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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-
ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: " Study Of Mathematical Modelling
Of Pest Control". This research is divided into four chapters . Each chapter has its own
relevance and importance. At the outset of each chapter, the abstract offers a concise
summary of the research conducted. The central aim of this dissertation is to create and
validate mathematical models for crops, pests, and their natural enemies, with a particular
focus on understanding the adverse impact of pests on crops. Consequently, we can
provide informed recommendations and propose effective pest management strategies to

mitigate pest density while simultaneously improving agricultural productivity.

FIRST CHAPTER :

This chapter deals with motivation, biological background, mathematical model and the

importance of functional responses .It also deals with the stability analysis.

SECOND CHAPTER:

In the second chapter, we delve into a mathematical model that explores the ecological
dynamics between prey, pests, and their natural enemies. Our focus lies in understanding

the existence and stability of steady-state conditions at various equilibrium points.

THIRD CHAPTER:

In this chapter we will form a mathematical model that explores the ecological dynamics



i

between prey, pests (fertile and sterile) and their natural enemies. We will also see the

different release rates of natural enemies and sterile pest insect to minimize the cost

effective in controlling pest insect.

FOURTH CHAPTER:

In the subsequent sections, we present the conclusions drawn from our research efforts
as outlined . Additionally, we delve into the potential avenues for future work based on

the current findings.
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ABSTRACT

In this study , we construct a mathematical model representing an ecological system
involving prey, pests, and their natural enemies. Our focus is on understanding the
equilibrium points and assessing their stability. The goal is to develop an control strategy
that minimizes crop loss while minimizing environmental impact. We explore various
approaches, including chemical, biological, and physical controls.

Furthermore, we also delve into the intricate interactions between plants and pest insects,
specifically examining the impact of natural enemies releases combined with sterile
insect techniques. Our approach involves developing a system of nonlinear ordinary
differential equations that model the control measures. These measures aim to simultane-
ously minimize pest density while implementing effective control efforts. We explore
three distinct strategies related to the release rates of sterile insects and predator natural
enemies: constant, proportional, and saturating proportional release rates. Among the
strategies considered, the most cost-effective approach involves releasing sterile insects at
a proportional rate and maintaining a constant release of natural enemies. This combined
strategy achieves a remarkable reduction in pest population and increase in plant density

during the control implementation.

Keywords: Pest control model; release rates; natural enemies; prey-predator model;

holling type response.
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Chapter 1

INTRODUCTION

1.1 Motivation

Mathematical modeling finds its applications across diverse disciplines, benefiting from
continuous interaction and refinement. System models have become an integral part
of our cultural fabric. Biomathematics, also known as mathematical biology, employs
mathematical modeling and computational techniques to analyze real-world challenges

within biological systems and health domains.

In 2023, there was a huge decline the production of tomatoes.So to avoid such situa-
tion in future we carry out this research work. The field of biological sciences is intricate
and demands collaboration across various disciplines. In contemporary agriculture, envi-
ronmental protection principles delineate strict boundaries for implemented techniques.
Simultaneously, addressing the global food supply challenge due to population growth
remains a significant endeavor. Consequently, prioritizing resource-saving strategies is
crucial for sustainable agricultural development. Agriculture, historically the backbone

of economies, not only feeds the growing population but also supplies raw materials

1



2 INTRODUCTION

for industry. The integration of mathematics into agricultural growth has become both

essential and advantageous.

Mathematical Modelling has numerous real-world applications in different disciplines
including biology, computer science, biochemistry, chemistry, economics, electrical
engineering, medicine,as well as in physics. Its use in various domains is growing and it
is now an unique instrument for quantitative and qualitative analysis. By formulating the
mathematical models we solve the real world problem . There are several methods to
form the models but as per the condition of the problems the models may vary and these

methods are very advantageous in the explanation of several real problems.
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1.2 What is Mathematical Modelling ?

It is a process which consists of simplifying a real world problem, formulating a mathe-

matical model, solving the model and interpreting the solutions in language of real world.

CONCEPTUAL WORLD

FORMULATE A

T - 0

PREDICTIONS MODEL ANALYSIS

\./

Figure 1.1: The Modelling Cycle

1.2.1 Classification Of Models

Static and Dynamic Model

Static model, also known as the steady-state model, describes a system in equilibrium
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[11]. It remains unchanged over time, making it time-invariant. On the other hand,
dynamic models are specifically designed to capture time-dependent changes within a
system. These dynamic models are typically represented using difference equations or

differential equations.

Linear and Non-linear Models
In mathematical modeling, we distinguish between linear and nonlinear systems. A sys-
tem is linear if its behavior adheres to the principles of superposition and homogeneity.
Specifically, linear systems exhibit properties such as proportionality, additivity, and
constant coefficients. On the other hand, nonlinear systems deviate from these char-
acteristics. They may involve interactions, non-proportional relationships, or variable
coefficients. For example, consider a statistical model: while its relationship with certain
parameters may be linear, the predictor variables themselves can introduce nonlinearity.
Similarly, even though a differential equation may contain nonlinear expressions, it can

often be expressed using linear differential operators.

In the realm of mathematical programming, we classify models based on the nature of
their constraints and objective functions. A model is deemed linear when all its constraints
and objectives can be expressed using linear equations. Conversely, a nonlinear model
arises when the constraints or objectives involve nonlinear equations. Essentially, linearity
refers to the simplicity of expressing relationships using straight lines, while nonlinearity

introduces more complex, curved relationships.

Explicit and Implicit Models
Explicit Models: In an explicit model, we have complete knowledge of the input pa-
rameters. These models allow us to directly compute output parameters using a finite
sequence of computations. Explicit models are like well-lit paths—the steps are clear,
and we can readily calculate the results. Example: Imagine a straightforward algebraic

equation where you can directly solve for the unknown variable.
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Implicit Models: Implicit models often arise when solving complex systems or
equations where direct computation is not feasible. Instead, we need to solve an equation
involving both the current state and the desired outcome. Example: Newton’s method,
used for finding roots of nonlinear equations, where the solution emerges from an iterative

process.

Deterministic and Probabilistic Model
In a deterministic model, each variable state is explicitly defined by specific parameters.
These parameters consider a history of previous states of the variables. Consequently,

the model behaves consistently for the same initial conditions.

On the other hand, in a probabilistic model, randomness plays a role. Variable states
are not fixed to unique values; instead, they follow probability distributions. This type of

model is also referred to as a statistical or stochastic model.

Discrete and Continuous Models
Discrete Models: In discrete models, we consider objects as distinct entities. These
objects can represent various states in a statistical model or individual particles in a

molecular model. The focus is on specific, separate instances.

Continuous Models: Conversely, continuous models represent objects as smoothly
varying quantities. For instance, we describe stresses and temperatures in solids or apply

electric fields uniformly across an entire model.

1.2.2 Steps of Modelling

In my opinion, anything in our life can be modeled Mathematically so we can always
find a pattern in our life.

1) Start with the basic definition of your problem .If you define the problem , research
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will become a lot easier and you will actually understand what you are doing rather than
just mindlessly researching.

2) To simplify the scope of the problem we will need to make a few assumptions. If you
We make assumptions we can get rid of some extraneous as insignificant factors .So Your
model really only considers the most important variables.

3) Next define your variables. If you are trying to make a mathematical model,you are
trying to create an equation of some sort that incorporates certain variables by defining
those variables, by figuring out what those variables are, especially early on you know
what you are looking for. Now its time to use the math you know to build the model
.This is where you will see your solutions.

4) Getting a solution

5) Analyse your model to make sure it works, ask yourself what can I learn from my

model, does it answer the original question and does the answer make sense.

1.3 Preliminaries

1.3.1 Logistic-Growth Model

When population is growing in limited space the density of population gradually increases
until the presence of other organisms reduces fertility and longitivity of population. This
reduces the growth rate and ultimately it stop to grow. The growth refined above is a
sigmoid curve (or S-shaped curve) where density is plotted against time.

This curve was first suggested to describe the growth of human population by Verhults.
This ‘sigmoid curve’ arises due to greater action of tremendous forces as population
increases. The corresponding curve is also called as logistic curve and the equation is

called the Logistic Equation.
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Carrying Capacity

The carrying capacity of an organism in a given environment is defined to be the maxi-
mum population of that organism that the environment can sustain indefinitely.

We use the variable K to denote the carrying capacity. The growth rate is represented by

the variable r. Using these variables, we can define the logistic differential equation.

Formulation of Model
Let K represent the carrying capacity for a particular organism in a given environment,
and let r be a real number that represents the growth rate. The function N(¢) represents
the population of this organism as a function of time ¢, and the constant Ny represents

the initial population (population of the organism at time # = 0 ). Then the logistic

dN N
Z:rN(l—E) (L.1)

differential equation is

This differential equation can be coupled with the initial condition N(0) = Nj to form an
initial-value problem for N(z).

Suppose that the initial population is small relative to the carrying capacity. Then % is
small, possibly close to zero. Thus, the quantity in parentheses on the right-hand side
of equation (1.1) is close to 1, and the right-hand side of this equation is close to rN. If
r > 0, then the population grows rapidly, resembling exponential growth.

However, as the population grows, the ratio % also grows, because K is constant. If the
population remains below the carrying capacity, then %’ islessthan 1,s01— % > 0.
Therefore the right-hand side of equation (1.1) is still positive, but the quantity in
parentheses gets smaller, and the growth rate decreases as a result. If N = K then the
right-hand side is equal to zero, and the population does not change.

Now suppose that the population starts at a value higher than the carrying capacity. Then
% >1,and 1 — %7 < 0. Then the right-hand side of equation (1.1) is negative, and the

population decreases. As long as N > K, the population decreases. It never actually
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reaches K because ‘%’ will get smaller and smaller, but the population approaches the

carrying capacity as ¢ approaches infinity.

We can solve this differential equation by the method of separation of variables.

dN _ rN(K—N)
dr K '
K
———dN = rdt
N(K—N)

and integrate

/]ﬁdN:/rdt

Of course, [ rdt = rt + C, and for other part the method of partial fractions.

K __A B
N(K-N) N K-N

where A and B are coefficients yet to be determined. Thus we get,

K=A(K—N)+BN

ForN =0,
K =AK
=A=1
ForN =K
K = BK

=B=1
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from which it follows that A = 1 and B = 1. Thus,

K N
/7611\]:/61__{_ d—N
N(K—N) N JK-N
=InN—In|K —N|
&

=In
K—N

Thus we get ,

In

K—N
N rt+C

= = I
K-N_ ¢

N _ rt
= K_N = e

= N = (K—N)Cye"

|:rt—|—C1

=N = KCzert _chert
= N+NC2€” = KCzen

= N(1+GCe") =KCye"

1 —rt
KGCye' ¢

1—|—Cge”)<
K
(l_i_czert)(cLze—rt)
_ K
B C%ef”%—l
_ K
C Ce 41

=N={

éeﬂ>

Next, after simplification we get,

N=——_
14+Ce "
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where C is a constant. Att =0,

N — K
T+l
This implies
C= K 1
=N
SO,
K

N(t)=

1.3.2 Prey-Predator Model

The Lotka-Volterra equations were formulated to capture the behavior of predator-prey
relationships within ecosystems [3].

The Lotka-Volterra equations describe the dynamics of predator-prey interactions in
ecological systems. These equations are a set of first-order non-linear ordinary differ-
ential equations (ODEs). Unlike stochastic models, which incorporate randomness, the
solutions to the Lotka-Volterra equations are deterministic. This means that given same
initial conditions,the outcomes will always be consistent. Additionally, the time in these
equations is continuous, allowing for overlapping generations of predators and prey.
It’s important to recognize that the creation of the Lotka-Volterra equations involved
several assumptions, as is common in mathematical modeling. These assumptions shape
the behavior of the predator and prey populations, influencing their interactions over
time.

1.Abundant Food Supply: The prey population does not face scarcity of food.
2.Food-Prey Relationship: The amount of food available to the prey is linked directly to
the size of the prey population.

3.Population Dynamics: The rate of population change is proportional to the population’s
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size.

4.Steady Environment: We assume a constant environment, and genetic adaptations are
not considered negligible.

5.Persistent Predation: Predators continuously hunt and consume prey without interrup-

tion. Thus Lotka-Voltera equations can be written as:

dp
— = 0op — 12
o = ar—PBpg (1.2)
dq
— =0pg— 1.3
i A (1.3)
where

p = number of prey

q = number of predators

‘;—f and ‘2—? = the instantaneous rates of the prey and predators, respectively.

t = time

o,B,8,y = positive real constants

In the prey equation (1.2) we can see the following :

Exponential Reproduction: The prey population is assumed to grow exponentially,
denoted by the term ap.

Predation Rate: The equation reflects that the rate at which predators hunt and kill prey is
directly proportional to the product of the prey and predator populations 3 pg. Essentially,
it quantifies how frequently these two populations interact.

Population Impact: If either the prey or predator population is absent, predation cannot
occur. In other words, the prey population’s decline depends on the balance between

birth and predation rates.
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From the predator equation (1.3) we see that :

Predator Growth: The predator population’s growth is directly linked to the frequency of
interactions between predators and prey. This resembles the rate at which predators hunt
down their prey, but with a distinct constant d pg. Unlike identical rates for predation
and reproduction, here they differ.

Predator Decline: Since prey cannot actively kill predators, the decrease in the predator
population results from natural causes or emigration. This decline follows an exponential
decay pattern, represented by the term Ygq.

Predator Equation Summary: Essentially, the predator equation captures the balance

between prey consumption and the natural mortality rate of the predator population.

1.3.3 Holling’s Functional Responses

Holling Type- I Functional Response
In [6] it is formulated that,the general form of Holling type I functional response 1s given
by:

g(N)=aN

where g(N) is the feeding rate and a is positive constant. In the context of the classic
predator-prey model proposed by Lotka and Volterra, we observe an interesting behavior:
the feeding rate does not reach saturation as the prey density increases. This phenomenon
diverges from the typical Holling type I functional response, where the feeding rate
eventually levels off. Instead, we encounter a modified version expressed as g(N)=

min(aN,a) , which saturates but does not exhibit the typical C' behavior.
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Holling Type-II Functional Response

The general form of Holling type II functional response is given by :

_aN
~ b+N

g(N)

This response models the fact that the consumption of prey is limited by satiation of
predators, handling time (killing and eating) and time spent hunting prey. The curve of N
against g(N) can be plotted. Here the feeding rate saturates at the maximum feeding rate
a. The feeding rate is half maximal at N = b.

Let N - available prey (no. of prey )

T'- Total time (searching prey ;chasing/capturing prey; handling V number of prey)

T}, -handling time for each prey.

V - no. of victims (i.e no. of prey caught by the predator)

Total handling time is 73,V

Time required for searching and capturing prey is 7 — 73,V

VN
V“T—ThV

V=a(T-T\V)N

oaTN
ie.V=———
1+ aTyN
aN
i.eV=
b+N

Here the rate of prey consumption increases at a decelerating rate with increasing prey

density, eventually reaching a maximum, after which it saturates.



14 INTRODUCTION

Holling Type-III Functional Response

The general form of Holling type III functional response is given by :

B aN?
- b2+ N?

g(N)

The feeding rate initially increases with prey density but eventually levels off at the
maximum feeding rate, denoted by a. However, there exists a point of inflection in the
curve . This inflection point represents the scenario where, at low prey densities, the prey
can successfully evade predators by seeking refuge. This type of functional response is

commonly referred to as ‘sigmoidal’ or S-shaped curve.
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1.3.4 Stability Analysis Using Routh-Hurwitz Criterion

* The criteria provides an analytical approach to evaluate the stability of sys-
tems of any order without the need to compute the roots of the characteristic
equation. While the characteristic equation is essential for this assessment, the
Routh—Hurwitz criteria suffices for linear system stability. It relies on the coeffi-

cients sequence within the characteristic equation.

Step 1: Calculating a Jacobian matrix.

(PP, R) S (PP R L SE(PLPy,. R
d d d

,_ S2(P,Py,....P) SE(P,Py...,R) ... S2(P,P,...,R)
dfn dfn A fa
Sk (PL,Py,...,P) SE(PLPy,..R) ... SE(P,P,...,R)

where g}% (P1,Ps,...,P,) is the partial derivative of f; with respect to its variable, P;(i, j =

1,2,...,n).

Step 2: Find the Jacobian matrix.
The equilibrium value, P}, P5,...,P;, is used to calculate the Jacobian matrix. A local
stability matrix, J = J| P\=P! P,—P;,....,—P; » 1S obtained. Then, using det(S — AI) =0, get
the characteristic polynomial. Where 7 stands for the identity matrix, and rewrite as
follows:

Q(A) =apA" +a ANt au A +ay

with real coefficients a; fori =1,2,...,n.
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Step 3: Routh-Hurwiz criteria.

The following are the values for the n Hurwitz matrices:

ay az ds ... dyp—1
apg az ag ... Q-2
0 a a3 a3
a az
Hy = (a1),H> = candHy= | 0 ap ar ... asya
ap az
0 0 a a5
0O 0 O a

Note that if j > n,thena; =0, j=1,2,...,n.

1.3.5 Type of Insects

Sterile Insects : Sterile insects are not self-replicating and therefore cannot become
established in the environment. The sterile insect technique (SIT) is a powerful tool in
biological pest control. Objective: Reduce populations of a target pest insect. Process
involves ;Mass-produce insects of the same species, Sexually sterilize them (usually
males) through techniques like irradiationRelease these sterile insects into the wild.
Competition: The released sterile males compete with wild fertile males for females and
the outcome will be mating between sterile males and wild females produces no viable

offspring.

Fertile Insects : These are the regular, non-sterile insects that can reproduce and
contribute to population growth. Fertile insects play essential roles in ecosystems,

pollination, and food chains. Example : Aphids ,termites, etc.
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Natural Enemies : Within the realm of ecological relationships, we encounter natural
enemies organisms that either prey upon or compete with species considered harmful.
These adversaries can be broadly divided into two groups: predators and parasites.
Natural enemies, which include predators and parasites, play a vital role in ecological
balance. Predators, being larger and more powerful, actively hunt down other species,
while parasites exploit their hosts.

Examples: Lady beetles, beetles, etc

1.3.6 Degree of Effectiveness

It refers to the efficiency or impact of control measure in reducing pest populations. It
represent the effectiveness of releasing sterile pest insects into the environment to reduce
the reproductive success of pest population.

A higher degree of effectiveness € implies that a greater proportion of the released sterile

insect successfully compete, reduction in the overall pest population.

1.3.7 Control Measure

It is denoted by u(¢) and u(¢).It is used to optimize the control strategy achieve the
desired objectives, such al minimizing pest density or maximizing plant density. (ie,

achieve the desired outcome in managing pest popalation through control measures).
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Literature Review

Scientists frequently employ mathematical models to understand the intricate dynam-
ics between plants and pests. Mathematical models are commonly utilized by scientists
to describe the interaction between plants and pests [1][4][12] . The later enables us
to intervene the dynamic interaction among populations in the model. In pest control,
many models have proven valuable in understanding the intervention mechanism . In this
direction, determining the optimal control measure with respect to a certain performance
index is often the research objective [1]. In this current work, [1] develop an optimal
control model of plants-pests interaction with two control measures, namely, the release
of predators as natural enemies of pests and the release of sterile pest insects. The
sterile insect technique (SIT) is conducted by mass-rearing and periodically releasing
sexually sterile pest insects using radiation into the wild targeted pest population to
disrupt fecundity [1]. Our model thus consists of four interacting populations: the plant,
the fertile insects, the sterile insects, and the predators. One additional issue we want
to evaluate by the model is the release rates of predators and sterile insects. The more
predators and sterile insects are released, the higher the cost of control will be. It is
suggested by [5] that there is an optimal release rate in most cases that provided more
effective control of pest insects. Thus, a fewest number of predators and sterile insects

should be released as long as this improves control effectiveness[1].

In this research, as mention by [1],we develop a generic control model that describes
the complex interac tion between plant and pest insects intervened by the release of
sterile insects and natural enemies as control instruments. We focus in comparing the
basic advantage favoring the control combinations to minimize the pest insect population
jointly with the control cost. A salient feature introduced in this study is the evaluation
of three different release strategies for sterile insects and natural enemies, namely,

constant, proportional and saturating pro- portional release rates. The work extends to [2].
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Interaction between pests and their natural enemies was also formulated by [8] in term
of a prey-predator model, where stability properties, the existence of periodic solution
were the main results. This model was extended by incorporating plant population and

by implementing an indirect Z-control design to manage pest population [7].

Pest-natural enemy model with dependent instant killing and releasing rates was
introduced by [10]. Beyond the stability analysis, this study particularly explores the
relation between the number of natural enemies and their current density. It is found
that the attain sability of bio control depends on the pest and predator initial densities
and the predators released guided by the predator density is more sensitive to the pulse
period and the number released predators [1]. As suggested by [12],because of the
animals, pests, diseases, and weeds at least one-third to half of the world crop output
is destroyed. Reducing the loss of food would lead to a major increase in the supply
of food for use. A precise estimation of these damages is the first important step in
reducing these losses. However, it is acknowledged that damage is rising due to different
biotic and abiotic stresses in the face of the growing strength of agriculture and the
environment on farmland. Thus, there is an urgent need to establish effective pest control
techniques and agricultural pests enemy that is at the same time productive, healthy,
and persistent. Using pest-resistant cultivators provides so many benefits and can form
the center in which to build sustainable farming production. Pest control has appeared
recently being one of the most important problems impacting ecologically sustainable
due to the growing people communities and increasing food crisis. Hence, there is

detailed research of effective pest control strategies by [12] .
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2.1 Introduction

Over the past five decades, global population growth has surged at an unprecedented
rate. Advances in agricultural technology have led to increased yields of major crops, but
unfortunately, these developments have also contributed to environmental degradation.
Despite these advancements, there remains a significant gap in our understanding of food
losses and damages caused by biotic agents, particularly in developing countries[12].
The destruction of at least one-third to half of the world’s crop output can be attributed to
animals, pests, diseases, and weeds. Reducing food losses would significantly enhance
the global food supply. However, accurately estimating these damages is a crucial initial
step in mitigating losses. It is evident that damage is increasing due to various biotic
and abiotic stresses, exacerbated by the intensification of agriculture and environmental
pressures on farmland. Urgent efforts are needed to establish effective pest control
methods that are both productive and sustainable. Utilizing pest-resistant cultivars offers

numerous benefits and can serve as a cornerstone for building sustainable agricultural
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production. Pest control has emerged as a critical challenge for ecological sustainability,

especially given the growing global population and food crises.

In pursuit of optimal pest management, researchers have explored a multifaceted
approach combining infection control, chemical measures, and predation aspects. This
balanced mix aims to mitigate pest populations effectively. Additionally, state-dependent
dynamic impulsive mechanisms have been proposed, involving the release of natural
enemies and targeted pesticide application. These strategies focus on impulsive inter-
ventions specific to pests. Various studies have employed prey-predator models and
analyzed stage-structured populations. The overarching goal of this research is twofold:
to enhance crop production and simultaneously reduce pest numbers. To achieve this,
identifying suitable predators at the higher trophic level of the pest species becomes

crucial.

The research aims to investigate the effectiveness of integrating natural enemies for
pest management. Additionally, it highlights how monitoring pest control is significantly
impacted by the removal of natural enemies due to predation by their own predators.
Many species like spiders, birds, frogs, etc. are recognized as the natural enemy as they
feed on agricultural pests. Biological monitoring is the beneficial of predators operation
for controlling pests and their serious harm. Through the number of insects and mites,
the natural enemies could be used as a biological control for pest management. The
use of natural enemies is also useful for the biological management of the land area
and wildland weeds.Therefore, the elimination of pests and the protection of the natural

enemy from an agriculture sector and ecological viewpoint is very important[12].



2.2 Pest Control Model 23

2.2 Pest Control Model

In this model formulated by [12], The mathematical model is set up to protect crops from
pests through the effective use of natural enemies .Here, we delve into a mathematical
model that considers the interaction between prey (pests) and predators (natural enemies).
To examine the effect of the natural enemy on control of the pest species, we first find a

framework of prey—predator in three dimensions.

dpP, Py
— =P (1—-—— | -0 PP 2.1
o~ A ( K1> 1P P, (2.1)
dP2 P2 mP3P22
—— =P |1—-—=]— o3P P, 2.2
7 rzz( K2> z P22+312 (2.2)
apr;  yPsP?
— — UP: 2.3
dt (X22—|—P22 urs ( )

with initial data P;(0) > 0,P»(0) > 0 and P3(0) > 0.
The following assumptions were made in forming the above equations .

1. The plant grows logistically with intrinsic growth rate r; in an environment with

carrying capacity K

Py P2 . . .
2. The term Z;Zi 7> represents the predation loss in the pest equation.
2 2

3. Additionally, we assume that natural enemies can be removed from the ecosystem

due to predation by their own predators, apart from natural death.

4. Functional Responses of Natural Enemies: Natural enemies exhibit different
functional responses when preying on pest populations. In our model, we adopt the

Holling type III functional response, which captures the relationship between prey
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consumption and prey density.This approach contributes to sustainable agriculture and

ecological balance.

2.3 Boundedness of the System

Theorem 2.3.0.1. The solutions of the system (2.1) - (2.3) in the region Ri are bounded
121

Proof. Let the total Population be N (Py,P>,P3) = P + P, + P;.

Then the derivative of N (P, P>, P3) with respect to time 7 is ;

mPsP3 yPsP3
——5 + PP+
2+p T2

dN dP1 sz dP3
P
PP+ (1——|—

dt
N ( K> HES

Kl)
P

< P (1 1) + 1P (1 ——2) Py,
%)

dN
d <rhb (1 + P (1 — —) —‘LLP3+T(P1 +P +P3)
K>

r
(r1+ P1+(r2+T)P2——P1 P22—(,LL—‘L')P3
K K

2 2
:>dN+TN<K1(rl+T) +K2(7‘2+’E)
dt 4ry 4ry

=L.

2 2:
Here,0 < T < uand L = Ki (2:7) + KZ(?JT) . Thus we get,

dN
— 4+ TN<L
dt
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. . . . dy o
Compare with the first order differential equation , 7 + Py = Q

P=1t O0=L
o AF = el P
:efrdz
:eTl
“N(IF) = [QJE dt.
Ne™ < [L-e"dt+C
L Tt
=i—/o+c
T
Tt
<L +cC
T

a
Atr=0
L
No=—-—+C
T
:>C:N0——

This differential inequality has the solution

L L
O<N({t)<e ™ (NO— ;) +o

when t — o, yields 0 < N(z) < %

This completes the proof. U
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2.4 Local Stability Analysis

2.4.1 Equilibrium Points of the System

Equilibrium points of a system of differential equation is a constant solution to the system

and is obtained by equating the equation (2.1) - (2.3) to zero.

P

P (1—E‘1) — P P,=0 (2.4)
P2 mP3P22

Bl(1——=]—- +o3P P =0 2.5
rzz( K2> a22+P22 3P P (2.5)

]/P3P22
—ubP; =0 2.6
o3+ P? HES (2.6)

Equilibrium point £ :
Clearly P =0, P, =0 and P; = 0 are equilibrium points of the differential equation
(2.4), (2.5), (2.6) respectively.
Therefore , Eg (P} = 0,P, = 0,P; = 0) is the trivial equilibrium point of the system of

differential equation.

Equilibrium point £, :
Clearly P; = 0 and P; = 0 are equilibrium points of the differential equation (2.4) and

(2.6) respectively. Substituting Py =0 and P; = 0 in (2.5) we get ,

P PP
Pz(}’z(l——z) i +(X3P1>=0

K> _0622+P22
P,
=n(1-2)=0
rz( Kz)
K>, — P
2—h_,
K;

:>P2:K2
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Therefore , E1 (P; = 0,P, = K;,P; = 0) is the equilibrium point of the system of differ-

ential equation.

Equilibrium point £ :
Clearly, P, = 0 and P; = 0 are equilibrium points of the differential equation (2.5) and

(2.6) respectively. Substituting » =0 and P; =0 in (2.4) we get,

P
riP <1 — FE) —o PP =0

Py
=P l—— | —oqP | =0
Py
= I—— | =0
rl( Kl)

Ki-P_,
K

= P =K,

=

Therefore , E; (P; = K1, P, = 0,P; = 0) is the equilibrium point of the system of differ-

ential equation.

Equilibrium point £5 and E; :

Clearly, P = 0 are equilibrium points of the differential equation (2.4).Substituting

P; =01n (2.6) we get,
P )
P — =0
: < o3+ P? o

YP; u
) 2
o + P2

= Py = (05 +P5)
= YP} = 1o + uP;

= (Y= WP = pog
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= p= 1%
Y—Hu
=P = \/_(Xz
P = and P, = — \/HOCZ
Y—H

Next, substituting P, = —l—\/\r—2 in equation (2.5),

From equation (2.5) we have,

P mP; P,
P -2 - +a3P ) =0
2 (1-2) o reun)

P P3P
wn(1-B) e

P
= (rz(l - ?22)) (05 + P5) = mP3 P

n (562) @3 +8)

= =P
mbP, .
n(K—R) (G +F) _,
KoymP> 3
Ho o
_ el H ) (0} + 42y
— 13
o

_ ron(Koy/T= R — VH®) (VY= H) _p
sz(y 1)/pen
N yoor: (Ko /Y — 1 — /HOy) _p
sz(y—u)\/ﬁ

Similarly, substituting P, = \/\/_—Z in equation (2.5),
From equation (2.5) we get,

_ Yoen(KVY—H+E®)
Kom(y—p) /1t
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Therefore , E3 (Pl =0,P=— ﬁ,ﬁ,f’ 3= yazrzlgf;(y?:—uﬁ;%ﬁ“ﬁ) and

E4 (P1 =0,P = \/\/)‘7_&, P; = Yazrzl({f;zy’;“)%ﬁaz» are the equilibrium points of the sys-

tem of differential equation.

Equilibrium point E5 :
Clearly, P; = 0 are equilibrium points of the differential equation (2.6). Substituting

P3 =0 in equation (2.4) we get,

P
P l—— | —oP ) =0
<1( Kl) 12>

P
=7 <1 —é) — Py 2.7)
r Py
(1= )=P 28
= X, < K1> ) (2.8)

P
. (1 — —2> — — o3P, (2.9)
K>
| P o3P
2 )
o P
:>P2:< 3 1+1>K2 (2.10)
r

Equating equation (2.8) and (2.10) we get ,

r P Py
T2 = 1)k
Kl( Kl) ( r - ) ?
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30

o b 0631"1K2+K2

a kK n
K> r )

ri
= — —K)=P +
. 1( mn o K

(04]
— K K
P (r1 —ouKa)r K
3K Ky +rir

To find P, , from equation (2.9) we have,

P
PIZQ(—Z—1>
o \ K>

rn
= P—K)=P 2.11
OC3K2( »—Ky) =Py (2.11)
Also from equation (2.7)
By _ b
Ki) n
o P
=P = (1— - Z)Kl (2.12)
r

Now equating equation (2.11) and (2.12) we get ,

r o P
2 (P—Ky) = (1—%)1{1

3K,
oKy Pk n

= K = SLLE
r K, o3

oK) +r r o K
s, 31+2:P2< 2 n 1 1>
3 K> r

. p (K1 + 1)Koy
2 rirn+ KK os

— (@Kin)lon po 0) is the equilibrium point

(ri—ouKo)riK,
2= rn+Ki Kooz

Therefore , Es (Pl = K Kstrirs’

of the system of differential equation.
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Equilibrium point E¢ and £

We know that ,
o
P =+ VH®

Y—u
Sy =+ VI and P, = — VIO
VY— U Y—u

Also, from equation (2.12) we have,

Next from equation (2.5) we have

P, P; P,
}’2(1 _2>_I’I’L32 + o3P =0

K> o3+ P
mP3P2 ( P2 )
=5 ——=nl|l1——|4+03P
o2+ P? K>
mPsPy _ ra(Ky—Py) + KyosPy
0622 + P22 K>
(r2(Ka — Py) + Ky o3Py ) (05 + P5)
=P =
mK2P2
(0622 + P22)(}’2K2 —rnbP + KzOC3P1)
=P =
mK2P2

. (X22r2K2 — 06221”21)2 + 0622](2 o3P+ P221’2K2 — P22r2P2 + P22K2 oz P

— P
: mKo P>

Substituting the value of P; and P>, we get ,

31

Y (VErr00 4+ K> (/IK 01 0205+ /Y= firy (2 +Ki03))) B

=P

VHO

whenP, = —
Y—Hu

my/H(Y— 1) Kory
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and

Yo (—\/ﬁrlrzaz + K> (\/,l_LK1061052053 +Y—ur (rn+K 053)))

P =
my/I(y — w)Kary

—

when P, = + \/@

Therefore , Eg (Pl =K <1 + r?%» P = —\/‘/%,% = Cl) and

E7 <P1 K (1 — O‘(‘%D P, = \/‘/;ﬁ 3 = C2> are the equilibrium points of the sys-

tem of differential equation.
The model (2.1) ,(2.2) and (2.3) has the following equilibrium points.
i) The trivial equilibrium Eo (P; = 0, P, = 0, P3 = 0), which always exists.
i) E; (P, =0,P,=K;,P;=0).

iii) E> (P, = K1, P, = 0,P3 = 0).

. . —K
IV) E3 <P1 = 07P2 = _%’]% _ Y 2a2n(1\/\/g_;-)|}(\§/._laz)>‘

T —uK>—

rin+Ki Kooz’ rin+Ki Kooz’

Vl) ES (Pl _ Kiry(ri—Kyay) P2 _ Kori(rn+Kia3) P3 _ O)

vii) Eg (P = Ky (145242 py = —YB% p— ).

viii) By (P = Ky (1-Y5242) oy = % P —G3).
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2.4.2 Local Stability

In the study of differential equations, understanding the stability of equilibrium points is

crucial. Here are the key concepts related to stability assessment:

Asymptotic Stability: An equilibrium point is asymptotically stable if all the eigen-
values of its Jacobian matrix have negative real parts.
Unstable Equilibrium: If at least one eigenvalue of the Jacobian matrix has a posi-
tive real part, the equilibrium point is considered unstable. Unstable equilibria lead to

unpredictable behavior in the system.

Routh—Hurwitz Stability Criterion: This criterion relies on the characteristic poly-
nomial of the Jacobian matrix. By analyzing the polynomial’s roots, we can determine
stability properties. If all roots have negative real parts, the system is stable. To assess
the stability of equilibrium points locally, we compute the Jacobian matrix J (P, P, P3)
at any given equilibrium point (P;, P», P3). The Jacobian matrix captures the linearization
of the system near the equilibrium. By analyzing its eigenvalues, we gain insights into

stability behavior.

Pir P,
_[1(—11—{—<1—Fl])r1—P20£1 —PIOCl 0

P

J Pl P2 P3 = P2a3 M1 —_mh
(Pl Bar o) R
_ 14i)

L M, u+P22+a22
_ P 3 2mPP;  2mPyPy
where M| = % + ( Kz) 4+ (P§+a22)2 Pyl + Py oz and
2YP;P:
M2 — Y5 13 2yYP, P3

(B+a2)’ P+
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(i)The Jacobian matrix at equilibrium point Ey (P, =0,P, =0,P; =0) is

r 0 0
0 1) 0
0 0 —u

and the eigen values at the Ey is r1,r and —u. Therefore the equilibrium point is saddle.

(ii) The Jacobian matrix for the equilibrium point E; (P, = 0,P, = K»,P3 =0) is

rn—Kyo 0 0
e _ sz
K03 2 K2+0o3
K3
0 0 —4+ 1(224-2@22
. YK — UK —pog .
The eigenvalues of J (E}) are —ry,r] — K> ot and W. Therefore the equilib-
2 2

rium point E| (P = 0,P, = K>, P3 = 0), is locally asymptotically stable if r| — Kro < 0
YK3 — K3 —pog

5 5 < 0.
K5+o0y

and

(iii) The Jacobian matrix for the equilibrium point E> (Py = K;,P, =0,P; =0) is

-rn —Ko 0
0 m+Koz O
0 0 —u

The eigenvalues of J (E;) are —u,—r; and rp + Kja3. Since two eigenvalues are
negative and other is always positive, therefore the system around the (E>) point is saddle

point.
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(iv) The Jacobian matrix for the equilibrium point E (P} = 0,P, # 0,P3 #0) is

rn—bPo 0 0
2Pyr 2mP3P;  2mPyP: mP
Pos ry — =22 2°3 _ Zmi3lh __mbk
K (Byaid) P Py+a;
0 - bRy 2 23P2P32 —H 2}/ G 2
(P2+a2)” B+ Bt

The characteristic polynomial of Jacobian matrix is

X +a1x2+a2x-|—a3 =0

2y _2nbihy 7+ B0 - zyigz
- ]
K> (Pzz_%Z) Pit+ay Pty

3 3 2
_ _ 2Py 2mP2 Py . 2mP3 P> 2P 2mP2P3 . 2mPs P, _ YP;
o= 1~ Po) (2~ 24+ G0 0 )+ (o= 2 () (o 2

3 2
+(—(2yP2P3 +27P2P3)< P )+(r1—onc1)(—u+ 15 )

P22+a22)2 P2+o? | \ P2 402 Pl+og
3 2 3
2P 2mP: 2 P 2mP3 P> YP: P 2’)/P 3 P 2')’P2P3 mP,
az=(r1 —Poy rn— —+ — —U+-==)+1\—- -
3= ) KT mrg)y  Brd J\TH TR (Pra2) | Ptal ) \B+ed

For the local asymptotically stable of the system, the following Routh-Hurwitz

where, a; = (—rl +Po—r+ +

criterion must be satisfied: (1) a; > 0,a; > 0,a3 > 0, (2) ajar — a3 > 0.

(v) The Jacobian matrix for the equilibrium point E5 (P; # 0,P, #0,P; =0) is

P P
_11(—:1—'_(1_?11) rn—Po —Piog 0
P P P
Pos —£2 ( = K_22> ry+Prog —Pzﬁfxzz
Py
0 : “Ht

The characteristic polynomial of the Jacobian matrix is

X +a1x2+a2x+a3 =0
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2
where a; = (P[‘(—:‘ — <1 >r1 +Poy -I-Pﬂ2 (1 - %) 72—P1a3+li+%>

Py -0
3 2
UPry uPzrz PiP>rir myP; Py muPs Py YPIPy 1 mP; P, Psry YP r
a _ _ — — PPho
2= ( TR TR T (mra) Bre | K(ArE) | K@) | K(aea) TR

P2
(o) (R n) (32 (1B i)
(—Pray) (Pr0g))

For the local asymptotically stable of the system, the following Routh-Hurwitz

criterion must be satisfied: (1) a; > 0,a, > 0,a3 > 0, (2) aja, — a3z > 0.

(vi) The Jacobian matrix for the equilibrium point E (P} # 0,P, # 0,P3 #0) is

P1r1 —{—(1—%) rn—bkoa —Po 0
Pyog M, _ngécg
P2
0 My —pt i

The characteristic equation of system around the equilibrium is

x3+a1x2+a2x+a3 =0

Wherea1:<m—<l——>r1+1’20€1 M1‘|'ﬂ_p22yT}%22)
a= (=5 (1) = en ) () (- + i) + ) 388 ) +
Proy(Pro3)(— ‘u+P2+a2)>
a3:< P1’1—|-<1_K—1>r1—P2(X1>( 1(— /~L+P2+a2)+(M2)(PZZmTIEZZ)>+

¥R
Plal(P2a3) —H‘Fm .

For the local asymptotically stable of the system, the following Routh-Hurwitz

criterion must be satisfied: (i) a; > 0,a, > 0,a3 > 0, (ii) ajap —az > 0.
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2.5 Conclusion

In our research, we developed a three-dimensional model that considers the interactions
among prey (crops), pests (predators of crops), and natural enemies of pests (predators
of pests). Our goal was to devise an effective strategy for pest population control by

combining pesticides and natural enemies.

System Boundaries and Equilibrium Points: The system exhibits bounded behavior,
which is essential for stability. We established criteria for the existence and stability of
equilibrium points. These points represent steady states where the population dynamics
balance.Proper monitoring and understanding interference effects are critical for sustain-
able pest management. Holistic Perspectives: Researchers will provide comprehensive in-
sights into farming system productivity, ecological balance, and economic sustainability.
Flexible management practices and development strategies will drive truly sustainable

agriculture.
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3.1 Introduction

Pests are harmful organisms that affect the health and productivity of plants. They
can cause damage by feeding on plant tissues, transmitting diseases, or competing for
resources. To control pest in plants, there are various methods that can be used, such
as cultural, physical, biological, and chemical techniques. Cultural methods involve
modifying the environment or the plant to make it less attractive or suitable for pests.
Physical methods involve removing or excluding pests from plants by hand, water,
traps, or barriers. Biological methods involve using natural enemies, such as predators,

parasites, or pathogens, to reduce pest populations.

Chemical methods involve applying pesticides, such as insecticides, fungicides, or
herbicides, to kill or repel pests[1]. However, chemical methods can have negative
impacts on the environment and human health, so they should be used with caution and

as a last resort. The most effective and sustainable way to control pest in plants is to

39
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use integrated pest management (IPM), which combines different methods in a way that
minimizes the use of pesticides and the impact on the environment. IPM also considers
the economic, social, and ecological aspects of pest control. Scientists frequently employ
mathematical models to characterize the interplay between plants and pests. These
models serve as tools for evaluating the efficacy of control strategies. By doing so, we
can actively intervene in the dynamic interactions within populations. In the field of pest
control, various models have provided valuable insights into the mechanisms underlying

effective interventions.

Our system of equation consists of four interconnected components: plants, fertile
insects, sterile insects, and predators (Natural enemies). Our objective is to evaluate how
different release rates for both predators and sterile insects impact the system. As the
number of released organisms increases, so does the cost of control. Existing research
indicates that an optimal release rate exists in most situations, leading to more efficient
pest insect management. Therefore, our strategy involves releasing the minimum number
of predators and sterile insects while maintaining enhanced control effectiveness. In this
research, we present a comprehensive control model that captures the intricate dynamics
between plants and pest insects. Our focus lies in evaluating various control strategies,
specifically the release of sterile insects and natural enemies, to mitigate pest populations

while considering control costs[1].

Key aspects of our study; Release Strategies: We investigate three distinct release
strategies for sterile insects and natural enemies: constant, proportional, and saturating
proportional release rates. Natural Enemies: Unlike previous models, we incorporate the
class of natural enemies into our framework. This inclusion allows for a more realistic

assessment of pest birth rates.
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3.2 Pest Control Model

The model formulated by [1], The interactions of plant, pests and natural enemies are
distributed into three classes of populations but four state variables. We denote by P(z)
the density of plants at time 7, by F(¢) the population of fertile pest insects at time ¢, by
S(t) the population of (male) sterile pest insects at time ¢ and by E(¢) the population of

natural enemies at time 7.

3.2.1 Assumptions

To avoid the complexity of the model, we make certain assumptions.
1. The plant population exhibits logistic growth, characterized by an intrinsic growth rate

rp, within an environment with a carrying capacity of k.

2. Only pest consumes the plant with consumption rate a; for fertile insects and a»
for sterile insects.The plant-pest interaction is following a predator-prey Holling type II
function with handling time c¢; and ¢;, and constant of half-saturation m. Thus, response
functions of plants consumption by fertile and sterile insects are, respectively, given by

gr(P) and gg(P), where

a P
P) = 3.1
gF( ) m+cP 3.1
aP
P) = 3.2
gs(P) b (3.2)

3. Predators feed on both reproductive and non-reproductive pests, with distinct
consumption rates:br for fertile pests and bg for sterile pests. Their feeding behavior

adheres to a Holling type II response curve.
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4. The efficiency of plant consumption by fertile insects is denoted as e, while
the efficiency of plant consumption by sterile insects is represented by e;. Since the
population of sterile insects is small, we can infer that e;is also low. We assume that e,
lies within the range of [0, 1]. Similarly, the conversion efficiency of insect consumption
by natural enemies is denoted as e3. Again, we assume that e3 falls within the interval [0,
1]. This implies that when a natural enemy consumes an insect, it can produce at most

one predator.

5. In this model, there is no migration activity for the population. Recruitment occurs

exclusively through the reproductive process or manual release.

6. The introduction of sterile pest insects leads to a reduction in the birth rate of pests.
Initially, the intrinsic birth rate is denoted as r;,. However, due to the release of sterile pest
insects, this birth rate decreases to r,F /(F +S) . Additionally, based on our assumptions,
we consider that the growth of fertile insects is influenced by the availability of plants as
their food resource (i.e.pest only survive on plant) . Consequently, the pest birth rate r

can be expressed as:
eqa1P rF
r =
m+caP1+F+S

(3.3)

7. Biological control agents exhibit comparable survivability to their wild counter-
parts. However, there are three primary factors contributing to pest mortality:Natural
causes represented by dr and dr . Self-interaction effects denoted by or and o . Fertile-
sterile interactions captured by . For the natural enemies, we use the symbols dg and

o to represent their corresponding mortality rates.

8. Sterile insects are strategically released based on the abundance of fertile insects,

as governed by the rate function R (F'). while , the introduction of natural enemies is



3.2 Pest Control Model 43

contingent upon both the fertile and sterile insect populations, as described by the rate

function R, (F,S)

3.2.2 Mathematical Model

The intricate relationships between plants, pest insects, and their natural enemies find
representation in a system of nonlinear ordinary differential equations. These equations
serve as the governing dynamics, describing the transitions within this ecological frame-
work.

The growth of plant P serves a dual purpose: it provides essential commodities and
serves as a food source for pests. The governing equation for its dynamics is as follows:

dpP P aP ayP
—=r,P|l1—=|— F— S 34
ar P ( k) m+cP m-+coP 4

Here, the first term on the right-hand side of (3.4) represents logistic growth, characterized
by the intrinsic growth rate r, and the carrying capacity k. The subsequent two terms
account for the consumption of plant material by both fertile F and sterile S pests. These

intake rates adhere to the Holling type II functional form.

The population growth rate of fertile pest insects, denoted by F, is influenced by

several factors. Here’s the formulation of the dynamics:

dF  ei;P rnF 7 brF
dt m+cPl+F+S 1+F+S

E—(dp + opF + BS)F (3.5)

Birth Rate: The increase in population due to births is captured by the first term on
the right-hand side of the equation (3.5). Specifically, it depends on the availability of

plant resources P and the presence of sterile insects S. Sterile insects in the denominator
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have a negative impact on growth, effectively lowering the birth rate. However, this
reduction is counterbalanced by the positive effect of plant ingestion.

Predation Effect: The second term represents the population reduction caused by preda-
tion by natural enemies.The rate of predation is denoted by br . The intake rate follows
a Holling type II function, reflecting how predators consume pest insects.

Mortality Factors: The last terms account for the death of fertile pest insects. These
include natural mortality df, self-regulation due to population density arF , and the

impact of sterile insects 3.

The population of sterile pest insects, denoted by S, experiences growth due to
plant consumption and declines due to predation and natural death. Additionally, the
population increases through the manual release of sterile insects into the wild. The

dynamics of this system can be described by the following differential equation:

dS  exaP

bsS
— = —(d F)S———F R{(F). 3.6
I m—l—C2PS ( S+OC55+B )S +&1uy 1( ) ( )

1+F+S

Where, in equation (3.6) , u;=u () represents the control measure for applying Sterile
Insect Technique (SIT). The release rate of sterile pest insects, denoted by R;(F) ,
depends on the number of fertile counterparts. The effectiveness of this control action is

characterized by the parameter &; .

The population of natural enemies can be intentionally augmented to control pests.
This involves releasing them at a rate denoted by R, (F, S), which depends on the abun-
dance of fertile and sterile pest insects. The control action is represented by up=u, (1),
with an effectiveness factor of &. The dynamics of natural enemies can be described as

follows:
dE  e3 (bpF +bsS)

= E—(d EE Ry(F,S 3.7
dt 1+F+S (E+OCE ) +&uy 2(,) (3.7)
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In this equation, The first term on the right-hand side represents the growth of natural
enemies due to food availability. The second term accounts for natural enemy mortality.
The control action contributes through the last term, adjusting the population based on

the release rate and its effectiveness.

We refer to equations (3.4)-(3.7) as the dynamical system, which comprises a set of
equations describing the behavior of state variables. We assume that the system satisfies
the following conditions;

Initial Conditions: The system starts with initial values,

P(0) = Py, F(0) = Fy,S(0) = So, E(0) = Eg (3.8)

These initial values are all non-negative.

Terminal Time Conditions: At a fixed finite horizon 7 > 0 is a fixed finite horizon of

control, we have terminal values;

P(T) = Pr,F(T) =Fr,S(T) = Sg,E(T) = Er (3.9)

These terminal values are free parameters.

Bounded Control Policies: We enforce the following bounded control policies:

Ogul(t) < (3.10)

0<up(t)<ip (3.11)

for all # € [0, T] .The upper bounds i; in (3.10) and i, in (3.11) are determined based
on the release rates R (F) and R, (F,S).
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Admissible Control Functions:The set of all admissible control functions is denoted
by :
U= {u(t) |u(t) € L*(0,T),0 <u(t) <a},

where u(r) = (u1 (1), u2(r)) " and L* be the set of all Lebesgue integrable functions.

3.2.3 Release Rates

The effectiveness of pest control through augmentation is influenced by the number of
released biological control agents. Striking the right balance is crucial because increasing
the agent population can escalate control costs without consistently ensuring effective
pest suppression in the wild environment . To explore the impact of natural enemy and
sterile insect release rates on pest suppression mechanisms, we examine three distinct
time-independent release strategies: constant, proportional, and saturating proportional

release rates.

The constant control rates for the release of sterile insects and natural enemies, we
set Rj(F) =1 and R,(F,S) = 1. In this scenario, The control variable u; () represents
the number of sterile insects released at time t. The control variable u;(¢) represents
the number of natural enemies released at time t. The parameters it; and iz, denote the

maximum availability of these biological agents.

In the context of proportional control rates, we consider release rates that are directly
proportional to the number of corresponding pest insects.The details for both sterile
insects and natural enemies.

Sterile Insects:We set R; (F) = F . Consequently, we define u;(¢) as the proportion of
sterile insects to be released relative to the number of fertile insects in the environment.

The maximum availability of sterile insects is denoted by i; , which is set to 1.
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Natural Enemies: Since natural enemies prey on both fertile and sterile insects, we define
Ry (F,S) = F + S The control variable u; () represents the share of natural enemies to be
released relative to the total pest population. Again, the maximum availability of natural

enemies is ity , setto 1.

The concept of saturating proportional rates involves maintaining proportional release
rates for small pest populations but transitioning to saturation as the populations grow.
The details for both sterile insects and natural enemies.

Sterile Insects: We set R;(F) = F /(1 + F). The release rate is proportional to the pest
population size, but it saturates as the population increases. The parameter ii; represents
the maximum availability of sterile insects, similar to the constant release rate case.
Natural Enemies: For natural enemies, we define R, (F,S) = (F+S)/(1+ F +S) .Again,
the release rate is proportional to the total pest population, with saturation effects. The
control variable u, () represents the share of natural enemies to be released. The upper
bound i; remains consistent with the constant release rate.

We summarize different release rate strategies for pest control in Table 3.1 :

Release Rate Sterile Insect ~ Natural Enemy  Control Upper Bound
Constant Ri(F)=1 Ry(F,S) =1 ;> 1
Proportional R(F)=F RyF,S)=F+S g =1
Saturating proportional R (F) = 1+LF Ry(F,S) = % ;> 1

Table 3.1
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Theorem 3.2.3.1. Given model (3.4)-(3.7) with initial conditions (3.8) . The solutions to

this model are positive and bounded. [1]

Proof. Let define the total *population’ N as
N(t)=P(t)+F(t)+S(t)+ E(t),

Thus,

dN _ dP | dF | dS | dE

dr T dr Toar Tar tar

Terms in the right-hand side are then substituted by those of model (3.4)-(3.7) we have ,

dN P a1 P arP eia1 P rpF brF
— = (rP(1-%) - F— § )+ F— E
dt k m—+c P m+cyP m+cP1+F+S 1+F+S

exapP bsS
—(d ol S\F S—(d oS F)S————FE+&uR(F
(dr +apF +BS) +<m—|—c2P (ds+ asS+ BF) TFF+S +euiRy( )>

e3 (bFF+b55)
1+F+S

E— (dE + OCEE)E + 82M2R2(F, S))
Thus we may write

dN P _
s <rpP (1 —E> +7F — (dr + apF)F —dsS — dgE +R,

eia|P  ryF
m+c P 1+F+S

where R = SUp;efo,7] {€1u1R| + &uyRy} and 7 = max{ } is the maximum

saturation. To strengthen the expression, let us define the following quantities:

d= min{dp,dg,dg} =da,

2
_ o, 9k
91—4k <k+ rp) 7

’72

0 =—.
2 dop
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Then we obtain

N o= (oo (e ™Y oy (o
—_— _a —_—— [— —_— p— —_——
dr = k 2\"" e 20

Since 8 = 0; + 6, + R, we have

dN
—+aN <86
dt

. . . . dy .
Compare with the first order differential equation , 7 + Py = Q

P=a 0=6
IF = /P
_efadt
:eat
~.N(IF) = [ Q.IF dt.
Ne < [0-e"dt+C
9 at
== —/o+c
a
at
<0 1cC
a

=Ne™ < e [9 - %1
a e

0
N(t) < ~+Ce™™

a
Atr=0
0
No=—+C
a
0
:>C:N0——

2 —
) + 6, +R.
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This differential inequality has the solution

0 0
0<N@E) < —+ (NO— —> e
a a

This solution is bounded by the steady-state value N = g as time ¢ becomes infinite,
meaning that the model is mathematically and ecologically well-posed with bounded

state variables. The invariant region S is then given by
T - i 6
a

This completes the proof. L
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3.3 Conclusion

We have introduced a straightforward analytical model for pest control, described by a
system of ordinary nonlinear differential equations. This model captures the dynamic
interactions between plant and pest populations. Within this framework, we incorporate
two control strategies: the release of sterile pest insects (SIT) and the deployment of
natural enemies as predators. Our model encompasses four distinct population classes:
plants, fertile insects, sterile insects, and natural enemies. Importantly, it allows flexibility

in adjusting the release rates of both sterile insects and natural enemies.

We see that by introducing sterile insects and natural enemies , it helps to reduce the

number of fertile pest which inturn result in growth of the plant.






Chapter 4

CONCLUSION AND FUTURE SCOPE

4.1 Conclusion

The overall conclusion drawn from the research and modeling presented in the document
is that a comprehensive approach combining natural enemies, targeted pesticide applica-
tion, and monitoring techniques can effectively manage pest populations, increase crop
production, and maintain ecological balance. By integrating natural enemies into pest
control strategies , the study demonstrates a more sustainable and efficient method for

pest management.

The importance of utilizing natural enemies as biological control agents to regulate
pest populations and reduce the reliance on chemical pesticides. The significance of the
use of natural enemy minimize impacts on populations and ecosystem health and enhance
crop production. The role of mathematical modeling in understanding the dynamics of

prey-predator systems and optimizing pest control strategies.

53
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The overall conclusion for the topic of pest control using a combination of natural
enemies and sterile insect releases, as discussed in the document, can be summarized as
follows:

Effectiveness of Integrated Pest Management: The research highlights the effectiveness
of integrated pest management strategies that combine the release of natural enemies
and sterile insects to control pest populations in agricultural settings. By leveraging the
complementary effects of natural enemies and sterile insects, the study demonstrates im-
proved pest suppression and cost-effectiveness compared to individual control methods.
Optimal Control Strategies: The optimization model developed in the study provides
insights into optimal control strategies for managing pest populations while minimizing
control costs. By determining the optimal release rates of sterile insects and natural
enemies, the model offers a systematic approach to achieving pest control objectives

efficiently.

Stability and Feasibility: The analysis of the system dynamics within the invariant
region ensures the stability and feasibility of the pest control model. By confining the
state variables within bounded regions, the model maintains realistic and sustainable pest
management practices.

Cost-Effectiveness and Sustainability: The study emphasizes the importance of consider-
ing both the population dynamics of pests and the economic costs of control measures in
designing sustainable pest management strategies. The findings suggest that a balanced
approach to releasing sterile insects and natural enemies can lead to cost-effective pest
control outcomes.

Practical Implications: The research outcomes have practical implications for agricultural
practices, pest control programs, and decision-making processes in pest management.
The identified optimal control strategies can guide practitioners and policymakers in

implementing effective and sustainable pest control measures.
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The research contributes to the advancement of integrated pest management ap-
proaches by offering a quantitative framework for optimizing control strategies using
natural enemies and sterile insect releases. The study underscores the importance of
interdisciplinary research in addressing pest control challenges and promoting sustainable

agricultural practices.
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4.2 Future Scope

In our exploration of prey—predator mathematical models, we aim to enhance ecological
systems that describe the dynamics of crop and pest interactions in agriculture. Our
focus extends to increasing crop density while simultaneously reducing pest populations.
Here are the key points and future directions: High-Resolution Monitoring: Modern
agriculture demands precise and effective monitoring techniques. We recognize the need
for high-resolution data collection to inform pest management strategies. Integrated
Pest Control: Effective pest control is essential for crop health and productivity. Our
research emphasizes a balanced approach that combines natural enemies and other control

measures.

Intelligent Airborne Platforms: We explore mathematical modeling and analysis for
an intelligent airborne platform. This platform aims to monitor crops efficiently, detect
pest damage, and optimize interventions. Challenges and Opportunities: Detecting pest
damage remains a challenge for many countries. By formulating real-world problems
mathematically, we can devise innovative solutions. Rigorous scientific definitions,

concepts, and assumptions underpin our reasonings.

The global community faces critical environmental issues, including floods, cli-
mate change, rising sea levels, and extreme weather events. To tackle these challenges
effectively, future research requires collaboration across disciplines. Here are key con-
siderations and opportunities: Multidisciplinary Approach: Researchers, environmental
modelers, and computational experts must work together. Building reliable mathematical
models that align with real-world observations is essential. These models serve as valu-
able tools for decision-makers and farmers. Optimal Control Techniques: Understanding
system parameters is crucial for applying optimal control strategies. By fine-tuning

parameters, we can enhance the performance of future control systems.
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Emerging Challenges: Realistic systems should incorporate diverse requirements,
reflecting the complexity of agricultural ecosystems. Investigating mutual interference
in predator—prey systems is an open challenge. Proper monitoring and understanding
interference effects are critical for sustainable pest management. Holistic Perspec-
tives: Researchers will provide comprehensive insights into farming system productivity,
ecological balance, and economic sustainability. Flexible management practices and

development strategies will drive truly sustainable agriculture.
Future Research Directions:

The study opens up avenues for further research in optimizing pest control strategies,
refining control models, and exploring additional factors that influence pest dynamics and
control outcomes. Future studies could focus on validating the model predictions through
field experiments and expanding the analysis to different pest species and agricultural

systems.
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