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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-
ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: " First Order Delay Differential Equations."

This report is divided into four chapters.

FIRST CHAPTER :

The first chapter introduces the concept of delay differential equation and the analytical

solution of DDE’s have been discussed.

SECOND CHAPTER :

The second chapter deals with the simple cases of DDE, existence and uniqueness of

solutions and some general equations have been analyzed.

THIRD CHAPTER :

In the third chapter we have discused the linear system with delay.

FOURTH CHAPTER :

At the end, the fourth chapter deals with a discussion of the delayed logistic equation.
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Chapter 1

INTRODUCTION

This chapter introduces the concept of differential equation with delay, called as delay
differential equations(DDEs). These differential equation depend on past history, and are
therefore used in many models because they are more realistic than models independent

of past history.

Time delays are present in so many natural and man-made processes (biological, med-
ical, chemical, physical, engineering, economic, etc.) that ignoring them is tantamount to
ignoring reality. For example, consider reforestation. After re-planting a cut forest, it will
take a minimum of 20 years to reach any type of maturity. For some species (redwoods
for example), it will take much longer. Therefore, it is clear that any mathematical model
for forest harvesting and regeneration must include time delays. Another example is that
animals need time to digest food before they can engage in other activities and responses.
Therefore, any model for species dynamics that does not include time delays is at best an

approximation.
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For example, in many applications, the system is assumed to be governed by the
principle of cause and effect, i.e., the future status of the system is not dependent on the
past but is determined by the present. However, it is important to remember that this
is just a first approximation of the real situation. A more accurate model will need to
include some of the system’s past history. When a model does not include a dependence
on the past history, it is usually composed of ODEs or PDEs. Models that include past
history typically include DDEs or FDEs.

1.1 Definition

A delay differential equation is a differential equation where the time derivatives at the

current time depend on the solution and its derivative at previous times.

For single delay, it is represented as

X (t) = f(t,x(t),x(t — 1)) (1.1)

At time 7 , the evolution of system depends on the current time 7, current state x(¢) of

system and at some time 7 > 0 in the past and is called as delay.

* If 7 is constant then above DDE is a constant DDE.
* If T = 7(¢) depends on time ¢ then above DDE is a time dependent DDE.

* If T = 7(x(¢)) depends on state then above DDE is state dependent.

For multiple delays, we have

X (t) = ft,x(t),x(t — 11 (2,x(2))),x(t — 12(2,x(2))), -..) (1.2)
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Fort > 0and 7; > 0, are the delays, 7;,,i=1,2,3, ...
In DDEs the derivative at any time depend on the solution at previous times, more

generally that is 7; = 7;(7,x(¢)).

Some examples,

A(t)=-2x(t—1) (1.3)
() = x(t) —x (%) (1) (1.4)
X (1) = x(0)x(t — 1) +12x(t +-2) (1.5)
x(t) = —x'(t) =¥/ (t — 1) — 3sinx(t) + cost (1.6)

DDE model depends on the initial function to determine a unique solution, because
x'(t) depends on the solution at prior times. Then it is necessary to supply an initial
auxilliary function called the "history" function, the auxilliary function in many models

1s constant, T : maxf;.

In ordinary differential equation, the derivative of the unknown function is related to
the function’s value at the same instant. Solutions are determined by initial conditions at
a single point in time. For a first-order ordinary differential equation (ODE), consider a

initial value problem of the form :

x'(t) = f(t,x(t)), wheret > tg (1.7)

with initial value at initial time point

x(l‘o) = X0 (1.8)
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They are used to model systems where the present state directly determines the future
state.This implies that ODEs cannot directly account for incubation,life history, duration

of events and many more.

In delay differential equation, the derivative of the unknown function at a certain time
depends on the function’s values at earlier times. Solutions require knowledge of the
function over an interval of time, known as the initial history function. For a first-order

delay differential equation (DDE), consider a initial value problem of the form :
X' (t) = f(t,x(t),x(t — 7)), wherer > 1, (1.9)

we must provide initial data x(¢) = ¢(¢) on the interval [t) — T,#o] for all t € [ty — T,1].
The function ¢(¢) is known as the history function or initial function. They model
systems where the current rate of change is influenced by past states, such as biological

systems with gestation delays or engineering systems with time lags in feedback loops.

1.2 Classification of Delay Differential Equations (DDEs)

Delay differential equations can be classified as :-

Linear delay differential equations (LDDE?s).

Nonlinear delay differential equations (Non-LDDEz5).

Stochastic delay differential equations (SDDEs).

Neutral delay differential equations (NDDEs).

Autonomous delay differential equations (never changing under the change of

time).
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* Non-autonomous delay differential equations.

1.2.1 Linear Delay Differential Equations (LDDEs):

LDDEs are differential equations where the dependent variable and its derivatives appear
linearly, and the equation involves delays in the form of past values of the dependent
variable. An example is:

X (t) = ax(t) + bx(t — 1)

where a and b are constants, and 7 is the delay.

1.2.2 Nonlinear Delay Differential Equations (Non-LDDEs):

Non-LDDEs are differential equations where the dependent variable or its derivatives
appear nonlinearly. They can involve delays and nonlinearity in various forms, making

their analysis more complex. An example is:

¥ (t) = ax(t) + bx(t — 1)*

1.2.3 Stochastic Delay Differential Equations (SDDEs):

SDDEs are differential equations that incorporate random or stochastic components,
making their solutions probabilistic. They often arise in modeling systems subject to

random fluctuations or noise. An example is:
dx(t) = [ax(t) + bx(t — 7)|dt + cdW (1)

where dW (t) represents a Wiener process.
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1.2.4 Neutral Delay Differential Equations (NDDEs):

NDDE:s are differential equations where delays appear both in the state variables and
their derivatives. These equations often arise in systems with delayed feedback or in

control systems. An example is:

X'(t) = ax(t) +bx'(t — 1)

1.2.5 Autonomous Delay Differential Equations:

Autonomous DDEs are differential equations where the coefficients and delay do not
explicitly depend on time. These equations describe systems whose behavior remains

unchanged under time translations. An example is:

1.2.6 Non-autonomous Delay Differential Equations:

Non-autonomous DDEs are differential equations where the coefficients or the delay
explicitly depend on time. These equations describe systems whose behavior changes

over time due to external influences or time-varying parameters. An example is:

X (1) = f(t,x(t),x(t = 7))
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1.3 Analytical solutions of DDEs

Real life problems with delay are generally too complex for analytical solutions. However,
for some delay differential equation such as linear first order delay differential equations
with single constant delay and constant coefficients * the method of steps ’ is used to find

the analytical solutions.

1.3.1 The Method of Steps

We begin with constant coefficient delay differential equation, defined for ¢ > 7y and
initial function on interval [fo — T,#| where 7 is the delay. We are looking for a continuous
extension into the future. We first consider the interval [fg,7) + ] on which the DDE
reduces to an ODE. We find a solution valid on this interval and then use this solution
as the initial function for the interval [ty + 7,fp + 27]. Then we find a solution on
[to + 7,10 + 27|, and this way the solution is extended forward from interval to interval.
Continuing in this way yields a solution of ODEs valid on [ty — T,0) which becomes
smoother in time 7 as ¢ increases. At each step in the process, we are solving an ODE for
which, under the hypothesis of the uniform Lipschitz continuity of the right hand side of
equations, a unique solution is generated.

This method is explain with the help of the following example:

Consider DDE of the form x’(¢) = x(r — 1) and history function x(z) = 1, V¢ € [—1,0].
Solution as follows:

The basic idea behind the method of steps is to transform the DDE model to a sequence
of a finite number of ODEs through dividing the domain of the DDE into sub-domains, in
each of which the DDE is transformed into ODE. Then to solve these ODEs starting from
the first sub-domain using the given history function. The solution in the first domain is

used as a history for the next sub-domain, and this process is repeated until the domain
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of the DDE is covered.

The above equation on interval [0, 1] can be written as the non-autonomous ODE as
X (1) = f(x,x(¢)) with f(z,x(t)) = ¢o(t — 1) where ¢o(¢t) = 1,1 € [—1,0].

Now by making use of Integral form of the solutions,

we have Vr € [0, 1].

x(t) =x(0)+ | fls,x(s))ds (1.10)
= x(0) + Ot(l)o(s—l)ds (1.11)
= x(0) + Otlds (1.12)
= x(0) +1 (1.13)
14t (1.14)

asx(t)=1,Vt € [-1,0] sox(0)=1
Proceeding as before , we can write given DDE on the interval [1,2] as the non-

autonomous ODE as

X(t)=flxx(r)) with  f(r,x(r)) = ¢1(t—1)

where ¢ (¢) is defined on [0, 1] as x(z) = 1 +1.

.. the given DDE can be written as

At)=¢1(t—1), te[l,2]
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where ¢;(t) = 1+1 for ¢ € [0,1].

By making use of the integral form of the solution for 7 € [1,2], we have:

x(t) =x(1) —I—/ltf(s,x(s))ds (1.15)
:xu)+lﬁm@—1ym (1.16)
:x(1)+/0[¢1(s)ds (1.17)

From the solution x(¢) = 1 +¢ as found earlier, x(1) = 2.

Therefore, for ¢ € [1,2], we have:

t
x(t):2+/0 (1+5)ds (1.18)
tZ
:2+t+§- (1.19)

Continuing as previously, for r € [2,3], we have:

() = x(2) +/2' ba(s—1)ds (1.20)

Here the history function is

0 (1) = 2+t—l—% fort € [1,2] and x(2) = 6.
So, for ¢ € [2,3] we have

() =042+ 242

We can continue further. This will give us the general form of the solution.



Chapter 2

SIMPLE CASES

2.1 Simplest DDE

2.1.1 Example

The simplest example of a DDE is given by
x(t)=—x(t—1) (2.1)
for t >0, where 7>0 is called the delay.
Suppose the initial condition for (2.1) is given by
x(t)=1 (2.2)

for t € [, 0]. Following the procedure called the method of steps, the solution x(¢)

forz € [(n—1)t,nt],n € N, can be determined in the following way.

11
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For ¢t € [0, 7], it follows that t — 7 € [—7,0]. Therefore,
A(t) = —x(t—1) = —1. (2.3)
From this, we can conclude that
t
x(t):x<0)+/ (—lds=1—1, t€[0,1]. (2.4)
0

Similarly, we can show that

Kt)=—x(t—1)=—-[1-(—1)], te][r,21]. (2.5)
Therefore,
t

x(1) = x(7) + / _[1—(s—1)]ds 2.6)
—1-7+ {—s—l—%(s—’c)z} 2.7)
:1—t+%(t—r)2, t € [1,21]. (2.8)

It can be generalised in the form

S (=D — (k= 1))t

x(t) = 1+l;1 7 , t€[(n—1)t,n1], neN. (2.9)

2.2 Existence and Uniqueness

Let T > 0 be a constant in J = [, & 4 al, where & > 0, and a > 0. The equation

x(t)=f(t,x(t—7)) for teJ (2.10)
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is called a delay differential equation, where 7 > 0 is called the delay. An initial condition

for (2.10) is given by

x(t)=@) for reJ =[E—1,E, (2.11)

where ¢ is a given continuous function.

Theorem 2.1: We consider the initial value problem (2.10), (2.11), where f is contin-
uous in the strip S = J X R, ¢ is continuous in J~, and 7 > 0 is a constant in J. Then,
there exists exactly one solution.

Proof: Let
)= ft,xu(t—7)) for te€[E+(n—1)1,&+n1], (2.12)

where n € N.

Fort € [€,& + 7], it follows that t — T € [§ — 7, &]. Therefore,

xi(t) = flt,x1(t—1)) = f(t,0( — 7)), (2.13)

and

x1(8) = 9(5). (2.14)

From this, we can conclude that

x1(1) = x1(8) + /;ﬂs,xl(s—r))ds: o(E)+ /;f(s,@(s—f))ds- 2.15)

Hence, x; is uniquely defined for 7 € [§,& + 7]. Similarly, we can show that

%) = f(t,x(t—1)) = f(t,x1(t—71)), telé+1,E+21], (2.16)
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and

0E+1)=x1(E+7). (2.17)

Therefore,

t

x(t) =x2(& +‘C)+/€Z+Tf(s,xz(s—‘L'))ds:xl(ﬁ +7)+ (:Hf(s,xl(s—’c))ds. (2.18)

So x; is uniquely defined for ¢ € [§ + 7,& +27]. We can conclude that x,, is defined
by x,_1 for all n € N. Therefore, x, is uniquely defined for ¢ € [£ + (n—1)7,& + n1|,

n € N. From this, we can conclude that x, defined by

A1) = o(1) forreJ =[§—1,&], (2.19)

Q&)+ ¢ f(s,;x(s—7))ds forte]=[E,E+d]

is well-defined for all values r € J~ UJ = [§ — 1, +a]. Furthermore, x(7) is a solution
of the initial value problem (2.10), (2.11). From the definition of x(¢), we can conclude

that x(¢) is the only solution.

2.3 General Equation

The general equation of the simplest DDE is given by
X (t) = —ox(t—1), (2.20)

where o is a constant, and 7 > 0 is the delay. The case o > 0 corresponds to negative

feedback, and the case o < 0 corresponds to positive feedback.
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By scaling this DDE, the number of parameters can be reduced, which makes solving
easier. We will determine a DDE with U (u) = x(¢), where the delay is the constant 1.

For the scaling, we set u := nt, n > 0. Then,

dx_dU dp

dt dp dt

cdu

Tar !
dx _du

dt  du

v _1dx

du 1 dt
du 1
—=—(—o)x(t—7
an n( )x(t— 1)
du .
@—( o)n x(t—1)
du ;
@—( o)n " U(mr—n1)
dU 4
a__ _ 2
a1 (—o)n " U(u—nr) 2.:21)

If wesetn :=1/7 and B := a7, then

dU
= BUw-. (222)

We introduce the following linear operator, defined on the differentiable functions:

d
LU) = £+BU(;¢—1>. 2.23)

We seek (complex) values of A such that U () = ¢** is a solution of (2.22). Filling this

expression in for L(U), we get

L(eM) = AeM + Bt 1) = M (A + Be?). (2.24)
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We want to solve the characteristic equation

h(A)=2A+Be* =0. (2.25)

Then, L(e**) is the zero function, hence U (i) = e** is a solution of (2.22).

To solve (2.25), we set A := x + iy. Considering real and imaginary parts, we get the
system

x = —Be*cos(y), 026

y = Be~*sin(y).
We call A € C aroot of (2.22) of order [, where [ > 1, if

hA)=HA)=r"A)=...=h""DA)=0, KDQ)#£0.

Lemma : The following hold.

1. If B < 0, then there is exactly one real root and it is positive.

2. If 0 < B < 1/e, then there are exactly two real roots x; < xp, both negative.

x; — —ccandx; —»0as f — 0.

1. If B = é then there is a single real root of order two, namely A = —1.

2. If B > é, then there are no real roots.

Proof.
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1. For (1): his an increasing function that crosses the x-axis, hence there is exactly

one real root. Because B < 0, it follows that A = —Be~* > 0.

2. For (2): h has a minimum below the x-axis, hence there are exactly two real roots.
Because 8 > 0, it follows that A = — ﬁe”L < 0. The last assertion follows from
the following:

B =—Ae* —0ifand only if A — 0 or A — —oo.

3. For (3): h has a minimum on the x-axis, hence there is exactly one real root. Filling
B = L in for h gives the root A = —1. Furthermore, '(—1) =0 and A" (—1) =1,

hence the order of A = —1 is two.

4. For (4): h has a minimum above the x-axis.
Corollary: The following hold for (2.20).

1. If ¢ < 0, then x = 0 is unstable.
2. If 0 < ot < /2, then x = 0 is asymptotically stable.
3. If ot = /2, then x = sin(mwu /2) and x = cos(mu /2) are solutions.

4. If at > m/2, then x = 0 is unstable.
Theorem: For every real o and 7 > 0, the following are equivalent.

1. Every solution of (2.20) is oscillatory.

2. at>1/e.

Proof: For every real A, U(u) = ¢** is either a monotonic or constant function.
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Therefore, x(t) = U(u) is not oscillatory for real A.
So x(7) is oscillatory if and only if A is a complex (not real) root.
By Lemma , A is a complex (not real) root if and only if B = a7t > 1/e.

This proves the theorem.

2.4 Scalar DDE

2.4.1 General Equation
The homogeneous equation of the scalar DDE is given by:
X (t) = ax(t) + bx(t — 1), (2.27)

where a and b are constants, and 7 > 0 is the delay. The nonhomogeneous equation will

be discussed in the next chapter.

We seek a nontrivial solution of (2.27) of the form:
x(t)=eMe, 0, (2.28)

where A is complex and c is a constant.

The characteristic equation we want to solve is given by:
h(A)=A—a—be **=0. (2.29)
This expression can be simplified by multiplying the right-hand side by 7 and setting:

7:=AT, a:=at, B:=bt.
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We get:
h(z)=z—o—Be *=0. (2.30)



Chapter 3

LINEAR SYSTEM

3.1 Preliminaries:

A DDE with a single delay is of the form

X (t) = f(t,x(t),x(t—71)) for t>&, (3.1

where f is a given continuous function, & > 0 is a constant, and 7 > 0 is the delay. An

initial condition for (3.1) is given by

x(t)=¢(@) for rel[§—1,E], (3.2)

where ¢ is a given continuous function.

We are interested in determining the state of the system(3.1),(3.2) at time ¢ > & > 0.
The state of a system at time ¢ > 0 includes all information needed to determine the state

of the system at future times s > ¢. Therefore, the state of the system (3.1), (3.2) at time

20
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t > & includes x(n) for all n € [r — 7,7]. Hence, we conclude that this state, which we

denote by x;, is given by

x(0):=x(t+0)for —7<0<0. (3.3)

In this chapter, we will look at linear systems with delay. We will discuss linear

DDE:s of the form
¥(t)=L(x) for t>&, (3.2)

where & > 0 is a constant, x; is defined as (3.3), and L is the map C — C" where

C =C([—r,0],C"). An initial condition for (3.4) is of the form
xg =@, 3.3)
where Xe is defined as (3.3), and ¢ is a given continuous function in C.

The map L is linear if it satisfies

L(ag +by) =al(9)+bL(y), ¢,yeC, a,beC. (3.4)

In the next section, an example of the following linear DDE will be discussed:

¥ (t) = Ax(t) + Bx(t — 1), (3.5)

where A, B are n X n matrices, and T > 0 is the delay. This equation can be rewritten in

the form of (3.4) by defining the map L as

L(y) = Ay(0) + By(—7), (3.6)
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because then, using (3.3),
L(x;) =Ax;(0) 4+ Bx;(—7) = Ax(r) + Bx(t — 1), (3.7)
which is precisely (3.6).
We introduce the Laplace transform:
F(s) = /O e p () dt, (3.8)

where f(¢) is a function on [0,c0). The domain of F(s) consists of all the values for
which the integral in (3.7) exists. The Laplace transform of f is denoted by both F' and

L{f}. We let f(¢) be an exponentially bounded function of order a; that is,
|f()] <Me*  forall ¢t>T

for some positive constants M, T. Then, if f(¢) is also piecewise continuous on [0, o),

then L{ f }(s) exists for s > a.

The key property of the Laplace transform that we exploit is that the transform of a
convolution is the product of the transforms. If f(¢) and g(¢) are piecewise continuous

on [0,0), then their convolution, denoted by f * g, is defined by
t t
(fxg)(t) = /0 f(s)g(t—s)ds = /0 f(t—s5)g(s)ds. (3.8)
The Laplace transform satisfies
L{f*g}(s) = F(s)G(s),

where F = L{f} and G = L{g}.
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3.2 Linear DDE

3.2.1 General Equation

The general equation of the homogeneous linear DDE is given by
X' (t) =Ax(t) +Bx(t — ) fort >0,

where A and B are n X n matrices
and 7 >0 is the delay.

The initial condition for (3.9) is given by
o(t) :=x(t) forte[—1,0].

Example:

We are given a homogeneous linear DDE:
x'(t) = Ax(t) +Bx(t —t) fort >0,

0 1 0 1
where A = ,B= ,
-2 3 1 0

and 7 > 0 is the delay. The initial condition for (3.11) is given by

Solution:

23
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(3.10)

(3.11)

(3.12)

We need to determine the eigenvalues and the corresponding eigenvectors of matrix A.
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The characteristic equation
h(A) =det(A— Al =A*—314+2=0 (3.13)

Therefore, the eigenvalues of A are A; = 1 and A, = 2.

To find eigenvectors

Consider for A; = 1, we have

-1 1 0
(A — A]I)M = u= ’
-2 2 0
: : : 1
Therefore, eigenvector corresponding to Ay is u =
1
Now consider for A, = 2, we have
-2 1 0
(A—=Ll)v= V= ,
-2 1 0
: : : 1
Therefore, eigenvector corresponding to A, is v =
2
Therefore, the solution of x'(r) = Ax(¢) is
t 1 2t 1
xp(t) =cre + e ) (3.14)

1 2



3.2 Linear DDE

where c1, ¢, are constants.

Fort € [0, 7],

¥ (t) = Ax(t) + Bo(t — )

d
xp(t) = )
dy
where d|,d, are constants.
Substitute x, () for x(z) in (3.17) gives
, 0 0 1 dj 1
0 -2 3 d> 1
Therefore, di = —2 and dr» = —1.
The particular solution of (3.17) is
-2 2
—1 1

Hence, the general solution of (3.17) is of the form

1
x(t) =xp(t) +x,(t) = 1€ +cre
1

2t

—d1+3d,+1

25

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)



26

LINEAR SYSTEM

where ¢, c; are constants. Now to find the values of ¢; and ¢;

1
Since x(0) = ¢(0) and x(0) =
1
The eqn (3.17) will be
1 1 2
x(0)=¢ +c2 - =
1 2 1
1 c1t+cr—2
1 c1+2c—1
Therefore, c; =4 and ¢, = —1.

and the general solution of (3.11), (3.12), for 7 € [0, 7],

1 5 [ ] 2
+e -
1 2 1

x(t) = xp(t) +xp(t) = 4¢

c14+cr—2
bree (3.22)

c1+2c—1

(3.23)

1s

In a similar way, general solutions of the initial value problem (3.11), (3.12) defined on

other intervals of the form [(n — 1)7,n7], n € N, can be determined.

3.2.2 Laplace Transform

The general equation of the non-homogeneous linear DDE is given by

X' (t) = Ax(t) + Bx(t — t) + f(t)

fort > 0,

(3.24)

where x(¢) is an n x 1 column vector function representing the state of the system,

A and B are n X n matrices,
f 1s a given continuous function.

and 7> 0 is the delay.
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The initial condition for (3.24) is given by

x(t)=e@(t) fort e [—1,0].

Applying the Laplace transform to the left hand side of (3.24), we get

21N = [ e
t=0
— (o))

= sX(s) — ¢(0)

+ s/ e x(t)dt
0

Applying the Laplace transform to the right-hand side of (3.24),we get

sX(s) —@(0) = | e " [Ax(t) + Bx(t —7) + f(1)]
:A/O(><> Stx(t)dH—B/o e dt+/
=AX(s)+B 1:e ‘C)dt—k/we_”x

I
:Ax(s)juBUO ot dhL/ (o)

=[A+e*"B]X(s) + BP(s) + F(s)

where ® = Z{¢(-— 1)}
Rearranging the terms, we have
X(s) = K6)[¢(0) + BP(s) + F(s)],
where

K(s) = (s — A —e~5"B)~! is a matrix-valued function.
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(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

In order to make use of the convolution result, we need to know the inverse transform k&

of K. In view of the calculations above, we see that k is a solution of (3.24), (3.25), with
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f =0, for the initial data

I for 6 =0,
£(0)= (3.34)
0 for 6 € [—1,0).

In spite of the discontinuity of £ at zero, the method of steps readily establishes that
the solution k exists for ¢+ > 0. The matrix function k is called the fundamental matrix
solution of (3.24),(3.25).

Lemma: We may express the solution of the initial value problem (3.24), (3.25) as

x(t) :=x(t;9,f) =x(t;9,0) +x(z;0, f). (3.35)

Proof. Fort € [0, 7], the following hold:

X (60, f) = Ax(1:0,f) +Bo(t — )+ f(1); (3.36)
X (t;¢0,0) = Ax(t;¢,0) +Bo (t — 7); (3.37)
X (6,0, f) = Ax(1;0, ) + £ (1) (3.38)

So, fort € [0, 7],
Adding (3.37) and (3.38)

K (1;0,0) +x'(1;0, ) = Alx(r;0,0) +x(;0, )] + B (1 — ) + £ (7). (3.39)

By integrating on the both sides we get,

x(t) == x(t;9,f) = x(t;¢,0) +x(t;0, f) (3.40)

for t € [0,7]. We can conclude from (3.40) that (3.35) holds for all # > 0, by uniqueness
of the solutions x(¢; 9, f), x(¢;¢,0), and x(;0, f) for all t > 0.



Chapter 4

APPLICATIONS

The logistic equation is given by

x’(t)zax(l—%), 4.1)

where a is the growth rate and K is the carrying capacity of the ecosystem.
Now consider the delayed logistic equation:

The model we have employed to demonstrate population dynamics is as follows:

The initial normalized population is chosen to be small (typically 0.01) as it cannot

be zero. A zero initial population signifies a non-existent species.

The equation is normalized.

The growth rate is denoted by a, which is finite, positive, and time-independent.

The delay 7 is also finite and positive.
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With these assumptions, the single delay logistic equation is:

x'(t) =ax(t)[1 —bx(t—7)] for t>0, (4.2)

where a, b > 0 are constants with b = 1/K, and 7 > 0 is the delay. As initial condition
for (14), consider

x(t)=0.01 for re€[—1,0]. 4.3)
We denote the solution of the initial value problem (4.2), (4.3) by x(t).

To determinine the equilibrium points of (4.2), which we denote by x*. Because x* is

constant, it follows that x* = x(¢) = x(¢ — 7). Substituting this result in (4.2), we get

ax* (1 —bx*) =0. (4.4)

Therefore, the equilibrium points of (4.2) are given by x* = 0 and x* = 1/b.

Now linearize the equation(14)
Let p(r) be a small variation in the population such that higher powers of p may be

neglected. Substituting x(¢) = x* + p(¢) in (4.2) gives the DDE:

Pt)=alx"+p@®)][1 —bx* —bp(t—1)] for t>0. 4.5)

with initial condition for (4.5) :

p(t)=0.01 for 1€ [-1,0]. (4.6)

Substituting x* = 0 in (4.5) gives

p'(t) =ap(t)[1 —bp(t —7)]. 4.7)
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Neglecting higher powers of p, we get the DDE:

p'(t) =ap(t). (4.8)

Therefore,

p(t) = ce”, 4.9)

where c is a constant.
Taking the initial condition (4.6) , the solution of the initial value problem (4.5), (4.6),
for x* = 0, is given by

p1(t) =0.01e”. (4.10)
Since a > 0, it follows that x* = 0 is unstable.

Substituting x* = 1/b in (4.6) gives

P =al+p0)] -opte ). @1

Neglecting higher powers of p, we get the DDE:

P'(t) = —ap(t—1). (4.12)

The equilibrium point of (4.12) is given by p* = 0. Because p* # x* and we need
to have p* = x*, we will add a certain constant to (4.12) such that p* = x* holds. The

constant has to be equal to a/b, because then, we have the following DDE:

)= —a|pt-0- ], @.13)

where the equilibrium point is given by p* = x* = 1/b. Instead of (4.6), we consider

(4.10) as initial condition for (4.13).
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To get the idea see Figure 4.1. We denote the solution of the initial value problem ( 4.13),
(4.10) by pa(1).

Using the package DDE23 in Matlab, plots of the numerical solution x(¢) for different
values of 7, a, and b can be made. Because changing the value of b does not affect the
shapes of the plots, we will only consider one value for b. See Figure 4.1, 4.2 ans 4.3
for the plots of x(¢), pi(¢), and p,(¢) for some values of 7, a, and b = 0.5. Because
determining p; () analytically is quite difficult, the numerical solution p;(¢) is included

in these plots.

From the plots in Figure 4.1, 4.2 and 4.3, we can conclude that p1(t) and p2(t) ap-
proximate x(t) very well, except for the last case. For this case, at = (1.5)% = 2.25 > 5
By Corollary , it follows that x*= 1/b is unstable. From the plot of this case, we can
conclude that x(t) contains complex (not real) values, and p1(t) and p2(t) only contain
real values. Therefore, x(t) cannot be approximated by p1(t) and p2(t). For the other

cases, we can conclude from the plots, and Corollary , that x* = 1/b is stable.

Furthermore, we can conclude from these plots that the cases where has the same
value, the graphs look similar. For example, consider the cases T=0.5,a=1,and 7 =1,
a =0.5. Then, the plots of these cases look the same, but the time intervals are different.

The same holds for the other cases with the same value of at.
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Figure 4.1: Plots of x(¢), p1(t), and py(t), for b = 0.5, T = 0.5 and different values of a.
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Figure 4.2: Plots of x(t), pi(t), and p,(t), for b= 0.5, T = 1 and different values of a.
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Figure 4.3: Plots of x(¢), pi(t), and p,(¢), for b= 0.5, T = 1.5 and different values of a.



Chapter 5

CONCLUSION

The analysis of linear delay differential equations (DDEs) has provided insights into
their solutions and stability properties. Through the determination of eigenvalues and
eigenvectors, we derived the general solution for a linear DDE with a constant delay. The
Laplace transform was employed to analyze non-homogeneous linear DDEs, leading to
the derivation of fundamental matrix solutions. Furthermore, the applications of DDEs
were explored, particularly in modeling population dynamics with the logistic equation
and its delayed variant. Stability analysis revealed the influence of parameters such as

the growth rate and delay on equilibrium points and system behavior.

Continuation: Moving forward, further investigations into the behavior of DDEs under
varying parameters and initial conditions can deepen our understanding of complex sys-
tems. Numerical methods, such as MATLAB’s DDE23 package, facilitate the exploration
of DDE dynamics and the comparison of analytical and numerical solutions. Addition-
ally, the study of DDEs in interdisciplinary contexts, such as biology and ecology, can
provide valuable insights into real-world phenomena and contribute to the development

of predictive models for dynamic systems.
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