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Preface 

This Project Report has been prepared in the partial fulfilment of the requirement for the 

Subject: MAT-651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics 

in the academic year 2023-2024. 

    The topic assigned for the research report is: “Some Theorems in Partition Theory”. This 

survey is divided into six chapters. Each chapter has its own relevance and importance. The 

chapters are divided and defined in a logical, systematic and scientific manner to cover 

every nook and corner of the topic. 

First Chapter: 

  The Introductory stage of this Project report is based on overview of the Partition theory 

and a small history about Rogers-Ramanujan identity. 

Second Chapter: 

  This chapter deals with the detail proof of first known Rogers-Ramanujan identity i.e. 

Modulo 5. In this chapter we have explained the modulo 5 identities in detail by 

Analytically and Combinatorically. 

Third Chapter: 

   In this chapter we have introduced a Ramanujan’s Theta function and some different 

notation which can be used to prove the different identities. Also here we have introduced 

about Jacobi’s triple product identity and some general transformations. 

Also we have introduced some identities from Lucy Slater’s famous list of Rogers-

Ramanujan type Identities. 

Fourth Chapter: 

 In this chapter we have given three new partition theorems of the classical Rogers-

Ramanujan type which are very much in the style of MacMahon. These are a continuation of 

four theorems of the same kind given recently by the second author. One of these new 

theorems, very similar to one of the original Rogers-Ramanujan MacMahon type theorems 

is as follows: Let C(n) denote the number of partition of n into parts congruent to 

±2,±3,±4,±5,±6,±7(𝑚𝑜𝑑20). Let D(n) denote the number of partitions of n of the form 𝑛 = 𝑏1 +

𝑏2 +⋯+ 𝑏𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝑏𝑡 ≥ 2, 𝑏𝑖 ≥ 𝑏𝑖+1, and, if  

1 ≤ 𝑖 ≤ [
𝑡 − 2

2
] , 𝑏𝑖 − 𝑏𝑖+1 ≥ 2 

Then C(n)=D(n) for all n. 

 



 
 

 
 

Fifth Chapter: 

    In this Chapter the following theorem is proved and generalized. 

The partitions of any integer, n, into parts of the forms 6m, 6m+2, 6m+3, 6m+4 are 

equinumerous with those partitions of n into parts ≥ 2 which neither involve sequences 

nor allow any part to appear more than twice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my gratitude to my Mentor, Dr. Manvendra 

Tamba, who was a continual source of inspiration. He pushed me to think imaginatively 

and urged me to do this homework without hesitation. His vast knowledge, extensive 

experience, and professional competence in “Number Theory” enabled me to successfully 

accomplish this project. This endeavor would not have been possible without his help and 

supervision.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

ABSTRACT 

The most famous of the “Series = Product” identities are  

For   |𝑞| < 1 

   

∑
𝑞𝑛

2

(𝑞; 𝑞)𝑛
= ∏

1

1 − 𝑞𝑛

∞

𝑛=1
𝑛≢0,±2(𝑚𝑜𝑑5)

∞

𝑛=0

=
(𝑞2, 𝑞3, 𝑞5; 𝑞5)∞

(𝑞; 𝑞)∞
 

And  

∑
𝑞𝑛

2+𝑛

(𝑞; 𝑞)𝑛
= ∏

1

1 − 𝑞𝑛

∞

𝑛=1
𝑛≢0,±1(𝑚𝑜𝑑5)

∞

𝑛=0

=
(𝑞, 𝑞4, 𝑞5; 𝑞5)∞
(𝑞; 𝑞)∞

 

Where  

       (𝑞; 𝑞)𝑛 = ∏ (1 − 𝑞𝑗) 𝑎𝑛𝑑 (𝑞; 𝑞)∞ =  ∏ (1 − 𝑞𝑗)   ∞
𝑗=1  𝑛

𝑗=1  

 and  

     (𝑎1, 𝑎2, 𝑎3, … 𝑎𝑠; 𝑞)∞ = (𝑎1; 𝑞)∞(𝑎2; 𝑞)∞……(𝑎𝑠; 𝑞)∞ 

Which are known as the celebrated original Rogers-Ramanujan Identities. These two 

identities have motivated extensive research over the past hundred years. They were first 

proved by L. J. Rogers in 1894 that was completely ignored. They were rediscovered 

without proof by Ramanujan sometimes before 1913. Also in 1917, these identities were 

rediscovered and proved independently by Issai Schur. There are now many different 

proofs of these identities. In the ensuing decades, numerous identities that are similar to 

the Rogers-Ramanujan Identities has been discovered by several eminent mathematicians 

like Jackson, W. N. Bailey, G. E. Andrews, L. J. Slater, A. K. Agarwal, etc.   

   The Rogers-Ramanujan Identities have two aspects: one analytical and the other is 

combinatorial. In this paper, some identities of Rogers-Ramanujan Type related to modulo 

5, 7,8 and 10 has been derived by using some general transformation between Basic 

Hypergeometric Series and with the incorporation of some identities from Lucy Slaters 

famous list of 130 identities of Rogers-Ramanujan type.  

 

Key words: Rogers-Ramanujan Identity, Slaters Identity, Basic Hypergeometric Series, 

Jacobi’s Triple Product Identity, Bailey Pair etc.  
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Chapter 1: The Fundamentals of Partition Theory 

                      (All the material in this chapter is taken from [4]) 

1.1 Partition of Numbers  
Definition 1.1. A partition of a positive integer n is a finite non-increasing sequence 

of positive integers whose sum is n. 

Definition 1.2. A partition of a positive integers n is finite non-increasing sequence of 
positive integers 𝜆1, 𝜆2, … , 𝜆𝑟  such that ∑ 𝜆𝑖 = 𝑛.

𝑟
𝑖=1  The 𝜆𝑖  are called the parts of the 

partition. 

Definition 1.3. The partition function 𝑝(𝑛) denotes the number of partition of n. 

 
Remark: Obviously 𝑝(𝑛) = 0 where n is negative. We shall set 𝑝(0) = 1 with the 

observation that the empty sequence form the only partition of zero. 
 The following table list the partitions of n and the value of 𝑝(𝑛) for n up to 6  

N Partition of n  𝒑(𝒏) 
1 1 1 
2 2,1+1 2 
3 3,2+1,1+1+1 3 
4 4,3+1,2+2,2+1+1,1+1+1+1 5 
5 5,4+1,3+2,3+1+1,2+2+1,2+1+1+1,1+1+1+1+1 7 
6 6,5+1,4+2,4+1+1,3+3,3+1+1,2+1+1+1+1,2+3+1,2+2+2,2+2+1+1,1+1+

1+1+1+1 
11 

 

Remark: We can also write partition of number in this way as well. 

 Consider the partition of 10: 

     10 = 1 + 1 + 1 + 2 + 2 + 3 

This can be written as  

                   3(1) + 2(2) + 1(3)  

P(n) is called “usual” partition function. It counts the partitions in which “parts” are any 

natural numbers and “number of times parts are repeated is any whole no.” 

 

1.2 Graphical Representation of Partitions: 
    Another effective elementary device for studying partition is the graphical 

representation. To each partition 𝜆 is  its graphical representation 𝒢𝜆 (or Ferrer’s 

graph), which formally is the set of point with integral co-ordinate (𝑖, 𝑗) in the plane 

such that if 𝜆 = 𝜆1, 𝜆2, … , 𝜆𝑛 𝑡ℎ𝑒𝑛 (𝑖, 𝑗) ∈ 𝒢𝜆  if and only if 0 ≥ 𝑖 ≥ −𝑛 + 1, 0 ≤ 𝑗 ≤
𝜆|𝑖|+1 − 1. 
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  Rather than dwell on this formal definition, we shall by means of a few example, 

fully explain the graphical representation. 

 The graphical representation of the partition 8 + 5 + 5 + 2 + 1 + 1 is  

                    .  .  .  .  .  .  .  . 
           .  .  .  .  . 
            .  .  .  .  . 

            .  .  

            . 

            .  
The graphical representation of the partition 7 + 3 + 3 + 2 + 1 + 1 is  

           .  .  .  .  .  .  .   

           .  .  .   

           .  .  .   

           .  .  

           . 

           .  
Note that the 𝑖𝑡ℎ row of the graphical representation of (𝜆1, 𝜆2, … , 𝜆𝑛) contains 𝜆𝑖  points (or 

dots or nodes).  

Definition 1.4. If 𝜆 = 𝜆1, 𝜆2, … , 𝜆𝑛 is a partition, we may define a new partition 𝜆′ =

𝜆1
′, … , 𝜆𝑚

′ by choosing 𝜆𝑖
′ as the number of parts of 𝜆 that are ≥ 𝑖. The partition 𝜆′ is called 

the conjugates of 𝜆. 

    While the formal definition of conjugate is not too revealing. We may better understand 

the conjugate by using graphical representation. From the definition, we see that the 

conjugate of the partition 8 + 6 + 6 + 5 + 1  is 5 + 4 + 4 + 4 + 3 + 1 + 1 

The graphical representation of 8 + 6 + 6 + 5 + 1  is  

                      



 
 

3 
 

 

 

 

           .  .  .  .  .  .  .  . 

           .  .  .  .  .   . 

           .  .  .  .  .   . 

           .  .  .  .  . 

           . 
And the conjugate of this partition is obtained by counting the dots in successive columns; 

i.e., the graphical representation of the conjugate is obtained by reflecting the graph in the 

main diagonal. Thus the graph of the conjugate partition is  

                 .  .  .  .  .   

          .  .  .  .   

          .  .  .  .   

          .  .  .  . 

          .  .  .  . 

          .  .  . 

          . 

                 . 
Notice that not only does the graphical representation provided a simple method by which 

to obtain the conjugate of 𝜆, but it also shows directly that the conjugate partition 𝜆′ is a 

partition of the same integers as 𝜆 is; that is,           ∑ 𝜆𝑖 = ∑𝜆𝑖
′ .  

Furthermore, it is clear that conjugation is an involutions of the partitions of any integer in 

that the conjugate of the conjugate of 𝜆 is again 𝜆. 

Let us now prove some theorems on partition, using graphical representation.  
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Theorem 1:  

            The number of partitions of n with at most m parts equals the number of partitions of 

n in which no parts exceeds m. 

We proof this using an example  

   Let us consider the partition of 6, first into at most three parts and then into parts none of 

which exceeds 3.  

We shall list conjugate opposite each other  

         6                                 1+1+1+1+1+1 

      5+1                                2+1+1+1+1 

      4+2                                2+2+1+1 

      4+1+1                            3+1+1+1 

      3+3                                3+2+1 

      3+2+1                            3+3 

      2+2+2 

Theorem 1 is quite useful and shows how a graphical representation can be used directly to 

obtain important information. 

1.3:  Generating Function: 

     Note: 

1. 
1

1−𝑥
= 1 + 𝑥 + 𝑥2 + 𝑥3 +⋯   

2. 
1

1−𝑥𝑛
= 1 + 𝑥𝑛 + 𝑥2𝑛 + 𝑥3𝑛 +⋯ 

Consider  

∏
1

(1 − 𝑥𝑛)

∞

𝑛=1

=
1

1 − 𝑥
.
1

1 − 𝑥2
.
1

1 − 𝑥3
.
1

1 − 𝑥4
…  

                      = (1 + 𝑥1(1) + 𝑥2(1) + 𝑥3(1) +⋯)(1 + 𝑥1(2) + 𝑥2(2) + 𝑥3(2) +⋯)(1 + 𝑥1(3)

+ 𝑥2(3) + 𝑥3(3) +⋯)(1 + 𝑥1(4) + 𝑥2(4) + 𝑥3(4) +⋯)… 

                         = 1 + (𝑥1(1)) + (𝑥1(2) + 𝑥2(1)) + (𝑥1(3) + 𝑥3(1) + 𝑥1(1)+1(2))+… 

                         = 1 + 𝑝(1)𝑥 + 𝑝(2)𝑥2 + 𝑝(3)𝑥3 +⋯   
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                     = 1 + ∑ 𝑝(𝑛)𝑥𝑛∞
𝑛=1  

A function 𝑓: ℕ ⟶ ℂ which requires counting of partitions to calculate 𝑓(𝑛) is called 

partition function,  𝑝(𝑛) is called “usual “ partition function .  

The series  

𝐹(𝑥) = 1 +∑𝑝(𝑛)𝑥𝑛
∞

𝑛=1

 

Is called the “generating function” of 𝑝(𝑛). 

Remarks: 

1. Let 𝑝1(𝑥) = number of partition of n into distinct parts . 

Then the generating function is  

𝑝1(𝑥) =∏(1 + 𝑥𝑛)

∞

𝑛=1

 

2. Let 𝑝2(𝑥) =number of partition of n into parts repeated at most twice. 

𝑝2(𝑥) =∏(1 + 𝑥𝑛 + 𝑥2𝑛)

∞

𝑛=1

 

3. 𝑝3(𝑥) = number of partition of n into odd parts  

 𝑝3(𝑥) =∏
1

(1 − 𝑥2𝑛−1)

∞

𝑛=1

 

 

4. 𝑝4(𝑥) =number of partition of n into odd and distinct parts  

𝑝4(𝑥) =∏(1+ 𝑥2𝑛−1)

∞

𝑛=1

 

Remarks: To show that two partition function are equal it suffices to show that their 

generating function are equal. 

 

Theorem 2:  

     The number of partition of n into unequal parts is equal to the number of partitions into 

odd parts. 

Proof:  

                              (1 + 𝑥)(1 + 𝑥2)(1 + 𝑥3)… =
(1−𝑥2)

(1−𝑥)
.
(1−𝑥4)

(1−𝑥2)
.
(1−𝑥6)

(1−𝑥3)
… 
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                                                                                   =
1

(1−𝑥)(1−𝑥3)(1−𝑥5)(1−𝑥7)…
 

1.4 The Rogers-Ramanujan Identities: 
   We end this chapter with two identities which are known as the celebrated 

original Rogers-Ramanujan identities: 

For   |𝑞| < 1 

   

∑
𝑞𝑛

2

(𝑞; 𝑞)𝑛
= ∏

1

1 − 𝑞𝑛

∞

𝑛=1
𝑛≢0,±2(𝑚𝑜𝑑5)

∞

𝑛=0

=
(𝑞2, 𝑞3, 𝑞5; 𝑞5)∞

(𝑞; 𝑞)∞
 

And  

∑
𝑞𝑛

2+𝑛

(𝑞; 𝑞)𝑛
= ∏

1

1 − 𝑞𝑛

∞

𝑛=1
𝑛≢0,±1(𝑚𝑜𝑑5)

∞

𝑛=0

=
(𝑞, 𝑞4, 𝑞5; 𝑞5)∞
(𝑞; 𝑞)∞

 

Where  

       (𝑞; 𝑞)𝑛 = ∏ (1 − 𝑞𝑗) 𝑎𝑛𝑑 (𝑞; 𝑞)∞ =  ∏ (1 − 𝑞𝑗)   ∞
𝑗=1  𝑛

𝑗=1  

 and  

     (𝑎1, 𝑎2, 𝑎3, … 𝑎𝑠; 𝑞)∞ = (𝑎1; 𝑞)∞(𝑎2; 𝑞)∞……(𝑎𝑠; 𝑞)∞ 

These two identities have motivated extensive research over the past hundred years. They 

were first proved by L. J. Rogers in 1894 that was completely ignored. They were 

rediscovered without proof by Ramanujan sometime before 1913. 

Also in 1917, these identities were rediscovered and proved independently by Issai Schur. 

There are many different proofs of these identities. In the ensuring decades, numerous 

identities that are similar to the Rogers-Ramanujan identities has been discovered by 

several eminent mathematicians like Jackson. N. Bailey, G.E. Andrews, L. J. Slaters, A. K. 

Agrawal, etc. 

The Rogers-Ramanujan identities have two aspects: one analytical and the other is 

combinatorial. Some identities of Rogers-Ramanujan type related to modulo 6,7 and 10 has 

been derived by using some general transformation between basic hypergeometric series 

and with the incorporation of some identities from Lucy Slater’s famous list of 130 

identities of Rogers-Ramanujan type. 
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Chapter 2. The Rogers-Ramanujan Identity  

2.1 Introduction: 

       The so-called Rogers-Ramanujan identities were sent by Ramanujan to Hardy nearly 

100 years ago. In the next few years, the identities were circulated amongst 

mathematician, but nobody, including Ramanujan, was able to prove them. Then one 

day, while rifling through old back copies of a journal, Ramanujan himself discovered 

them in an obscure paper written in 1894 by the English mathematician Rogers. This 

spurred both Rogers and Ramanujan to provide simpler proofs of the identities, that 

were published in 1919.       

In these chapter will prove Rogers –Ramanujan identity modulo 5 by two ways, 

1. Analytical proof and  

2. Combinatorial interpretation  

2.2.  Analytical Proof: 

Theorem 2.1: 

𝟏 +
𝒙

𝟏 − 𝒙
+

𝒙𝟒

(𝟏 − 𝒙)(𝟏 − 𝒙𝟐)
+

𝒙𝟗

(𝟏 − 𝒙)(𝟏 − 𝒙𝟐)(𝟏 − 𝒙𝟑)
+⋯

=
𝟏

(𝟏 − 𝒙)(𝟏 − 𝒙𝟔)… (𝟏 − 𝒙𝟒)(𝟏 − 𝒙𝟗)…
 

i.e.                                       

𝟏 + ∑
𝒙𝒎

𝟐

(𝟏 − 𝒙)(𝟏 − 𝒙𝟐)… (𝟏 − 𝒙𝒎)
=∏

𝟏

(𝟏− 𝒙𝟓𝒎+𝟏)(𝟏 − 𝒙𝟓𝒎+𝟒)

∞

𝒎=𝟎

∞

𝒎=𝟏

          (𝟏) 

Theorem 2.2: 

𝟏 +
𝒙𝟐

𝟏 − 𝒙
+

𝒙𝟔

(𝟏 − 𝒙)(𝟏 − 𝒙𝟐)
+

𝒙𝟏𝟐

(𝟏 − 𝒙)(𝟏 − 𝒙𝟐)(𝟏 − 𝒙𝟑)
+⋯

=
𝟏

(𝟏 − 𝒙𝟐)(𝟏 − 𝒙𝟕)… (𝟏 − 𝒙𝟑)(𝟏 − 𝒙𝟖)…
 

i.e. 

𝟏 + ∑
𝒙𝒎(𝒎+𝟏)

(𝟏 − 𝒙)(𝟏 − 𝒙𝟐)… (𝟏 − 𝒙𝒎)
=∏

𝟏

(𝟏− 𝒙𝟓𝒎+𝟐)(𝟏 − 𝒙𝟓𝒎+𝟑)

∞

𝒎=𝟎

∞

𝒎=𝟏

          (𝟐) 
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Proof: Proof of Theorem 2.1 and Theorem 2.2. 

   We write 

𝑃0 = 1,𝑃𝑟 =∏
1

1 − 𝑥𝑠
,   𝑄𝑟 = 𝑄𝑟(𝑎) =∏

1

1 − 𝑎𝑥𝑠
,

∞

𝑠=𝑟

𝑟

𝑠=1

 

              

𝜆(𝑟) =
1

2
𝑟(5𝑟 + 1), 

 

And define the operator 𝜂 by  

𝜂𝑓(𝑎) = 𝑓(𝑎𝑥) 

 

We introduce the auxiliary function  

𝐻𝑚 = 𝐻𝑚(𝑎) =∑(−1)𝑟𝑎2𝑟𝑥𝜆(𝑟)−𝑚𝑟(1 − 𝑎𝑚𝑥2𝑚𝑟)𝑃𝑟𝑄𝑟             (𝑖)

∞

𝑟=0

 

Where 𝑚 = 0, 1, 2. Our object is to expand 𝐻1 𝑎𝑛𝑑 𝐻2 in powers of a.  

We first prove that 

𝐻𝑚 − 𝐻𝑚−1 = 𝑎
𝑚−1𝜂𝐻3−𝑚   (𝑚 = 1,2)               (𝑖𝑖) 

Where  

𝐻𝑚 =∑(−1)𝑟𝑎2𝑟𝑥𝜆(𝑟)−𝑚𝑟(1 − 𝑎𝑚𝑥2𝑚𝑟)𝑃𝑟𝑄𝑟

∞

𝑟=0

 

            𝐻𝑚−1 =∑(−1)𝑟𝑎2𝑟𝑥𝜆(𝑟)−(𝑚−1)𝑟(1 − 𝑎𝑚−1𝑥2(𝑚−1)𝑟)𝑃𝑟𝑄𝑟

∞

𝑟=0

 

𝐻𝑚 −𝐻𝑚−1 = (∑(−1)𝑟𝑎2𝑟𝑥𝜆(𝑟)−𝑚𝑟(1 − 𝑎𝑚𝑥2𝑚𝑟)𝑃𝑟𝑄𝑟

∞

𝑟=0

)

− (∑(−1)𝑟𝑎2𝑟𝑥𝜆(𝑟)−(𝑚−1)𝑟(1 − 𝑎𝑚−1𝑥2(𝑚−1)𝑟)𝑃𝑟𝑄𝑟

∞

𝑟=0

) 
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    = ∑(−1)𝑟𝑎2𝑟{𝑥𝜆(𝑟)−𝑚𝑟(1 − 𝑎𝑚𝑥2𝑚𝑟) − 𝑥𝜆(𝑟)−(𝑚−1)𝑟(1 − 𝑎𝑚−1𝑥2(𝑚−1)𝑟)}𝑃𝑟𝑄𝑟

∞

𝑟=0

 

=∑(−1)𝑟𝑎2𝑟{𝑥𝜆(𝑟). 𝑥−𝑚𝑟(1 − 𝑎𝑚𝑥2𝑚𝑟) − 𝑥𝜆(𝑟)𝑥−(𝑚−1)𝑟(1 − 𝑎𝑚−1𝑥2(𝑚−1)𝑟)}. 𝑃𝑟𝑄𝑟

∞

𝑟=0

 

=∑(−1)𝑟𝑎2𝑟𝑥𝜆(𝑟){𝑥−𝑚𝑟 − 𝑎𝑚𝑥−𝑚𝑟+2𝑚𝑟 − 𝑥−(𝑚−1)𝑟 + 𝑎𝑚−1. 𝑥−(𝑚−1)𝑟 . 𝑥2(𝑚−1)𝑟}. 𝑃𝑟𝑄𝑟

∞

𝑟=0

 

=∑(−1)𝑟𝑎2𝑟𝑥𝜆(𝑟){𝑥−𝑚𝑟 − 𝑎𝑚𝑥𝑚𝑟 − 𝑥−(𝑚−1)𝑟 + 𝑎𝑚−1. 𝑥(𝑚−1)𝑟}. 𝑃𝑟𝑄𝑟

∞

𝑟=0

 

⟹𝐻𝑚 −𝐻𝑚−1 =∑(−1)𝑟𝑎2𝑟𝑥𝜆(𝑟)𝐶𝑚𝑟𝑃𝑟𝑄𝑟                           (∗)

∞

𝑟=0

 

Where  

𝐶𝑚𝑟 = 𝑥
−𝑚𝑟 − 𝑎𝑚𝑥𝑚𝑟 − 𝑥−(𝑚−1)𝑟 + 𝑎𝑚−1. 𝑥(𝑚−1)𝑟  

𝐶𝑚𝑟 = 𝑎
𝑚−1𝑥𝑟(𝑚−1)(1 − 𝑎𝑥𝑟) + 𝑥−𝑚𝑟(1 − 𝑥𝑟) 

Now,  

𝑄𝑟 =∏
1

1 − 𝑎𝑥𝑠

∞

𝑠=𝑟

 

                                =
1

(1 − 𝑎𝑥𝑟)(1 − 𝑎𝑥𝑟+1)…
 

𝑄𝑟+1 = ∏
1

(1 − 𝑎𝑥𝑟+1)(1 − 𝑎𝑥𝑟+2)…

∞

𝑠=𝑟+1

 

 

(1 − 𝑎𝑥𝑟)𝑄𝑟 = 𝑄𝑟+1                                   (𝑎) 

𝑃𝑟 =∏
1

1 − 𝑥𝑠
=

1

(1 − 𝑥)
.

1

(1 − 𝑥2)
.

1

(1 − 𝑥3)
…

1

(1 − 𝑥𝑟)

𝑟

𝑠=1

 

𝑃𝑟−1 =∏
1

1− 𝑥𝑠
=

1

(1 − 𝑥)(1 − 𝑥2)(1 − 𝑥3)… (1 − 𝑥𝑟−1)

𝑟−1

𝑠=1

 

𝑃𝑟 =
1

(1 − 𝑥𝑟)
. 𝑃𝑟−1 
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(1 − 𝑥𝑟)𝑃𝑟 = 𝑃𝑟−1, (1 − 𝑥
0)𝑃0 = 0                 (𝑏) 

and so now (*) using (a) and (b) 

𝐻𝑚 −𝐻𝑚−1 =∑(−1)𝑟𝑎2𝑟𝑥𝜆(𝑟)𝐶𝑚𝑟𝑃𝑟𝑄𝑟  

∞

𝑟=0

 

= ∑(−1)𝑟𝑎2𝑟+𝑚−1𝑥𝜆(𝑟)+𝑟(𝑚−1). 𝑃𝑟𝑄𝑟+1 +∑(−1)𝑟𝑎2𝑟𝑥𝜆(𝑟)−𝑚𝑟𝑃𝑟−1𝑄𝑟

∞

𝑟=0

∞

𝑟=0

 

In the second sum on the right-hand side of this identity we change r into r+1 

Thus  

𝐻𝑚 −𝐻𝑚−1 =∑(−1)𝑟𝑎2𝑟+𝑚−1𝑥𝜆(𝑟)+𝑟(𝑚−1). 𝑃𝑟𝑄𝑟+1

∞

𝑟=0

+∑(−1)𝑟+1𝑎2(𝑟+1)𝑥𝜆(𝑟+1)−𝑚(𝑟+1)𝑃(𝑟+1)−1𝑄𝑟+1

∞

𝑟=0

 

= ∑(−1)𝑟[𝑎2𝑟+𝑚−1. 𝑥𝜆(𝑟)+𝑟(𝑚−1) − 𝑎2(𝑟+1). 𝑥𝜆(𝑟+1)−𝑚(𝑟+1)]𝑃𝑟𝑄𝑟+1

∞

𝑟=0

 

𝐻𝑚 − 𝐻𝑚−1 =∑(−1)𝑟𝐷𝑚𝑟𝑃𝑟𝑄𝑟+1

∞

𝑟=0

 

Where  

𝐷𝑚𝑟 = 𝑎
2𝑟+𝑚−1. 𝑥𝜆(𝑟)+𝑟(𝑚−1) − 𝑎2(𝑟+1). 𝑥𝜆(𝑟+1)−𝑚(𝑟+1) 

      = 𝑎2𝑟+𝑚−1. 𝑥𝜆(𝑟)+𝑟(𝑚−1) − 𝑎2𝑟+2. 𝑥𝜆(𝑟+1)−𝑚(𝑟+1) 

= 𝑎𝑚−1+2𝑟 . 𝑥𝜆(𝑟)+𝑟(𝑚−1)(1 − 𝑎3−𝑚𝑥(2𝑟+1)(3−𝑚)) 

= 𝑎𝑚−1𝜂{𝑎2𝑟𝑥𝜆(𝑟)−𝑟(3−𝑚)(1 − 𝑎3−𝑚𝑥2𝑟(3−𝑚))} 

∵ 𝜆(𝑟 + 1) − 𝜆(𝑟) =
1

2
(𝑟 + 1)[5𝑟 + 5 + 1] −

1

2
𝑟(5𝑟 + 1)      (𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛)

=
1

2
{(𝑟 + 1)(5𝑟 + 6) − 𝑟(5𝑟 + 1)} 

                                          =
1

2
{5𝑟2 + 6𝑟 + 5𝑟 + 6 − 5𝑟2 − 𝑟} 

                                          =
1

2
{11𝑟 + 6 − 𝑟} 

                                          =
1

2
{10𝑟 + 6} 
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                                          = 5𝑟 + 3  

Also 𝑄𝑟+1 = 𝜂𝑄𝑟  and so  

𝐻𝑚 − 𝐻𝑚−1 = 𝑎
𝑚−1𝜂∑(−1)𝑟𝑎2𝑟𝑥𝜆𝑟−𝑟(3−𝑚). (1 − 𝑎3−𝑚𝑥2𝑟(3−𝑚))𝑃𝑟𝑄𝑟

∞

𝑟=0

 

                       𝐻𝑚 −𝐻𝑚−1 = 𝑎
𝑚−1𝜂𝐻3−𝑚   (Hence Proved (ii)) 

 

If we put 𝑚 = 1 𝑎𝑛𝑑 𝑚 = 2 𝑖𝑛 (𝑖𝑖) 

𝐻1 − 𝐻0 = 𝜂𝐻2 

𝐻1 = 𝜂𝐻2   ∵ 𝐻0 = 0            (𝑖𝑖𝑖) 

𝐻2 − 𝐻1 = 𝑎𝜂𝐻1     

So that  

𝐻2 = 𝜂𝐻2 + 𝑎𝜂
2𝐻2                (𝑖𝑣) 

We use this to expand 𝐻2 in powers of a  

If 

                                   𝐻2 = 𝑐0 + 𝑐1𝑎 + 𝑐2𝑎
2 +⋯ 

                                          = ∑𝑐𝑠𝑎
𝑠  

where the 𝑐𝑠 are independent of a, then 𝑐0 = 1 and  (𝑖𝑣) gives  

𝐻2 = 𝜂 (∑𝑐𝑠𝑎
𝑠) + 𝑎𝜂2 (∑𝑐𝑠𝑎

𝑠) 

     = ∑𝑐𝑠𝑎
𝑠𝑥𝑠 + 𝑎∑𝑐𝑠(𝑎𝑥

2)𝑠 

     = ∑𝑐𝑠𝑎
𝑠𝑥𝑠 +∑𝑐𝑠𝑎

𝑠+1. 𝑥2𝑠 

⟹∑𝑐𝑠𝑎
𝑠  = ∑𝑐𝑠𝑎

𝑠𝑥𝑠 +∑𝑐𝑠𝑎
𝑠+1. 𝑥2𝑠 

⟹ 𝑐0𝑎
0 + 𝑐1𝑎 + 𝑐2𝑎

2 + 𝑐3𝑎
3 + 𝑐4𝑎

4 +⋯

= 𝑐0𝑎
0𝑥0 + 𝑐1𝑎𝑥 + 𝑐2𝑎

2𝑥2 + 𝑐3𝑎
3𝑥3 +⋯+ 𝑐0𝑎𝑥

0 + 𝑐1𝑎
2𝑥2 + 𝑐2𝑎

3𝑥6

+ 𝑐3𝑎
4𝑥8 +⋯ 

⟹ 1+ 𝑐1𝑎 + 𝑐2𝑎
2 + 𝑐3𝑎

3 + 𝑐4𝑎
4 +⋯

= 1 + 𝑐1𝑎𝑥 + 𝑐2𝑎
2𝑥2 + 𝑐3𝑎

3𝑥3 +⋯+ 𝑎 + 𝑐1𝑎
2𝑥2 + 𝑐2𝑎

3𝑥6 + 𝑐3𝑎
4𝑥8 +⋯ 

Hence, equating the co-efficient of 𝑎𝑠, we have  
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𝑐1𝑎 = 𝑐1𝑎𝑥 + 𝑎 

𝑐1𝑎 = 𝑎(𝑐1𝑥 + 1) 

                                                                        𝑐1 = 𝑐1𝑥 + 1      (cancelling  𝑎 on both side)  

𝑐1 − 𝑐1𝑥 = 1 

𝑐1 =
1

1 − 𝑥
 

Similarly  

𝑐2𝑎
2 = 𝑐2𝑎

2𝑥2 + 𝑐1𝑎
2𝑥2 

𝑐2 = 𝑐2𝑥
2 + 𝑐1𝑥

2 

𝑐2 = 𝑐2𝑥
2 +

𝑥2

1 − 𝑥
 

𝑐2(1 − 𝑥
2) =

𝑥2

1 − 𝑥
 

𝑐2 =
𝑥2

(1 − 𝑥2)(1 − 𝑥)
 

Similarly  

𝑐3𝑎
3 = 𝑐3𝑎

3𝑥3 + 𝑐2𝑎
3𝑥6 

𝑐3(1 − 𝑥
3) =

𝑥2. 𝑥6

(1 − 𝑥)(1 − 𝑥2)
 

𝑐3 =
𝑥2. 𝑥6

(1 − 𝑥)(1 − 𝑥2)(1 − 𝑥3)
 

Continuing in this way we get  

𝑐𝑠    =
𝑥2𝑠−2

1 − 𝑥𝑠
. 𝑐𝑠−1 

                                                           =
𝑥2+4+6+⋯+2(𝑠−1)

(1 − 𝑥)(1 − 𝑥2)… (1 − 𝑥𝑠)
= 𝑥𝑠(𝑠−1)𝑃𝑠 

Hence  

𝐻2(𝑎) =∑𝑎𝑠𝑥𝑠(𝑠−1)𝑃𝑠

∞

𝑠=0

 

If we put 𝑎 = 𝑥, the right-hand side of this is the series in (2.1). 
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Also 𝑃𝑟𝑄𝑟(𝑥) = 𝑃∞ and so,  by (i) 

𝐻2(𝑥) = 𝑃∞∑(−1)𝑟𝑥𝜆(𝑟)(1 − 𝑥2(2𝑟+1))

∞

𝑟=0

 

= 𝑃∞ {∑(−1)𝑟𝑥𝜆(𝑟) +∑(−1)𝑟𝑥𝜆(𝑟−1)+2(2𝑟−1)
∞

𝑟=1

∞

𝑟=0

} 

⟹ 𝐻2(𝑥) = 𝑃∞ {1 +∑(−1)𝑟 (𝑥
1
2
𝑟(5𝑟+1) + 𝑥

1
2
𝑟(5𝑟−1))

∞

𝑟=1

} 

Hence by the Theorem 356 [ by Hardy and Wright pg. 376 See [4]] i.e. (special case of 

Jacobi identity) 

∏{(1 − 𝑥5𝑛+2)(1 − 𝑥5𝑛+3)(1 − 𝑥5𝑛+5)} = ∑ (−1)𝑛𝑥
1
2
𝑛(5𝑛+1)

∞

𝑛=−∞

∞

𝑛=0

 

𝐻2(𝑥) = 𝑃∞∏{(1 − 𝑥5𝑛+2)(1 − 𝑥5𝑛+3)(1 − 𝑥5𝑛+5)}

∞

𝑛=0

 

=∏
1

(1 − 𝑥5𝑛+1)(1 − 𝑥5𝑛+4)

∞

𝑛=0

 

This completes the proof of theorem 2.1. 

Again, by (iii) 

                                                                  𝐻1(𝑎) = 𝜂𝐻2(𝑎) 

𝐻2(𝑎𝑥) =∑𝑎𝑠𝑥𝑠
2
𝑃𝑠

∞

𝑠=0

 

And, for 𝑎 = 𝑥, the right-hand side becomes the series in (2.2). Using (i) and Theorem 355, 

we complete the proof of Theorem 2.2 in the same way as we did that of Theorem 1 

{Theorem 355: [ by Hardy and Wright pg. 376 see [4] ] 

∏{1 − 𝑥5𝑛+1)(1 − 𝑥5𝑛+4)(1 − 𝑥5𝑛+5)} = ∑ (−1)𝑛𝑥
1
2
𝑛(5𝑛+3)

∞

𝑛=−∞

∞

𝑛=0

  }. 

2.3. Combinatorial interpretation of Theorem 2.1 and 2.2: 

     Consider Theorem 2.1 

        We can exhibits any square 𝑚2 as  
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𝑚2 = 1 + 3 + 5 + ⋯+ (2𝑚 − 1) 

Or as shown by the black dots in the graph, in which m=6. 

If we now take any partition of 𝑛 − 𝑚2 into 𝑚 parts at most , with the parts in descending 

order, and add it to the graph as shown by the stars, where 𝑚 = 6 and 𝑛 = 62 + 13 = 36 +

13 = 49 

We obtain a partition of 𝑛 (ℎ𝑒𝑟𝑒 𝑛 = 49 = 14 + 12 + 10 + 7 + 5 + 1) into parts without 

repetitions or sequence or parts whose minimal difference is 2. The left-hand side of (2.1) 

enumerates this type of partition of n. 

𝑚2 = 1 + 3 + 5 + ⋯+ (2𝑚 − 1) 

𝑚2 = 62 = 36 = 1 + 3 + 5 + 7 + 9 + 11 

                                  11 → ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∗ ∗ ∗ ∗⏟  
4

 

                                   9 → ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙  ∗ ∗ ∗ ⏟
3

 

                                   7 →  ∙ ∙ ∙ ∙ ∙ ∙ ∙  ∗ ∗ ∗ ⏟
3

 

                                   5 → ∙ ∙ ∙ ∙ ∙ ∗ ∗ ⏟
2

  

                                   3 → ∙ ∙ ∙ ∗ ∗ ⏟
2

 

                                   1 → ∙  

On other hand, the right-hand side enumerates partitions into numbers of the form 5𝑚 +

1 𝑎𝑛𝑑 5𝑚 + 4. 

Hence Theorem 2.1 may be restated as a purely combinatorial theorem viz 

Theorem 2.3: 

   The number of partition of n with minimal difference 2 is equal to the number of partitions 

of n into parts of the forms 𝟓𝒎+ 𝟏 𝒂𝒏𝒅 𝟓𝒎+ 𝟒. 

Similarly we know 𝑚(𝑚 + 1) = 2 + 4 + 6 +⋯+ 2𝑚 

For 𝑚 = 5 

𝑚(𝑚 + 1) = 5(5 + 1) = 5 ∗ 6 = 30 = 10 + 8 + 6 + 4 + 2  
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                                10 → ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙  ∗ ∗ ∗ ⏟
3

 

                                 8 → ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙   ∗ ∗ ∗ ⏟
3

 

                                 6 →  ∙ ∙ ∙ ∙ ∙ ∙   ∗ ∗  ⏟
2

 

                                 4 → ∙ ∙ ∙ ∙  ∗ ∗ ∗⏟
3

  

                                 2 → ∙ ∙ 

so the equivalent of Theorem 2.2 is  

Theorem 2.4:  

   The number of partitions of n into parts not less than 2, and with minimal difference 2, is 

equal to the number of partitions of n into parts of the forms 

 𝟓𝒎+ 𝟐 𝒂𝒏𝒅 𝟓𝒎 + 𝟑. 
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Chapter 3: On Identities of Rogers-Ramanujan 

Type 

3.1.Introduction: 

  For  |𝑞| < 1 the q-factorial is defined by (see [10] )  

      (𝑎; 𝑞)0 = 1 

                                                                                (𝑎; 𝑞)𝑛 = ∏ (1 − 𝑎𝑞𝑘)𝑓𝑜𝑟 𝑛 ≥ 1𝑛
𝑘=1  

                             𝑎𝑛𝑑                                          (𝑎; 𝑞)∞ = ∏ (1 − 𝑎𝑞𝑘) ∞
𝑘=1  

It follows that (𝑎; 𝑞)𝑛 =
(𝑎;𝑞)∞

(𝑎𝑞𝑛;𝑞)∞
 

The multiple q-shifted factorial is defined by 

(𝑎1, 𝑎2, 𝑎3, … 𝑎𝑚; 𝑞)𝑛 = (𝑎1; 𝑞)𝑛(𝑎2; 𝑞)𝑛𝑛 ……(𝑎𝑚; 𝑞)𝑛 

                                    (𝑎1, 𝑎2, 𝑎3, … 𝑎𝑚; 𝑞)∞ = (𝑎1; 𝑞)∞(𝑎2; 𝑞)∞……(𝑎𝑚; 𝑞)∞  

The Basic Hyper Geometric Series is  

p+1𝜑𝑝+𝑟 (
𝑎1,𝑎2,…,𝑎𝑝+1;𝑞;𝑥

𝑏1,𝑏2,…,𝑏𝑝+𝑟
) = ∑

(𝑎1;𝑞)𝑛(𝑎2;𝑞)𝑛…(𝑎𝑝+1;𝑞)𝑛𝑥
𝑛(−1)𝑛𝑟𝑞

𝑛(𝑛−1)𝑟
2

(𝑞,𝑞)𝑛(𝑏1;𝑞)𝑛(𝑏2;𝑞)𝑛…(𝑏𝑝+𝑟;𝑞)𝑛

∞
𝑛=0  

The series p+1𝜑𝑝+𝑟  converges for all positive integers r and for all x. For r=0 it converges 

only when |𝑥| < 1. 

Some definitions: 

Ramanujan’s Theta Function: 

   Ramanujan’s Theta function ([2], P.11, Eq.(1.1.5)) is defined as  

𝑓(𝑎, 𝑏) = ∑ 𝑎
𝑛(𝑛+1)
2 𝑏

𝑛(𝑛−1)
2 , for |𝑎𝑏| < 1

∞

𝑛=−∞

 

It is called a theta function, despite the lack of a theta in the notation, because it is 

equivalent, via change of variable, to the theta function of Jacobi. 

𝜗(𝑧,𝑤) ≔ ∑ (−1)𝑛𝑤𝑛
2
𝑒2𝑛𝑖𝑧

∞

𝑛=−∞

 where |𝑤| < 1.   

The following special case of 𝑓(𝑎, 𝑏) arise so often that they were given their own notation 

by Ramanujan([2],P.11): 
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𝜑(𝑞) = 𝑓(𝑞, 𝑞) 

𝜓(𝑞) = 𝑓(𝑞, 𝑞3) 

𝑓(−𝑞) = 𝑓(−𝑞,−𝑞2) 

Ramanujan further defines  

𝜒(𝑞) ≔
𝑓(−𝑞2; −𝑞2)

𝑓(−𝑞)
 

One of the most important results in the theory of theta functions is that they can be 

expressed as infinite products. 

Jacobi’s triple product identity: (see [7], P.2, Eq. (1.1.7))  

For |𝑎𝑏| < 1 , 𝑓(𝑎, 𝑏) = (−𝑎, −𝑏, 𝑎𝑏; 𝑎𝑏)∞ 

Where (𝑎;𝑤)𝑛 = ∏ (1 − 𝑎𝑤𝑛) ,  𝑎𝑛𝑑∞
𝑛=1  (𝑎1, 𝑎2, 𝑎3, … 𝑎𝑟; 𝑤)∞ =

(𝑎1; 𝑤)∞(𝑎2; 𝑤)∞……(𝑎𝑟; 𝑤)∞ 

An immediate corollary ([7], P-2, Eq. (1.1.8) (1.1.9), (1.1.10)) of this identity is thus: 

𝑓(−𝑞) = (𝑞; 𝑞)∞ 

𝜑(𝑞) =
(𝑞; 𝑞)∞
(−𝑞; 𝑞)∞

 

𝜓(𝑞) =
(𝑞2; 𝑞2)∞
(−𝑞; 𝑞2)∞

 

Sometimes a linear combination of two theta series can be expressed as a single infinite 

product as follows:(see [7], p-2, Eq. (1.1.12)) 

Quintuple Product identity: 

(𝑄; 𝑥) = 𝑓(−𝑤𝑥3, −𝑤2𝑥−3) + 𝑥𝑓(−𝑤𝑥−3, −𝑤2𝑥3) 

=
𝑓(𝑤𝑥−1, 𝑥)𝑓(−𝑤𝑥−2, −𝑤𝑥2)

𝑓(−𝑤2; −𝑤4)
 

= (−𝑤𝑥−1, −𝑥,𝑤;𝑤)∞(𝑤𝑥
−2, 𝑤𝑥2; 𝑤2)∞ 

3.2 Elementary Series product identities: 

 Remark : If |𝑞| < 1, |𝑡| < 1, then  

1 +∑
(1 − 𝑎)(1 − 𝑎𝑞)… (1 − 𝑎𝑞𝑛−1)𝑡𝑛

(1 − 𝑞)(1 − 𝑞2)… (1 − 𝑞𝑛)
=∏

(1− 𝑎𝑡𝑞𝑛)

(1 − 𝑡𝑞𝑛)

∞

𝑛=0

∞

𝑛=1

       (3.2.1) 
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Euler Identity: 

     For |𝒕| < 𝟏, |𝒒| < 𝟏 

𝟏 +∑
𝒕𝒏

(𝟏 − 𝒒)(𝟏 − 𝒒𝟐)(𝟏 − 𝒒𝟑)… (𝟏 − 𝒒𝒏)
=∏

𝟏

𝟏 − 𝒕𝒒𝒏
      (𝟑. 𝟐. 𝟐)

∞

𝒏=𝟎

∞

𝒏=𝟏

 

𝟏 +∑
𝒕𝒏𝒒

𝟏
𝟐
𝒏(𝒏−𝟏)

(𝟏 − 𝒒)(𝟏 − 𝒒𝟐)(𝟏 − 𝒒𝟑)… (𝟏 − 𝒒𝒏)

∞

𝒏=𝟏

=∏(𝟏+ 𝒕𝒒𝒏)  (𝟑. 𝟐. 𝟑)

∞

𝒏=𝟎

 

Proof: 

      To obtain equation (3.2.2) we put a=0 in (3.2.1) 

1 +∑
(1 − 0)(1 − 0. 𝑞)… (1 − 0. 𝑞𝑛−1)𝑡𝑛

(1 − 𝑞)(1 − 𝑞2)… (1 − 𝑞𝑛)
=∏

(1 − 0. 𝑡𝑞𝑛)

(1 − 𝑡𝑞𝑛)

∞

𝑛=0

∞

𝑛=1

 

= 1 +∑
𝑡𝑛

(1 − 𝑞)(1 − 𝑞2)… (1 − 𝑞𝑛)
=∏

1

(1 − 𝑡𝑞𝑛)

∞

𝑛=0

∞

𝑛=1

 

To obtain (3.2.3) we replace a by a/b and t by bz in (3.2.1) 

1 +∑
(1 − 𝑎 𝑏⁄ )(1 −

𝑎
𝑏⁄ 𝑞)… (1 −

𝑎
𝑏⁄ 𝑞

𝑛−1)(𝑏𝑧)𝑛

(1 − 𝑞)(1− 𝑞2)… (1 − 𝑞𝑛)

∞

𝑛=1

 

= 1 +∑
(
𝑏 − 𝑎
𝑏
)(
𝑏 − 𝑎𝑞
𝑏

)…(
𝑏 − 𝑎𝑞𝑛−1

𝑏
) (𝑏𝑧)𝑛

(1 − 𝑞)(1 − 𝑞2)… (1 − 𝑞𝑛)

∞

𝑛=1

 

= 1 +∑
(𝑏 − 𝑎)(𝑏 − 𝑎𝑞)… (𝑏 − 𝑎𝑞𝑛−1)𝑧𝑛

(1 − 𝑞)(1 − 𝑞2)… (1 − 𝑞𝑛)

∞

𝑛=1

 

=∏
(1−

𝑎
𝑏 . 𝑏𝑧. 𝑞

𝑛)

(1 − 𝑏𝑧. 𝑞𝑛)

∞

𝑛=0

 

=∏
(1− 𝑎. 𝑧. 𝑞𝑛)

(1 − 𝑏𝑧. 𝑞𝑛)
      (3.2.4)

∞

𝑛=0

 

Now set b=0 a=-1 in (3.2.4)  

1 +∑
(0 − (−1))(0 − (−1)𝑞)… (0 − (−1)𝑞𝑛−1)𝑧𝑛

(1 − 𝑞)(1 − 𝑞2)… (1 − 𝑞𝑛)

∞

𝑛=1

=∏
(1 − (−1). 𝑧. 𝑞𝑛)

(1 − 0. 𝑧. 𝑞𝑛)
      

∞

𝑛=0
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1 +∑
(1. 𝑞. 𝑞2…𝑞𝑛−1)𝑧𝑛

(1 − 𝑞)(1 − 𝑞2)… (1 − 𝑞𝑛)

∞

𝑛=1

=∏(1+ 𝑧. 𝑞𝑛)

∞

𝑛=0

 

1 +∑
𝑡𝑛𝑞

1
2
𝑛(𝑛−1)

(1 − 𝑞)(1 − 𝑞2)… (1 − 𝑞𝑛

∞

𝑛=1

=∏(1 + 𝑧. 𝑞𝑛)

∞

𝑛=0

 

Hence proved. 

3.3 Mod 2 identities 

1. 

∑
(−1)𝑛𝑞𝑛

2

(𝑞2; 𝑞2)𝑛
=
𝑓(−𝑞, −𝑞)

𝑓(−𝑞)

∞

𝑛=0

 

=
(𝑞; 𝑞; 𝑞2; 𝑞2)∞
(𝑞; 𝑞)∞

 

=
(𝑞; 𝑞2)∞(𝑞; 𝑞

2)∞(𝑞
2; 𝑞2)∞

(𝑞; 𝑞)∞
 

=
∏ (1 − 𝑞𝑞2𝑗). (1 − 𝑞. 𝑞2𝑗)(1 − 𝑞2𝑞2𝑗)∞
𝑗=0

∏ (1 − 𝑞. 𝑞𝑗)∞
𝑗=0

 

=
∏ (1 − 𝑞2𝑗+1). (1 − 𝑞2𝑗+1)(1 − 𝑞2𝑗+2)∞
𝑗=0

∏ (1 − 𝑞𝑗+1)∞
𝑗=0

 

=∏(1− 𝑞1+2𝑗)

∞

𝑗=1

 

2. 

∑
(−1)𝑛𝑞𝑛

2
(−𝑞, 𝑞2)𝑛

(𝑞4; 𝑞4)𝑛 

∞

𝑛=0

=
𝑓(−𝑞,−𝑞)

𝜓(−𝑞)
 

=
𝑓(−𝑞; −𝑞)

(𝑞2; 𝑞2)∞
(−𝑞; 𝑞2)∞

 

= 𝑓(−𝑞; −𝑞) ×
(−𝑞; 𝑞2)∞
(𝑞2; 𝑞2)∞

 

=
(𝑞; 𝑞; 𝑞2; 𝑞2)∞ × (−𝑞; 𝑞

2)∞
(𝑞2; 𝑞2)∞
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=
(𝑞; 𝑞2)∞(𝑞; 𝑞

2)∞(𝑞
2; 𝑞2)∞ × (−𝑞; 𝑞

2)∞
(𝑞2; 𝑞2)∞

 

=∏(1 − 𝑞𝑞2𝑗). (1 − 𝑞. 𝑞2𝑗)(1 + 𝑞𝑞2𝑗)

∞

𝑗=1

 

=∏(1 − 𝑞2𝑗+1). (1 − 𝑞2𝑗+1)(1 + 𝑞2𝑗+1)

∞

𝑗=1

 

= (1 − 𝑞3)(1 − 𝑞5)(1 − 𝑞7)… (1 − 𝑞3)(1 − 𝑞5)(1 − 𝑞7)… (1 + 𝑞3)(1 + 𝑞5)(1 + 𝑞7)… 

3. 

∑
𝑞𝑛(𝑛−1)(−𝑞, 𝑞2)𝑛

(𝑞)2𝑛

∞

𝑛=0

= 2∑
𝑞𝑛(𝑛+1)(−𝑞, 𝑞2)𝑛

(𝑞)2𝑛+1

∞

𝑛=0

 

      =
𝑓(1, 𝑞2)

𝜓(−𝑞)
 

=
𝑓(1; 𝑞2)

(𝑞2; 𝑞2)∞
(−𝑞; 𝑞2)∞

 

= 𝑓(1; 𝑞2) ×
(−𝑞; 𝑞2)∞
(𝑞2; 𝑞2)∞

 

=
(−1; −𝑞2; 𝑞2; 𝑞2)∞ × (−𝑞; 𝑞

2)∞
(𝑞2; 𝑞2)∞

 

=
(−1; 𝑞2)∞(−𝑞

2; 𝑞2)∞(𝑞
2; 𝑞2)∞ × (−𝑞; 𝑞

2)∞
(𝑞2; 𝑞2)∞

 

= (−1; 𝑞2)∞∏(1 + 𝑞2𝑞2𝑗)(1 + 𝑞𝑞2𝑗)

∞

𝑗=1

 

= (−1; 𝑞2)∞∏(1+ 𝑞2𝑗+2). (1 + 𝑞2𝑗+1)

∞

𝑗=1

 

= (−1; 𝑞2)∞(1 + 𝑞
4)(1 + 𝑞6)(1 + 𝑞8)… (1 + 𝑞3)(1 + 𝑞5)(1 + 𝑞7)… 
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3.4 Mod 3 identities: 

1. 

∑
𝑞𝑛(𝑛+1) 2⁄

(𝑞)𝑛

∞

𝑛=0

=
𝑓(−𝑞)

𝜑(−𝑞)
 

=
(𝑞; 𝑞)∞
(𝑞; 𝑞)∞
(−𝑞; 𝑞)∞

 

= (𝑞; 𝑞)∞ ×
(−𝑞; 𝑞)∞
(𝑞; 𝑞)∞

 

= (−𝑞; 𝑞)∞ 

=∏(1 + 𝑞1+𝑗)

∞

𝑗=1

 

= (1 + 𝑞2)(1 + 𝑞3)(1 + 𝑞4)… 

∑
𝑞𝑛

2
(−1)𝑛

(𝑞)𝑛(𝑞; 𝑞2)𝑛
= ∑

𝑞𝑛
2
(−𝑞)𝑛

(𝑞)𝑛(𝑞; 𝑞2)𝑛+1
=
𝑓(𝑞; 𝑞2)

𝑓(−𝑞)

∞

𝑛=0

∞

𝑛=0

 

=
(−𝑞;−𝑞2; 𝑞3; 𝑞3)∞

(𝑞; 𝑞)∞
 

=
(−𝑞; 𝑞3)∞(−𝑞

2; 𝑞3)∞(𝑞
3; 𝑞3)∞

(𝑞; 𝑞)∞
 

 

=
∏ (1 + 𝑞1+3𝑗)(1 + 𝑞2+3𝑗)(1 − 𝑞3+3𝑗)∞
𝑗=1

∏ (1 − 𝑞1+𝑗)∞
𝑗=1

 

=
(1 + 𝑞4)(1 + 𝑞7)(1 + 𝑞10)… (1 + 𝑞5)(1 + 𝑞8)(1 + 𝑞11)… (1 − 𝑞6)(1 − 𝑞9)… .

(1 − 𝑞2)(1 − 𝑞3)(1 − 𝑞4)… . .
 

2 

∑
𝑞2𝑛

2
(𝑞; 𝑞2)2

𝑛

(𝑞2; 𝑞2)2𝑛

∞

𝑛=0

=
𝑓(𝑞; 𝑞2)

𝜓(𝑞)
 

=
𝑓(𝑞; 𝑞2)

(𝑞2; 𝑞2)∞
(−𝑞; 𝑞2)∞
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= 𝑓(𝑞; 𝑞2) ×
(−𝑞; 𝑞2)∞
(𝑞2; 𝑞2)∞

 

=
(−𝑞; −𝑞2; 𝑞3; 𝑞3)∞ × (−𝑞; 𝑞

2)∞
(𝑞2; 𝑞2)∞

 

=
(−𝑞; 𝑞3)∞(−𝑞

2; 𝑞3)∞(𝑞
3; 𝑞3)∞ × (−𝑞; 𝑞

2)∞
(𝑞2; 𝑞2)∞

 

=
∏ (1 + 𝑞1+3𝑗)(1 + 𝑞2+3𝑗)(1 − 𝑞3+3𝑗)(1 + 𝑞1+2𝑗)∞
𝑗=1

∏ (1 − 𝑞2+2𝑗)∞
𝑗=1

 

=
(1 + 𝑞4)(1 + 𝑞7)(1 + 𝑞10)… (1 + 𝑞5)(1 + 𝑞8)(1 + 𝑞11)… (1 − 𝑞6)(1 − 𝑞9)(1 − 𝑞12)… (1 + 𝑞3)(1 + 𝑞5). .

(1 − 𝑞4)(1 − 𝑞6)(1 − 𝑞8). .
 

Similarly, we can do 

𝑓(−𝑞; 𝑞2)

𝑓(−𝑞)
= ∑

𝑞𝑛(𝑛+1)(−1; 𝑞2)𝑛 

(𝑞)2𝑛

∞

𝑛=0

 

3.5 Mod 4 Identities  

∑
𝑞𝑛

2
(𝑞; 𝑞2)𝑛

(𝑞4; 𝑞4)𝑛

∞

𝑛=0

=
𝑓(−𝑞2; −𝑞2)

𝜓(−𝑞)
 

=
𝑓(−𝑞2; −𝑞2)

(𝑞2; 𝑞2)∞
(−𝑞; 𝑞2)∞

 

= 𝑓(−𝑞2; −𝑞2) ×
(−𝑞; 𝑞2)∞
(𝑞2; 𝑞2)∞

 

=
(𝑞2; 𝑞2; 𝑞4; 𝑞4)∞ × (−𝑞; 𝑞

2)∞
(𝑞2; 𝑞2)∞

 

=
(𝑞2; 𝑞4)∞(𝑞

2; 𝑞4)∞(𝑞
4; 𝑞4)∞ × (−𝑞; 𝑞

2)∞
(𝑞2; 𝑞2)∞

 

=
∏ (1 − 𝑞2+4𝑗)(1 − 𝑞2+4𝑗)(1 − 𝑞4+4𝑗)(1 + 𝑞1+2𝑗)∞
𝑗=1

∏ (1 − 𝑞2+2𝑗)∞
𝑗=1

 

=
(1 − 𝑞6)(1 − 𝑞10)(1 − 𝑞14)… (1 − 𝑞6)(1 − 𝑞10)(1 − 𝑞14)… (1 − 𝑞8)(1 − 𝑞12)(1 − 𝑞16)… (1 + 𝑞3)(1 + 𝑞5). .

(1 − 𝑞4)(1 − 𝑞6)(1 − 𝑞8). .
 

 

Similarly, we can do the following identities  



 
 

23 
 

𝑓(−𝑞;−𝑞3)

𝜑(−𝑞)
= ∑

𝑞𝑛(𝑛+1) 2⁄ (−𝑞)𝑛
(𝑞)𝑛

∞

𝑛=0

 

= ∑
𝑞𝑛(𝑛+1)(−𝑞; 𝑞2)𝑛

(𝑞)2𝑛+1

∞

𝑛=0

 

𝑓(−𝑞2; −𝑞2)

𝜑(−𝑞)
= ∑

𝑞𝑛(𝑛+1) 2⁄ (−1)𝑛
(𝑞)𝑛

∞

𝑛=0

 

= ∑
𝑞𝑛(𝑛+1) 2⁄ (−𝑞)𝑛+1

(𝑞)𝑛

∞

𝑛=0

 

= ∑
𝑞𝑛

2
(−𝑞2; 𝑞2)𝑛
(𝑞)2𝑛+1

∞

𝑛=0

 

= ∑
𝑞𝑛

2
(−1; 𝑞2)𝑛
(𝑞)2𝑛

∞

𝑛=0

 

𝑓(𝑞, 𝑞3)

𝑓(−𝑞2)
= ∑

𝑞𝑛(2𝑛+1)

(𝑞)2𝑛+1

∞

𝑛=0

 

𝑓(𝑞; 𝑞3)

𝜓(−𝑞)
= ∑

𝑞𝑛
2
(−1)2𝑛

(𝑞2; 𝑞2)𝑛(𝑞2; 𝑞4)𝑛

∞

𝑛=0

 

𝑓(𝑞; −𝑞3)

𝜓(−𝑞)
= ∑

𝑞𝑛
2
(−1; 𝑞4)𝑛(−𝑞; 𝑞

2)𝑛
(𝑞2; 𝑞2)2𝑛

∞

𝑛=0

 

𝑓(−𝑞; 𝑞3)

𝜓(−𝑞)
= ∑

𝑞𝑛(𝑛+2)(−1; 𝑞4)𝑛(−𝑞; 𝑞
2)𝑛

(𝑞2; 𝑞2)2𝑛

∞

𝑛=0

 

𝑓(𝑞; 𝑞3)

𝜑(−𝑞2)
= ∑

𝑞𝑛(𝑛+1)(−𝑞)2𝑛
(𝑞; 𝑞2)𝑛+1(𝑞4; 𝑞4)𝑛

∞

𝑛=0

 

𝑓(𝑞; −𝑞3)

𝜑(−𝑞2)
= ∑

𝑞𝑛(𝑛+1)(−𝑞2; 𝑞4)𝑛
(𝑞)2𝑛+1(−𝑞; 𝑞4)𝑛

∞

𝑛=0

 

𝑓(−𝑞2; −𝑞2)

𝜑(−𝑞2)
= ∑

𝑞𝑛(𝑛+1)(𝑞2; 𝑞2)𝑛+1
(−𝑞3; 𝑞3)𝑛+1(𝑞)𝑛

∞

𝑛=0
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We now list some general transformations. These can be derived as limiting case of 

transformations between basic hyper geometric series. 

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝛾 𝑎𝑛𝑑 𝑞 ∈ ℂ, |𝑞| < 1 then  

∑
(𝑎, 𝑏; 𝑞)𝑛𝑞

𝑛(𝑛−1)
2 (

−𝑐𝛾
𝑎𝑏⁄ )𝑛

(𝑐, 𝛾, 𝑞; 𝑞)𝑛

∞

𝑛=0

=
(𝑐𝛾 𝑎𝑏; 𝑞)⁄

∞

(𝛾; 𝑞)∞
∑
(𝑐 𝑎⁄ , 𝑐 𝑏⁄ ; 𝑞)𝑛𝑞

𝑛(𝑛−1)
2 (−𝛾)𝑛

(𝑐, 𝑐𝛾 𝑎𝑏⁄ , 𝑞; 𝑞)𝑛

∞

𝑛=0

       (1) 

 

∑
𝑞
𝑛(𝑛−1)
2 (−𝛾)𝑛

(𝑏; 𝑞)𝑛(𝑞; 𝑞)𝑛
= (𝛾; 𝑞)∞∑

𝑞
(3𝑛2−3𝑛)

2 (−𝑏𝛾)𝑛

(𝑞; 𝑞)𝑛(𝑏; 𝑞)𝑛(𝛾; 𝑞)𝑛
                                       (2)

∞

𝑛=0

∞

𝑛=0

 

 

(−𝑏𝑞𝑛; 𝑞𝑛)∞∑
𝑞
(𝑚2+𝑚)

2 𝑎𝑚

(−𝑏𝑞𝑛;𝑞𝑛)𝑚(𝑞; 𝑞)𝑚
= (−𝑎𝑞; 𝑞)∞∑

𝑞
𝑛(𝑚2+𝑚)

2 (𝑏)𝑚

(−𝑎𝑞; 𝑞)𝑛𝑚(𝑞𝑛: 𝑞𝑛)𝑚
            (3)

∞

𝑚=0

∞

𝑚=0

 

 

∑
(𝑎; 𝑞)𝑛𝑞

𝑛2−𝑛(−𝑏)𝑛

(𝑞; 𝑞)𝑛(𝑎𝑏; 𝑞2)𝑛
=
(𝑏; 𝑞2)𝑛
(𝑎𝑏; 𝑞2)∞ 

∑
(𝑎; 𝑞2)𝑛𝑞

𝑛2−𝑛(−𝑏𝑞)𝑛

(𝑞2; 𝑞2)𝑛(𝑏; 𝑞2)𝑛
                                (4)

∞

𝑛=0

∞

𝑛=0

 

The transformation (1) is a limiting case of q-analogue of the Kummer Thomae-Whipple 

formula (see [5] p-72, equation 3.2.7) or (see [7] p-40, equation (6.1.2)). The proof of 

transformation (2) is found in [1]. This transformation (2) is also appears in [7], (equation 

(6.1.11) p-41). A limiting case of a transformation due to Andrews [2] leads to the identity 

(3). This transformation (3) is also appears in [7], (equation (6.1.14) p-41). The identity 

(4) follows from a result of Andrews in [1]. It is also appearing as equation (6.1.19) in [7]. 

We now again list some general transformations. These can also be derived as limiting case 

of transformations between basic hyper geometric series. 

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝛾 𝑎𝑛𝑑 𝑞 ∈ ℂ, |𝑞| < 1 then  

 

∑
𝑞𝑛

2
𝛾𝑛

(
𝑞
𝑏⁄ ; 𝑞)𝑛(𝑞; 𝑞)𝑛

= (−𝛾𝑞2; 𝑞2)∞∑
𝑞𝑛

2
𝛾𝑛(−

𝑞
𝑏 ; 𝑞)2𝑛

(𝑞2; 𝑞2)𝑛(
𝑞2

𝑏2
; 𝑞2)𝑛(−𝛾𝑞2; 𝑞2)𝑛

∞

𝑛=0

∞

𝑛=0

      (5) 

 

∑
(𝑎; 𝑞)2𝑛𝑞

𝑛2−𝑛 (−
𝑐2

𝑑2
)
𝑛

(𝑞2; 𝑞2)𝑛(𝑐; 𝑞)2𝑛

∞

𝑛=0

=
(
𝑐2

𝑑2
; 𝑞2)∞

(𝑐; 𝑞)∞
∑

𝑞𝑛
2−𝑛𝛾𝑛(−𝑐)𝑛

(𝑞; 𝑞)𝑛(−
𝑐
𝑑
; 𝑞)𝑛

∞

𝑛=0

                 (6) 
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∑
𝑞3𝑛

2−2𝑛(−𝑎2)𝑛

(𝑞2; 𝑞2)𝑛(𝑎; 𝑞)2𝑛

∞

𝑛=0

=
1

(𝑎; 𝑞)∞
∑
𝑞𝑛

2−𝑛(−𝑎)𝑛

(𝑞; 𝑞)𝑛

∞

𝑛=0

                (7) 

 

∑
(𝑎; 𝑞)𝑛𝑞

𝑛2−𝑛(−𝑏)𝑛

(𝑞; 𝑞)𝑛(𝑎𝑏; 𝑞2)𝑛
=
(𝑏; 𝑞2)𝑛
(𝑎𝑏; 𝑞2)∞ 

∑
(𝑎; 𝑞2)𝑛𝑞

𝑛2−𝑛(−𝑏𝑞)𝑛

(𝑞2; 𝑞2)𝑛(𝑏; 𝑞2)𝑛
                                (8)

∞

𝑛=0

∞

𝑛=0

 

 

∑
(𝑎2; 𝑞)𝑛𝑞

3𝑛2+𝑛 2⁄ (𝑎)2𝑛

(𝑞; 𝑞)𝑛
=
(𝑎2𝑞; 𝑞)∞
(−𝑎𝑞; 𝑞)∞

∑
(−𝑎; 𝑞)𝑛𝑞

𝑛2−𝑛 2⁄ (𝑎𝑞)𝑛

(𝑎𝑞, 𝑞; 𝑞)𝑛

∞

𝑛=0

∞

𝑛=0

               (9) 

The transformation (5) is appeared as (6.1.12) on page 41 in [7]. The transformation (6) 

follows from(3.5.4) on pages 77-78 in [5], after replacing c with 
𝑎𝑞
𝑐⁄ , then letting 𝑎 → 0 

and finally letting 𝑏 → ∞. It also appeared as (6.1.17) on page 41 in [7]. The transformation 

(7) follows from (6) upon letting 𝑑 → ∞, and then replacing c with a. this transformation is 

also appeared as (6.1.18) on page 41 in [7]. The transformation (8) follows from a result of 

Andrews in [1] (see corollary 1.2.3. of [2], where it follows after replacing t by 𝑡 𝑏⁄ , then 

letting 𝑏 → ∞ and finally replacing t by b). Finally, the transformation (9) is appeared as 

(6.1.21) on page 42 in [3]. 

Now we introduce some identities from Lucy Slater’s famous list [9] of Rogers-Ramanujan 

Type identities. Each of them below that appears [8] is designated with the a “Slaters 

number” S.n. 

∑
𝑞𝑛(𝑛+1)(−𝑞)𝑛
(𝑞; 𝑞2)𝑛+1(𝑞)𝑛

=
𝑓(−𝑞;−𝑞5)

𝜑(−𝑞)
,   (𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.6.5), 𝑝 − 13); (𝑆22)          (𝑖)

∞

𝑛=0

 

 

∑
𝑞
3𝑛(𝑛+1)

2

(𝑞; 𝑞2)𝑛+1(𝑞)𝑛
=
𝑓(−𝑞2; −𝑞8)

𝑓(−𝑞)
,  (𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.10.4), 𝑝 − 17); (𝑆44)             (𝑖𝑖)

∞

𝑛=0

 

 

∑
𝑞
𝑛(3𝑛−1)

2

(𝑞; 𝑞2)𝑛+1(𝑞)𝑛
=
𝑓(−𝑞4; −𝑞6)

𝑓(−𝑞)
, (𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.10.5), 𝑝 − 17); (𝑆46)              (𝑖𝑖𝑖)

∞

𝑛=0
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∑
𝑞
𝑛(𝑛+1)
2 (−𝑞)𝑛
(𝑞)2𝑛+1

=
𝑄(𝑞7; −𝑞2)

𝜑(−𝑞)
, (𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.14.5), 𝑝 − 19); (𝑆80)                  (𝑖𝑣)

∞

𝑛=0

 

 

∑
𝑞
𝑛(𝑛+1)
2 (−𝑞)𝑛
(𝑞)2𝑛

=
𝑄(𝑞7; −𝑞)

𝜑(−𝑞)
, (𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.14.4), 𝑝 − 19); (𝑆81)                    (𝑣)

∞

𝑛=0

 

 

∑
𝑞
𝑛(𝑛+3)
2 (−𝑞)𝑛
(𝑞)2𝑛+1

=
𝑄(𝑞7; −𝑞3)

𝜑(−𝑞)
, (𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.14.6), 𝑝 − 19); (𝑆82)                 (𝑣𝑖)

∞

𝑛=0

 

 

∑
𝑞𝑛(𝑛+1)

(𝑞)2𝑛+1
=
𝑄(𝑞10; −𝑞3)

𝑓(−𝑞)
, (𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.20.5), 𝑝 − 23); (𝑆94)                                (𝑣𝑖𝑖)

∞

𝑛=0

 

 

∑
𝑞𝑛(𝑛+2)

(𝑞)2𝑛+1
=
𝑄(𝑞10; −𝑞4)

𝑓(−𝑞)
, (𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.20.6), 𝑝 − 23); (𝑆96)                           (𝑣𝑖𝑖𝑖)

∞

𝑛=0

 

 

∑
𝑞𝑛(𝑛+1)

(𝑞)2𝑛
=
𝑄(𝑞10; −𝑞)

𝑓(−𝑞)
, (𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.20.3), 𝑝 − 22); (𝑆99)                   (𝑖𝑥)

∞

𝑛=0

 

 

∑
𝑞𝑛

2+𝑛

(𝑞; 𝑞)𝑛

∞

𝑛=0

=
𝑓(−𝑞;−𝑞4)

𝑓(−𝑞)
, 𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.5.1)𝑝 − 11); (𝑆14)                   (𝑥) 

 

∑
(−1)𝑛𝑞3𝑛

2

(−𝑞; 𝑞2)𝑛(𝑞4; 𝑞4)𝑛
=
𝑓(−𝑞2; −𝑞3)

𝑓(−𝑞2)

∞

𝑛=0

, 𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.5.7)𝑝 − 12); (𝑆19)                   (𝑥𝑖) 

 

∑
𝑞𝑛(𝑛+1)(−𝑞; 𝑞2)𝑛
(𝑞; 𝑞)2𝑛+1

∞

𝑛=0

=
𝑓(−𝑞2; −𝑞10)

𝑓(−𝑞)
, 𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.12.2)𝑝 − 17); (𝑆50)               (𝑥𝑖𝑖) 
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∑
𝑞2𝑛(𝑛+1)

(𝑞; 𝑞)2𝑛+1
=
𝑓(𝑞; 𝑞7)

𝑓(−𝑞2)

∞

𝑛=0

, 𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.8.9)𝑝 − 15); (𝑆38)                 (𝑥𝑖𝑖𝑖) 

 

∑
𝑞2𝑛

2

(𝑞; 𝑞)2𝑛
=
𝑓(𝑞3; 𝑞5)

𝑓(−𝑞2)

∞

𝑛=0

, 𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.8.10)𝑝 − 15); (𝑆39)                       (𝑥𝑖𝑣) 

∑
𝑞𝑛(𝑛+2)(−𝑞; 𝑞2)𝑛

(𝑞4; 𝑞4)𝑛
=
𝑓(−𝑞;−𝑞5)

𝜓(−𝑞)

∞

𝑛=0

, 𝑠𝑒𝑒 [7], 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.6.2)𝑝 − 13)                  (𝑥𝑣)        

3.6. Some Identities of Rogers-Ramanujan Type Related to Modulo 7: 

 Replacing q by 𝑞2 in (3) we get 

(−𝑏𝑞2𝑛; 𝑞2𝑛)∞∑
𝑞𝑚

2+𝑚𝑎𝑚

(−𝑏𝑞2𝑛; 𝑞2𝑛)𝑚(𝑞2; 𝑞2)𝑚

∞

𝑚=0

= (−𝑎𝑞2; 𝑞2)∞∑
𝑞𝑛(𝑚

2+𝑚)(𝑏)𝑚

(−𝑎𝑞2; 𝑞2)𝑛𝑚(𝑞2𝑛: 𝑞2𝑛)𝑚
            (3.6.1)

∞

𝑚=0

 

The equation (3.6.1) for 𝑛 = 2, 𝑎 = 𝑞2, 𝑎𝑛𝑑 𝑏 = −𝑞2  gives  

(𝑞6; 𝑞4)∞∑
𝑞𝑚

2+3𝑚

(𝑞6; 𝑞4)𝑚(𝑞2; 𝑞2)𝑚
= (−𝑞4; 𝑞2)∞∑

(−1)𝑚𝑞2(𝑚
2+2𝑚)

(−𝑞4; 𝑞2)2𝑚(𝑞4: 𝑞4)𝑚
           

∞

𝑚=0

∞

𝑚=0

 

This, after some simplification gives  

(−𝑞4; 𝑞2)∞
(1 − 𝑞2)(𝑞6; 𝑞4)∞

∑
(−1)𝑚𝑞2(𝑚

2+2𝑚)

(−𝑞4; 𝑞2)2𝑚(𝑞4: 𝑞4)𝑚
= ∑

𝑞𝑚
2+3𝑚(−𝑞2; 𝑞2)𝑚
(𝑞2; 𝑞2)2𝑛+1

∞

𝑚=0

           

∞

𝑚=0

 

Now taking  𝑞 → 𝑞
1

2 𝑎𝑛𝑑 𝑤𝑟𝑖𝑡𝑖𝑛𝑔 𝑛 in place of m, we obtain the following identity: 

(−𝑞2; 𝑞)∞
(1 − 𝑞)(𝑞3; 𝑞2)∞

∑
(−1)𝑛𝑞(𝑛

2+2𝑛)

(−𝑞2; 𝑞)2𝑛(𝑞2; 𝑞2)𝑛

∞

𝑛=0

= ∑
𝑞
(𝑛2+3𝑛)

2 (−𝑞; 𝑞)𝑛
(𝑞; 𝑞)2𝑛+1

∞

𝑛=0

 

                                                                                                          =
𝑄(𝑞7;−𝑞2)

𝜑(−𝑞)
, on using (vi) 

 

=
(𝑞4, 𝑞3, 𝑞7; 𝑞7)∞(𝑞, 𝑞

13; 𝑞14)∞(−𝑞; 𝑞)∞
(𝑞; 𝑞)∞
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= (𝑞, 𝑞13; 𝑞14)∞(−𝑞; 𝑞)∞
(𝑞4; 𝑞7)∞(𝑞

3; 𝑞7)∞(𝑞
7; 𝑞7)∞

(𝑞; 𝑞)∞
 

= (𝑞, 𝑞13; 𝑞14)∞(−𝑞; 𝑞)∞
∏ (1 − 𝑞4+7𝑗)(1 − 𝑞3+7𝑗)(1 − 𝑞7+7𝑗)∞
𝑗=1

∏ (1 − 𝑞1+𝑗)∞
𝑗=1

 

= (𝑞, 𝑞13; 𝑞14)∞(−𝑞; 𝑞)∞∏
1

1− 𝑞𝑛
,

∞

𝑛=1

𝑛 ≢ 0,3,4(𝑚𝑜𝑑7)                 (3.6.2) 

Again setting  𝑛 = 2, 𝑎 = 1 𝑎𝑛𝑑 𝑏 = −
1

𝑞2
 in (3.6.1)  we get on some simplification, the 

following equation: 

(−𝑞2; 𝑞2)∞
(𝑞2; 𝑞4)∞

∑
(−1)𝑚𝑞2𝑚

2

(−𝑞2; 𝑞2)2𝑚(𝑞4; 𝑞4)𝑚

∞

𝑚=0

= ∑
𝑞𝑚(𝑚+1)(−𝑞2; 𝑞2)𝑚

(𝑞2; 𝑞2)2𝑚

∞

𝑚=0

 

This equation for 𝑞 → 𝑞
1

2 and m replace with n gives the following identity: 

(−𝑞; 𝑞)∞
(𝑞; 𝑞2)∞

∑
(−1)𝑛𝑞2𝑛

2

(−𝑞; 𝑞)2𝑛(𝑞2; 𝑞2)𝑛

∞

𝑛=0

= ∑
𝑞
𝑛(𝑛+1)
2 (−𝑞; 𝑞)𝑛
(𝑞; 𝑞)2𝑛

∞

𝑛=0

 

                                                                      =
𝑄(𝑞7; −𝑞)

𝜑(−𝑞)
       𝑓𝑟𝑜𝑚 (𝑣) 

=
(𝑞6; 𝑞; 𝑞7; 𝑞7)∞(𝑞

5, 𝑞9; 𝑞14)∞(−𝑞; 𝑞)∞
(𝑞; 𝑞)∞

 

= (𝑞5, 𝑞9; 𝑞14)∞(−𝑞; 𝑞)∞
(𝑞6; 𝑞7)∞(𝑞; 𝑞

7)∞(𝑞
7; 𝑞7)∞

(𝑞; 𝑞)∞
 

= (𝑞5, 𝑞9; 𝑞14)∞(−𝑞; 𝑞)∞
∏ (1 − 𝑞6+7𝑗)(1 − 𝑞1+7𝑗)(1 − 𝑞7+7𝑗)∞
𝑗=1

∏ (1 − 𝑞1+𝑗)∞
𝑗=1

 

= (𝑞5, 𝑞9; 𝑞14)∞(−𝑞; 𝑞)∞∏
1

1− 𝑞𝑛
,

∞

𝑛=1

𝑛 ≢ 0,1,6(𝑚𝑜𝑑7)                 (3.6.3) 

Moreover, the equation (3.6.1) for 𝑛 = 2, 𝑎 = 1 𝑎𝑛𝑑 𝑏 = −𝑞2 gives  

(−𝑞2; 𝑞2)∞
(𝑞2; 𝑞4)∞

∑
(−1)𝑚𝑞2(𝑚

2+2𝑚)

(−𝑞2; 𝑞2)2𝑚(𝑞4; 𝑞4)𝑚

∞

𝑚=0

= ∑
𝑞𝑚(𝑚+1)(−𝑞2; 𝑞2)𝑚
(𝑞2; 𝑞2)2𝑚+1

∞

𝑚=0

         (3.6.4) 

Taking 𝑞 → 𝑞
1

2 and replacing m by n in (3.6.4), it yields 
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(−𝑞; 𝑞)∞
(𝑞; 𝑞2)∞

∑
(−1)𝑛𝑞(𝑛

2+2𝑛)

(−𝑞; 𝑞)2𝑛(𝑞2; 𝑞2)𝑛

∞

𝑛=0

= ∑
𝑞
𝑛(𝑛+1)
2 (−𝑞; 𝑞)𝑛
(𝑞; 𝑞)2𝑛+1

∞

𝑛=0

 

=
𝑄(𝑞7; −𝑞2)

𝜑(−𝑞)
     𝑓𝑟𝑜𝑚 (𝑖𝑣) 

=
(𝑞5; 𝑞2; 𝑞7; 𝑞7)∞(𝑞

3, 𝑞11; 𝑞14)∞(−𝑞; 𝑞)∞
(𝑞; 𝑞)∞

 

= (𝑞3, 𝑞11; 𝑞14)∞(−𝑞; 𝑞)∞
(𝑞5; 𝑞7)∞(𝑞

2; 𝑞7)∞(𝑞
7; 𝑞7)∞

(𝑞; 𝑞)∞
 

= (𝑞3, 𝑞11; 𝑞14)∞(−𝑞; 𝑞)∞
∏ (1 − 𝑞5+7𝑗)(1 − 𝑞2+7𝑗)(1 − 𝑞7+7𝑗)∞
𝑗=1

∏ (1 − 𝑞1+𝑗)∞
𝑗=1

 

= (𝑞3, 𝑞11; 𝑞14)∞(−𝑞; 𝑞)∞∏
1

1− 𝑞𝑛
,

∞

𝑛=1

𝑛 ≢ 0,2,5(𝑚𝑜𝑑7)                 (3.6.5) 

Lastly, taking 𝑞 → 𝑞
1
2⁄  in the transformation (4) and then setting  

𝑎 = −𝑞
1
2⁄ , 𝑏 = −𝑞, it gives  

(−𝑞; 𝑞)∞

(𝑞
1
2⁄ ; 𝑞)∞

∑
(−𝑞

1
2⁄ ; 𝑞)𝑛𝑞

(𝑛2+2𝑛)
2

(𝑞; 𝑞)𝑛(−𝑞; 𝑞)𝑛
= ∑

𝑞
𝑛2+𝑛
2 (−𝑞

1
2⁄ ; 𝑞

1
2⁄ )𝑛

(𝑞
1
2⁄ ; 𝑞)𝑛+1(𝑞

1
2⁄ ; 𝑞

1
2⁄ )𝑛

∞

𝑛=0

∞

𝑛=0

 

Now using the identity (i) after replacement of q by 𝑞2, it gives the following identity: 

(−𝑞2; 𝑞2)∞
(𝑞; 𝑞2)∞

∑
(−𝑞; 𝑞2)𝑛𝑞

(𝑛2+2𝑛)

(𝑞4; 𝑞4)𝑛
= ∑

𝑞(𝑛
2+𝑛)(−𝑞; 𝑞)𝑛

(𝑞; 𝑞2)𝑛+1(𝑞; 𝑞)𝑛

∞

𝑛=0

∞

𝑛=0

 

=
𝑓(−𝑞; −𝑞5)

𝜑(−𝑞)
 

 

=
(𝑞; 𝑞5; 𝑞6; 𝑞6)∞(−𝑞; 𝑞)∞

(𝑞; 𝑞)∞
 

That is,  

(−𝑞2; 𝑞2)∞
(𝑞; 𝑞2)∞(−𝑞; 𝑞)∞

∑
(−𝑞; 𝑞2)𝑛𝑞

(𝑛2+2𝑛)

(𝑞4; 𝑞4)𝑛
=∏

1

1 − 𝑞𝑛
,

∞

𝑛=1

𝑛 ≢ 0,1,5(𝑚𝑜𝑑7)     (3.6.6) 

∞

𝑛=0
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3.7. Some Identities of Rogers-Ramanujan Type Related to Modulo 8: 

  Replacing q by 𝑞2 in (5) we get  

∑
𝑞2𝑛

2
𝛾𝑛

(
𝑞2

𝑏
⁄ ; 𝑞2)𝑛(𝑞2; 𝑞2)𝑛

= (−𝛾𝑞4; 𝑞4)∞∑
𝑞2𝑛

2
𝛾𝑛(−

𝑞2

𝑏 ; 𝑞
2)2𝑛

(𝑞4; 𝑞4)𝑛(
𝑞4

𝑏2
; 𝑞4)𝑛(−𝛾𝑞4; 𝑞4)𝑛

∞

𝑛=0

∞

𝑛=0

     (3.7.1) 

Setting 𝑏 =
1

𝑞
 𝑎𝑛𝑑  𝛾 = 𝑞2 𝑖𝑛 (3.7.1) we have  

(−𝑞6; 𝑞4)∞∑
𝑞2𝑛(𝑛+1)(−𝑞3; 𝑞2)2𝑛

(𝑞4; 𝑞4)𝑛(𝑞6; 𝑞4)𝑛(−𝑞6; 𝑞4)𝑛

∞

𝑛=0

= ∑
𝑞2𝑛

2+2𝑛

(𝑞3; 𝑞2)𝑛(𝑞2; 𝑞2)𝑛

∞

𝑛=0

 

Which on some reduction, yields 

(−𝑞6; 𝑞4)∞
(1 − 𝑞)

∑
𝑞2𝑛(𝑛+1)(−𝑞3; 𝑞2)2𝑛
(𝑞4; 𝑞2)2𝑛(−𝑞6; 𝑞4)𝑛

= ∑
𝑞2𝑛(𝑛+1)

(𝑞; 𝑞)2𝑛+1
           (3.7.2)

∞

𝑛=0

∞

𝑛=0

 

Now using (xiii) in (3.7.2) we get the following identity 

  

(−𝑞6; 𝑞4)∞
(1 − 𝑞)

∑
𝑞2𝑛(𝑛+1)(−𝑞3; 𝑞2)2𝑛
(𝑞4; 𝑞2)2𝑛(−𝑞6; 𝑞4)𝑛

=
𝑓(𝑞; 𝑞7)

𝑓(−𝑞2)

∞

𝑛=0

 

=
(−𝑞;−𝑞7; 𝑞8; 𝑞8)∞

(𝑞2; 𝑞2)∞
 

=
(−𝑞; 𝑞8)∞(−𝑞

7; 𝑞8)∞(𝑞
8; 𝑞8)∞

(−𝑞; 𝑞)∞(𝑞; 𝑞)∞
 

=
∏ (1 + 𝑞1+8𝑗)(1 + 𝑞7+8𝑗)(1 − 𝑞8+8𝑗)∞
𝑗=1

∏ (1 + 𝑞𝑗+1)(1 − 𝑞𝑗+1)∞
𝑗=1

 

=∏
1

1 + 𝑞𝑛
.∏

1

1 − 𝑞𝑚

∞

𝑚=1

,   𝑤ℎ𝑒𝑟𝑒 𝑛 ≢ 1,7(𝑚𝑜𝑑8)

∞

𝑛=1

& 𝑚 ≢ 0(𝑚𝑜𝑑8)    (3.7.3) 

Again, placing 𝑞
1
2⁄  in place of q in transformation (5) we have  

∑
𝑞
𝑛2

2 𝛾𝑛

(
𝑞
1
2⁄

𝑏
⁄ ; 𝑞

1
2⁄ )𝑛(𝑞

1
2⁄ ; 𝑞

1
2⁄ )𝑛

= (𝛾𝑞; 𝑞)∞∑
𝑞
𝑛2

2 𝛾𝑛(−
𝑞
1
2⁄

𝑏 ; 𝑞
1
2⁄ )2𝑛

(𝑞; 𝑞)𝑛(
𝑞
𝑏2
; 𝑞)𝑛(−𝛾𝑞; 𝑞)𝑛

∞

𝑛=0

∞

𝑛=0

     (3.7.4) 

Which for 𝑏 = 𝑞
1
4⁄  𝑎𝑛𝑑 𝛾 = 1 gives  
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∑
𝑞
𝑛2
2⁄

(𝑞
1
4⁄ ; 𝑞

1
2⁄ )𝑛(𝑞

1
2⁄ ; 𝑞

1
2⁄ )𝑛

∞

𝑛=0

= (−𝑞; 𝑞)∞∑
𝑞
𝑛2
2⁄ (−𝑞

1
4⁄ ; 𝑞

1
2⁄ )2𝑛

(𝑞; 𝑞)𝑛(𝑞
7
8⁄ ; 𝑞)𝑛(−𝑞; 𝑞)𝑛

∞

𝑛=0

 

Now, taking  𝑞 → 𝑞4 we get  

(−𝑞4; 𝑞4)∞∑
𝑞2𝑛

2
(−𝑞; 𝑞2)2𝑛

(𝑞8; 𝑞8)𝑛(𝑞
7
2⁄ ; 𝑞4)𝑛

= ∑
𝑞𝑛

2

(𝑞; 𝑞2)𝑛(𝑞2; 𝑞2)𝑛

∞

𝑛=0

∞

𝑛=0

 

= ∑
𝑞𝑛

2

(𝑞; 𝑞)2𝑛

∞

𝑛=0

 

=
𝑓(𝑞3; 𝑞5)

𝑓(−𝑞2)
  𝑓𝑟𝑜𝑚 (𝑥𝑖𝑣) 

=
(−𝑞3; −𝑞5; 𝑞8; 𝑞8)∞

(𝑞2; 𝑞2)∞
 

=
(−𝑞3; 𝑞8)∞(−𝑞

5; 𝑞8)∞(𝑞
8; 𝑞8)∞

(−𝑞; 𝑞)∞(𝑞; 𝑞)∞
 

=
∏ (1 + 𝑞3+8𝑗)(1 + 𝑞5+8𝑗)(1 − 𝑞8+8𝑗)∞
𝑗=1

∏ (1 + 𝑞𝑗+1)(1 − 𝑞𝑗+1)∞
𝑗=1

 

=∏
1

1 + 𝑞𝑛
.∏

1

1 − 𝑞𝑚

∞

𝑚=1

,   𝑤ℎ𝑒𝑟𝑒 𝑛 ≢ 3,5(𝑚𝑜𝑑8)

∞

𝑛=1

& 𝑚 ≢ 0(𝑚𝑜𝑑8)    (3.7.5) 

 

3.8. Some identities of Rogers-Ramanujan Type Related to modulo 10: 

Replacing  𝑞 𝑏𝑦 𝑞2 in (2) we get  

∑
𝑞𝑛(𝑛−1)(−𝛾)𝑛

(𝑏; 𝑞2)𝑛(𝑞2; 𝑞2)𝑛
= (𝛾; 𝑞2)∞∑

𝑞(3𝑛
2−3𝑛)(−𝑏𝛾)𝑛

(𝑞2; 𝑞2)𝑛(𝑏; 𝑞2)𝑛(𝛾; 𝑞2)𝑛
                      (3.8.1)              

∞

𝑛=0

∞

𝑛=0

 

Setting 𝑏 = 𝑞3 𝛾 = −𝑞3 in (3.8.1) we get  

∑
𝑞𝑛(𝑛+2)

(𝑞3; 𝑞2)𝑛(𝑞2; 𝑞2)𝑛
= (1 − 𝑞2)(−𝑞3; 𝑞2)∞∑

𝑞3𝑛
2+3𝑛

(𝑞2; 𝑞4)𝑛+1(𝑞2; 𝑞2)𝑛

∞

𝑛=0

∞

𝑛=0

 

Which for 𝑞 → 𝑞
1
2⁄  gives  

1

(1 − 𝑞)(−𝑞
3
2⁄ ; 𝑞)∞

∑
𝑞
𝑛(𝑛+2)
2

(𝑞
3
2⁄ ; 𝑞)𝑛(𝑞; 𝑞)𝑛

= ∑
𝑞
(3𝑛2+3𝑛)

2

(𝑞; 𝑞2)𝑛+1(𝑞; 𝑞)𝑛

∞

𝑛=0

∞

𝑛=0

 

=
𝑓(−𝑞2; −𝑞8)

𝑓(−𝑞)
 𝑓𝑟𝑜𝑚 (𝑖𝑖) 



 
 

32 
 

=
(𝑞2; 𝑞8; 𝑞10; 𝑞10)∞

(𝑞; 𝑞)∞
 

=
(𝑞2; 𝑞10)∞(𝑞

8; 𝑞10)∞(𝑞
10; 𝑞10)∞

(𝑞; 𝑞)∞
 

=
∏ (1 − 𝑞2+10𝑗)(1 − 𝑞8+10𝑗)(1 − 𝑞10+10𝑗)∞
𝑗=1

∏ (1 − 𝑞1+𝑗)∞
𝑗=1

 

=∏
1

1 − 𝑞𝑛
,

∞

𝑛=1

𝑛 ≢ 0,2,8(𝑚𝑜𝑑10)                 (3.8.2) 

The equation (3.8.1) for 𝑏 = 𝑞,  𝛾 = −𝑞  gives  

1

(−𝑞; 𝑞2)∞
∑

𝑞𝑛
2

(𝑞; 𝑞2)𝑛(𝑞
2; 𝑞2)𝑛

= ∑
𝑞3𝑛

2−𝑛

(𝑞2; 𝑞2)𝑛(𝑞
2; 𝑞4)𝑛

∞

𝑛=0

∞

𝑛=0

 

 

Which for 𝑞 → 𝑞
1
2⁄  gives : 

1

(−𝑞
1
2⁄ ; 𝑞)∞

∑
𝑞
𝑛2

2

(𝑞
1
2⁄ ; 𝑞)𝑛(𝑞; 𝑞)𝑛

= ∑
𝑞
3𝑛2−𝑛
2

(𝑞; 𝑞2)𝑛(𝑞; 𝑞)𝑛

∞

𝑛=0

∞

𝑛=0

 

                                      =
𝑓(−𝑞4; −𝑞6)

𝑓(−𝑞)
 𝑓𝑟𝑜𝑚(𝑖𝑖𝑖) 

=
(𝑞4; 𝑞6; 𝑞10; 𝑞10)∞

(𝑞; 𝑞)∞
 

=
(𝑞4; 𝑞10)∞(𝑞

6; 𝑞10)∞(𝑞
10; 𝑞10)∞

(𝑞; 𝑞)∞
 

=
∏ (1 − 𝑞4+10𝑗)(1 − 𝑞6+10𝑗)(1 − 𝑞10+10𝑗)∞
𝑗=1

∏ (1 − 𝑞1+𝑗)∞
𝑗=1

 

=∏
1

1 − 𝑞𝑛
,

∞

𝑛=1

𝑛 ≢ 0,4,6(𝑚𝑜𝑑10)                 (3.8.3) 

Also the equation (3.8.1) for 𝑏 = 𝑞3, 𝛾 = −𝑞2 gives  

(−𝑞2; 𝑞2)∞
(1 − 𝑞2)

∑
𝑞3𝑛

2+2𝑛

(𝑞4; 𝑞4)𝑛(𝑞3; 𝑞2)𝑛

∞

𝑛=0

= ∑
𝑞𝑛

2+𝑛

(𝑞; 𝑞)2𝑛+1

∞

𝑛=0

 

=
𝑄(𝑞10; −𝑞3)

𝑓(−𝑞)
    𝑓𝑟𝑜𝑚 (𝑣𝑖𝑖) 
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=
(𝑞7; 𝑞3; 𝑞10; 𝑞10)∞(𝑞

4; 𝑞16; 𝑞20)∞
(𝑞; 𝑞)∞

 

=
(𝑞4; 𝑞16; 𝑞20)∞(𝑞

7; 𝑞10)∞(𝑞
3; 𝑞10)∞(𝑞

10; 𝑞10)∞
(𝑞; 𝑞)∞

 

Thus we have  

(−𝑞2; 𝑞2)∞
(𝑞4; 𝑞16; 𝑞20)∞(1 − 𝑞

2)
∑

𝑞3𝑛
2+2𝑛

(𝑞4; 𝑞4)𝑛(𝑞
3; 𝑞2)𝑛

∞

𝑛=0

=
∏ (1 − 𝑞4+10𝑗)(1 − 𝑞6+10𝑗)(1 − 𝑞10+10𝑗)∞
𝑗=1

∏ (1 − 𝑞1+𝑗)∞
𝑗=1

 

=∏
1

1 − 𝑞𝑛
,

∞

𝑛=1

𝑛 ≢ 0,3,7(𝑚𝑜𝑑10)                 (3.8.4) 

Moreover the equation(3.8.1) for 𝑏 = 𝑞3, 𝛾 = −𝑞3 gives 

(−𝑞3; 𝑞2)∞
(1 − 𝑞)

∑
𝑞3𝑛

2+3𝑛

(𝑞2; 𝑞2)𝑛(𝑞6; 𝑞4)𝑛

∞

𝑛=0

= ∑
𝑞𝑛

2+2𝑛

(𝑞; 𝑞)2𝑛+1

∞

𝑛=0

 

 

=
𝑄(𝑞10; −𝑞4)

𝑓(−𝑞)
  𝑓𝑟𝑜𝑚 (𝑣𝑖𝑖𝑖) 

=
(𝑞6; 𝑞4; 𝑞10; 𝑞10)∞(𝑞

2; 𝑞18; 𝑞20)∞
(𝑞; 𝑞)∞

 

=
(𝑞2; 𝑞18; 𝑞20)∞(𝑞

6; 𝑞10)∞(𝑞
4; 𝑞10)∞(𝑞

10; 𝑞10)∞
(𝑞; 𝑞)∞

 

Thus we have  

(−𝑞3; 𝑞2)∞
(𝑞2; 𝑞18; 𝑞20)∞(1 − 𝑞)

∑
𝑞3𝑛

2+3𝑛

(𝑞2; 𝑞2)𝑛(𝑞
6; 𝑞4)𝑛

∞

𝑛=0

=
∏ (1 − 𝑞6+10𝑗)(1 − 𝑞4+10𝑗)(1 − 𝑞10+10𝑗)∞
𝑗=1

∏ (1 − 𝑞1+𝑗)∞
𝑗=1

 

=∏
1

1 − 𝑞𝑛
,

∞

𝑛=1

𝑛 ≢ 0,4,6(𝑚𝑜𝑑10)                 (3.8.5) 

And finally setting 𝑏 = 𝑞3, 𝛾 = −𝑞2 in (3.8.1) it yields 

(−𝑞2; 𝑞2)∞∑
𝑞3𝑛

2

(𝑞; 𝑞2)𝑛(𝑞4; 𝑞4)𝑛
= ∑

𝑞𝑛
2+𝑛

(𝑞; 𝑞2)𝑛(𝑞2; 𝑞2)𝑛

∞

𝑛=0

∞

𝑛=0
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= ∑
𝑞𝑛

2+𝑛

(𝑞; 𝑞)2𝑛

∞

𝑛=0

 

=
𝑄(𝑞10; −𝑞)

𝑓(−𝑞)
 𝑓𝑟𝑜𝑚 (𝑖𝑥) 

(𝑞9; 𝑞; 𝑞10; 𝑞10)∞(𝑞
8; 𝑞12; 𝑞20)∞

(𝑞; 𝑞)∞
 

=
(𝑞8; 𝑞12; 𝑞20)∞(𝑞

9; 𝑞10)∞(𝑞; 𝑞
10)∞(𝑞

10; 𝑞10)∞
(𝑞; 𝑞)∞

 

Thus we have the following identity  

(−𝑞2; 𝑞2)∞
(𝑞8; 𝑞12; 𝑞20)∞

∑
𝑞3𝑛

2

(𝑞; 𝑞2)𝑛(𝑞4; 𝑞4)𝑛
=∏

1

1− 𝑞𝑛
,

∞

𝑛=1

𝑛 ≢ 0,1,9(𝑚𝑜𝑑10)                 (3.8.6

∞

𝑛=0

) 

 

3.8. Some identities of Rogers-Ramanujan Type Related to modulo 12: 

Placing 𝑞2 in place of q in transformation (9), we get  

∑
(𝑎2; 𝑞2)𝑛𝑞

3𝑛2+𝑛(𝑎)2𝑛

(𝑞2; 𝑞2)𝑛
=
(𝑎2𝑞2; 𝑞2)∞
(−𝑎𝑞2; 𝑞2)∞

∑
(−𝑎; 𝑞2)𝑛𝑞

𝑛2−𝑛(𝑎𝑞2)𝑛

(𝑎𝑞2, 𝑞2; 𝑞2)𝑛

∞

𝑛=0

∞

𝑛=0

        (3.9.1) 

Setting 𝑎 = 𝑞 in (3.9.1), it reduces to: 

∑
(𝑞2; 𝑞2)𝑛𝑞

3𝑛2+3𝑛

(𝑞2; 𝑞2)𝑛
=
(𝑞4; 𝑞2)∞
(−𝑞3; 𝑞2)∞

∑
(−𝑞; 𝑞2)𝑛𝑞

𝑛2+2𝑛

(𝑞3, 𝑞2; 𝑞2)𝑛

∞

𝑛=0

∞

𝑛=0

 

Which reduces to the following identity after some reduction: 

(−𝑞3; 𝑞2)∞
(𝑞4; 𝑞2)∞(1 − 𝑞)

∑
(𝑞2; 𝑞2)𝑛𝑞

3𝑛2+3𝑛

(𝑞2; 𝑞2)𝑛
= ∑

(−𝑞; 𝑞2)𝑛𝑞
𝑛2+2𝑛

(𝑞; 𝑞)2𝑛+1

∞

𝑛=0

∞

𝑛=0

 

 

=
𝑓(−𝑞2; −𝑞10)

𝑓(−𝑞)
 𝑓𝑟𝑜𝑚 (𝑥𝑖𝑖) 

=
(𝑞2; 𝑞10; 𝑞12; 𝑞12)∞

(𝑞; 𝑞)∞
 

=
(𝑞2; 𝑞12)∞(𝑞

10; 𝑞12)∞(𝑞
12; 𝑞12)∞

(𝑞; 𝑞)∞
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Thus we have  

=
∏ (1 − 𝑞2+12𝑗)(1 − 𝑞10+12𝑗)(1 − 𝑞12+12𝑗)∞
𝑗=1

∏ (1 − 𝑞1+𝑗)∞
𝑗=1

 

=∏
1

1 − 𝑞𝑛
,

∞

𝑛=1

𝑛 ≢ 0,2,10(𝑚𝑜𝑑12)                 (3.9.2) 
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Chapter 4: Further Theorems of the Rogers-   

Ramanujan Type Theorems 

4.1. Introduction  

      In the theory of partitions, we find a number of identities which state that for each 

positive integers n the partitions of n with parts restricted to certain residue classes are 

equinumerous with the partitions of n on which certain difference conditions are 

imposed. Among the most striking result of this type are Rogers-Ramanujan identities. 

These were stated combinatorically by P. A. McMahon as follows  

1.1. The number of  partitions of n into parts with minimal difference 2 equals the 

number of partitions of n into parts which are congruent to ±1(𝑚𝑜𝑑 5). 

1.2. The number of partitions of n with minimal part 2 and minimal difference  

equals the number of partitions of n into parts which are congruent to 

±2(𝑚𝑜𝑑 5). 

Recently, Hirschhorn using some of the Slater’s identities [8] proved four theorems of the 

Rogers-Ramanujan type. Later, using the same identities of Slater’s, Subbarao established 

entirely different combinatorial results. Subbarao’s results bear striking resemblance with 

the Rogers-Ramanujan identities. 

1.3. Let A(n) denote the number of partition of n into parts congruent to 

±1, ±2,±5, ±6,±8,±9(𝑚𝑜𝑑20). Let B(n) denote the number of partitions of n 

of the form 𝑏1 + 𝑏2 +⋯+ 𝑏𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝑏𝑖 ≥ 𝑏𝑖+1, and, if  

1 ≤ 𝑖 ≤ [
𝑡 − 2

2
] , 𝑏𝑖 − 𝑏𝑖+1 ≥ 2 

Then A(n)=B(n) for all n. 

The object of this chapter is to prove the following theorem:(see [9]) 

Theorem 1.  

    Let C(n) denote the number of partition of n into parts congruent to 

±𝟐, ±𝟑, ±𝟒, ±𝟓,±𝟔,±𝟕(𝒎𝒐𝒅𝟐𝟎). Let D(n) denote the number of partitions of n of the form 

𝒏 = 𝒃𝟏 + 𝒃𝟐 +⋯+ 𝒃𝒕 , 𝒘𝒉𝒆𝒓𝒆 𝒃𝒕 ≥ 𝟐,𝒃𝒊 ≥ 𝒃𝒊+𝟏, and, if  

𝟏 ≤ 𝒊 ≤ [
𝒕 − 𝟐

𝟐
] , 𝒃𝒊 − 𝒃𝒊+𝟏 ≥ 𝟐 

Then C(n)=D(n) for all n. 

Proof:  

                   let 𝜋𝑡(𝑛) be a partition enumerated by D(n). 
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 Then for some 𝑠 ≥ 1, 𝑡 = 2𝑠 − 1 𝑜𝑟 𝑡 = 2𝑠. 

First for 𝑡 = 2𝑠 

 then,  

𝜋𝑡(𝑛) = 𝑏1 + 𝑏2 +⋯+ 𝑏2𝑠  

𝜋2𝑠(𝑛) = 𝑏1 + 𝑏2 +⋯+ 𝑏2𝑠  

With  

𝑏𝑠 ≥ 2, 𝑏𝑠−1 ≥ 4,…𝑏1 ≥ 2𝑠 

And                                                                    𝑏𝑠+1 ≥ 𝑏𝑠+2 ≥,… ≥ 𝑏2𝑠 ≥ 2 

We subtract 2,4,6,… ,2𝑠 from 𝑏𝑠, 𝑏𝑠−1, … , 𝑏1, 𝑏2respectively and 2 from each of 

𝑏𝑠+1, 𝑏𝑠+2, … , 𝑏2𝑠 . This produce a partition of  

(𝑞; 𝑞)2𝑠 =∏
(1− 𝑞𝑞𝑖)

(1 − 𝑞𝑞2𝑠+𝑖)

∞

𝑖=0

 

=∏
(1− 𝑞𝑖+1)

(1 − 𝑞2𝑠+𝑖+1)

∞

𝑖=0

 

=
(1 − 𝑞)

(1 − 𝑞2𝑠+1)
.
(1 − 𝑞2)

(1 − 𝑞2𝑠+2)
…
(1 − 𝑞2𝑠)

(1 − 𝑞2𝑠+2𝑠)
.
(1 − 𝑞2𝑠+1)

(1 − 𝑞2𝑠+2𝑠+1)
… 

= (1 − 𝑞)(1 − 𝑞2)… (1 − 𝑞2𝑠) 

𝑞𝑠
2+3𝑠

(𝑞; 𝑞)2𝑠
=

𝑞𝑠
2+3𝑠

(1 − 𝑞)(1 − 𝑞2)… (1 − 𝑞2𝑠)
 

⟹ 𝑛 − [(2 + 4 + 6 +⋯+ 2𝑠) + 2𝑠] = 𝑛 − (𝑠2 + 3𝑠)  into at most 2s parts. 

Thus the partition of the type 𝜋2𝑠(𝑛) are generated by  

𝑞𝑠
2+3𝑠

(𝑞; 𝑞)2𝑠
. (𝑠 = 1,2,… ) 

Similarly if 𝑡 = 2𝑠 − 1 then  

𝜋2𝑠−1(𝑛) = 𝑏1 + 𝑏2 +⋯+ 𝑏2𝑠−1 

With  𝑏𝑠−1 ≥ 2, 𝑏𝑠−2 ≥ 4,…𝑏1 ≥ 2𝑠 − 2, 

And  𝑏𝑠 ≥ 𝑏𝑠+1 ≥ 𝑏𝑠+2 ≥,… ≥ 𝑏2𝑠−1 ≥ 2 

We subtract 2,4,6,… ,2(𝑠 − 1) from 𝑏𝑠−1, … , 𝑏1 respectively and 2 from each of 

𝑏𝑠, 𝑏𝑠+1, 𝑏𝑠+2, … , 𝑏2𝑠−1 we are left with  a partition of 
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 𝑛 − [2(1 + 2 + 3 + ⋯+ (𝑠 − 1)) − 2𝑠] = 𝑛 − (𝑠2 + 𝑠)   

Into at most 2s-1 parts. 

This shows that the partition of the type𝜋2𝑠−1(𝑛)  are generated by 

  

𝑞𝑠
2+𝑠

(𝑞; 𝑞)2𝑠−1
. (𝑠 = 1,2,… ) 

Thus  

∑𝐷(𝑛)𝑞𝑛
∞

𝑛=0

= ∑
𝑞𝑛

2+𝑛

(𝑞; 𝑞)2𝑛

∞

𝑛=0

 

Now an appeal to slater’s identity [8, (99), p.162) 

∑
𝑞𝑛

2+𝑛

(𝑞; 𝑞)2𝑛

∞

𝑛=0

=
1

(𝑞; 𝑞)∞
∏(1− 𝑞10𝑛−1)(1 − 𝑞10𝑛−9)(1 − 𝑞20𝑛−8) × (1 − 𝑞20𝑛−12)(1

∞

𝑛=1

− 𝑞10𝑛) 

Hence the theorem. 

We shall also prove two more identities stated below: 

Theorem 2:  

let 𝑷𝟏(𝒏) denote the number of partitions of n into parts congruent to 

±𝟏, ±𝟒, ±𝟔, ±𝟕(𝒎𝒐𝒅 𝟏𝟔). 𝑷𝟐(𝒏) denote the number of partitions of n of the form 𝒏 = 𝒃𝟏 +

𝒃𝟐 +⋯+ 𝒃𝟐𝒔+𝟏,  𝒘𝒉𝒆𝒓𝒆 𝒃𝒊 ≥ 𝒃𝒊+𝟏, 𝒃𝒔+𝟏 ≥ 𝒔, 𝒃𝒔 ≠ 𝒃𝒔+𝟏 and if 𝟏 ≤ 𝒊 ≤ 𝒔 − 𝟏, 𝒃𝒊 − 𝒃𝒊+𝟏 ≥

𝟐.   𝐓hen 𝑷𝟏(𝒏) = 𝑷𝟐(𝒏) 

Proof: 

                             let  𝜋2𝑠+1(𝑛) = 𝑏1 + 𝑏2 +⋯+ 𝑏𝑠 + 𝑏𝑠+1 +⋯+ 𝑏2𝑠+1 

With 𝑏𝑠+1 ≥ 𝑠, 𝑏𝑠 ≥ 𝑠 + 1, 𝑏𝑠−1 ≥ 𝑠 + 3,… , 𝑏1 ≥ 𝑠 + (2𝑠 − 1) 

And 𝑏𝑠+2 ≥ 𝑏𝑠+3 ≥ 𝑏𝑠+4 ≥ ⋯ ≥ 𝑏2𝑠+1 ≥ 1 

Subtract 𝑠, 𝑠 + 1, 𝑠 + 3,… , 𝑠 + (2𝑠 − 1) from 𝑏𝑠+1, 𝑏𝑠 , … , 𝑏1respectively and 1 from each 

𝑏𝑠+2, 𝑏𝑠+3, … , 𝑏2𝑠+1. This produce a partition of n-2s(s+1) into at most 2s+1 parts. This 

shows that the partitions of the type  𝜋2𝑠+1(𝑛) are generated by  

𝑞2𝑠(𝑠+1)

(𝑞; 𝑞)2𝑠+1
. (𝑠 = 1,2, … ) 

The theorem follows immediately once we recall the following identity of slater [8, (86), 

p.161] 
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∑
𝑞2𝑛(𝑛+1)

(𝑞; 𝑞)2𝑛+1

∞

𝑛=0

=
1

(𝑞; 𝑞)∞
∏(1− 𝑞8𝑛−3)(1 − 𝑞8𝑛−5) × (1 − 𝑞16𝑛−14)(1 − 𝑞16𝑛−2)(1 − 𝑞8𝑛)

∞

𝑛=1

  

Hence the theorem. 

Theorem 3: 

  The number of partitions of n into odd parts equals the number of partition of n into an odd 

number, say 2s+1, of parts, satisfying the conditions that the middle part is at least s and the 

first s parts have minimal difference 1. 

Proof: 

     Let 𝜇(𝑛) denote the number of partitions of n of the type described in the second part of 

the theorem.  

By the usual argument it can be shown that  

∑𝜇(𝑛)𝑞𝑛
∞

𝑛=0

= ∑
𝑞2𝑛

2+𝑛

(𝑞; 𝑞)2𝑛+1

∞

𝑛=0

    (𝑎) 

The theorem follows immediately once we note that the right-hand side of (a) equals 

(−𝑞; 𝑞)∞ in view of the following identity due Slater  

∑
𝑞𝑛(2𝑛+1)

(𝑞; 𝑞)2𝑛+1

∞

𝑛=0

=∏
(1 + 𝑞4𝑛−1)(1 + 𝑞4𝑛−3)(1 − 𝑞4𝑛)

1 − 𝑞2𝑛
.

∞

𝑛=1

 

Hence Proved. 
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           Chapter 5: Some New Partition Theorems 

5.1 Introduction:  

     It appears that P. A. MacMahon was the first to recognize the combinatorial significance 

of the Rogers-Ramanujan identities. The second of these identities was stated thusly: 

 The partitions of any positive integer, n, into parts of the forms 5m++2, 5m+3 are 

equinumerous with those partition of n into parts ≥ 2 which involve neither sequence nor 

repetitions. 

In the next chapter of MacMahon’s book, the following striking (and little know) theorem 

which resembles the second Rogers-Ramanujan identity is proved, although not explicitly 

stated: 

The partitions of any integer, n, into parts of the forms 6m, 6m+2, 6m+3, 6m+4 are 

equinumerous with those partitions of n into parts ≥ 2 which do not  involve  sequences. 

Thus with n=12, the partitions of the first type are  

12, 10 + 2, 9 + 3, 8 + 4, 8 + 2 + 2, 6 + 6, 6 + 4 + 2, 6 + 3 + 3, 6 + 2 + 2 + 2,  

4 + 4 + 4, 4 + 4 + 2 + 2, 4 + 3 + 3 + 2, 4 + 2 + 2 + 2 + 2, 3 + 3 + 3 + 3,  

3 + 3 + 2 + 2 + 2, 2 + 2 + 2 + 2 + 2 + 2 

While the 16 partitions of the second kind are  

12, 10 + 2, 9 + 3, 8 + 4, 8 + 2 + 2, 7 + 5, 6 + 6, 6 + 4 + 2, 6 + 3 + 3, 6 + 2 + 2 + 2, 

 5 + 5 + 2, 4 + 4 + 4,4 + 4 + 2 + 2, 4 + 2 + 2 + 2 + 2, 3 + 3 + 3 + 3, 2 + 2 + 2 + 2 + 2 + 2 

The following theorem in certain sense appears to be intermediate between the second 

Rogers-Ramanujan identity and MacMahon’s Theorem. 

Theorem 1:  

The partitions of any positive integer, n, into parts of the forms  6m+2, 6m+3, 6m+4 are 

equinumerous with those partitions of n into parts ≥ 𝟐 which neither involve  sequences nor 

allow any part to appear more than twice. 

Thus again with n=12, the 11 partitions of the first type are  

 10 + 2, 9 + 3, 8 + 4, 8 + 2 + 2, 4 + 4 + 4, 4 + 4 + 2 + 2, 4 + 3 + 3 + 2,  

4 + 2 + 2 + 2 + 2, 3 + 3 + 3 + 3, 3 + 3 + 2 + 2 + 2, 2 + 2 + 2 + 2 + 2 + 2; 

While the 11 partitions of the second type are  

12, 10 + 2, 9 + 3, 8 + 4, 8 + 2 + 2, 7 + 5, 6 + 6, 6 + 4 + 2, 6 + 3 + 3 
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 5 + 5 + 2,4 + 4 + 2 + 2.  

Actually it is a special case of the following theorem with k=1, a=0. 

Theorem 2: 

 Let  𝟎 ≤ 𝒂 < 𝒌 be integers. Let 𝑨𝒌,𝒂(𝑵) denote the number of partitions of N into parts ≢

𝟎,±(𝟐𝒂 + 𝟏)(𝒎𝒐𝒅𝟒𝒌 + 𝟐).Let 𝑩𝒌,𝒂(𝑵) denote the number of partitions of N of the form 

∑ 𝒇𝒊. 𝒊,
∞
𝒊=𝟏  where  

1. 𝒇𝟏 ≤ 𝟐𝒂 

2. [
𝟏

𝟐
(𝒇𝒊 + 𝟏)]  + [

𝟏

𝟐
(𝒇𝒊+𝟏 + 𝟏)] ≤ 𝒌 

Then    

             𝑨𝒌,𝒂(𝑵) = 𝑩𝒌,𝒂(𝑵) .   

Proof:  

  We first discuss the second condition on the partitions enumerated by 𝐵𝑘,𝑎(𝑁); it states 

that, if 𝑖 appears 2𝑗 − 1 𝑜𝑟 2𝑗 times as a summand, then 𝑖 + 1 appears at most 2(𝑘 − 𝑗) 

times. Thus we see (with j=k) that no part appears more than 2k times. 

 We now proceed by the technique developed in [1] and [2]. If  

𝐶𝑘,𝑖(𝑥; 𝑞) = ∑(−1)𝜇𝑥𝑘𝜇𝑞1 2⁄ (2𝑘+1)𝜇(𝜇+1)−𝑖𝜇(1 − 𝑥𝑖𝑞(2𝜇+1)𝑖) ×
(1 − 𝑥𝑞)… (1 − 𝑥𝑞𝜇)

(1 − 𝑞)… (1 − 𝑞𝜇)
,       (1)

∞

𝜇=0

 

Then [12, p.4] 

𝐶𝑘,𝑖(𝑥; 𝑞) − 𝐶𝑘,𝑖−1(𝑥; 𝑞) = 𝑥
𝑖−1𝑞𝑖−1(1 − 𝑥𝑞)𝐶𝑘,𝑘−𝑖+1(𝑥𝑞; 𝑞),          (2) 

And [12, p.4] 

𝐶𝑘,−𝑖(𝑥; 𝑞) = −𝑥
−𝑖𝑞−𝑖𝐶𝑘,𝑖(𝑥; 𝑞)               (3) 

Consequently, if we define  

𝑅𝑘,𝑖(𝑥) = 𝐶𝑘,𝑖+1
2

(𝑥2; 𝑞2)∏
1

(1 − 𝑥𝑞𝑗)

∞

𝑗=1

, 

Then for 0 ≤ 𝑖 ≤ 𝑘, (2) implies  

𝑅𝑘,𝑖(𝑥) − 𝑅𝑘,𝑖−1(𝑥) = 𝑥
2𝑖−1𝑞2𝑖−1(1 + 𝑥𝑞)𝑅𝑘,𝑘−𝑖(𝑥𝑞)         (4)  

And (2) and (3) imply  

𝑅𝑘,0(𝑥) = 𝑅𝑘,𝑘(𝑥𝑞)        (5) 
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We may expand 𝑅𝑘,𝑖(𝑥) as follows 

𝑅𝑘,𝑖(𝑥) = ∑ ∑ 𝐶𝑘,𝑖(𝑀, 𝑁)

∞

𝑀=−∞

∞

𝑁=−∞

𝑥𝑀𝑞𝑁,            |𝑥| ≤ 1, |𝑞| < 1.   (6) 

Then by mean of (4), (5), (6), and the definition of 𝑅𝑘,𝑖(𝑥) we easily verify that  

                                    𝑐𝑘,𝑖(𝑀, 𝑁) = {
1                                                           𝑖𝑓 𝑀 = 𝑁 = 0 

0 𝑖𝑓 𝑒𝑖𝑡ℎ𝑒𝑟 𝑀 ≤ 0 𝑜𝑟 𝑁 ≤ 0 𝑎𝑛𝑑 𝑀2 +𝑁2 ≠ 0,
       (7) 

𝐶𝑘,0(𝑀, 𝑁) = 𝐶𝑘,𝑘(𝑀, 𝑁 −𝑀),         (8) 

𝑐𝑘,𝑖(𝑀,𝑁) − 𝑐𝑘,𝑖−1(𝑀, 𝑁) = 𝐶𝑘,𝑘−𝑖(𝑀 − 2𝑖 + 1,𝑁 − 𝑀) + 𝐶𝑘,𝑘−𝑖(𝑀 − 2𝑖,𝑁 − 𝑀)  0 < 𝑖

≤ 𝑘                                                                                                                                       (9) 

Let 𝑝𝑘,𝑖(𝑀, 𝑁) denote the number of partitions of N into M parts of the form N=∑ 𝑓𝑗 . 𝑗
∞
𝑗=1  

with 𝑓1 ≤ 2𝑖 and  

[
1

2
(𝑓𝑗 + 1)]  + [

1

2
(𝑓𝑗+1 + 1)] ≤ 𝑘. 

We wish to show that 𝑝𝑘,𝑖(𝑀, 𝑁) satisfies (7), (8), and (9). Now (7) is by definition. 

As for (8), let us consider any partition enumerated by 𝑝𝑘,0(𝑀, 𝑁).  

Since 1 does not appear, every summand is ≥ 2. Subtracting 1 from every summand, we 

obtain a partition of N-M into M parts with 1 appearing at most 2k times and again  

[
1

2
(𝑓𝑗 + 1)]  + [

1

2
(𝑓𝑗+1 + 1)] ≤ 𝑘. 

Thus we have a partition of the type enumerated by 𝑝𝑘,𝑘(𝑀, 𝑁 −𝑀). The above procedure 

establishes a one-to-one correspondence between the partitions enumerated by 

𝑝𝑘,𝑘(𝑀, 𝑁 −𝑀) and the partitions enumerated by 𝑝𝑘,0(𝑀,𝑁). Hence  

𝑝𝑘,0(𝑀, 𝑁) = 𝑝𝑘,𝑘(𝑀,𝑁 − 𝑀). 

Finally, we treat (9). We note that 𝑝𝑘,𝑖(𝑀,𝑁)−𝑝𝑘,𝑖−1(𝑀, 𝑁) enumerates the number of 

partitions of N into M parts of the form  N=∑ 𝑓𝑗 . 𝑗
∞
𝑗=1  with 𝑓1 = 2𝑖 − 1 𝑜𝑟 2𝑖 

And   

[
1

2
(𝑓𝑗 + 1)]  + [

1

2
(𝑓𝑗+1 + 1)] ≤ 𝑘. 

In case 𝑓1 = 2𝑖 − 1, we see that 𝑓2 ≤ 2(𝑘 − 𝑖); subtracting 1 from every summand, we 

obtain a partition of N-M into M-2i+1 parts with 1 appearing at most 2(k-i) times and  

[
1

2
(𝑓𝑗 + 1)]  + [

1

2
(𝑓𝑗+1 + 1)] ≤ 𝑘. 
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Thus we have a partition of the type enumerated by 𝑝𝑘,𝑘−𝑖(𝑀 − 2𝑖 + 1,𝑁 −𝑀). 

In case 𝑓1 = 2𝑖, we see that 𝑓2 ≤ 2(𝑘 − 𝑖); subtracting 1 from every summand, we obtain a 

partition of N-M into M-2i parts with 1 appearing at most 2(k-i) times and  

[
1

2
(𝑓𝑗 + 1)]  + [

1

2
(𝑓𝑗+1 + 1)] ≤ 𝑘. 

Thus we have a partition of the type enumerated by 𝑝𝑘,𝑘−𝑖(𝑀 − 2𝑖, 𝑁 −𝑀). The above 

procedure establishes a one-to-one correspondence between the partitions enumerated by  

𝑝𝑘,𝑖(𝑀, 𝑁)−𝑝𝑘,𝑖−1(𝑀, 𝑁) 

And the partitions enumerated by 

                                                𝑝𝑘,𝑘−𝑖(𝑀 − 2𝑖 + 1, 𝑁 − 𝑀) + 𝑝𝑘,𝑘−𝑖(𝑀 − 2𝑖, 𝑁 −𝑀).  

Hence  

𝑝𝑘,𝑖(𝑀,𝑁)−𝑝𝑘,𝑖−1(𝑀,𝑁) = 𝑝𝑘,𝑘−𝑖(𝑀 − 2𝑖 + 1,𝑁 −𝑀) + 𝑝𝑘,𝑘−𝑖(𝑀 − 2𝑖,𝑁 − 𝑀).  

Thus by the comment following (9), 

𝐶𝑘,𝑖(𝑀,𝑁) = 𝑝𝑘,𝑖(𝑀, 𝑁)                 (10) 

Thus for 0 ≤ 𝑎 ≤ 𝑘 

∑ 𝐴𝑘,𝑎(𝑁)𝑞
𝑁 = ∏

1

1 − 𝑞𝑛

∞

𝑛=1
𝑛≡0,±(2𝑎+1)(𝑚𝑜𝑑 4𝑘+2)

∞

𝑁=0

 

= 𝑅𝑘,𝑎(1) 

                                 = ∑ ∑ 𝑝𝑘,𝑎(𝑀,𝑁)𝑞
𝑁

∞

𝑀=−∞

∞

𝑁=−∞

 

           = ∑𝐵𝑘,𝑎(𝑁)𝑞
𝑁,

∞

𝑁=0

 

Where the second equation follows from Jacobi’s identity  

Therefore  

𝐴𝑘,𝑎(𝑁) = 𝐵𝑘,𝑎(𝑁). 

Hence proved. 
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Chapter 6:  Conclusion 

We have only touched on a small part of the Rogers-Ramanujan story in this survey. The 

main goal has been to present an expanded version of Slater’s list with the earliest known 

reference to each identity in the literature. Slater’s list contained only a few references to 

the earlier literature, and of course, Ramanujan’s lost notebook was unknown to the 

mathematical community in 1952. Accordingly, we believe it was a useful endeavor to 

bring together Slater’s list with Ramanujan’s lost notebook, and the dozens of additional 

identities of similar type which have been scattered throughout the literature over the 

years. Since Slater’s main tool was Bailey’s lemma and Bailey pairs, was included an 

exposition of this material in the introduction. 

The transformations can also be used for searching further identities of Rogers-Ramanujan 

type list. 
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