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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-
ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: " wythoff pairs ." This topic is divided
into five chapters. Each chapter has its own relevance and importance. The chapters are
divided and defined in a logical, systematic and scientific manner to cover every nook

and corner of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of what is wythoff

pairs .

SECOND CHAPTER:

This chapter deals with wythoff pairs . In this topic we have discuss what are different
types of wythoff pairs and how to construct different type of pairs using following defini-

tions

THIRD CHAPTER:

In this chapter we have introduced a wythoff game basically known as the kitten and

puppy game. and try to find their safe pair of sequences .

FOURTH CHAPTER:

This topic basically talks about the different heap game .
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FIFTH CHAPTER.

In this chapter we study detailing about rat, ratwyt, mouse and fat mouse game and see

the positioning of the sequences and see what does array mean.
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ABSTRACT

The Wythoff number pairs have been much discussed in the literature on Fibonacci.
Bicknell-Johnson treats generalizations of Wythoff numbers which provide number
triples with many interesting properties. In this paper we present three different ways
to generate the Wythoff pairs, and, with some trepidation in view of the extent of the
literature on them, claim that these are "new." We emphasize the notion of "generation (in
contrast to "giving a formula"), and introduce Fibonacci word patterns as a tool to define
n-tuple generating processes. A determinantal relation for the Wythoff pairs is described,
which makes further use of the word-pattern tools. In the final section we show how
similar methods can be used to generate and study sequences of integer triples. examples
are given, and each is an attempt to generalize aspects of the Wythoff pairs-sequence. It
is clear to us that these tools and methods hold much promise for developing a general

theory of sequences of integer n-tuples which have structures.
The main aim of this article is, in general to prove some basic result concerning the above
proving and stating stratergies, and, in, particular, to compute various wythoff pairs using

fibonacci sequence

Keywords: fibonacci word pattern, tribonacci word pattern,p- position.
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Chapter 1

INTRODUCTION

wythoff pairs is widely regarded as the most delightful branch of Mathematics. This is
because of its twin nature; it contains the cleverest proofs in all the abstract reasoning
and it has the most comprehensive range of applicability to any contemporary sciences.
Many Mathematicians have contributed to the growth of this theory .Willem Abraham
Wijthoft Wythoff was born in Amsterdam to Anna C. F. Kerkhoven and Abraham Willem
Wijthoff, who worked in a sugar refinery. He studied at the University of Amsterdam,
and earned his Ph.D. in 1898 under the supervision of Diederik Korteweg

Wythoff is known in combinatorial game theory and number theory for his study of
Wythoff’s game, whose solution involves the Fibonacci numbers. The Wythoff array, a
two-dimensional array of numbers related to this game and to the Fibonacci sequence, is
also named after him.

In geometry, Wythoff is known for the Wythoff construction of uniform tilings and
uniform polyhedra and for the Wythoff symbol used as a notation for these geometric
objects. A Fibonacci word is a specific sequence of binary digits (or symbols from
any two-letter alphabet). The Fibonacci word is formed by repeated concatenation in

the same way that the Fibonacci numbers are formed by repeated addition. The name

1



"Fibonacci word" has also been used to refer to the members of a formal language L
consisting of strings of zeros and ones with no two repeated ones. Any prefix of the
specific Fibonacci word belongs to L, but so do many other strings. L has a Fibonacci
number of members of each possible length.

The author had been working on the safe combinations (Wythoff pairs) in Wythoffs
game when there- searches of Silber came to his attention. As the two approaches differ
somewhat, it is probably worthwhile to indicate briefly the author’s alternative treatment,
which may throw a little light on the general problem. Both Silber and the author use the
fundamental idea of the canonical Fibonacci representation of an integer. While much
work has been done recently on Fibonacci representation theory and on Nim-related
games, we will attempt to minimize our reference list. Wythoff pairs have been analyzed
in detail by Carlitz, Scoville and Hoggatt, e.g., though without specific reference to
Wythoffs game. For a better understanding of the principles used in our reasoning which
follows, it is desirable to present a description of the nature and strategy of Wythoffs

game.



Chapter 2

THE ALPHA AND OMEGA OF WYTHOFF PAIR

2.1 Fibonacci word pattern:

([1] is used in all this subsections of chapter 2)A sequence of words Wy, W,, .. the words
are found using characters from given letter set such as {0,1} or {a,b,c} . The basic
word pattern is obtained repeatedly using recurrence given by W, 1, = W,W,,.| with

W), =A,W, = B Then F(A,B) = A,B,AB,BAB,ABBAB, .......

example

If A=1 and B=0 Then F(1,0) = 101001010010..... Which is denoted by «
F(1,01) =10110101101...... This is denoted by

The tribonacci word pattern with Wy = A, Wo =B, W3 =C

with F(A,B,C) =A,B,C,ABC,BCABC, ...

where W, 3 = W,W, 1 1W,, 12
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2.2 Set Sequence:

Let {S,} be set of sequences and {a, } be set of integers. The set sequence is formed

using the recurrenceS, 12 = S,US,+1 + ay.

Let set {aj,az,........ }
Then + operation is to be carried out as {ay,a,.....} +a

={ai+a,ar+a,.....}

2.3 Addmerging and submerging:

A merging operation and its inverse

Let S and T be any monotone increasing sequences, then the addmerge of S and T written
as S M T is obtained by taking the multiunion of two sequences and sorting them into
monotonic increasing order.

example

S={1,6,8,10,15,....}

T={6,9,11,16,...}

SMT={1,6,6,8,9,10,11,15,16,....} The inverse of addmerge is submerge denoted by
SWT, thus operation simply removes the sequences T from S .

example

S={1,6,9,10,16,....}

T={6,9,11,16,...}

SWT={1,10,...}.



2.4 Sequence notation:

2.4 Sequence notation:

n=1{1,2,3,....}. which is denoted by N
nt=1{0,1,2,3,...}

f=1{1,1,2,3....} Fibonacci integers denoted by {F; }.
f =1{1,2,3,5,....} denoted by {F,1}.

" ={2.3,5,8,13,....} denoted by {F,»}

2.5 MEMBERS OF WYTHOFF PAIRS

First member of wythoff pair is [nc] where o = 14++/5/2 = 1.618

n=1

[1x1.618] =[1.618] =1

[2x 1.618] = [3.236] =3

and so on so w; ={1,3,4,6,8,....}

Second member of wythoff pairs is[na®] n = 1

[1%x2.617]=[2.617] =2

[2x2.617] =[5.234] = 5
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and so on so @ ={2,5,7,10,13....}
Wythoff pairs of sequences

2.6 Binary Word pattern:

Let B be sequence of 0’s and 1’s B = by,b,.... and S, = 51,52, ..... which belongs to
(0,1). Then S * B = the subsequence from S whose elements are in the positions where
the 1’s occur in S

example

B ={010101.... }then

nxB=1{1,2,3,4,..}«{010101,...}

2.7 Generation of wythoff pairs using:

2.7.1 Different ways of generating wythoff pairs.
Use of omega sequence

The binary word pattern @ = F(1,01) = {10110101101......}
where 1’s in binary word pattern occurs in @

sow; ={1,3,4,...}

and where 0’s in binary word pattern occurs in @,

so m =42,5,7,...}
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example

n—= o Maw,

=nx[F(1,01)+ F(0,10)]
=nx[{10110101101....} +{01001010010....}]
=n*x{1111111.....}

=n

2.8 Use of Fibonacci magic matrices

A square matrices all of whose elements are Fibonacci integers, whose diagonal,row and
column sums are fibonacci integers and whose powers also posses this properties called

magic . The spectral radius of these matrices is & , which is the golden mean.

0 1
A=
1 1
- 1
A=
1 1—-«
=—a(l-a)—1
=—a+o’—1
=(1++/1-4(1)(-1))/2
~(1£V5)/2

so we only take the positive one so here we get the golden ratio.



2.8 Use of Fibonacci magic matrices

22— 11
1 2
2 -4 1
1 2-A
=1-A2-1)—1
=—31+A%+1
=(3++/9—4(1)(1))/2
=(3+v/5)/2
o) . . i fn fn~|—1
so A = o* Determinantal Relation For Wythoff Pairs
fn+1 fn+2

= (—1)"*! consider the wythoff pair sequence w; = a = {a;}

w =b={bi}

Now we try to compute determinant
consider
ai dait]
bi biy
1 3
2 s

=5-6
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=21-20
=1
computing so on we get, -1,1,-2,-2,3,-3.4,-4,-4,6,-5,-5,8,-6,9,-7,-7,11,-8

There is clearly an interesting pattern to the sequence, but how can we capture it in
a formula? It is here that our word pattern notation becomes really useful. Let us
submerge the negative and the positive elements, to find
-1,-2,-2,-3,-4,-4,..... is equal to

(—n)x F(1,2)

where(—n) = {—1,-2,-3,......}
and F(1,2) = {1212212....}

now (—n)* F(1,2)

= {—1,-2,-3,... }«{1212212....}

And the positive sequence is just @,

2.8.1 GENERATION OF WYTHOFF PAIRS.

Any Fibonacci word pattern which uses binary letter set can be used to generate pair
sequence known as alpha sequence

o = F(1,0) = {101001010010...}

o ={1,3,6,8,....} = o;W]w; * F(0,01)]
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= 0, W[{1,3,4,6,8.....} % {00100101001.....]
— 0, W[{4,9,12,17,...}]

= oy * [0 xF(1,10)]

o =1{2,4,5,7,9,10....} = oxM[w; * F(0,01)]
= »»M[{1,3,4,6,8.....} % {00100101001.....]
— oM[{4,9,12,17,....}]

o (01W[0)1*F(1,01)]

[0%) wM[w; x F(0,01)

S}
|

o, = oMoy *F(1,10)]

w = pWop xF(0,10]

And so the alpha pair-sequence can be expressed in terms of the omega (Wythoff)
pair-sequence; and vice-versa. It is evident that by such means an infinite number
of pair-sequences can be generated, and their properties studied by establishing rela-
tionships be- tween them and the fundamental Wythoff pairs. A new kind of number
theory could be developed, based upon the sequences @; and @, and related to the
"ordinary" number theory based on n through the functions [na] and [no?] . Finally,

we give an indication of how these methods can be extended to study sequences of triples.
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2.9 GENERATION OF TRIPPLE SEQUENCE

2.9.1 Use of Fibonacci word pattern

F(a,bc)={abcabcbcabc.....} we check positions of abc

a 1 4
bl =12 51 cceeinnnnn
c 3 6

) *xO

={1,3,4,6,8,....} x{101001010010......}

then
a W, o
b| = o
c w+1

where o = F(1,0) Note also that a,andb,, are each strictly increasing sequences, they
are non-intersecting, and their union equals Z* Wythoff pairs-sequence. Their proof is
immediate from the way in which F(a,,b,) is expanded. Another interesting point is
that the parity of the terms in a is alternately odd and even. And then, since the sum
(b, + cp) is always odd, we have the sum(a, + b, + ¢,) also of alternating parityof the
terms in a is alternately odd and even. And then, since the sum (b, +¢,) is always odd,

we have the sum(a, + b, + ¢,) also of alternating parity.
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2.9.2 Use of tribonnaci word pattern

F(a,b,c)={abcabcbcabc....} we check positions of ab ¢

a 1 4
bl =12 51 cceeennnnn
c 3 6

This triple-sequence again clearly has the property that each element sequence is mono-
tone increasing, and the three sequences partition Z". When we first studied this
sequence, we hoped that we would find simple relationships between a, b, and c respec-
tively, [n1.[nB>].[nB"]

where f3 is the positive root of the tribonacci equationf3 = 1.839

[nB] (3
mB? | =13 6 | e
[nB3] 6/ \12

2.9.3 Wythoff sequence

DEFINITION:[2]

We call a sequence of pairs of integers {A,, B, }n>n, is a wythoff sequence if nyp > 0 and
there exist a finite set of integers T such that

Ay = mex({A;,Bi,n0 <i<n}UT)

B,=A,+nand B,NT = ¢
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A special wythoff sequence is a wythoff sequence such that there exist integers N and o
such that n > N and
A, = [n¢] + a+E,, where E,, belongs to {0,1,—1}

Theorem 2.9.3.1. [2] For a wythoff sequence {An,By}n>n, let N be an integer such

thatn > N, A, > mex(T) then

* ISAn+1_An§2

*2<By1—B,<3

proof: Tis finite and N exist, A,, is defined using mex function A, is the smallest available
in

Z>0s0Z—{T —{Ai,B;}i <n} so {A,}is a increasing sequence .

B, = A, +n must be increasing if Z — T — By, is eventually must be in A, i.e any non
negative integers not in T much be either in A or B

DIF Ayt —A, >2

since A,+1 and A, o are not in A’s they must be in B’s

consider B, = A, + 1 there exist distint integers myand my s.t B,y = A, + 1 and
B =A,+2

A1 —App = my —my — 1 Since {A,} is increasing, the two sides of the last equation
cannot have the same signs.A contradiction

2)2<Bui1— By <3

foreachn <B,;1 —B, =A,i1+n+1—(A,+n)

Corollary 2.9.3.2. [2]
Given {(A,,Bn)}n > 0 define S, =7 > 0—{B;,A; : i >0}
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proof:

S2CZ >0

{B;,A;:i> 0} by the definition of B,

secondly if there existd € 7. > 0{B;,A; : i > 0}

assumeB,, # A, +d for all n

soB;i—A;>dforalli> N

since for any n > N(Ap,Ap+d) ¢ (A;,B;),i >0

Ap+de{Ailfor0<i<n

this is impossible because {A;} 0 < i < nis increasing B; — A; = d for some i < n but this

is impossible of our assumption on d gives contraction.



Chapter 3

WYTHOFF GAMES

3.1 WYTHOFF GAMES

([3] is used in all the subsection and Theorem of chapter 3) Wythoff’s Game, named
after Willem Abraham Wythoff, who is well known amongst number theorists. Dr.
Wythoff, who received a Ph. D. in mathematics from the University of Amsterdam in
1898, described this game in his words: “The game is played by two persons. Two piles
of counters are placed on a table, the number of each pile being arbitrary. The players
play alternately and either take from one of the piles an arbitrary number of counters or
from both piles an equal number. The player who takes up the last counter or counters,
wins.” This game was previously known in China as tsyan-shidzi (“choosing stones”),
but was reinvented by Wythoff. Wythoff published a full analysis of this game in 1907.
Nearly a half a century later, around 1960, Rufus P. Isaacs, a mathematician from Johns
Hopkins University, created another description of this same game. Completely unaware
of Wythoft’s game, Isaacs described the same game in terms of the moves of a chess

queen allowed only to travel south, west or southwest on a chessboard. This game was

15
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often called “Queen’s Move” or “Cornering the Queen”. In this game the Queen is
initially placed in the far right column or in the top row of the chessboard. The player
who gets the queen to the lower left corner is the winner.Under the name Last Biscuit,
this same game is played by removing cookies from two jars, either from a single jar,
or the same number from both jars. Also, this game has been named the Puppies and
Kittens Game in The Teacher’s Circle: Finite Games by Paul Zeitz. To begin researching
this game and its strategies, it only makes sense to play the game in small cases and look

for patterns.

3.1.1 RULES OF THE GAME

unspecified numbers of counters occur in each of two heaps in each draw a player may
freely choose counters either from

* one heap

* two heaps

provided in this case he/she must take same number from each .
example

heaps of 1 and 2 can be reduced to 0 and 2

land 1

land 0

The player who takes the last counter wins the game.

The safe combinations for Wythoffs game are known to be the pairs:

n=12345678 ...
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are the corresponding wythoff pairs

(1,2), (3,9), (4,7), (6,10), (8,13), (9,15), (11,18), (12,20)....
A safe pair may also be called a Wythoff pair.

* There are several interesting things about the integers occurring in these safe

combinations. They are:

* Members of the first pair of integers differ by 1, of the second pair by 2, of the
third by 3,..., of the n’h pair by n

« the nth pair is (a,,b,) = ([na], [n%]) where the symbol [x] denotes the greatest
integer which is less than, or equal to x and o "golden section" number which is a

root of x2 —x— 1 = 0. Note thatb,, = a, +n

* In every pair of a safe combination, the smaller number is the smallest integer not

already used and the larger number is chosen so that the difference in nth pair is n.

It might reasonably be asked: How does the "golden section" number a come into the
solution of Wythoff’s game?

Wythoff himself obtained his solution "out of a hat" without any mathematical justifi-
cation). Basically, the answer to our query, as given by Hyslop and Ostrowski quoted
in , depends on the occurrence of the equations 1/x+1/y =1 y = x+ 1 which, when is

eliminated, yield our quadratic equationx”> —x — 1 = 0.
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kitten and puppy game

Mathematically speaking, if one starts with p(puppies) = 0, k (kittens) = 0, or p = k, then
by rules of the game player 1 wins. Thus, I started with one puppy (p=1) and two kittens
(k=2). In this case, no matter what, player 2 wins. If player 1 takes the puppy, player 2
will win by taking all the kittens. Just the same, if player 1 takes all the kittens, player
2 will win by taking the puppy. If player 1 takes one puppy and one kitten, player 2
wins by taking the remaining kitten. Likewise, if player 1 takes one kitten, player 2 will
win by taking the remaining puppy and kitten. This same reasoning applies if you start
with two puppies and one kitten; player two will win every time. So what happens if
p=3 and k=17Strategically,player 1 is only one move away from p=2, k=1, which I just
examined. Player 1 has the winning edge. Player 1 just needs to take one puppy, which
forces player two to be the first player to play the p=2, k=1, which is a fatal situation to
be in. With this strategy, player 1 can win for k=1 and any number of puppies greater
than two. Similarly, player 1 can win for p=1 and any number of kittens greater than two.
This strategy also holds true when taking an equal number of puppies and kittens in a
turn. If k=3, p=2 (or vise versa), player 1 would take one from each side forcing player
two to be the first player to play k=2, p=1. Similarly, if k=4, p=3, player 1 would take
two from each side, again forcing player two to be the first player to play k=2, p=1. In
general, player 1 can win if you start k=1, p=k+1 (or p=1, k=p+1) when k is greater than
or equal to two. Therefore, in small cases of Puppies and Kittens, the position (2,1) or its
reflection (1,2) is safe for the player that leaves the game in this state at the end of his or
her turn.

These safe positions seem more applicable to the “Queen’s Move” on a chessboard in
Isaacs’s interpretation. Isaac constructed a winning strategy for cornering the queen on
boards of unbounded size by letting the cell (square) in the lower left corner, the winning

position, be the origin (0, 0) and working backwards. In this way, the chessboard can
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correspond to the first quadrant in a coordinate plane. If the queen is in the row, column
or diagonal containing (0, 0), the person who has the move can win at once. This is

represented on illustration A where three straight lines mark these cells.
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The shaded cells in figure 1 represent “safe” positions. They are “safe” because if you
occupy either one when it is your opponents turn, your opponent is forced to move to a
cell that enables you to win on the next move. Notice that the shaded cells in figure A
are at (2,1) and (1,2), where the starred cell is (0,0). These are the same “safe” positions
identified when playing Puppies and Kittens. second Figure represents the next step.
By adding six more lines to mark all the rows, columns and diagonals containing the
“safe” cells of (2,1) and (1,2), two more “safe” cells are shown at (3,5) and (5,3). If you
occupy either one of these “safe” cells at the end of your turn, your opponent is forced to
move, so that on your next move you can either win at once or move to another safe cell
closer to (0,0). Again repeating this procedure in figure 3 a third set of “safe” cells is
discovered at (7,4) or (4,7). From these illustrations, it is clear that Player 1 can always
win by placing the queen on a “safe” cell. The strategy thereafter would be to move to
another “safe” cell. If player 1 fails to move to a “safe” cell, player 2 can win by the
same strategy.

The comparisons between Wythoff’s game and Queen’s Move are obvious. The games
are mathematically equivalent even though the context is different. Each cell can be
assigned a coordinate pair (x,y). These pairs correspond to the number of counters

in piles x and y of Wythoff’s game. When the queen moves west, pile x diminishes.
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When the queen moves south, pile y diminishes. When the queen moves diagonally or
southwest, both piles diminish by the same amount. Moving the queen to cell (0,0) is
the same as reducing both piles to zero. If the starting piles are “safe”, player 2 should
win. Player 1 has no choice but to leave an unsafe pair of piles, which the opponent
can always reduce to a “safe” pair on his or her next move. If the game begins with
unsafe numbers, the first player can always win by reducing the piles to a“safe” pair and
continuing to play to “safe” pairs. From the analysis of the game thus far, it is obvious
that winning strategies can be determined by finding “safe” cells. Inevitably however,

one must ask, can we mathematically compute where the safe cells or combinations are?
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By looking at figure , it can be observed that the order of the two numbers in a
“safe” pair 1s not important. This condition says that if a position is safe, then its mirror
image when reflected across the main diagonal is also safe, i.e. the collection of safe
pairs is symmetric with respect to the main diagonal. Ordered pairs (a, b) and (b, a) are
symmetric about the main diagonal; they have the same coordinate numbers, one pair
being the reverse order of the others. Therefore, when arranging the safe pairs in a table,
one only needs to focus on the ordered pairs (cells) above the diagonal that correspond
to “safe” locations, with n representing position in the sequence, A representing the
sequence of the top numbers of the safe pairs, and B representing the sequence of the

bottom numbers of the safe pairs.

3.1.2 Sequence of safe pairs

The Sequence of Safe Pairs from Figure D

n 0 1 2 3 4 5 6 ¢ 4 8 9 10

A 0 1 3 -+ 6 8 9 11 12 14

B 0 2 5 i 10 13 15 18 20 23

In studying this table, many numerical patterns can be observed in the sequences. The
first pattern being that each B value is the sum of it’s A value and its position number
n. The second pattern is when an A value is added to its B value, the sum is an A value
that appears in the A sequence at a position number equal to B. For example, 4 + 7 =11,
and the 7th number of the A sequence is 11. Using this idea, 6 + 10 = 16, so when n =

10, sequence A is 16. The sequences can be generated by a recursive pattern. To begin
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assign 1 as the top number (the A value) of the first safe pair. Add this to its position
number to obtain 2 as the bottom number. The top number of the next pair is the smallest
integer not previously used,which, in this case, is 3.The corresponding bottom number is
then 5, which is the sum of 3 and its position number, 2. For the top of the third pair, we
need to find the smallest positive integer not yet used, which, in this case, is 4. The sum
of 4 and 3 is then 7, which is the bottom number. The top of the 4th pair would be 6 (the
only positive integer not used yet). Below it goes 10, the sum of 6 and 4. Continuing in
this way will generate all safe pairs for Wythoff’s game that every positive integer must
appear once and only once somewhere in the two sequences. Using this procedure, we
can generate additional “safe” pairs which strategically would guarantee the next player

a win in this game.
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The Sequence of Safe Pairs in Wythoff’s Game

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 | 21 22

37

38

60

62

3.1.3 Golden ratio

: The Golden Ratio, denoted by ¢ is an irrational number. It can be defined as the number
which is equal to its own reciprocal plus one ¢ = 1/¢ + 1 Multiplying both sides of this
same equation by the Golden Ratio derives the interesting property that the square of the
Golden Ratio is equal to the number itself plus one: ¢2 = ¢ + 1

Since that equation can be written as ¢> — ¢ — 1 = 0 the value of the Golden Ratio can
be derived from the quadratic formula, x = (—b + M) /2a In this casea=1, b
=-1, and ¢ = -1, which then implies that¢ = (1+/5)/2 . This is approximately either
1.618033989 or -0.618033989. The first number is usually regarded as the Golden Ratio.

Rounding down integers can be realized as the floor function. The floor function

f(x) = [x], also called the greatest integer function, gives the largest integer less than
or equal to x . Formally this means:[x] = max{n € Z : n}Therefore, [3.7] = 3,[11.5] =11,
and [—1.4] = -2

A graph of the floor function is shown below.
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Theorem 3.1.3.1. If a and B are irrational 1/ac+1/B=1 then {[o],[2],...Jand {[B],[2B],...}
are disjoint and their union is all integers.

proof:

leta=¢

B=9¢°

we know ¢ is irrational and since 9> = ¢ + 1, ¢ is also irrational
we need to show 1/¢ +1/¢% = 1

1/o+1/p+1=1

=(@+1+9)/9+¢°

=¢+0%/9+9¢°

=]

Theorem 3.1.3.2. If E(x) denote the greatest integer not greater than x then the com-
bination E[1k/2(1 4+ /5)],E[1k/2(3 4+ \/5)] k being zero or positive integer is a safe
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combination, by successively substituting k =0,1,2,....

proof:

E[1k/2(3+V/35)] — E[1k/2(1+/5)]

=[1k/2(3+/5)] — [1k/2(1 +V/5)]

=3k/24/5k/2 — 1k/2 — /5k/2

=k

so if k=0,1,2,.... we obtain series of combination , hence it will be sufficient to prove this
substitution produces once and not more than once any arbitrarily positive integer

let x denote such an integer

let o and B be smallest quantities which must be added to n a = 1/2(14++/5),B =
1/2(3+/5)

we have

oa=1/2p(1+5)—n————(1)

B=1/2q3+V5)—n————(2)

where p and q are integers

0<a<1/2(1++/5)————(3)

0<B<1/2(3+V5)————(4)

multiply (1) byl /2(—1+4+/5) and (2) byl /2(3 — \/5) and adding them we get
1/20(=14++/5)+1/2B(3—V5) =1/2p(1+/5)1/2(=1+V/3) +1/2¢(3++/5)1/2(3 -
V5)—n(—-1++5)/2—-n(3—+/5)/2
=p(—14+V5—V5+45)/4+q(—1+v/5—-5+5)/4— (n—nV/5-3n+n\/5)/2
=p+q—n

therefore we get

1/20(=14+v3)+1/2B(3—V3)=p+q—n

multiply (3) byl /2(—1+4+/5) and (4) by1/2(3—\/5)

we get) < 1/2a(—1++/5)+1/2B(3—-/5) <2
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hence the integer p+q-n can be no other than 1

28
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first forty wythoff pairs

O o0 N N B B~ W

O R N R S S N S S e S S L e e e e e
S O 0 NN N R W= O VO NN R W NN = O

29
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31 |50 | 81
32|51 83
33 53| 86
341 55| &9
35|56 | 91
36 | 58 | 94
37159 9
38161 99
39 | 63 | 102
40 | 64 | 104

interesting to observe that the first few Fibonacci numbers occur paired with
other Fibonacci numbers:

(al,bz) = (1,2), (az,bz) = (3,5), (a5,b5) = (8, 13), (a13,b13) = (21,34), (a34,b34) =
(55,89).

It is not difficult to establish that this pattern continues throughout the sequence of

Wythoff pairs, using the

fact that lim(bn/an) = aand alsolim(F,,+ 1/F,) = a and a, + b, = apn — — — —(1)

Theorem 3.1.3.3. [4]
Let G1G3,Ga,....be the Fibonacci sequence generated by a Wythoff pair{ay,b,}. Then
every pair (G1,G2)(G2,G3),.....is again a Wythoff pair.

Proof:

By construction, every Wythoff pair satisfies
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Consider the first four terms of the generated Fibonacci sequence:

an,by,an+by,a, +2b,.

According to Equation. (1)

a,+b, = apn
adding both sides by,
an+b,+b, =apn+by,
an+2b, = apn+ b,
if k =byin (2)
apn+ b, = bpn
S0 ay,by,,apn,bpn

therefore(G3,Gy) is a wythoff pair.

31



Chapter 4

N PILES /HEAP GAME

([2] is used in all subsections and theorems of chapter 4)

Given N > 2 piles of finitely many tokens py,...., py. The moves are to take any positive
number of token from a single rule or (aj,az,as,.....,ay) € ZN > 0 from all piles a;
from ith pile such that

1)a; > 0 for some i

2) a; < p;

a1 PayH....... @Pany =0

The player making the last move wins and the opponent looses

for N >3

denote the p positions for N piles by (A!,......,AN=2 AN=1 AN} where AN=2 < AN-1 <
AN and AN ' <AV In >0

so given N piles of tokens whose sizes areA! < .......
A player can remove any number of tokens from a single pile or remove (ay,as,a3, .....,ay)

tokens from all providing 0 < a; < A’

32
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YN ai>0

a @ ar @ ....... @ aN = 0
where € is nim addition denote the p postions by above equations

so given two conjectures on game when A!,.....,AVN =2 are fixed

1) there exists an integer N s.t whenn > N,
AN =AN"1+n
2) there exists integerN> and 0 s.tn > Ny, AN ! = [ng]+ €, +0p and AN =AN—1 4 p

where—1 <¢,<'1

further more AN ! = mex{AN 1 AN : 0 <i<nlUT
where T is small set of integers

we know that p positions of wythoff game can be written as [n¢], [n¢?]

Theorem 4.0.0.1. /5]

In the two conjectures of N heaps AN ' = mex{AN "1 AN : 0 <i<n}UT
where T is a finite set only on depending on A' < .......
infact T = {a: there exist b, k such that A*~1 < b < A* and(A", ... AL B AR AN=2 )
is a p position

proof:

By definition of T =Z.> 0 — {AN"1 AN 10 <i < n}

write T as the last set

Claim: T=T

we first prove that T cT

we want to show that any a € T , (A,.....,AN=2 a,b) is an N position for all N > AN=2,
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This is by defintion of T'we can always remove tokens from the last pile to create a
P-position.
Secondly given that a € T,(A',.....,AN=2 a,b) is an N position for all b > a. by the

definition of T. There are several kind of moves from this position to find a P-position:

1) remove (ay,ay,as, .....,ay) tokens from all corresponding piles where a; @ a, P ....... Pay=
0 so that

1 N-2
(A" —ay,...., A" “—ay_o,a—ay_1,b—ay)

is a P-position.

2) remove ay < A tokens from k piles so that

is a P-position.

3) remove ay_1 < a tokens from (N-1) th pile so that
(A, AN2 a—an_y,b)

is a p position .

4)remove ay < b tokens from N th pile so that
(Al,.. . AN72 a.b—ay)

is a p position .
There are only finitely many possible moves using the first three kinds of moves, but there

are infinitely many choices of b. So there are cases for the fourth kind of move, i.e.,there
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exists an integer by,by such that (A1 W ANT2 a by — by)is a P-position. Again by the
definition of T, we must have by — by < AN=2 otherwise a € {AN~1}
therefore a € T thusT C T

Since there are only finitely many choices of
b=by—by

and each choices of b can yield at most one corresponding a as in the definition of
T', T =T must be finite.

To prove the equation take a = mex{Aﬁv_] AN 0<i<nlUT

AN=Y> g as a is the smallest integer
SupposedlyAN=! £ q
since we assume A; — 1V "1 < Ai.v_l for all i so a did not appear in{A; — lN_l}i<n and
can no longer appear in {A; — 1V}, thus a cannot be in{A; — 1V} either

therefore T =7.> 0 — {Afv -1 ,A?/ : 0 <i < n} but this is contrary to the definition of a.



36

Theorem 4.0.0.2. Every Wythoff’s sequence is special.[2]

Proof. Letx, = A, — |n¢ |. By definition, we only need to prove that if m and n are large
enough, | x,, — x, | is at most 2.

By Lemma that o, below we know x,, is bounded, say, by M.

Define a function A(n) = By, +c+1 +C+ 1.

For integers m,n > A=l (np), we can construct two sequences dy, . ..... ,arand by,...... by
such that k > 2M — 1,a; = m,by = n,A,, < min(a;,b1) < Ba, +c+1+C+1,and a; =

nO

‘ i) 5 _ A (i) - (i) ()
BAai_l+C+£(5;)’+8al , bi = BAb,-,ﬁCJrfzg;) +g,’, where | <i<keé,, g, € {0,£1} and

SCE?,SZS? € {0,1}. we know

| Xa; —xp; | < max (| xq,_, —xp,_, | —1,2).

Hence

X — X | =| Xap —xp, |
< max(| xq —xp, | —(k—1),2)
< max(2M — (2M —2),2)

=2
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4.0.1 The Game NIM(a, b)

[5] For any positive integer a and b, a game NIM(a, b) is as follows.
Two piles contain x and y matches. Two players alternate turns.By one move, it is

allowed to take x and y/ matches from these two piles such that

either [x —y' | < a ormin(x,y) <b

In other words, a player can take “approximately equal” (differing by at most a-1)numbers
of matches from both piles or any number of matches from one pile but at most b-1 from
the other. This game, NIM(a, b), extends further the game NIM (a) = NIM(a, 1)
position of NIM(a, b) is a non-negative integer pair (X, y). Due to obvious symmetry,
positions (X, y) and (y, x) are equivalent. By default, we will assume that x < y.
Obviously, (0, 0) is a unique terminal position. By definition, the player entering this
position is the winner in the normal version of the game and (s)he is the loser in its
mis “ere version.

The normal version of NIM(a, b) was solved in It was shown that the P-positions (x,,y,)

are characterized by the recursion:

xn = mexp({xi,¥i|0 <i < n}),yn=x,+ap;n >0

where x, <y, and the function mex; is defined as follows: Given a finite non-empty
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subset S C ZT of m non-negative integers, let us order S and extend it by 5,11 = o
and by so = —b , to get the sequence sp < 51 < < 8y < Sp41. Obviously there is a
unique minimum i such that s; ;| —s; > b . By definition, let us set mex;(S) = s; + b; in
particular, mex,(¢) = 0.

It is easily seen that mexb is well-defined and for b = 1 it is exactly the classic minimum
excludant mex, which assigns to S the (unique) minimum non-negative integer missing
in S. Thus,mex; = mex.

Furthermore, Fraenkel solved the recursion for NIM(a, 1) and got the following explicit
formula for (x,,y,)

let

a,=1/22—a+Va*+4)

be the (unique) positive root of the quadratic equation

2>+ (a—2)z—a =0, or equivalently,
1/z+1/z4a=1

in particular

o = 1/2(14+V/5)

is the golden section and

i
Ny

(0%)

then it follows that

neZ"

Xpn = [0gn]
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and

Yn=Xpt+a,= [”(O‘a +a)]

This recursion implies the asymptotic
liminfx,(a)/n = a,

liminfy,(a)/n=0,+a

4.1 'Tribonnaci game

[5]: Wythoff Nim as the “Fibonacci game”. Duch”ene and Rigo in-troduced a new
characterization of the P-positions of Wythoff Nim, which deals with the Fibonacci word.

Given a two-letter alphabet {a,b} take the morphism

¢ :{a,b}B{a,b}"

defined as follows:

By iterating this morphism from a, we get the famous Fibonacci wordwp = (wy), > 1=

limy—see 9" ()
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wr = abaababaabaababaababaabaababa....

In this word, we will use the convention that the first letter has index 1. For X = A, B
(resp. x = a, b), we define the sets X = {X; < X < ....... } = {n € N|w, = x}Roughly
speaking, the indices of the letters a (resp. b) inwgcorrespond to the sequence(A,) (resp.
(By,)). In addition, we setAy = By = 0. According to this definition, the P-positions of
Wythoff Nim exactly correspond to the sequence (A,,By,).

For the P-positions of k-Wythoff using the morphism

Since the P-positions of Wythoff Nim are correlated to the Fibonacci word, a natural
question arose: does there exist a 3-heap game whose P-positions can becoded by the
so-called Tribonacci word wr , defined as the unique fixed-point of the morphism

o :{a,b,c}B{a,b,c}*

defined as follows:

o(a)=ab
o(b) =ac
o(c)=a

Hence wy starts with:
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wr = abacabaabacababacabaabacabacabaabacababaca......

The first values of the sequence (A,,B,,C,) derived from the Tribonacci word are a
3-heap game is built, whose P-positions exactly correspond to the sequence (A,,B,,C;)

(with all their permutations adjoined). This game has been called the Tribonacci game
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GAMES AND P POSITION

5.1 Rat game:

[6] The Rat game is played on 3 piles of tokens by 2 players who play alternately. Posi-
tions in the game are denoted throughout in the form (X, y, z), with 0 < x <y <z, and
moves in the form (x,y,z) — (u,v,w), where of course also 0 < u <v < w. The player
first unable to move — because the position is (0, 0, 0) — loses; the opponent wins.
There are 3 types of moves:

1) Take any positive number of tokens from up to 2 piles.

2)Take [ > 0 from the x pile,k > O from the y pile, and an arbitrary positive number from

the z pile, subject to the constraint |k — /| < a ,where

1, ify—x%# 0(mod7)
2, ify—x= 0(mod7)

42
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3) Take / > O from the x pile,k > Ofrom the z pile, and an arbitrary positive number from

the y pile, subject to the constraint |k —I| < b, where b = 3 if w = u; otherwise,

5, ifu—w# 4(modT7)
6, ifu—w= 04(modT7)

In a move of type (2) we permit the permutation x — v,y — w,z — u(sol = x — v,k =
¥y —w), in addition to x,y — v,z — w(l = x —u,k =y —v). No other permutations are
allowed for (2), and none (exceptx — u,y — v,z — w) for (3). For (1), any rearrangement
is possible. When we write (x,y,z) — (u, v, w), wealwaysmeanx — u,y — v,z — w. Note
that in (2), the congruence conditions depend only on 2 of the piles moved from: the
smallest and the intermediate; whereas in (3) they depend only on 2 of the piles moved to:
the smallest and the largest. The case w = u in (3) is an initial condition, to accommodate

the end position (0, 0, 0).

Example:

Given the position

P1= (17274)

If player I takes one of the piles in its entirety, player II wins with a type (1) move to ¢

:=(0, 0, 0) . If player I moves

p1— (1,2,1),1 € 1,2,3,

player II wins with a type (3) move to ¢ If player I moves

p1— (17174)
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, player II wins with a type (2) move to ¢ It’s straightforward to see that if player I makes
a move of type (1), or (2) or (3), then player II can win by moving to ¢. It follows that
p1 is a P-position.

Consider now the position

P2 = (3767 10)

. Then player I can make a type (3) move top1, so p»is an N-position. Indeed,

(10—4)—(3—1)=4<5=b.

5.2 Ratwyt game

[5] This is another game played with rational numbers (Rat-rational,wyt—Wythoff).

Given a rational number p/q in lowest terms, a step is defined by

rla— (P—a)/q

otherwise p/q > 1

p/qa— p/(g—p)

is played on a pair of reduced rational numbers (p1/q1,p2/q2) . A move consists of
either

(1) doing any positive number of steps to precisely one of the rationals, or

(i1) doing the same number of steps to both. The first player unable to play (because both

numerators are 0) loses.
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5.3 Two characterizations of the P-positions

([6] is used in following subsections ,Theorems and lemmas) Let T C# Z > 0 Define
the mex operator by mex(T) = min(Z > 0 T)= smallest nonnegative integer not in T.
Recall that the set of P-positions of a game is the set of positions for which the Previous
(second) player can win, and the set of N-positions is the set of positions for which the
Next (first) player can win. We begin with a recursive characterization of the P-positions

of the Rat game.

Theorem 5.3.0.1. The P-positions of the Rat game are given by (0, 0, 0), and for n € Z>
an = mex{a;,bi,c; : 0 <i<n}b,=a,+[(Tn—2)/4],cpn = by[(Tn—3)/2]

[}

R= U {(an,bn,cn)}

n=1
Theorem 5.3.0.2. Let p,q € Z>1 with p > q,s € Z. Then
(i) For every t € Z, the q values [(pn+s)/q|,n € {t + 1,...,t +q} are distinct (mod p).
(ii) For every k € Z,[(p(n+kq) +s)/q) = [(pn+s)/q] +kp.

proof:
(i) Let ny,ny € {t+1,....t +q},n| # ny,sayny > ny. Then 0 < (p/q) —1 < [(pny +
s)/q) = [(pn1+s)/4]
<(pn2+s—pni—s)/q
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<plma—m)/q
letny—n;=qg—1
<plg—1)/q
<plg—1)/q+1
<q

(ii) It follows that for n € {1,...,q},[(pn+s)/q| contains distinct residues
r1 < ... <ry(modp), forn € {q+1,...,2q} it contains p+ry,...,p+71q, ...,
forneq+1,...,2q it contains p+ry,...,p+rg, ...,
forne€kq+1,...,(k+ 1)q it contains kp+r1,....,kp+1,.

Theorem 5.3.0.3. Foralln € Z>,

dp = [(Tn—2)/4],8, = [(Tn—3) /2], An = dy + 5,

proof:
The assertion for d, is seen to hold for n = 1, 2, 3, 4. Therefore it holds for all Lo by

above theorem Similarly, the assertion about 0, is seen to hold for n = 1, 2, therefore it

holds for all Z>. Finally,

An=Cy—Ay = (Cy—By)+ (By—An) = Sn+d,.

Lemma 5.3.0.4. (i) Each of the sequences dy, 0,,A,is strictly increasing.
(ii) Forn € Z>, dy < 8, < A,

(iii) For n € L1, d,and 8, are disjoint . In fact

d, ={1,3,4,6}(modT7)
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O = {2,5}(mod7), and each of the residues (mod 7) of d,and O, are assumed for
infinitely many n. Also d,, > 8y = —2 6, > dp = —1 and A, = {3,1,6,4}(mod7).

(iv) Un=1(dnU 8) = Z21 /U, 1 {71}

proof:

(i) and (ii) follows from the theorem

Foralln € 2>,
dy=[(Tn—2)/4],6, =[(Tn—3)/2],An = d,+ 5,

. (iii) By inspection, this holds for n = 1, 2, 3, 4. It follows in general from theorem Let
p,q € L=y with p > q,s € L. Then

(i) For everyt € Z, the q values [(pn+s)/ql,n € {t +1,...,t +q} are distinct (mod p).
(iv) From (iii) we see that \Jt_,(d,UU2_; 8,) = {1,2,3,4,5,6} now it follows from
theoreom For every k € L, [(p(n+kq) +5)/q] = [(pn+5)/q) + kp.

Theorem 5.3.0.5. Foralln € Z>( ,a, = Ay, b, = By, c, = Cy, .In other words, the set of
triples R = U, _o{(an,bn,cn)}
proof:
We note that
(ag,bo,co) = (Ao, Bo,Cop) = (0,0,0)

. we know already that

(ambmcn) = (AmBnnd)

foralln <N.
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the sets A, B, C partition L>, and clearly

A, < B, <C,

for all n € Z>1 Therefore

Ay = mex1{A;,B;,C;: 1 <N}

. Otherwise Ay would never be attained in the complementary sets A, B, C. ThusAy = ay

Now

B,—A, = [(771 - 2)/4]

, and

Ci—By= [(7’1— 3)/2]

for alln € Z> is same as in the recursive definition of the triples

(am by, Cn)

. Hence also

By = by

, and

CNZCN
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n Ap bn Cn
0 0 0 0
1 1 2 4
2 3 0 11
3 D 9 18
4 7 13 20
5 3 16 32
) 10 20 39
7 12 23 46
8 14 27 D3
9 15 30 60
10 17 34 67
11 19 37 74
12 21 41 81
13 22 44 88
14 24 48 95
15 20 511 102
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5.4 The mouse game

([6]is used in following ) The Mouse game is played on 2 piles of tokens by 2 players
who play alternately. Analogously to the Rat game, positions are denoted in the form (x,
y), with 0 < x <y, and moves in the form (x,y) — (u,v), where of course also 0 < u <.
The player first unable to move — because the position is (0, 0) — loses; the opponent
wins. There are 2 types of moves:

1) Take any positive number of tokens from a single pile.

2)Take [ > 0 from the x pile,k > 0 subject to the constraint |k — | < a ,where

1, ify—x= 0(mod3)
2, ify—x= 0(mod3)

then we have

Theorem 5.4.0.1. The P-positions of the Rat game are given by (0, 0) and for n € 2>
Ay =mex{A;,B;:0<i<n}B,=A,+[(3n—1)/2]

Theorem 5.4.0.2. The P-positions of the Mouse game are given by (0, 0), and for
n>1,A,=[3n/2],B,=3n—1.



5.4 The mouse game

5.4.1 P-positions of the Mouse game with their differences d,,.

A dn B

n n n
0 0 0 0
1 1 1 2
2 3 2 5!
3 1 4 8
4 6 5 11
5 7 7 14
6 9 8 17
7 10 10 20
8 12 11 23
9 13 13 26

10 15 14 29
11 16 16 32
12 18 17 35
13 19 19 38
14 21 20 41
15 22 22 44



5.5 The Fat Rat Game 52

5.5 The Fat Rat Game

[6] The Fat Rat game is the case of the Rat Game played on an arbitrary number
of m € Z > 2 piles. The games for m € {2,3} were analyzed in the previous sec-
tions. The P-positions for m = 4 are given down This follows the general rule of
Ak =T[(@2m —1)n/2mK —2k=1 4 1,k =1,2,.....mn >. It is not hard to see that for m = 4,

the differences d’, = Ait1 — Al are

dl =[15n—4/8]
d? =[15n—6/4]
d} =[15n—-17/2]
and

U;ozl{d}lvdgadgv{lsn}} = Z21

for the Fat Rat game,

2m —1/2m=1 =1,1,2"~! —1]. So we have the P positions. But what are the game
rules? Even for the case m = 4, there are various possibilities to be checked out. It
appears that 4 types of moves are required. Perhaps the case m = 4 will point to the game
rules for general m. It appears that the transition from 3 to 4 piles is a stumbling block in
a number of games. This seems to be the case, for example, for the 3-pile Tribonacci
game, based on the Tribonacci word .The P-positions of the 3-pile Raleigh game are, for

alln € Zzo

Ap = [[n®]P]
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B, = [n®?]

Cy = [[nP?] D]

where ¢ = (1++/5)/2 (golden section). A natural generalization to m > 3piles may also

be nontrivial.
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n Al dl A? d? A3 d3 Al An
1 1 1 2 2 4 4 8 7

2 3 3 6 6 12 11 23 20
3 5 5 10 9 19 19 38 33
4 7 7 14 13 27 26 53 46
5 9 8 17 17 34 34 68 59
6 11 10 21 21 42 41 83 72
7 13 12 25 24 49 49 98 85
8 15 14 29 28 57 56 113 98
9 16 16 32 32 64 64 128 112
10 18 18 36 36 72 71 143 125
11 20 20 40 39 79 79 158 138
12 22 22 44 43 87 86 173 151
13 24 23 47 47 94 94 188 164
14 26 25 51 51 102 101 203 177
15 28 27 b6 54 109 109 218 190
16 30 29 59 58 117 116 233 203

5.6 Wythoff arrays , shuffles and interspersions

([7] Is used in following subsections and Theorems and lemmas in 5.6) wythoff arrays:
A sequence a of positive integers is arrayable if the following properties hold:
@ a(l)=1,

(ii) a is strictly increasing

(iii) the complement with respect to the set of positive integers of the set {a(n)} is infinite.

(iv) Suppose a is an arrayable sequence. Let b be the sequence formed by placing in

increasing order the complement of the set {a(n)}. The Wythoff array of a is the array
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W(,j) with elements w(i,j) defined by

a(w(i,j—1)), ifjisoddandj>3
b(w(i,j—2)), ifjisevenand j>4

w(i, J) =

fori=l2, . ..

Lemma 5.6.0.1. LetW = W (i, j) be the Wythoff array of an arrayable sequence a. The

rows of W are given by

w(i,2t — 1) = ab''a(i)
and

w(i,2t) = b'a(i)

forall it > 1
Proof:

For any positive integer i

as claimed fort = 1.

fort > 1w(i,2(t+1)—1)
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=w(i,2t+1)
= aw(i,2t)

= ab'a(i)

w(i,2(t+1))
=w(i,2t+2)
= bw(i,2t)
= b a(i)

Theorem 5.6.0.2. Suppose W = W (i, j)is the Wythoff array of an arrayable sequence a.
The sequences {w(i,j): j > 1},for i=1,2,3 ,..., partition the set of positive integers
Proof:

We shall show inductively that every n does occur in W. by Definition (iii) there is a
smallest iy for which a(io) > io. Thus w(i,1) = a(i) =ifor 1 <i <.

Now suppose, for arbitrary k > ig, that everyl < k is in W. Since a and b are complemen-
tary, there exists m such that k = a(m) or k = b(m). Sincem < k, the induction hypothesis
implies, by Lemma that m has the form ab'a(i) or = b'a(i) for t > O and i<m, so that
there are four cases:

Case 1:

k = a(m) and m = ab'a(i)

k=a(ab'a(i))

= a*(V'a(i))

=w(b'a(i),1)

Case 2:
k = a(m) and m = b'a(i)
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k=a(b'a(i))
= ab'a(i)
=w(i,2t+1)

Case 3:

k =b(m) and m = ab'a(i)
k=b(ab'a(i))

= ba(b'a(i))
=w(b'a(i),2)

Case 4:

k = b(m) and m = b'a(i)
k=b(ba(i))

= bb'a(i)

= b a(i)
=w(i,2t+2)

Thus k is in W and, by induction, every positive integer is in W. Next we show that
the numbers w(i, j) are distinct. by Lemma it suffices to show that none of the following
equations can hold:

2) ab?~'a(i) = bPa(})

3)ab*~la(i) = ab'~a(})

4)b%a(i) = b'a(}j)

for positive integers i, j, p, q, s and t with s < t. Now (2) contradicts the disjointness of a

and b. Since a and b are increasing, (3) implies

a(i) =b'""a(j)
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, and the same is implied by (4), which again contradicts the disjointness of a and b.

 Shuffles and interspersions Suppose A =A(i,j) is an array of distinct real numbers.
For any positive integer k > 2, we define an array ¢;(A) called the k-shuffle of A.
Beginning with k = 2, separate every row (r;) of A into two sequences: the sequence
r1,13,rs,... of terms with ascending odd indices, and the sequence r,,r4,rg, ... of
terms with ascending even indices. Arrange the set of all such sequences in rows
so that the sequence of their first terms forms an increasing sequence. The array
thus determined is the 2-shuffle of A.

Let s be the ordered complement of the first column of an interspersion A. In it

is shown that a(i,j) = s(a(i, j- 1)) for all i > 1 and all j >> 2. Because of this

property, A is said to be the dispersion of s.

Lemma 5.6.0.3. Suppose A = A(i, j)is an interspersion. if a(i,j) < a(i,j )then

a(i, j+1) <a(i',j +1) for every positive integer 1.

Proof. if p=a(i,j) and g = a(i’, j’) Let s denote the sequence of which A is the dispersion.
Since p < gand s is strictly increasing, we have s(p+m) —s(p+m—1) > 1 form= 1,2,
. ... g-p- Adding these g-p inequalities gives

=s(p+q—p)—s(p+q—p—1)

=s(q) —s(g—1)

we know p=q-1

=s(q)—s(p) 2 q—p

implies s(a(i, /) —a(i, j) <s(a(i’,j)) —ali'.J)
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a(i,j+1)—a(i,j) <a(i,j +1)—a(i,j)
now by induction

a(i,j+10) —a(i,j) <a(i,j +1)—a(i,j)
ai,j+1) <a(i,j +1)—ali,j)+a(i,j)

for every positive integer 1.

59



Chapter 6

ANALYSIS AND CONCLUSIONS

In Chapter 2 we have seen examples and seen how we can generate wythoff pairs using
various kinds of sequences like the fibonacci word pattern, the tribonacci word pattern .
we have seen that the word pattern we get is increasing sequence which is termed as the

alpha and omega generation of pairs.

In Chapter 3 we have introduced the puppy kitten games which is famous as queen
cornering game which basically talks about stratergies of wining the game using a certain
pair of sequence called the safe pairs.basically finding safe pairs of sequence using the

golden ratio.

In Chapter 4 talks about the n piles of heap what are the stratergies concerning us to
take a particular move using the definition of n piles and proving theorem based on it
saying every wythoff sequence is special .further we add on to the tribonacci game which

is played using three piles.

Chapter 5 here we focus on different types of games which has similar type of name
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the rat, ratwyt,mouse and fat rat game so the difference is rat game uses three piles and
mouse game uses two piles where as ratwyt ant fat rat games are basically of the type
p/q.

here basically all chapters focus on winning stratergies on how a player can make sure
the number he or she is taking is correct.

Structural properties and behaviors of Wythoff’s sequence are investigated. The main
result is that for such a sequence, there always exists an integer such that when n is large
enough, A, where a@ = (1+4+/5)/2, the golden section. The value of can also be easily
determined by a relatively small number of pairs in the sequence. As a corollary, the two

conjectures on the N-heap Wythoff’s.
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