] Given some fixed number g, Alice picks a secret random number a,
computes X= g and sends Bob and Bob picks secret random number b
and sends Y=g” to Alice.

Both then compute secret key with the other’s public key to produce same
XY=YX=g.

In case of ECC.

» Alice picks a secret number a, computes X=aP (point P multiplied

by a) and sends X to Bob.
* Bob picks a secret random b, computes point Y=bP and sends Alice.

* both compute same shared secret XY = abP This method called
Elliptic Curve Diffie Hellman or ECDH.

This method is called Elliptic Curve Diffie Hellman or ECDH. ECDH is to
ECDLP what DH is to DLP its as secure as ECDLP is hard, DH protocols
that rely on DLP can therefore be adapted to work with elliptic curves and

rely on ECDLP as a hardness assumption.
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4.2 Algorithm for ECC

[8] The steps in the ECC Algorithm are as follow:

Step 1: Encode plain text message as a point on curve

Let us consider a point to be encoded plain text message on the curve.
Step 2: Establish Public key and private key

* Choose a generator point G € E,(a,b)
* Suppose User B wants to send user A a message.
* User A will generate his private key n4 and public key Py.

* Using the shared public key of user A user B will encrypt his

message.
* Secret key k is generated by user B which liesin {1,2,3,--- ,p—1}
Step 3: Encrypt message using public key Cipher point will be

Cn={KG, B, + kP, }

this point will be sent to receiver.

Step 4: Decrypt using private key For decryption multiply first point in the pair

with receiver’s private key

Example: 4.2.0.1. Suppose Alice and Bob want to share some message

between each other. First they agree on a common curve. Consider the
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curve tobe y>* = x> +x+1 mod 11

The point to encode plain text message on the curve is (4,6)

Alice wants to send bob a message. Since for encryption we need public
key and decryption private key first bob will compute both. He first chooses
a generator point G to be (1,5) € E11(1,1)

Next He chooses her private key ny, = 2 and computes public key to be P,

P,=2G=G+G=(1,5)+(1,5)

3x1241

4
:E mod 11
=17

Next,x3 =A*>—x—x mod p
=7—1—1 mod 11
=47 mod 11
=3
y3 =A(x—x3) =y
=7(1-3)—5 mod 11
=—19 mod 11

=3
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Hence P,= (3,3)
Now since Alice wants to send him a message he shares his public key P,
with Alice. Suppose secret key generated by Alice is 2. Then the cipher

text generated will be

C = (kG,M + kP,)

which on computation yields to [(3,3),(4,5)].
Cipher key can be seen as C=[C}, C>].
To decrypt it the receiver will multiply its private key to Cy and subtract it

from Cy thus giving:
M :C2 - I’lBC1 =
(4,5)—2(3,3) =(4,5)— (6,5) =

(4,5)+(6,-5)

which on computation yields in (4,6) which is the original message.

4.3 Comparison between ECC and RSA

The biggest differentiation between ECC and RSA is key size compared
to cryptographic strength This section is referred from [8] The key of RSA
Cryptography is obtained by the product of lage prime numbers which

there after results in a larger number is a public key which is difficult to
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Symmetric Key size | RSA Key Size | Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

dissemble. However the efficiency of generating two large prime numbers
is lower than that of elliptic curve cryptography.

Elliptic Curve Cryptography (ECC) uses inverse operation of addition
in an elliptic curve as the key and can achieve high encryption without
complex operation so its efficiency is relatively higher. Main advantages
of ECC over RSA are as follow:

Firstly, ECC has better security level. The Elliptic Curve Cryptosystem
provides stronger protection and is better than other encryption algorithms
at preventing attacks, making websites and infrastructure more secure than
traditional encryption methods.

Secondly, ECC is better for mobile internet. ECC has a relatively shorter
key of 256 bits so it takes up less storage. As more and more users use
mobile devices for various online activities ECC provides better customer
experience.

Thirdly, ECC can provide better security with shorter key lengths. For
example the key strength of 256 bit elliptic curve is same as that of 3072 bit

RSA key. According to the tests of relevant foreign authorities, response
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time of web server is more than 10 times faster than RSA when using

ECC Algorithm on IIS servers.

4.4 Application of ECC

Elliptic Curve Digital Signature Algorithm This section is referred from
[7] A signature doesn’t refer to real signature but a private key "signs"
certain information. Other people can verify information is actually signed

by user A through user A’s public key.

Alice wants to sign a document m, which is an integer. Alice chooses
an Elliptic Curve over a finite field F, . she chooses a base point G in
E(F;) of order r. Finally Alice chooses a secret number a and computes

Q=aG. Alice makes public the following information

anEaraG7Q

To sign message Alice does the following

1. Chooses a random integer with 1 < k < r and computes R= kG=

(X,y)

2. Computes s =k~ (m + ax)(modr)
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The signed document is (m, R, s) To verify the signature, Bob does the

following

1. Computes u; = s~ 'm(modr) and up = s~ 'x(modr)
2. Computes V=u1G+urQ

3. Declares signature is valid if V=R
If the message is signed correctly verification equation holds
V=uiG+uwQ=s 'mG+s 'x0=s"1(mG+xaG) =kG =R

The main difference between ECDSA and Elgamal system is the verifica-

tion process.



Chapter 5

CONCLUSIONS

In Chapter 2 we have have seen the definition of Elliptic curve and how
it is defined on Real field R, Rational field QQ and finite field ¥, where p is
a prime.

The curve defined on a finite field is not a smooth curve. However Elliptic
curves defined on Finite fields play a major role in Cryptography which we
see in the chapter 4. Basic Operations like point addition, point doubling

and point at infinity are mentioned in this chapter

In Chapter 3 Cryptography, in this modern times plays a key role to
safeguard the information being shared between two parties being leaked
by a third person. In this Chapter we learn about the different cryptosys-
tems. One of the most widely used Asymmetric Cryptographies is the

RSA Cryptography about which we learn here.

38
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Diffie -Hellman is an Algorithm in which two people can exchange keys.
Diffie Hellman is however not used to encrypt or Decrypt data. And Dis-
crete logarithms are quickly computable in a few special cases, however,
no efficient method is known for computing them in general. In cryptog-
raphy, the computational complexity of the discrete logarithm problem
and its application, was first proposed in the Diffie—Hellman problem.
The complexity of Discrete Logarithm Problem defines how strong the

cryptography is.

In Chapter 4 In this chapter we come to the main topic of our paper that
is cryptography using Elliptic Curves. Small key sizes make ECC very
appealing for devices with limited storage pr processing power which are
becoming common in the IoT. Application of elliptic curve cryptography
in internet digital signature and SM2 are very efficient. References taken

from [3] [4]
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