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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-
ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: "Study of Mathematical Modelling of

Infectious Diseases". This review is divided into six chapters.

FIRST CHAPTER :

This chapter provides an introduction to mathematical modelling; including steps for

formulation, its types, advantages and limitations.

SECOND CHAPTER:

In this chapter we have given a brief on vector borne diseases and corona virus disease

and the advances that have happened in these areas using mathematical modelling.

THIRD CHAPTER:

This chapter consists of a few definitions and concepts required for the study and analysis

of mathematical modelling.

FOURTH CHAPTER:

This chapter provides an elaborate review of the paper "MODELLING AND ANALY SIS
OF THE VECTOR BORNE DISEASES WITH FREE LIVING PATHOGEN GROW-
ING IN THE ENVIRONMENT".



i

FIFTH CHAPTER.

This chapter contains the review of the paper "AN SIQR MATHEMATICAL MODEL
TO CONTROL CORONA - VIRUS DISEASE (COVID-19) WITH SATURATED INCI-
DENCE RATE".

SIXTH CHAPTER.

This chapter concludes the study and analysis of mathematical modelling for both vector

borne diseases as well as corona virus disease.
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ABSTRACT

In the paper on vector borne diseases with free living pathogen in the environment
we shall be studying and analysing a non-linear dynamic model. Here we find the
equilibrium points and the stability is also analysed about these points. For studying the
stability Sylvester criterion and Lyapunov’s Stability is used.

In the paper on SIQR model with saturated incidence rate to control COVID-19 we shall
be studying and analysing a non-linear dynamic model. Here we find the equilibrium
points and the stability is also analysed about these points. Concepts like Sylvester
criterion, Lyapunov’s Stability and Lyapunov-LaSalle invariance principle is used to

study the stability of the formulated model.

Keywords: Mathematical modelling; equilibrium point; basic reproduction num-

ber; local stability; global stability
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S(t) | susceptible population at time t
I(t) | infected population at time t
R(t) | recovered population at time t
M(t) | susceptible vector population at time t
V(t) | infected vector at time t
P(t) | pathogen population at time t

) | cumulative density of environmental factors
Os(t) | susceptible quarantined population at time t
O;(t) | infected quarantined population at time t
Ry basic reproduction number







Chapter 1

INTRODUCTION

1.1 Introduction to Mathematical Modelling

1.1.1 Mathematical Modelling

When a situation or system for is described using mathematical language and concepts,
the resulting model is called a mathematical model. This process is termed as math-
ematical modelling. This process uses mathematics to study the real world problem,
analyse, make predictions and find the best suitable or optimal solution to the problem
faced. In modelling, one first has to identify the problem faced in the real world and
make certain assumptions as required in simplifying the problem. Once the problem has
been identified we move to the modelling part of it. Mathematical modelling consists of

the following steps:

1. Formulation of the model

This step includes describing the context of the problem, followed by identification

1



2 INTRODUCTION

of the relevant factors wherein we only consider the important factors while framing
the equation. Certain assumptions are also made to be accurate and at the same
time have a simplified model for the situation. The formulator has to make sure
that each mathematical quantity has to be described and denoted by a suitable

mathematical entity.

2. Finding the solution of the equation
Once we formulate the model the solutions of the mathematical equations have to

be found using the methods and concepts which are already studied.

3. Evaluation and interpretation
Lastly we need to interpret the solution to the mathematical equation in the lan-
guage of the real world and check whether the formulated model is good or not
practically. If the model fails then we go back to the formulation step and re-frame

the model with slight modifications.

1.1.2 Types of Mathematical Models

Mathematical models are mainly of two types:

1. Empirical models: Such models are experimental and based on observations
rather than theory. These type of models before being accepted are tested against

large data.

2. Theoretical model: These type of models are based on already existing laws and

ideas
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Classification of mathematical models

1. Linear or Non-linear Model
Based on the modelled equation which maybe be algebraic, difference equation,

differential equation etc being linear or non-linear.

2. Static or Dynamic Model
In static models the describing variables and relations are in-dependant of time. In

dynamic models the describing variables and relations are time dependant.

3. Discrete or Continuous Model
In discrete models discrete values are assumed by the variables.

In continuous models, continuous values are assumed by the variables.

4. Deterministic or Stochastic Model
If the values assumed by the variables are predictable with certainty then the model
is said to be a Deterministic Model.
If the values assumed by the variables are not predictable with certainty then the

model is said to be a Stochastic or Probabilistic Model.

1.1.3 Some characteristics of a Mathematical Model

1. The model has to be as realistic as possible.
2. The equations and inequalities involved must be consistent.
3. The model should neither be over simplified nor over complicated.

4. If parameters are estimated with the help of some data then the same data cannot

be used to validate the model.
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1.1.4 Advantages of Mathematical Modelling

1. Modelling is one such concept of mathematics which has helped solve problems

from natural sciences, engineering disciplines, as well as social sciences.

2. Modelling forces us to think clearly as the formulator has to study the situation,

eradicate irrelevant factors and think carefully before forming the model.

3. Instead of formulating a model for the entire system, one can form partial models

for subsystems and then combine them.

1.1.5 Limitations of Mathematical Modelling

1. Modelling is not a one shot affair, it might require multiple attempts to formulate a

mode that it closest to reality and each model is followed by a better one.

2. A model might give strange solutions if caution is not taken while framing the

model.
3. The formulator has to have knowledge of a wide variety of topics.

4. One has to keep updated with the up and coming models otherwise one might use

or refer to a model that has already been discarded.



Chapter 2

LITERATURE REVIEW

2.1 Infectious Diseases

Infectious diseases are caused by microorganisms such as bacteria, viruses, fungi and
parasites. Most microorganisms present on and in our body are harmless but under certain
conditions they cause infectious diseases. Some infectious diseases can be passed from
person to person. The transmission can happen from an infected person to a susceptible

via direct contact by touching, sneezing, coughing etc.

Microbes can be transmitted from a pregnant mother to unborn and newborn baby.
It can also happen through blood transfusion from an infected person to non-infected
one’s. Some are transmitted by insects or animals when scratched or bitten by an infected
insect or animal. There can be indirect transmission as well when a person comes in
contact with contaminated surfaces and objects. Transmission can happen by consuming
contaminated food and water which can increase the risk of spread to a larger population.

For eg: Cholera, Diarrhoea, Dysentery etc.
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Practising proper hygiene and sanitation are some preventive measures which can be
taken. Vaccination is a measure which can be taken to create heard immunity.

Eg: Malaria, Dengue, Chickenpox, Ebola, Covid-19 etc.

The initial contributions to modern mathematical epidemiology are by P.D. En’ko
dated between 1873 and 1894. Physicians like Sir R.A. Ross, W.H. Hamer, A.G. McK-
endrick, and W.O. Kermack between 1900 and 1935 were the ones who gave the basic
ideas and foundation. H.W Hamer put forward that the spread of an infectious disease
must depend upon the susceptible and infected population[8]. Further for the rate of
new infections he proposed the mass action law which since has been used in various
epidemic models. This gave rise to compartmental models for infectious diseases namely
SIS, SIR, SIER, SIES and so on. We shall be looking at two types of infectious diseases

namely, Vector borne diseases and Corona Virus Disease.

2.1.1 Mathematical Models on Vector Borne Diseases

Vectors are organisms which carry within them the pathogens which cause infectious
diseases. They further transmit the pathogens between humans or from animals to
humans. The most common of these vectors are bloodsucking insects. These insects
transmit the pathogens when they bite a non infected person or the host. They themselves
get infected by biting an infected person and are capable of further transmission for the
rest of their lifespan. Vectors like flies carry the pathogen on the outside of their bodies
and transmission happens via physical contact or by contamination of food and water

which is then consumed by the non infected person.

Vector borne diseases are diseases caused in the human population by pathogens

and parasites. These diseases are spread through insect bites as the pathogen enters the
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blood stream of the human population. Apart from its dependence on the susceptible and
infected populations there can be many external factors which affect the rate at which
these diseases are spread, which could be climate change, change of weather, or presence
of free living pathogen in the environment or no proper sanitization. In particular the
environment can become a suitable place for the survival of pathogens if proper hygiene
is not maintained. Activities like discharge of household and other wastes into the
environment can increase the rate at which the disease is spread as the environment
will play a major role in the spread via contaminated food and water, through soil or

contaminated surfaces.

The first model on vector borne diseases was given by Nobel laureate R. Ross,
particularly on the prevention of malaria in London[16], which was later modified by
G. Macdonald[14]. This was followed by various models based on infectious diseases.
Models on vector borne diseases based on other factors affecting the spread were also
studied. Further effects of human movement on vector borne diseases was studied by
Costner et al[2] using the spatial versions of the classical Ross-Macdonald model. In
2010 Tumwiine et al[21] studied the effect of immigration on vector borne diseases.
In 2012 the effects of temperature on the transmission of dengue fever was studied by
S.C. Chen et al[1] wherein they have shown how temperature affects the maturation,
oviposition and death of mosquitoes. Mosquito dispersal is also a factor which affects
the spread of the disease. Lutambi et al[13] studied the effect of mosquito dispersal on
heterogeneous environment in 2013. Age structured model was studied based on the
effect of vector biting and vector mortality on the spread of the infectious disease by K.
Rock et al[17].The effect of temperature on host pathogen system and the how climate
and thermal adaptability are related was studied by Waikom et al[23]. How environment
affects direct and indirect spread of carrier based infectious diseases was studied by

Ghosh et al[7] in 2004.
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But little attention has been given to the study of effect of pathogen population growing
in the environment. Here we shall be looking at the effect of environmental factors like
human discharge, household waste, contaminated water bodies on the transmission of

vector borne diseases

2.1.2 Mathematical Models on COVID-19

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 or SARS-
CoV-2. The virus is transmitted directly; person to person contact when susceptible
person comes in contact with the body fluids of infected person or indirectly through

contaminated surfaces and objects.

In December of 2019 the first known case of COVID-19 was reported in the city of
Wuhan, China. Transmitted via the respiratory droplets of an infected individual through
cough or sneeze, it is an infectious disease caused by SARS-CoV-2 virus. Several
measures were taken to control the spread of this disease one of which was quarantining
the infected population. SIQ, SIQS, SIQR are some of the models with quarantine
compartments. The effects of quarantine on transmission of infectious diseases were
described by Z. Feng et al[5][19][20]. Hethcote et al [11] formed and studied different
models with different incidence having a quarantine compartment. Here we shall be
looking at a SIQR model with a quarantine compartment which is subdivided into
quarantine from susceptible and quarantine from infected population, having a saturated

incidence rate.



Chapter 3

PREREQUISITES

3.1 Some Definitions

1. Positive Definite

A function V(x) : R" — R is said to be positive definite if:
(a) V(0)=0
(b) V(x) >0 for all x # 0

2. Negative Definite

A function V(x) : R" — R is said to be negative definite if:
(a) V(0)=0
(b) V(x) <0 for all x # 0

3. Negative Semidefinite

A function V(x) : R” — R is said to be negative semidefinite if:

(a) V(0)=0
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(b) V(x) <Oforallx#0

4. Routh Hurwitz criteria
Routh Hurwitz criterion which says that a second degree polynomial with all

positive coefficients will have negative roots.

5. Sylvester criteria for a matrix
A nxn symmetric matrix Q is a positive definite iff all principal determinants are

strictly greater than 0.

6. Formation of matrix from the given quadratic equation

If we have an equation of the type

V(x) = q11x3 + 2235 + oo + Gunx? + (q12 + q21)x1%2 + (q13 + 31)x1X3 + ..

ot (q,'j+qj,-)xixj'+

then the corresponding matrix is given by,

q11 4912 - qin
_(Inl qn2 - an_

3.2 Some concepts

3.2.1 Equilibrium points

In mathematical modelling once the model has been formulated using a system of non-

linear equations we want to look at its behaviour. When talking about the behaviour
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of such a system mathematically we are pointing towards it’s stability. To look at the
stability of the system we first have to find the equilibrium points of the system and then

analyse its stability.

1. Equilibrium points are those points where the system does not change with time.

For non linear system of differential equations

dx

o = fi(t,x1,..-,xn)
d

% :fZ(t7xla-"7-xn)
dx,,

W :fn(t,xl,...,x,,)

The equilibrium point xp can be found by imposing ‘% =0Vi=1,2,....,n

3.2.2 Jacobian of a matrix

Jacobian Matrix:

For a given system of differential % = f(x) where x is an n dimensional vector and
f(x) is a vector valued function and x is the equilibrium point such that f(xo) = 0, the
Jacobian matrix which is denoted by J, defined as J;; = 3—){;

i.e. for a system of ordinary differential equations;
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dx

dXQ
dt

dx,

— :fn(t,xl,...

dt

The Jacobian matrix is given by

axl

e fl(taxh "'axn)
., f2(t5x17 "'7xn)
7xn)
of of1 ]
0xy ox,
2 9fr
0x ox,
fn 9fn
oxo Ixp

axl

3.2.3 Basic Reproduction Number

Iifi

9fr

fn

PREREQUISITES

Basic Reproduction number R which is a function of the parameters of the model is

the average number of secondary infections arising from a single infected individual. In

the cases wherein the infectious disease turns into an epidemic our main concern is how

do we control or eliminate the disease. This is taken care of by the basic reproduction

number as with the implementation of preventive measures, medication and vaccination

drives we might see a decrease in the basic reproduction number. Thus implying that the

control measures which are being taken are beneficial.
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Calculation of R

Here we calculate R using the Next Generation Matrix method. This method to calculate
Ro was given by Diekmann et al [4].

To calculate the basic reproduction number by using a next-generation matrix, the whole
population is divided into n compartments in which there are m < n infected compart-
ments. Let x; = 1,2,3....,m be the number of infected individuals in the i’ infected

compartment at time t. Then the model can be written as,

dx,-
P Fi(x) = Vi(x)

where F;(x) denotes the rate of appearance of new infections in the i compartment and
V;(x) is the rate of other transitions between compartment i and other infected compart-

ments. If xq is the disease free equilibrium point then the jacobian of

F(x) = (Fi(x), B (x),... ,Fm(x))T

and

V(x) = (Vi(x),Va(x),- ., V()T
are found at x¢, denoted simply by F and V.
Hence,
Ro=p(FV ")

where p is the spectral radius of FV~! which is the Eigen value of FV~! with largest

absolute value.
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If Ry > 1 then it said that the number of infections will go on increasing till there are
sufficient susceptibles

If Rp < 1 then it is said that the disease gradually dies out.

The Basic reproduction number Ry measures the transmission potential i.e. how
fast the disease is transmitted to the susceptible population and hence can help predict
the future of the disease. This helps in deciding the control measure which are to be
taken and the level at which they have to be implemented. It also helps in deciding what
proportion of the population has to be vaccinated to achieve herd immunity. It also gives

an indication of whether the control measures are serving it’s purpose.

3.2.4 Logistic growth model

This model was given by Verhults, hence also known as the Verhults model. When

population is growing in a limited space the density of population gradually decreases.

Let N(t) be the population at time t and Ny be the initial population at time ¢ = 0.

Assume r(N) to be positive and r(N) = r| (1 - %’) where r| and k are constants.

dN N
E—rN—rl <I_Z>N

dN N?
EIFN:}"IN—I"17
— =r r
! !

wherer’lz_T”<0 for N >0
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Solution and Interpretation

Using integration by partial fractions we get,

11
LI N ¥
(N+k—N) 1

logN —log(k—N) = rit+c)

Att=0 N=Ny

log Ny —log(k — No) = ¢

logN —log(k—N) = rit +1logNo —log(k — Np)

N No
—> log (k_N> =rt+log <k N )
- — V0

15
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N~ N,

1 (k=N 1
— = — r 1 _
N ( N ¢ T )k

Hence,
k
Nit)=——F—— 3.1
0= D (31
where ¢ = (kI_V—NO) The above equation is the size of the population at any time t. As
0

t — oo N(t) — k where kis the carrying capacity (maximum number of individuals that

can survive in given condition) and ry is called the intrinsic growth rate of the population.

3.2.5 Stability

Once the equilibrium points are found we want to look at the stability of the system. The
stability of a system of differential equations is checked to determine how the system
behaves under small perturbations or changes in initial conditions. Stability analysis
helps us understand whether the system will return to a steady state after disturbances.
This helps in predicting the long-term behavior of the system and ensures it’s reliability
for further use.

Particularly for system differential equations:

In mathematical modeling, stability is of great importance as it ensures that the solutions
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obtained from the model accurately represents the behavior of the system. Under varying
conditions a stable mathematical mode will provide reliable and consistent results, thus
helping researchers in studying and understanding complex systems. Hence allowing
to draw the correct interpretation and predictions for the situation, which also helps in

finding the best suited practical solution for the situation.

Methods for Local Stability

For non linear system of differential equations, once the equilibrium points are found

* Find the Jacobian matrix at the equilibrium point.
* Find the eigenvalues corresponding to the obtained matrix and analyze its stability.

» Repeat the same for other equilibrium points.

Methods for Global Stability

1. Lyapunov’s Second Method of Stability

(a) Choose a Lyapunov function V(x) : R” — R which has to be a positive

definite i.e. satisfying the conditions
*V(0)=0
* V(x)>O0forallx#0

(b) Compute the derivative of V(x) ie 9~

(c) If ‘fl—‘: is negative definite then equilibrium point is globally asymptotically

stable.
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2. LaSalle invariance principle
LetV(x): R"” — R be a function such that V/(x) <0in Q. Let E = {x € Q| V'(x) =
0}andM = {x€ E |V'(x) =0Vt >0} be the largest invariant set of E with respect

to x'(t) = f(x). Then every solution x(¢) in Q approaches M and t — oo.



Chapter 4

VECTOR BORNE DISEASES

4.1 Introduction

Vector borne diseases are those diseases which are transmitted to humans through
insect bites as the pathogen enters the blood of the human body. The first model on
vector borne diseases was given by R. Ross[16], particularly on the prevention of
malaria in London, which was later modified by G. Macdonald[14]. This was followed
by various models based on infectious diseases. Models on vector borne diseases based
on other factors affecting the spread were also studied. Further effects of human
movement on vector borne diseases was studied by Costner et al[2]. Tumwiine et al[21]
studied the effect of immigration on vector borne diseases. Age structured model was
studied based on the effect of vector biting and vector mortality on the spread of the
infectious disease. The effect of temperature on host pathogen system and the how
climate and thermal adaptability are related was studied by Waikom et al[23]. How
environment affects direct and indirect spread of carrier based infectious diseases was

studied by Ghosh et al[7]. But little attention has been given to the study of effect of

19
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pathogen population growing in the environment. Here we shall be looking at the effect
of environmental factors like human discharge, household waste, contaminated water

bodies on the transmission of vector borne diseases

4.2 Mathematical Model

This section gives an ODE model for the vector transmitted disease in host population.

4.2.1 Host Population Dynamics:

It is assumed that the host population at time t, denoted by N;(¢) is partitioned into
Susceptible population S(¢), Inflected population /(¢) and Recovered population R(z).

The following assumptions are made in the formulation process:

1. The vertical transmission in the host population is negligible, so as all the newly

recruited individuals are susceptible.

2. The recovered individuals acquire permanent immunity i.e. the recovered popula-

tion cannot move back to the susceptible class.

3. The Susceptible host can become infected either through direct transmission with

the infected or through biting of an infectious vector.



4.2 Mathematical Model

ds

E =b1 —llSl—ﬁlSV —,ulS
dl

o =MSI+BiSV — (o + )]
dR

— =al — R

77 ol — Hy

b1 = constant rate at which host population is recruited

A1 = rate of direct transmission from infected to susceptible host population

B1 = biting rate of infected vectors (pathogen-carrier)
U = natural death rate

O = recovery rate

4.2.2 Vector Population Dynamics:

21

The total vector population, denoted by N,(#) is partitioned into Susceptible vectors M (t)

and Infected vectors V(¢).The pathogen population is denoted by P(¢) and E(¢) denotes

the cumulative density of environmental factors.

C;—Af =by — MoMI — LM

Z—‘t/ = MI — WV

cf{_f =nIP+ 9P<1 — c(P;E)> — yP
Z—f =00 — 61E+ 6N

b, = rate at which vector population is recruited
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Uy = natural death rate

A, = rate at which susceptible vectors become infected after biting the infected host
N = shedding rate of pathogen from infected hosts

0 = growth rate of pathogen

Y = decay rate of pathogen

Qo = growth rate of environmental factors which depends on the human action

0, = depletion rate coefficient of environmental factors

6, = growth rate coefficient of environmental factors due to human and vector
population density related factors

c(E) =carrying capacity of the environment

We assume that @ >0, 0 > 0, b; > 0, y; > 0 for i = 1,2 and the initial conditions for the

vector and host population are;

S(0) = 8*,1(0) = I*,R(0) = R*,V (0) = V*,M(0) = M*,P(0) = P*,E(0) = E*

Thus we have N(t) = Ny (t) + Na(t) where Ny (t) = S(t) +1(t) + R(¢) and
Na(t) = M(t)+V (1) ; Ni () = 2L and Ny (1) = 22
L M(t) =Ny(t) = V(¢)

Thus the model reduces to,

Cg =b1 —llsl—ﬁlSV —ulS (4.1)
dI

o =MSI+ SV — (a+ )l (4.2)
dv b,

— =L = -V |I-wV 4.

7 2(#2 V) %)) 4.3)
dP P

— =nIP+6P(1——— | —yP 4.4
dE

— =Qo—61E+ 6N (4.5)

dr
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Q={(S,I,V,PE) R} ,0<S+I<BL0<V<&:51V>0,0<P<mO0<E<E,}

where P < C(TE)(szlﬂ;—ll((%)/)) :m’Engfgle—zN

is the set which attracts all the solutions and the reduced system is studied in the closed

set.

4.3 Existence of Equilibrium Points

We shall be looking at the following equilibrium points:

1. Disease-Free Equilibrium: E) = (5°,1°,v% P° E?) = (5°,0,0, P, E?)

We impose the equilibrium condition, % =0

bl —)«151— BISV — ,ulS =0

bi— S =0
_ B

50 =
M1
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Imposing i’i—f =0

P
IP+0P|{1——— | —-7yP=0
wevor(1- ) -1

6 P?
OP— ———vyP=0
(& "
o P>
P(O—7)— — =
E=N=cm ="
6P
@—(9—?’)
E)
P = (-7
(0-7)—
for@ >y
Imposing‘é—sz
Qo—6E+6,N=0
Eo:Q0+92N
01

Oo+6N

Therefore the disease free equilibrium point is Ey = (i’T‘l,O,O, (97726(15) ,

61

)
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2. Pathogen-Free Equilibrium: E; = (S',1',v! P! E') = (5',0,0,0,E")

Imposing % =0 we get,

st=—
251

Imposing % =0 we get,

_ Qo+ 6N

£l
01

Therefore the disease free equilibrium point is £y = (Z—‘l,O, 0,0, W)

3. Endemic Equilibrium: E? = (S,,5,V, P, E,)

Imposing % =0 we get,

b1 —AISI—ﬁlSV—[JlSZO (46)

Imposing Z—f =0 we get,

MSI+B1SV — (o + ) =0 4.7
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Solving (4.6) and (4.7) we get,

bl—‘ulS—((X—f—[Jl)I:O

S =bi — (o +m)!
by — (0 + )l
M1

Imposing ‘fi—‘t/ =0 we get,

lz(b—z—V>I—M2V:O
H2

@1—/12V1—uzv —0

25)

Aob

S22Vt m) =0

H2

Arb,I?
— V =
g (A2 + o)

Imposing % =0 we get,

P
2

0P
IP+0P— ———yYP=0
6 P2

c(E)

— P (7712+9—7)>C(E)

P(NI+6—7)
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Imposing ‘2—1;: =0

Q0—61E+92N:0

oOHON
:>E2:Q(H9_12

Therefore the endemic equilibrium point is,

2 ([ bi—(a+m)I Aobol (nh+6—7) Qo+6N
E _(l T 2’12’(/1§+2u§)’< K >C(E)’ o )

4.3.1 Basic Reproduction Number

Basic reproduction number Ry is the average number of secondary infections arising from
a single infected individual which is usually calculated about the disease free equilibrium
point.

We find Ry using the next generation matrix, FW .

To find Ry we consider the equations,

dl

7 =S+ B1SV — (o + )1
dv by

— = Z_vli-

7 Ao (I.Lz V) wv

Letflzll.SI—f—ﬁlSV, f2:O and glz((x—i-[.Ll)I, g22—12<%—v>1+,u2\/

Next we need to find the matrix FW ! and further find its corresponding eigenvalue, one

of which is the reproduction number.



28

VECTOR BORNE DISEASES
where,
F— |9 v d w= |9 v
ap ap| O o I
I IV a9V
180 BsO o+ 0
F(Eo)=|"" h and  W(Eg) = ( “”1)
— 02
0 0 o M
w1 adj(W)
W
B 1 Mo 0
po (o + r) % o+ Uy
_|(atm) 0
I
1 J25)
Now,
i 1150 + lzbzﬁlso M
Fw—! = | (etm) © (otp)mps po
0 0
[ 2,8° g AabyB1S° =0, B1S°
Fw=l 1= | (etm) * (atpm)mp 1
0 —-A

We know that |[FW ! — 41| =0

0= <( 2180 T Aaba By S° —7L>(—/l)

o+ pr) (0 py) o



4.4 Stability Analysis 29

2180
(o+pp)

Aabo 1 S°

This implies that, A = ANTI YT

7

_ M8 b1’ b (A Maba B
Therefore, Ro = (ot-p1) + (o) pipy — M\ o+ + Mt (o+py)

4.4 Stability Analysis

4.4.1 Local Stability

Disease Free equilibrium point

Theorem 4.4.1.1. Stability of Disease Free equilibrium point:
The disease-free equilibrium point Ey = (SO, 0, O,PO,EO) is locally asymptotically stable
ifRy < 1, Ui (up +a+py) > A1by and % + v > 6 otherwise unstable.

Proof:
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We consider

Fr=b; —AISI—[SlSV—[JIS

F, = M ST+ B1SV — (o0 + )

F =7Lz<b—2—V>I—u2V
M2

P

F5s=Qo— 6E + 6N

The Jacobian of the above system of equations is given by

—w — S —BiS 0 0 |
M+BV MS—(o+u)  Bis° 0 0
J = 0 %—AQV —Ag[—uz 0 0
0 20P°
0 0 0 0 —0

The Jacobian of linearised system around Eq = (SO, 0,0, P° ,EO) is given by:

—1 180 —B1S° 0 0
0 48— (a+pu) Pis° 0 0
_ b
Jo=10 ﬁ — U 0 0
0 20P°
0 0 0 0 —6;
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—u;—A —MSO —ﬁ1SO 0 0
0 MS—(a+u) -1 BiS° 0 0
Jo—Al= 0 dabz —itg =4 0 0
0
0 np° 0 6-y-¥H5-1 O
0 0 0 0 —6;— A
We know that |Jo —Al| =0
S —(a+w) -2 BiS° 0 0
foby ) 0 0
[Jo—Ad| = (~p1 —4) 2 " o
npP 0 6-y-25-2 0
0 0 0 —6—A

On finding the determinant we get an equation,

0= (LS’ —(a+pm)—2) [(—Hz—l)(e—y— i?g)o —A) (=6 —/U]
Aobs 206pP°
—Bis° [I(G_ ) —l)(—el—l)]

0= (=) | (0—7= 228 _2)(=01~ 1) | | ("~ (@) ~ ) (= 1) — 52222
c(E) H2
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= A =—Uy,

20pP°
12:_<C(E) —|—}’—9),

Ay =0

The three corresponding eigen values are negative provided 2( E) +y>0

The nature other two eigen values are found by solving the equation

(MS1—(+m)—A)(—up—A) — ﬁlSllzbzz

A2 A+ g+ — B 4 (py (B py) - By g
Here,
A=1

B:(X+M1+H2—)Llll—ll’l >0 if ul(a+,u1+u2) > M by
w3 (e + W) — by (U3 A1 + A2 B1b2)
U2

4 FA1+A
. C=wpa(oc+p1)(1—Rg),  since (1—Rp)= “1“2(“+’Z‘1L2<a&m;+ 2Bibn)

=

Now, C > 0iff Ry < 1

Using the Routh Hurwitz criterion which says that a second degree polynomial with all
positive coefficients will have negative roots.

Hence the theorem.

Pathogen Free equilibrium point

Theorem 4.4.1.2. Stability of Pathogen-free equilibrium point:
The pathogen-free equilibrium E; = (S',0,0,0,E") is locally asymptotically stable if
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Ry < 1, uy(up + ot + py) > A1by and y > 0 otherwise unstable.
Proof:

We consider

Fi =by — A 8I—B1SV — 1S

= 7(,1S1+ﬁISV — (OC —i-,Lll)]

F3:lz<b—2—v>l—,uzv
H2

Fi=nIP+06P 1—i —YP
4=T1 <(E) Y-

Fs=Q0— 6E+ 6N

The Jacobian of the above system of equations is given by

| —H —MS —B1S 0

MI+BV MS—(a+u)  Bis° 0

J= 0 by 2V ol -y 0
0 np° 0 nI+0—y—

0 0 0 0

20P°
c(E)

o o o O

_91

38
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The Jacobian of linearised system around E| = (S1,0,0,0,E}) is given by:

—H —7LlSl —ﬁlSl 0 0
0 MS'—(a+w) BiSt 0 0
Je,=1 0 Al —w 0 0
0 0 0 6-y 0
0 0 0 0 -6
—uy—A —1151 —ﬁ1Sl 0 0
0 MmS'—(a+m)—2  BiS! 0 0
Jg,—Al=| 0 Lty —y — A 0 0
0 0 0 6—y—2A 0
0 0 0 0 —0,— A
We know that |Jg, —AI| =0
St —(a+w)—A  BiS! 0 0
Aby
—= —/.Lz—/l 0 0
Ve, — Al = (=1 —A) %
0 0 6—y—2 0
0 0 0 -6, — 1
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On finding the determinant we get an equation

—Up—A 0 0
0=(—p —AM)MS'—(a+u)—A)| 0 0—y—A 0
0 0 —6,—A

Mbz 0 0

—(—m—A)BiS' 0 6—y—2 0

0 0 —6;— 2

0

(—p—1) ws‘—<a+u1><—u2—m<e—y—z><—el—M—ﬁlsl";—?(e—y—ax—el—ml

0= (1 —A)[(8 7= 2)(~ 6~ A)] (MSI—(a+u1)—l)(—uz—l)—ﬁ151%]

= M1 =—,
)LZ = _('}/_ 9)7
Az = —0;

The three corresponding eigen values are negative provided 'y > 0.

The nature other two eigen values are found by solving the equation

(MS' = (04 1) — A) (— 2 — ) — frS' 222 = 0
A2 Ao pur -+t — M) o (g (=B @ py) - BiibaR2) —
Here,

A=1
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B:a+u1+u2—lﬁ—’]’1>0 if w0+ py + p2) > Arby
_mpz (o ) = by (U3 + A Biby)

B 249 27]
S C=w(a+u)(1—Ry),
Now, C > 0iff Ry < 1

C

- ; —by (1M +AaBib
since (1—Ro) = H12(@+h) 1050 +Apiby)
iy (ot-py)

Using the Routh Hurwitz criterion which says that a second degree polynomial with all
positive coefficients will have negative roots.

Hence the theorem.

Endemic Equilibrium

Theorem 4.4.1.3. The endemic equilibrium E, = (S%,17,V?,P%,E?) is locally asymptot-
ically stable for Ry > 1.

4.4.2 Global Stability
Disease Free equilibrium point

Theorem 4.4.2.1. The disease-free equilibrium (Ey = S°,0,0,P% E°) is non-linearly

asymptotically stable in the region Q provided the following conditions are satisfied:

Lo > £ +Br)
2. 2w (o + 1) > b1 (3A + Br) + nmpy

b by | b
3. > B+ AR+ )

Om
4 mtr>Tr+e
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Proof: We transform the system using S = S° +x1, [ =10+ x5, V=V +4x3, P= P = xy,
E =E%+ x5

On substituting in the system (4.1)-(4.5) as shown in the appendix we get,

dx

d—tl = — (Mx2 + Bix3)S? — x; (A xa 4 Brxz) — ix

—r Z(MXz + B1x3)S” + x1 (A1 x2 + Bixz) (o + py)xz

dx

dt3 —12 — Aoxox3 — x3 (2,210 R ,le)

d 4 1 0

dt —T[(XzP +XQX4) +X4(9 (1 = m(ZP +X4)> = ’}’)
dx

@~ o

Consider a positive definite
Vilx) = 12+ +x3+x5+x3), Vi:RI5R
Next step is to compute %,

dav d d d d
dtl = x| d[l +x2 x2 +x3 x? S5 x4+X5 axs

dv,
P [—Ax1x28° — Arxoxi — BrxixsS° — Broaxi — pixi
+ [llx%SO + )lelx% + ﬁ1x2)C3S0 +ﬁ1X1X2X3 — (OC + U )x%]
b
+ A (“—ixg + 1V +x2x%) — px3]

+ [Nx25% + NP4 + 033 — —— 0(2P° + x4)x% — 143] + [— O1x5]

1
c(E)
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A%

T —llxl)Q(SO +x1) — ﬁ1X1X3 (SO +X1) - ,I.le% + )qx%(So +x1) + ﬁ1X2X3 (SO +x1)

— (o +u1)x2 -|-7Lz “2x3 + 12x3(10 +x1)— u2x§ + nx2x4(P0 +x4)

0
+6x3 — @(2P0 +x4)—

a5 — O1xs
Using the region Q and the inequality +2ab < (a* +b?) on the right side of the

equation.

dV, Mb Mb b Mb b b
Wi b 11%+/3112 ﬁ11x_u1x%+11x%+l311%+l311x2
dr = 2 21 214 21 H

21 2p
7Lzb2 lzbl T[xzm nxzm
(@G + 3 SRt = SR e+ e+
m
—|—9x4—@x4—}0€42;—91xs
dV,
d—tl =— [blx% + bzx% + b3x§ + b4x42; + b5x§]
by — l_llbl_Blbl by = (014 )_§/11171_[31b1_17m
2 2 2 2 2
Biby by b Om nm
3=H m <,Uz Nl) 4 <(E) Y > 5

Now, ¢ dl is negative definite if each b; > 0Vi=1,2..5 and 0 >0 (assumed)

Hence by Lyapunov’s second method of stability the required conditions

1. 2[.112 > Mbi + Biby
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2. 2w (o4 ) > bi(341 + Br) + nmpny

3. u2>ﬁ1%}+7tz(f—fz“+l%)

Om
4. H+rY>T+e

can be obtained.

Therefore E° is globally asymptotically stable if the above conditions hold.

Pathogen Free equilibrium point

Theorem 4.4.2.2. The pathogen-free equilibrium (E; = §',0,0,0,E") is non-linearly

asymptotically stable in the region Q provided the following conditions are satisfied

L 2p(a+ ) > bi (241 + Br)

2. g > (AaBaps + b i)
3. 2uf > bi(M+Br)

4. m>0

Proof: We transform the system using
S=S'4y,I=I"4y,, V=V4y;, P=Pl 4y, E=E!'4y;
Consider a positive definite
Va(x) = %(Bly% +Bzy% +Bgy% —|—B4yi +B5y§), V5 :R> =R where B; are positive reals
fori=12,...5
dvs

Next step is to compute =32,
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On substituting in the system (4.1)-(4.5) we get,

% =— (My2+ Biy3)S' —y1(Aiy2 + Biys) — iy (4.8)
% =(My2+ Biy3)S' +y1(Aya + Biys) (o0 + 11)y2 (4.9)
% =1 “b_z 5 = Aay2ys = y3(Jal' + o) (4.10)
T n0aP! ) s (0(1- P ) —r) @
%’5 — By (4.12)

A%}

! [~ A1y1y28" — Aiyay? — BiyiysS! — Brysyt — uiyd] + Ba[A1y3S! + Aiyiy3

by
+ Biy2ysS' + Biyiyays — (a4 w1 )y3] + B[ (Ey% +1'y3 +yzy§> — 3]
B 24 np! ez—iezpl 2 _ w2+ Bs[—0
+ Ba[Ny2ys + NP y2ys+ 0y; o(B) ( +y4)ys — vys] +Bs[—01ys]

dv,
—= = B[~ Ay1y2 (ST +y1) = Byrys(ST+y1) — wiyt] +Ba[Aiy3 (S +y1) + Bryays (ST +x1)

dt
b
— (a4 p1)x3] + B3[A u_zX% + M2y3(I' +y1) — pax3] + Ba[ny2ya(P' +x4)

1
+6y3 — @(2131 +x4) — Yy3] + Bs[—601x5]

Using the region Q and the inequality +2ab < (a® + b*) on the right side of the

equation.
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dV, A1b) 2 Mby 5 Bib1 5 Bib L Mby 5 Bib1 5 Bib1 5
2 g, [ } B [
= 2“ 1+ 21 2+ 210 )’1+2‘u —Myr|+ ™ 2+ 21 Ya T 200 Y3

Aoby ) lzbl
—(O‘+N1)Yz]+33[2u J’3+H—)’3—H2y3]

1
+B4[nmy2y4 ( ——Omy; — }’y4]+35[—9m]

E)

dv,

- = [b11y? +b33y3 + (b22y3 — baayaya + baay3) + bssy?]

A1by 51b1>

baa —B4<Ce(—Zf)+’}’>

Using Sylvester criteria: A nxn symmetric matrix M is positive definite iff all

8 ; ; dv, . ' ;
principal determinants are strictly greater than 0, we show that d—t2 is negative definite.

From the above equation we form the matrix
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d : . :
% is negative definite if the following conditions are satisfied:

; i Bib1
|A1|:b11 >0 if Bl( 1—7%—m)>0
. Mby  Biby 3 A1by
Ay| = biibay >0 A _ g b ) —B 2P S
|As| = b11byn > 0if (Nl o 2#1>((a+“1) >M 1#1) T >
|A3| = b11bapb3z >0 if b3z >0
2 2
|A4| = b1y [b22b33b44 - (bif) b33} > 0if byobag > (1724—4)
As| >0 if bi1[bo(b33basbss) — %4 (%ibssbss)] > 0
b 2
= b11b33bss5 <b22b44— ( Z‘) ) >0if bss >0
1.e.,
Mby  Bib
—B _ Mo Pibt
b1y 1<u1 o 2m ) >0
B by by\ Pib
b33 —33(H2—7Lzu2 — /~l1> ~ 2 (Bi+B2)>0
bl ﬁlbl )«1[91 Om 1 2
B Pt B L2 Bt I el “B
(BZ(((X_‘_.U’I) Arl ‘Ll,l 2“1 ) 1 2“1 C(E) +y > 4 4(nm)
Bs6; >0

Bsmm >0
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Now suppose B; = By = B;5 = 1, we have

2u? > by(M +Br)

For B,, we have

43

by Bib1\ Aib1\ [ Om 1 5
(BZ((OC'JF,UI)—AI“I B 2,111 ) B 2;1.1 ><C(E) "|"'}/> - 2(nm)
b1 [31[)1 llbl 1 (T[m)ZC(E) )lel
B((ot+pu)—A——"—)—— | > =
( 2(( ) —di, 2#1) 2#1) 2(2(9m+yc(E)) T
B ((2N1(0‘+N1)—211b1—ﬁ1b1)> 1(1 (mm)*c(E)  Mib
2 ==
21 2\2(0m+yc(E))
So we have,
By > M ( (nm)*c(E) Mbl)
(2pi (@ + 1) = b1 (241 + B1)) \2(0m+yc(E)) 1
For B3 ([Jz—)tzf—é — %) - gl_lfll(Bl + By) > 0, we have
by b Bib1
B2 - A) s PP p
3(#2 2I~l2 ‘u1> 2 ( 2)
2 — (U Aaba+b by  ByPBb
B3<Ii1/~l2 (M1 A2b2 + 1#2)) >ﬁ1 L 28261
JISyY%3 2 2
11145 — (1 Aaba b1 1) Bib1 u (mm)*c(E) | Mby | Biby
33( i >> 2 T @ @) 5 A TAY) <2<em+7c<E>> + Lﬁ) 2
Hips— (i Aoba+bipn) \  Biby u (nm)®c(E) | Mby
B3( ’ i p2 ) > 21#11 <1+ (Zﬂl(a'i‘#l)—lbl(ﬂﬁﬁl)) (2(9m+YC(E)) T llHl))
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So we have,

Mypp Biby My (nm)*c(E) by
B3 > [11[1227(/11/121724»171#2) 2u (1 + (2N1(a+ul)7bl(2ll+ﬁl)) (2(9m+yc(E)) + Hy >>

The above inequality holds provided,
pip3 > (U1A2bs + b)), and

2uy (o + py) > b1 (241 + i)

Therefore the required conditions are:

L 2 (o +py) > b1 (241 +Br)
2. wikg > (daba+ i)
3. 2uf > by (M +Bi)

4. m>0

If the above conditions are satisfied then the coefficients are positive and hence ‘% isa

negative definite.

Hence proving the theorem.

Endemic Equilibrium point

Theorem 4.4.2.3. The disease-free equilibrium E*> = (S,,V, b, P>, E5) is non-linearly

asymptotically stable in the region W provided the following conditions are satisfied:

1 (u +Abry +[31192.U2)((O‘+I~l1) - kﬁ'l—lf‘> > 3[(Mb+ BiV2) — MSo]?

2. ((X+N1) > A by
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3. ¢(E)0+nc(E) > yc(E)+ 6m

Proof. We transform the system using

S=S+z2,I=h+2,V=WV+u, P=P+z E=E+2

On substituting in the system

% :bl —)LlSI—ﬁISV — ,U,IS

dl

7 =MSI+ B1SV — (a+ 1)l

dv b,

— ===V I)I—-WwV

dt 2<‘LL2 ) Ha

dP P

— =nIP+06P|1———|—7vP
dt L ( c(E)) V
dE

— =0y — 6{E + 6bN

7 Qo—6E+ 6

We have,

ds, dz

d—t2+ d—tl =bi—M(S2+z1)(L+2z2) = Bi(S2+z1)(Va+2z3) — i (S2+21)
dSz le
PR e =M (S2+ 5220+ bz +2122) = Bi($2V2 + 223+ Vazi +2123) — MiS2 — [z
85, _ d

= + == b1 — M 82 — A1S220 — Az —Aziza — B1S2Va — Bi1S2zz — BiVazi — Biziz3

— U1S2 — M1z
dS, dz
I + e —( + M8+ B1Va)zr — (Miza+ Biz3)Se — (Mo + Bizz) + b1 — M Saln

—B1S2Va — w152
d
% =—(U +MS2+ Bi1Va)z — (Mz2+ Bi123)S2 — (Mz2 + Piz3)
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dﬁ dz

R M(S2+z1)(+z2) + Bi(S2+21)(Vat+23) — (@ + ) (B2 + 22)
dl, don
PR M(S2hr + 8222 + hz1 +2122) + Pi(S2Va + 8223+ Vozi +2123) — @l — 0z
— b — Wz
d12 de
PR MSoDh + A18r20 — Mibzi + Mzizo + BiS2Va + BiS2z3 — PiVazt + Bizizz
—abh—oz— b — iz
d12 de
ar + 2 = (Mza+B1z3)S2 + (ML + BiVa)z1 + (M2 + Biz3)z1 — (o + Wy)z1
+ M2+ Bi1S2Va —ab — b
dz
d—t2 = (Mz2+Bi123)S2 + (MbL + Bi1Va)z1 + (Mz2 + Biz3)z1 — (a0 + p)z1

dV, dzz Ab
242 =2 (h 1)~ h(ntn)(h+2) - (Vs + )
dt dt 7%

dV2 dZ3 )szl 7Lzb2
T Vg = . 12

= —=720 — MVolh — Voo — bz — A — UV —
dt dt o + L 22 2V212 2V222 21223 22223 — U2 V2 — U223
dv, d b b
L |, (M +2033) — 3(Maha + ) | + 2220 — AaVohy — Vs
dt dt ’LLZ ‘uz
dZ3 /lzbz

— = = — (V. —z23( Ml
7 0 22— (V22 +2223) —z3(Aala + 12)
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dp,  dz (Pr+24)?
— I P P 00— —y(P,
T + — ” =nNh+z2)(P+za)+60(P+z)— o(E) Y(Py+24)
dP,  dzu oP; 20P, 073
— LP,+1 P op,+0 P
at —I—dt Tl(z h+ 174+ 2Zz+ZzZ4)+ h+ 024+ (E) c(E)Z4 c( ) —YP—Yz4
dP, du 19P2 26, 9z4
—+—=nhP I P epr,+0 — — —vP —
7t +a, N+ NHza+NP22+N2224+ 00+ 024+ {B) c(E)  o(E) YE2 —Yz4
dP2 dZ4 29P2 924 9P2
2+ 2 = n(hz+P 06— —=— LP,+6P,— —2 —yP
7 + T n(hz+ 2Zz+ZzZ4)+Z4< (E) C(E>>+772 2+ 00 (E) |)
dP, du 1 or;
22 98 (b +P <<1——2P )—) bhPy+ 0Py — —-2
7 + 7 N(hza+Pza+2024) +24( 0 c(E)( 2+z4) | —7)+NLP,+6P,— )
Y4 _ b+ Poa+20za) + (9(1—L(2P+ )))
ar = NU2z24 + 1222+ 2224) + 24 (E) 2+ 24
dE2 dZs
4+ 2 =0y—6,(E N
= T Qo—61(Ex+25)+ 6>
dEz dZ5
— =Qp—6E,—6 N
o7 +— 7 =Qo—61Er,— 6125+ 6

dZS
_— = — 9
dt 155

P,
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Hence we have the system;

% =— (M + 48+ BiV2)zr — (Miza + Brz3)S2 — (Miz2 + Brza)

‘% =(Mz2+Bi1z3)S2+ (Ml + Bi1Va)z + (Miza + Przz)z — (@ + i)z
% :%zz — A (Vaza +2223) — z3(Aal2 + i)

% =N (hza+Pr2o + 2024) +Z4<9<1 - ﬁ(ﬂ’z—l-m)) _Y>

% =—0iz5

Next we consider the positive definite V3(z) = 3(C123 +Caz3 + C323 + Caz3 + Cs522)

V53 :R> - R where C; are positive reals fori=1,2,...,5

dvs dz dz dz3 dzs dzs

B e e e e
dr Vg T Oy Ty Ty
dvs

i Ci[—wiz — Mbz} — BiVazi — Mzi12282 — Biz123S2 — M 22} — Bizazd]

+ G258 + Br1222382 + Mz122ks + BrzizaVa + Aiziz3 + Brzizazs

— (0t + 1) B3]+C3

Aoby
EZQ& — M3V — lzzzz% - lzz%lz — I.Lzzg

+Cy 5

77122221 +Nz2224(Py +24) + (0 (1 — L(zpz +Z4)) _ Y)Z?;]

+ Cs[—025]
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A%
d_; =Ci[—zt —M(h+22) — Bi(Va+23) — Miz12252 — B1212352)]

+Ca[A(S2+21)Z3 + Bizaza(Sa +21) + (Ml + BiVa) — (a0 + ) 23]

Aaby

+Cq IZZQ —M23(Va+23) — A3l — HzZ%]

+Cy

1
Tﬂzzi +nN2z4(Po+24) + (9 (1 - @(21’2 +Z4)) = }’)2421]

+Cs[—0125]

Using the region Q and the inequality +2ab < (a* + b*) on the right side of the above

equation.

Mby ,  Biba

+C TZZ + Izza + (ML + Bi1Vazizo) — (a6 + )Z%]

A,zbz ),2192
+C3 2003 — 2073 — lzzglz — uzz§
2 H2
+Cy | MbZ2 + +nmzazs + (9 (1 = i) - y)z2
4 C(E) 4
+Cs5[—025]
— =—|| zc = =C & =0 =C
o 5 1121 — €122122 3 222) 5 1121 — 132123 3 3323

n lc D L5 L B 9 9
3 2225 — €122223 + 2C33Z3 + 3622Z2 C122224 + €4424 ) + 5525
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where,
cin=Ci( 1+ l'b‘ +M>
=0 (a+u1) A‘b‘)
c33 = C3(haly + 1)
C44—C4<7’+ o(E) 9—7712)

c55 = Cs50;

cio=C(Mb+ BiVa) —CiMiSy
c13 = —C1B152

3= C2B1 1

c24 =Cynm

VECTOR BORNE DISEASES

To show that =72 is a negative definite we use the Sylvester criteria; A nxn symmetric

matrix M is positive deﬁmte iff all principal determinants are strictly greater than .

From the above equation we form the matrix

dt
|D1|:%>0

. 3c%4 . 3654
|D2| = c11¢20 =5 > 0 if cyye0 >

o o o O

V- . .
2 s negative definite if the following conditions are satisfied:
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) Mb b Ab 3
i.e. Cy(uy + f -+ M)Cz((OC‘Hll) = ﬁ) > 5[C2(7Lllz+ﬁ1Vz) —CiMS,)?

2
_cnfepen ) _cnfcren  caen -
’D3|_2(32 4 (2722 3>>Olf
2
C11 (€263 _ €23 €13 c12¢23 | €13¢20
2(32 4)>2<22+23)
2 2
o C11€22033  C11C93 | €13€12€23 | €3 €22
"2 3 2 2 4 2 2 2 2 3
2
Clicnes  Ci3n
2 3 2 2 3
2
C11C33 > C3
Mby  Biby 2
== (3 ([.Ll + T + E) (lzlz—f-[lz) > C1(ﬁ152)

2 2
i Cl1 | €22 €33 €3 €24 €33
4] >0 if G FFers— Fou+ B[ >0
2 2
. €22 C33 C53 Cy4 €33
l.e. —=—=cy4 > =20y — = —
3 2 4 4 2

3 2 3 2
22033 > §C23 and cyyc4q > —26‘24

A b 3
= C3((0‘+N1)—f)(7tzlz+uz)>C2§(ﬁ1b1u1)2 and

Mb 0 3
L) <Y+ RS Tﬂz) = —C41(77m)2

S (E)

|D5| >0 if Cs6, >0
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Suppose C1 = C, = C5 =1, we get
(k1 + M pas + Biotio) (0 o) = 22 > 3[Rl + BiVa) — 1 SaP?

For C;

3(Bib1)?
201 (i (o4 1) — Aiby) (Aolo + )

Hip2(B1S2)?
Hai3 + Ay taby + By i bo) (Aady + 1)

also Ly, >

L >
(

.Gy =max{Ly,L3}

From the condition on |Dy|, we get

Cﬁ(nm)2 > (% — (a+u1)) (9+nlz— 7— %)

4
4(Mbr — (e + 1)) (c(E)O +nc(E)L — Ye(E) — 6m)
3uic(E)(nm)?

= Cy >

Therefore the conditions required for the matrix to be a positive definite are;

1. (1 + Aibi iy + Prbapia) ((Oﬂ +i) - %) > 3[(Mb+BiV2) — Sy
2. ((X+H1) > A1by
3. ¢(E)0+nc(E) > yc(E)+60m
If these conditions hold then % is a negative definite and hence using Lyapunov’s stabil-

ity method we can show that the Endemic equilibrium point E* is globally asymptotically

stable.
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4.5 Conclusion

Here we have seen the formulation of the model by forming two models, one each
for the host and vector population separately and then combining them. Further the
equilibrium points are found, namely Disease free equilibrium, Pathogen free equilibrium
and Endemic equilibrium. The reproduction number Ry is also estimated using the Next
generation matrix method about the disease free equilibrium point. On analysing the
stability one can see that the disease free equilibrium and pathogen free equilibrium are
locally asymptotically stable if Ry < 1. The endemic equilibrium is locally asymptotically
stable if Ry > 1. Lastly one can see that the equilibrium points are globally asymptotically

stable only if certain conditions hold.






Chapter 5

SIQR MODEL FOR COVID-19

5.1 Introduction

In December of 2019 the first known case of COVID-19 was reported in the city of
Wuhan, China. Transmitted via the respiratory droplets of an infected individual through
cough or sneeze, it is an infectious disease caused by SARS-CoV-2 virus. Several
measures were taken to control the spread of this disease one of which was quarantining
the infected population. SIQ, SIQS, SIQR are some of the models with quarantine
compartments. The effects of quarantine on transmission of infectious diseases were
described by Z. Feng et al[S][19][20]. Hethcote et al[11] formed and studied different
models with different incidence rates having a quarantine compartment. Here we shall
be looking at a SIQR model with a quarantine compartment which is subdivided into
quarantine from susceptible and quarantine from infected population, having a saturated
incidence rate.

Incidence rate is the rate at which new cases of a particular disease occur in a specified

population. Saturated incidence rate is when the occurrence of new cases reach a

55
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maximum(saturation) level as the susceptible goes on increasing. This rate is introduced
referring to Anderson et al[15] and Gao et al[6], which indicates that a large proportion of
the population has already been infected and further any control or preventive measures

might not give required results.

5.2 Formulation of Mathematical model

The total population denoted by N comprises of four compartments namely; the sus-
ceptible compartment S, the infected compartment / and the quarantined compartment
Q which is further divided into quarantine from susceptible Qg and quarantine from

infected Q.

fl—f —b— 115(;? — (dn+gs)S (5.1
%: liSéS—(dn—FddnLqH—n)I (5.2)
% = qsS —dnQOs (5:3)
% =qil — (dy +dy+1r,)01 (5.4)
R _ rid 4+ ryQr — duR (5.5)

dt
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where, S(0) >0, 1(0) >0, Qg(0)>0, Qs(0)>0 and R(0)>0

b = recruitment constant
A = transmission rate of susceptible to infected individuals
o = positive prohibition constant taken by the susceptibles
d,, = natural death rate
d,; = disease related death rate
gs = quarantine rate of susceptible
q; = quarantine rate of infectives
r; = recovery rate of infective

rq = recovery rate of quarantine infective

The incidence rate % tends to % as § — oo 1.e. incidence rate coverges to a saturated

level.

The measures which should be taken by the susceptible to control the spread are given

by «.

5.3 Positivity and Boundedness of the formulated model

Lemma: The set Q = {(S,1,05,0/,R) € Ri 0<S+I+05+0;+R< d%} is posi-
tively invariant region of the formulated model and all solution of model which starts in
Q remains in Q for all t > 0.

Proof. We know that the total population is the sum of all the compartments i.e.
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N(t) =S(t) +1(r) + Qs(t) + Qi(t) + R(z)

By adding the equations (5.1)-(5.5), we get

dN(t)

T b—dy(S+I+Qs+Qr+R)—dy(qi+1)

=b—d,N(t)—dy(qr+1)

If the disease does not exist then,

dN(t)

=b—d,N(t)
dt
dN(t)
b—d,N(t) / &%
log (b - d,,N(t))
—d, =t

b—d,N(t) = e

ast — oo,

This shows that N(¢) tends to the carrying capacity dﬁ ast — oo,
This proves that the solution of the system exist and remains in Q.

Now, by initial conditions it is observed that,
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[Cg] S=0 =il
[%L_O >0 for 1(0) >0
[%] gog = 95 20 for 5(0) 2 0
[%}Q . =qiI >0 for1(0) >0
-
[C;_I:] e ril +ry0r >0

This shows that model is mathematically and epidemiologically well posed.

5.4 Existence of Equilibrium points

The recovered population has been assumed to attain a permanent immunity to the disease
and further does not play an active role in the spread of the disease. Hence the model is

reduced to;

ds ASI

— =p- —(d, S 5.6
dr Tras  ntas) (0)
dl  ASI

= 1+aS—(dn+dd+ql+r1)I (5.7)
dQs

= _—geS—d 5.8
g s 205 (5.8)
d

—Cgl =qil — (dn+da+714) 01 ©-9)

which is used to study the stability of the model.
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5.4.1 Disease-Free Equilibrium

1. Disease-Free Equilibrium: E, = (5°,1°,0%,0%) = (5°,0,0%,0)

We impose the equilibrium condition, % =0
ASI
b= (d,+4s)S
b
PO=——
(dn+4gs)
Imposing d—thi =0
gsS° — dn 0§ =0
qsb 0
=
(dn+as) "%
00— qsb

S dn(dn +QS)

s _ (0 0 0\ _ /¢0 0 _ b b
"By = (81, 04,00) = (5°,0,08.0) = (-0, 75 5-0)

5.4.2 Basic Reproduction Number

We find the reproduction number Rj using the Next Generation matrix method i.e. by
finding the spectral radius of FV !
Let X = (1,05, 0y, )T, hence the system (5.6) — (5.9) becomes,
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ASI
1+oaS

o O

-

and V(X)=

(dn+dg+qr+r)l
—qsS+dnQs
—qul +(dpt-dy + 7,) Or
—b+ 2L+ (du+qs)S

61

Therefore the Jacobian matrix of F(X) and V(X) at the Disease free equilibrium

point are;

dn +

To find V!

\Z

= (dn+dg+qr+r1)[—qs(0) +dy(dn +gs)(dy +dd+rq)]

_ A 4 0 dutditqi+n

qS—i-Otb "

—qs
0 00 and V,=
0 00 0 ar

d + L
0 0 0] IS 4 T qs+ ab
= ryadj(V)

—qs dn 0

|=(dntdatai+r)| 0 0 dyt+ds+ry

=dy(dn+qs)(dn+dg+r1g)(dn+dg+q1+r1)

To find the ad j(V,), we first find the co-factor of Vi,

Cyy =dy 722

nm(dn +dd‘+‘rq)

0 0

d, 0

0 dy+dg+r,
0
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Ci2 = dy(dn+gs)(dn+da +1q)

C13 = —qs(dn+da+ 1) 752255

Ci4 = dnqs(dn+qs) Co3 = (dn+qs)(dn +dg +14)(dn +dg +q1 + 1)
C34 = dn(dn+qs)(dn+da+q1+11)

Ca1 = —dn(dp +dy +14)(dn +da+qr+11)

Ca3 = qs(dn+dy+rq)(dp+da+qr+r1)

Rest of the entrees are 0.

.V lis given by the matrix

Ab —1
(d'1+qS+ab) (dll+q.9) (dn+dy +tI1+V1) dn+dq

0
1 0 0
0

(dn+dg+qr+ry)
7(]511)
dn(dn+qs+ob)(dn+qs)(dn+da+qr+rr)

qs
dn (dn+qs‘)
0

S O O O

q1 1
(dn+qs) (dy+da+qr+r1) (dptdg+ry)

[ Ab 1r Ab
0O —— 0
dn + qs + ab (dp+qs+ob)(dn+qs)(dnt+dg+qr+rr)
1
=1 O 0 O 0 (dn+dd+ql+rl)
F*V* - —qsAb

0
0
0 0 0 O} | Z.(d,+qs+ab)(dutqs)dntdg+artr) 0

o o o O

1
(dn+dd+rq)

q
0 0 00 (dn+qS)(dnJidd+ql+rl)

_ b )
(dn+qs+ob)(dy+dyg+qr+r17)
0

0 00

0 00

[e)
o
o O

=
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Ab
Rn = 5.10
O (dn+qs+ ab)(dn+da+q1+r1) Pl

is the maximum eigen value of the above matrix.

Ab
= (dn+qs+ab)(dy+da+qr + 1)
Ro—1= Ao —1
(dn+qs+ab)(dn+da+ qr+11)
Ry 1— Ab— (dn+qs+ o) (dn+dg+qi + 1)

(dn+qs+ob)(dn+dg+qr +r1)

Ab— (dy+ qs+ ob)(dy+dg+qr +11)

Ro—1)(dy,+¢gs+oab) = 5.11
5.4.3 Endemic Equilibrium
2. Endemic Equilibrium: E; = (S!,1 I,Qé, o)
We impose the equilibrium condition, ‘fd—f =0
ASI
—(dn+dd+C]1+r1)I:O (5.12)

I+as
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ASI — (dp+dg+qr+r)I(1+aS) =0

I(?LS— (du+dg+qi+r)(1+as)) =0

= (AS—(dp+dg+qi+r)(1+aS))=0
AS—(dy+dy+qr+r)—(dy+dg+qr+r)aS=0

SA—a(dy+dag+qi+r)) = (dn+dg+qr+r1)

(dn+dg+qr+rr)

A —a(dy+dg+qr+r)

Imposing % =0, we get

ASI
1+ aS

—(dn+4gs5)S=0 (5.13)

Using (5.12) & (5.13) we get,

b—(dy+qs)S' — (dy+dg+qr+r)' =0
b_(dn+QS)Sl = (dn+dd+6ﬂ+rl)11

Substituting the value of § L

(dp+dg+qi+r1)
A —Oc(d,,+dd+q1+r1)

b— (dn+gs) = (dy+dg+qr +r)I"

bA —bo(d,+dg+qr+r1) — (dp+qs)(dp +dg+qr +17)
dp+dg+qr+r)l' =
(dnt+da+q1+11) A —a(dy+dg+qr+r1)

Ab— (d,+dg+qr+r7)(dy+ gs + ob)
A—a(d,+dg+q+r1)

(dn+dyg+qr+r)l' =
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I /lb—(dn+dd+QI+r1)(dn+C]S+Otb)
(a’n—l—dd+q1+r1)(7L —OC(dn+dd+QI+r1))

(Ro—1)(dn +qs+ ab)

I =
A—a(dy+dg+qr+rr)

,using  (5.11)

Imposing % =0, we get

qsS—d,Qs =0
S
n

Imposing % =0, we get

QII_(dn+dd+rq>QI:O

qil

1
—_— - - 00
Q’(@+@+@

Therefore the Endemic equilibrium point is,

qil

E1 — (Sl,ll,Qé,Qll) — ( (dntdatqrtrr) (Ro—1)(dn+gs+ab) gsS

A—a(dp+dg+qrtr)’ A—a(dpt+dg+qrtrr)’ dn ? (dptdatrg)

)
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5.5 Stability Analysis

5.5.1 Local Stability of Diseases-Free Equilibrium Point

Theorem 5.5.1.1. The disease free equilibrium point Eq = (S°,1°, Qg,Q?) is locally

asymptotically stable if Ry < 1 otherwise unstable.
Proof.

To show the local stability of the system (5.6)-(5.9), at the disease free equilibrium point

we consider

ASI
Fi=b— —(d S
1 1+aS (n+QS)
ASI
= —(d,+d 1
2 11as (dn+dg+qi+rr)
F3 = qsS —d,Qs

Fy=qil — (dy+dg+1ry)01

The Jacobian of the above system of equations is given by

G
W (ligS) ~ldn+datartr)
qs 0
] 0 qi

0

—(dn +dy +rq)
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The Jacobian matrix at the disease free equilibrium point is given by;

[ —Ab -
—(dy +q5) (n+gs+0b) 0 0
J(Ep) = 0 m —(dn+dg+qr+r) 0O 0
qs 0 —d, 0
- 0 a 0 _(dn+dd+l"q)_
Now, |J(Eg) —MI| =0
[ —Ab -
0= 4 @iﬁ@w—@%+@+ﬂrHﬁ—ll 0 0
I 0 Y 3
) ° @ 0 _(dn_*"dd‘i‘rq)—ll_
Zﬁﬁ£55—0%+dw+w+n)—h 0 0
0=(~(dn+qs) = A1) 0 Py .
a 0 _(dn'{'dd‘f‘rq)—ll
—Ab

0= (—(dn+a5)— ) ( — (da-+ dy+qr+11) =M ) (= = Aa) (= (du+-da+rg) = D)

(dn+gqs+ ab)

This implies that;

M = —(dn+4s)

A = —d,

A= —(dp+dg+ry)
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A
Ay = m+(dn+dd+41+r1)

But,

P = Ab
(dn+qs+ ab)
P Ab—(dy+qs+ab)(dy+dy+qr+rr)
(dn+qs+ ab)

A4 = (Ro—1)(dn+da+qr+rr)

+ (dn+dg+qr+rr)

A4 is negative only when Ry < 1

All eigen values are negative if Ry < 1

Hence Ey = (SO,IO, Qg, Q?) is locally asymptotically stable if Ry < 1 otherwise unstable.

5.5.2 Local Stability of Endemic Equilibrium Point

Theorem 5.5.2.1. The endemic equilibrium Ey = (S LT, Qé, Q} )is locally asymptotically
stable when (14/}—25) < (dn+dg+qs+ry).
Proof.

To show the local stability of the system (5.6)-(5.9), at the endemic equilibrium point we

consider

ASI
Fi=b— —(d,
| 1+ oS (dn+4s)S
ASI
= —(d,+d I
2= 1T as (dn+dg+q1+r1)

F3 = qsS —d,Qs

Fy=qi — (dn+dyg+14) 01
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The Jacobian of the above system of equations is given by

[—(1+aS)AI+aASI) —AS
(l+OtS)2 - (dn +q5’) (1+as) 0 0
[(I+aS)AI—aAS]] AS
I S iras? Tras) ~ dntdataqi+r) 0 0
qs 0 —d, 0
i 0 qr 0 —(dn +dy +rq)_
The Joicobian matrix at the endemic equilibrium point is given by; i
Y —AS
Al AS
J(El): m m—(dn+dd+q1+r]) 0 0
qs 0 —d, 0
i 0 qi 0 - (dn +d;+ I’q)_
We know that, |J(Ey) — A | =0
[ M —AS
Trasp ~ (dntds) —h (7 as) 0
Al AS
0— (1+as)? Tras) — (dntdatqi+r) =X 0
qs 0 —dy _)Ll
i 0 qi 0 —(dn+dg+ry) =M
o= 2 rtad—t 2 2dprar i |t (k)
= (1+(XS)2 nTYs 1 (1+(XS) n dTdq1 1 1 n 1 n d q
AS Al
—A —d, —M)(—(d,+d —A
V| 5 os) | Trag Mt 1>]

69
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0= (=dn—M)(=(dn+dy+rq) — M)

_AI AS
<m (i +45) _7“> <(1 T as)

AS A
(1+aS) (1+as)

—(dn—Fdd—f—QI—Fr[)—)q) +

Al AS Al

0=(—dn=M)(~(dntdatrg) = M) | = o3 T gy Tt datart ) o

Al AS
+7L1m—(Cl'rmLCIs)mﬂL(a'n+61s>(dn+ddWL‘]“L”I)+(d"+qs)/ll
AS . A2SI
——(1+a3)/11+(dn+dd+QI+r1)7Ll+7L1 +—(1+aS)2
Al AS

Y _ _ 2 LB _
0= (—dn— A1) (—(dn +dg+r1,) M)ly+h<mﬁ%mp+ﬁ%+%) (1+as)
A2SI Al AS

5+ (dn+da+qr+ri)

+(dn+dd+q1+r1)> — m

(1+a$2_“”+%%1+a®

+ (dn+q5)(dn +dg+q1+11)

A
(kq_@—zgeﬁm+¢ﬁwﬁ—M>13+M<%%+@+ﬂf“”+”+51357
S AS
_G:E5>+@Hﬂ00%+@+w+m—a:;5>

Al AS
‘f‘m((dn—Fdd—f—QI—f—r])—m)]

From the above equation we have,
A =—d,
A= —(dn +d;+ rq)

The corresponding eigen values are negative.
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We also have the quadratic equation,

Al AS
2
1 1< nt d+Qs+Ql+7’1+(1 S)2 (1 S)) ( n QS) (( n dTq1 I’])

s Al AS
- (1+aS)> T At as)y <(d"+d"+q’+”)_ (1+a5)>

The coefficients of this equation are;

C =1

Al AS
(1+as)?  (1+as)

Cs = ((dn +qs)+ (IJZLTIS)z) ((dn +dat+qr+r) - (11—35))

C=2d,+dg+qs+qr+ri+

The above coefficients C, and Cs are positive when (dn,+dg +qr+rr) > (lich)

Using the Routh Hurwitz criterion which says that a second degree polynomial with all
positive coefficients will have negative roots, one can show that the endemic equilibrium
is locally asymptotically stable under the condition (d,, +dy+ q; +ry) > (H;-L—is)’

otherwise unstable.

5.5.3 Global Stability of Diseases-Free Equilibrium Point

Theorem 5.5.3.1. If Ry < 1, then the disease free equilibrium is globally asymptotically
stable.
Proof.
We consider the Lyapunov function to be L =1 where I(t) € Ry U{0} V>0
dL _

dl
= 97 = 4 Therefore we have,
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dL A SI
Ezlias_(d"+dd+ql+n)1
S
= 1+1aOSo_(d"+dd+QI+rl)>I
Ab
dn
= li;b—(dn‘f‘dd"*'QI"Frl))I
+dn+qS
Ab
(v )
n
dL L
— =I|(dy+ds+qr+r -
— ( d 41 1)((dn+qs+ocb)(dn+dd+CI1+rI) )

L Ro—1)(dutdg+qi+r)l since R 2
— = — ,, T since =
0 BE AL 0T Wutas+ab)(dntdatait+m)

dt

dL . dL .
— £ =0iffI=0and 5 <0if Rp <1
Hence Ey is the largest invariant set in {(S,1,Qs,0;) : L =0} as with % =0 we have
shown that the function is constant along the trajectories whose points are in €2

So by Lyapunov-Lasalle invariance principle disease free equilibrium Ey is globally

asymptotically stable.

5.6 Conclusion

Here the model has been formulated with saturated incidence rate. Further the equilib-

rium points are found, namely Disease free equilibrium and Endemic equilibrium. The
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reproduction number Ry is also estimated using the Next generation matrix method. On
analysing the stability one can see that the disease free equilibrium is locally asymptot-
ically stable if Ry < 1 and the endemic equilibrium is locally asymptotically stable if
Rp > 1. Lastly one can see that the disease free equilibrium is globally asymptotically

stable if Ry < 1.






Chapter 6

CONCLUSION

In this dissertation we have seen how a free living pathogen in the environment affects the
spread of the disease. The pathogen population is assumed to be directly proportional to
the infected population. Using numerical simulation one can see that how the modelled
system behaves when the parameters are given a certain value. When the rate of shedding
of the pathogen 7 is increased the pathogen population in the environment increases.
Also as the biting rate of the vector population f3; increases the infected population
increases. It can be noted that the pathogen population also increases with increase in
the carrying capacity of the environment and hence measures have to be taken to make
the environment less feasible for the growth and survival of the pathogen population.
Similarly controlling environmental factors like household discharge and human waste
can reduce the cumulative density Qp which in turn reduces the pathogen and vector
population. All these variations help us better understand how the system will behave
on the implementation of preventive and control measures and which one of them is the

optimal solution for our situation.

75
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This dissertation also contains a study on mathematical modelling of an SIQR model
with saturated incidence rate wherein we have seen how considering the incidence rate
to reach a saturated level affects the formulation of the model; consisting a system of
non-linear differential equations. Here the quarantined compartment is divided into
quarantine from susceptibles and quarantine from the infected population. This is done
so that the population does not spread the disease actively thus helping to reduce the
average infectious period. Using numerical simulation one can see that how the modelled
system behaves when the parameters are given a certain value. Here with the increase
in the prohibition constant ¢ the infected population decreases. This indicates that
the spread of this infection can be reduced by implementing preventive measures like
wearing of mask, social distancing, maintaining proper sanitisation and hygiene and also
by quarantining the populations separately. This variation helps us better understand how
the system will behave on the implementation of preventive and control measures and

which one of them is the optimal solution for our situation.
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APPENDIX

Chapter 4

For the disease free equilibrium point £y = (5°,0,0,P° E°) we have,

ds

E =b1 —llSI—ﬁlSV —,u15
dl

E :;\,IS]-f-ﬁlSV — (OC +/.L1>I
dv b

— =M ==V |I—wV

ar 2<“2 ) U2

dP P

— =nIP+6P|1——— | —9yP
a T < c(E)) ¥
dE

— =Qyp—6,E + 6N

0 Qo—6,E+ 6,

We transform the system using

S=84+x,I=14x,V=V04x3, P=P+x4, E=E+ x5

We have,
ds® dx
= b= (S ) (1 x2) = i (8 x) (VO ws) — pu (80 )
ds® dx
a T a!—t1 =b1 — ST — 418% — A 1% — Ax120 — Bi SV — B1S%x; — Bi VOx; — Bixixs
— S0 — pixy
ds® dx
g + d—tl = [~ (M1x2 +Bix3)S° — (A1xa + Brxz)xy — g ] +by — A 810 — B SOVO — py 8°

— llloxl — ﬁ] VO)C1
4%

dt = —(sz + [31)63)50 — ()L]XQ + B1X3)x1 — M1x1
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dr’  dx,

T =M ) +x) + Bi (0 1) (VO +as) — (a4 ) (0 +x0)
d
% = 21 (S +x1) (x2) + B (S +x1) (x3) — (0t + 1) (x2)
d
% = )LISOxz +)\,1X1X2 +l3150X3 —}—B1X1X3 - (OC+/J1)(X2)
de

5 = (et B1x3)S° + (Arx2 + Buxs)xi — (0t + 1) (x2)

ar " dr (I +x2) = A (VO + 23)(I° + x2) — ta (VO + 33)
% - % O+ %xz — VO — =2V — Ao1%%; — Aoxoxs — V0 — oxs
% - %xz — AoI%%3 — Aaxaxs — U3
% _ %xz — oxoxs — x3(Aad® + 1)
AP dxs 0 +x4)2

P
— IO PO PO _ (7
F = NI +x2) (P +x4) + (P +24) — 0 .

% + % =1 (P%x +x2x4) + OP° + 0x4 + 2{;})2 — 26?5;))% - ce()g) — P’ — x4
ddi;o + % = nP%; + nxaxg + OP° + Oxs + fg;)z - CZ(%) - CG(;%) — P’ — x4
%Jrc% = 7?(P°xz+X2x4)+X4(9— 26((9;;) - CO(% +6P° %_YPO

§+ % = N(P%x; +x2x4) +x4<0<1 - C(I—E)(2P°+x4)> —y) +6pP°— S%Z —.
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dX4 0 1 0
o N(P xy +x2x4) +x4( 6 C(E)( +x4) Y
B s G 0y(Ey +x5) + N
o T = Qo012+ x5)+ 6
dE®  dzs
F—I-E—Qo—@lEz—elxs-l-@zN
dZ5
—:—9
d s

Hence we have the system;

dx

d—tl =— (Mix2+ Bix3)S° — (A1xa + Brxz)x) — pix

dx2 0

E :(llxz —I—B1X3)S + (2«1)62 +[31x3)x1 — (OC + ,Ll1)(x2)
d)C3 _)sz IO

R xp — Aaxoxz — x3(A2l” + o)

dX4 . 0 1 0

o7 —T[(P X2 —{—XZX4)+)C4(9<1 C(E) (2P —I—X4)) ’}’)
dx

o~ o

In the same manner system (4.8)-(4.12) can be obtained.



