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PREFACE 
 

 

In the present times Mathematics occupies an important place in 

curriculum. Crossing number and gracefulness of graphs are important 

fields for research in modern times. In this dissertation an attempt has 

been made to cover up some of the research topics related to crossing 

number, gracefulness and k-hypergraceful labeling of graphs. This 

dissertation has been written in a simple and lucid manner and is up-to-

date in its contents. To illustrate theory some examples have been given. 

It is hoped that this dissertation will be appreciated by teachers and 

students alike. While preparing the dissertation, material has been used 

from works of different authors, periodicals and journals and I’m 

extremely grateful to all such persons and their publishers. 

All suggestions for improvement of the dissertation shall be thankfully 

accepted. 
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ABSTRACT 
 

 

The crossing numbers of the Cartesian products of given three graphs on 

five vertices with paths is determined. The new measure m(G) determines 

how close G is to being graceful. Here m(G) for a few families of 

nongraceful graphs is determined. Also the characterization of k-

hypergraceful complete graphs Kp  when p − 4 ≤ k ≤ p − 1 is 

determined. Lastly the cycle Cn  is 3-hypergraceful if n≡ 1(mod 4) and 2-

hypergraceful if  n≡ 2(mod 4) is determined. 
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1 INTRODUCTION

Let G be a simple graph with the vertex set V and the edge set E. A drawing is a

mapping of a graph into a surface. The vertices go into distinct points, nodes. An

edge and its incident vertices map into a homeomorphic image of the closed inter-

val [0, 1] with the relevant nodes as endpoints and the interior, an arc, containing

no node. For graph theoretic terminology and notations refer to Chartrand and

Lesniak [6], also West [21]. A good drawing is one in which no two arcs incident to

a common node have a common point; and no two arcs have more than one point

in common.

Figure 1: Examples of not a good drawing.

A common point of two arcs is a crossing. The crossing number cr(G) of a graph

G is the minimum number of crossings in any good drawing of G in the plane.

The Cartesian product G1 ×G2 of graphs G1 and G2 has a vertex set

V (G1 ×G2) = V (G1)× V (G2) and edge set

E(G1 ×G2) = {{(ui, vj), (uh, vk)} : ui = uh and {vj, vk} ∈ E(G2)

or {ui, uh} ∈ E(G1) and vj = vk}.
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Let Cn be the cycle, Pn the path of length n and Sn the star K1,n. The crossing

numbers of the Cartesian products of all 4–vertex graphs with cycles are deter-

mined in [4] and [9] and with paths and stars in [11] and [12]. The precise values

of the crossing numbers of some products G × Pn where G is 5–vertex graph is

determined in [10].

Most of the graph labeling methods trace their origin to the one introduced by

Rosa [17].
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Figure 2: Graceful labelling of C15

Let G = (V,E) be a (p, q)-graph without isolated vertices. By a graph G = (V,E),

we mean a finite undirected graph with neither loops nor multiple edges. The or-
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der |V | and the size |E| of G are dentoed by p and q respectively. An injection

f : V → {0, 1, ..., q} is said to be graceful if the induced edge function gf defined

by gf (uv) = |f(u) − f(v)| is a bijection from E to {1, 2, ..., q}. Any graph which

admits such a labeling is called a graceful graph and nongraceful otherwise (see,

[5], [7], [8], [17]).

In [6] the gracefulness grac(G) of a graph G with V (G) = {v1, v2, ..., vp} without

isolates is defined to be the smallest positive integer k for which it is possible to

label the vertices of G with distinct elements from the set {0, 1, ..., k} in such a way

that distinct edges receive distinct labels. Obviously grac(G) ≥ q and grac(G) = q

if and only if G is graceful. Thus grac(G) gives a measure of gracefulness of G.

0

72

8 11

72

8 11

1

5

46
9

3

Figure 3: grac(K5) = 11

A new measure of gracefulness of graphs and the same for some families of non-

graceful graphs is determined in [14].

For standard terminology and notations in signed graphs refer [22], [23]. The no-

tion of graceful labeling has been extended to signed graphs by Acharya and Singh

[2], [3] and Singh [18].
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A signed graph (or simply sigraph), denoted as S, is defined as a graph G = (V,E)

along with a function s : E(G) → {+,−} called its signing function. This function

assigns a sign to each edge in the graph. The graph G itself, without considering

the signs, is referred to as the underlying graph of the signed graph S. It comprises

the vertices and the edges of S. The set of positive edges of S is denoted by E+(S),

while the set of negative edges is denoted by E−(S). Together, these sets cover all

edges of the signed graph, satisfying the condition that the union of positive and

negative edges equals the edge set of S, i.e., E+(S) ∪ E−(S) = E(S).

If the number of positive edges is denoted as m and the number of negative edges

as n, such that m+ n = q, then the signed graph S is termed a (p,m, n)-sigraph.

An all-positive sigraph S is one where all edges have a positive sign, meaning

E+(S) = E(S). Similarly, an all-negative sigraph has all edges with a negative

sign, indicated by E−(S) = E(S). A sigraph is considered homogeneous if it con-

sists entirely of positive or negative edges. Similarly, if it contains both positive

and negative edges, it is termed heterogeneous.

Consider a signed graph S with edge set E(S) and a signing function s(uv) that

assigns a sign to each edge uv. Let f : V (S) → {0, 1, . . . , q = m + n} be an

injection, where q is the total number of edges in S (i.e., the sum of positive and

negative edges).
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The induced edge labeling gf is defined as follows:

gf (uv) = s(uv)|f(u)− f(v)|

for all edges uv ∈ E(S). Here, s(uv) denotes the sign of the edge uv. The function

f is said to be a graceful labeling of the signed graph S if the induced edge labeling

gf satisfies two conditions:

gf (E
+(S)) = {1, 2, . . . ,m}: The set of labels received by positive edges is a con-

secutive sequence starting from 1 up to the number of positive edges.

gf (E
−(S)) = {−1,−2, . . . ,−n}: The set of labels received by negative edges is a

consecutive sequence starting from −1 down to the negative number of edges. A

signed graph that admits a graceful labeling is called a graceful signed graph. In

other words, if there exists an injection f such that the induced edge labeling gf

satisfies the conditions mentioned above, then the signed graph S is graceful.

The negation of a signed graph S, denoted as η(S), is obtained by changing the

sign of every edge to its opposite. In other words, if an edge in S has a positive

sign (+), it will have a negative sign (−) in η(S), and vice versa. If a signed graph

S is graceful with a graceful labeling f , then the negation of the signed graph S

is also graceful under the same f .
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Figure 6: Illustration of graceful sigraphs on K5
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The notion of hypergraceful decomposition of graphs was first introduced by

Acharya [1], which is a generalization of graceful graphs and graceful signed graphs

[18], [19].

A (p, q)-graph G = (V,E), that is, |V (G)| = p and |E(G)| = q, is said to be

k-hypergraceful if there exists a decomposition of G into edge induced subgraphs

G1, G2, . . . , Gk having sizes m1,m2, . . . ,mk respectively, and an injective labeling

f : V (G) → {0, 1, . . . , q}, such that when each edge uv ∈ E(G) is assigned the label

|f(u)−f(v)|, the set of labels received by the edges of Gi is precisely {1, 2, . . . ,mi}

for each i ∈ {1, 2, . . . , k}. The decomposition {Gi}, if it exists, is then called a

k-hypergraceful decomposition of G and f is called a k-hypergraceful labeling of G.

Further, G is said to be hypergraceful if it possesses a k-hypergraceful decomposi-

tion for some k.

The k-hypergraceful labeling for a graph G for k = 1, 2, 3 and 4 is given in

Figure 7.

The friendship graph F3 is known to be non-graceful [13]. It is also known that

no signed graph on F3 is graceful [20]. Therefore, F3 is neither a 1-hypergraceful

nor a 2-hypergraceful graph. In Figure 8, the 3-hypergraceful and 4-hypergraceful

labelings of F3 are shown.
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Figure 7: k-hypergraceful labelings of a graph G.

6 5

0

42

71

1

56

42

71

1 3

3-hypergraceful

6 5

0

42

31

1

56

42

31

1 1

4-hypergraceful

Figure 8: k-hypergraceful labeling of F3 for k = 3, 4.
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The following results are essential for [15].

Theorem 1.0.1 ([8]). A complete graph Kp is graceful if and only if p ≤ 4.

Theorem 1.0.2 ([16]). A necessary condition for a (p, q)-graph G = (V,E) to be k-

hypergraceful with decomposition G1, G2, . . . , Gk is that it is possible to partition its

vertex set V into two subsets Vo and Ve such that for each integer i ∈ {1, 2, . . . , k}

there are exactly
⌊
mi+1

2

⌋
edges of Gi each of which joins a vertex of Vo with one of

Ve.

Lemma 1.0.3 ([16]). If for no integer j, 0 ≤ j ≤ k, p − 2j is a perfect square,

then Kp is not k-hypergraceful with respect to any decomposition of Kp.

Remark 1.0.4. If for some integer j, there exists a k-hypergraceful decomposition

of Kp for which p − 2j is a perfect square, then j represents the number of Gi’s

with odd size.

Lemma 1.0.5 ([16]). If any integer p is such that none of p, p − 2, p − 4 is a

perfect square, then no signed graph on Kp is graceful.

Theorem 1.0.6 ([16]).

1. No signed graph on Kp, p ≥ 6, is graceful.

2. Every signed graph on Kp, p ≤ 3, is graceful.

3. A signed graph on K4 is graceful if and only if the number of negative edges

in it is not three.
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4. A signed graph S on K5 with n negative edges is graceful if and only if either

n = 1 or n = 3 and the three negative edges in S are not incident at the

same vertex or η(S) satisfies similar conditions.
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2 MAIN RESULTS

2.1 The Crossing Numbers of Certain Cartesian Products

G1 G2 G3

Figure 9: Graphs Gk, k ∈ {1, 2, 3}, each of order five.

Three graphs of order five are shown in Figure 9. Assume n ≥ 1 and find it

convenient to consider the graph Gk×Pn, k ∈ {1, 2, 3}, in the following way. It has

5(n+1) vertices and edges that are the edges in the n+1 copies Gi
k, i = 0, 1, ..., n,

and five paths of length n. Furthermore, we call the former edges red and the

latter ones blue.

Let H i,j be a subgraph of Gk × Pn, k ∈ {1, 2, 3}, induced by the vertices of

Gi
k, G

i+1
k , ..., Gj

k for 0 ≤ i < j ≤ n. The subgraph H i,j − Gi
k is obtained by the

removal of all edges of Gi
k from the graph H i,j.
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Figure 10: Good drawing of G1

Lemma 2.1.1. If D is a good drawing of G1 × Pn, n ≥ 2, in which every Gi
1,

i = 0, 1, ..., n, has at most one crossing, then D has at least 2(n− 1) crossings.

Proof. Show that in every drawing D0,i of H0,i, i = 2, 3, ..., n, induced by D

there are at least two crossings more than the number of crossings in the drawing

D0,i−1 induced by D0,i. Consider the drawing D0,i of H0,i induced by D.

By the assumption of Lemma 2.1.1 in the drawing D0,i−1 induced by D0,i there

is no region with 5 vertices and at most one region with 4 vertices of Gi−1
1 on its

boundary. (The crossings are considered to be vertices of the map.) Suppose that

in D0,i−1 there is one region with four vertices of Gi−1
1 on its boundary. In this

case Gi−1
1 has one crossing with a blue edge joining Gi−2

1 to Gi−1
1 and in D0,i all

vertices of Gi
1 must lie outside this region.

Therefore, in the drawing D0,i there are at least two crossings between the

edges of H0,i−1 and the edges of H i−1,i −Gi−1
1 . Otherwise, D0,i−1 induces the map

with at most three vertices of Gi−1
1 on the boundary of every region and the edges

16



of H i−1,i −Gi−1
1 have at least two crossings in D0,i.

Since i runs through 2, 3, ..., n, the drawing D has at least 2(n− 1) crossings.

Figure 11: G1 × Pn , n ≥ 1

Theorem 2.1.2. cr(G1 × Pn) = 2(n− 1) for n ≥ 1.

Proof. The drawing in Figure 11 shows that cr(G1×Pn) ≤ 2(n−1) for n ≥ 1.

To prove the reverse inequality by induction on n. The case n = 1 is trivial.

Assume that the result is true for n = k, k ≥ 1, and suppose that there is a

good drawing of G1×Pk+1 with fewer than 2k crossings. By Lemma 2.1.1, some of

Gi
1 must then be crossed at least twice. By the removal of all edges of this Gi

1 we

obtain a graph, which is homeomorphic to G1×Pk or which contains the subgraph

G1 × Pk, and has a drawing with fewer than 2(k − 1) crossings. This contradicts

the induction hypothesis.
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Figure 12: Good drawing of G2

If all the vertices of the graph G2 are joined to a vertex x different from the

vertices of G2, we obtain a new graph which cannot be drawn without having a

G2-edge crossed because it contains a subgraph K3,3.

Similarly, if all the vertices of the graph G2 are joined to vertices of a connected

graph G, we again obtain a graph which cannot be drawn without having a G2-edge

crossed.

Lemma 2.1.3. If D is a good drawing of G2 × Pn, n ≥ 1, in which every Gi
2,

i = 0, 1, ..., n, has at most two crossings, then D has at least 3n− 1 crossings.

Proof. By the assumption of Lemma 2.1.3 the red edges of two different Gi
2

and Gj
2 cannot cross. Otherwise, Gi

2

(
Gj

2

)
has at least three crossings (at least two

crossings with the red edges of Gj
2 (Gi

2) and at least one crossing with the blue

edges joining Gi
2 to Gi−1

2 or Gi+1
2 (Gj

2 to Gj−1
2 or Gj+1

2 )).

Consider the drawing Di,i+1 of H i,i+1, i ∈ {0, 1, ..., n− 2}, induced by D.

Case 1. Let no edges of Gi+1
2 cross each other in Di,i+1. Then the drawing Di+1

18



of Gi+1
2 induced by Di,i+1 induces the map with two quadrangular regions and two

triangular regions. By the assumption of Lemma 2.1.3 in the drawing D all copies

G0
2, G

1
2, ..., G

i
2, G

i+2
2 , ..., Gn

2 must lie in the quadrangular region of Di+1. In Di,i+1

there is exactly one crossing between the red edges of Gi+1
2 and the blue edges of

H i,i+1 (Figure 13).

Figure 13: Case 1.

The drawing Di,i+1 divides the quadrangular region of Di+1 into new regions

with at most two vertices of Gi+1
2 on the boundary of every region. (The crossings

are again considered to be vertices of the map.) Consider now the drawing Di,i+2

of H i,i+2, i ∈ {0, 1, ..., n − 2}, induced by D. In the drawing Di,i+2 there are at

least three crossings between the edges of H i,i+1 and the edges of H i+1,i+2 −Gi+1
2 .

Case 2. Let in the drawing Di+1 of Gi+1
2 induced by Di,i+1 there be a region

with all vertices of Gi+1
2 on its boundary (Gi+1

2 has an internal crossing). Then the

drawingDi,i+1 divides this region ofDi+1 into new regions with at most two vertices

(Figure 14(a)) or with at most three vertices (Figure 14(b)) on the boundary of

every region.
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Figure 14: Case 2.

Consider now the drawing Di,i+2 of H i,i+2, i ∈ {0, 1, ..., n− 2}, induced by D. In

the drawing Di,i+2 there are at least three crossings between the edges of H i,i+1

and the edges of H i+1,i+2 −Gi+1
2 .

Since H0,1 has at least two crossings and i runs through 0, 1, ..., n − 2, the

drawing D has at least 3(n− 1) + 2 crossings.

Figure 15: G2 × Pn, n ≥ 1

Theorem 2.1.4. cr(G2 × Pn) = 3n− 1 for n ≥ 1.

Proof. The drawing in Figure 15, shows that cr(G2 ×Pn) ≤ 3n− 1 for n ≥ 1.

The proof of the reverse inequality proceeds by induction on n in the same way as

in Theorem 2.1.2 using Lemma 2.1.3.
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Figure 16: Good drawing of G3

Theorem 2.1.5. cr(G3 × Pn) = 3n− 1 for n ≥ 1.

Proof. Into drawing of G2 × Pn in Figure 15, draw edges so that we obtain a

good drawing of G3 ×Pn with at most 3n− 1 crossings. As G2 ×Pn is a subgraph

of G3 × Pn and cr(G2 × Pn) = 3n− 1, then cr(G3 × Pn) ≥ 3n− 1.
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2.2 A New Measure for Gracefulness of Graphs

Definition 2.2.1. Let G be a (p, q) graph. Let f : V (G) → N∪{0} be an injection

such that the edge induced function gf defined on E by gf (uv) = |f(u) − f(v)|

is also injective. Let c(f) = max{i : 1, 2, ..., i are edge labels under f}. Then

m(G) = maxfc(f) is called the m-gracefulness of G.

Let M(G) denote the maximum vertex label received by G under f . If G is a

graceful graph, then m(G) = q and M(G) = q. There are exactly three connected

nongraceful graphs of order five and for each of them m(G) = q−1 and it is known

that grac(G) = q + 1. These three graphs with appropriate labelings for grac(G)

and m(G) are given in Figure 17. If the label of a vertex is (a, b), then a is the

label corresponding to m(G) and b is the label corresponding to grac(G).

0,0

11,112,1

7,4 8,9

4,7 1,1

0,0

7,32,5

0,0

6,63,1

4,5 2,3

Figure 17: The three connected graphs of order five that are not graceful.
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If n ≡ 1 or 2(mod 4), then the cycle Cn is not graceful, the following theorem

determines m(Cn) and M(Cn).

Theorem 2.2.2. Let n ≡ 1 or 2(mod 4). Then m(Cn) = n−1 and M(Cn) = n+1.

Proof. Let n = 4x + 2 or 4x + 1 according as n ≡ 2(mod 4) or n ≡

1(mod 4). Let Cn ≡ (a1, b1, a2, b2, ..., a2x+1, b2x+1) if n ≡ 2(mod 4) and let Cn =

(a1, b1, a2, b2, ..., a2x, b2x, a2x+1) if n ≡ 1(mod 4).

Let f : V (Cn) → {0, 1, ..., n+ 1} be defined as follows:

f(ai) =


0 if i = 1

i if 2 ≤ i ≤ 2x+ 1

and f(bi) =


n+ 2− i if 1 ≤ i ≤ x

n+ 1− i if i ≥ x+ 1

It can be easily verified that f is injective, the induced edge function gf is also

injective, the highest vertex label used is n+ 1 and the set of induced edge labels

is {1, 2, ..., n− 2, n− 1, n+ 1}. Hence m(Cn) = n− 1 and M(Cn) = n+ 1.

Corollary 2.2.3. grac(Cn) = n+ 1 for n ≡ 1 or 2(mod 4).
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Figure 18: For C9, m(C9) = 8 and M(C9) = 10.
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Figure 19: For C10, m(C10) = 9 and M(C10) = 11.
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Example 2.2.4. Consider C21 and label its vertices as follows:

f(a1) = 0

f(ai) =

{
i for i = 2, 3, . . . , 11

and

f(bi) =


23− i for i = 1, 2, . . . , 5

22− i for i = 6, 7, . . . , 10

It is easy to check that the set of induced edge labels is {1, 2, 3,..., 19, 20, 22}.

Hence m(C21) = 20 and M(C21) = 22.
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Figure 20: For C13, m(C13) = 12 and M(C13) = 14.
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Let Fk denote the friendship graph consisting of k triangles (a, ui, vi, a),

1 ≤ i ≤ k. The graph Fk is nongraceful if k ≡ 2 or 3(mod 4) and in the following

theorem we determine m(Fk) and M(Fk).

Theorem 2.2.5. For the friendship graph Fk, we have m(Fk) = 3k − 1 and

M(Fk) = 3k + 1 where k ≡ 2 or 3(mod 4).

Proof. Let f(a) = 0, where a is the central vertex of Fk. We have the following

two cases:

Case 1: k ≡ 2(mod 4).

For F2, F6, F10 and F14 the labeling is given in the following Table 1.

Table 1: Labeling for Friendship Graphs F2, F6, F10, F14

Graph ui vi
F2 1 2 4 7
F6 1 2 3 4 5 6 15 19 11 13 12 16
F10 1 2 3 4 5 6 7 8 9 10 13 31 14 25 22 26 23 27 24 28
F14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 43 35 26 36 23 37 24 38 25 39 33 40 34

4

v1

1

u1

0

a

7

v2

2

u2

3

14

72

5

Figure 21: Labeling for friendship graph F2
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For k ≥ 18, we define f as follows:

f(ui) = i for i = 1, 2, . . . , k;

f(v1) =
5k + 6

4
;

f(v2) = 3k + 1;

f(vk) =
5k − 2

2
;

f(vk−2) =
5k − 4

2
;

f(vk−1−2i) = 3k − 2− i for i = 0, 1, . . . ,
k − 4

2
.

We define f(v2i) as follows:

f(v2i) =



3k
2
+ i for i = 2, 3, . . . , k−10

4

2k − 2 for i = k−6
4

3k−2
2

+ i for i = k−2
4
, k+2

4
, . . . , k

2
− 2

It can be easily verified that f is injective, the induced edge labeling gf is also

injective, the highest vertex label used is 3k + 1 and m(Fk) = 3k − 1.

Case 2: k ≡ 3(mod 4).

For F3, F7 and F11, the labeling is given in the following Table 2.
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Table 2: Labeling for Friendship Graphs F3, F7, F11

Graph ui vi
F3 1 2 3 6 10 7
F7 1 2 3 4 5 6 7 9 22 17 15 18 16 19
F11 1 2 3 4 5 6 7 8 9 10 11 14 34 27 19 28 18 29 25 30 26 31

1

u1

6

v1

0

a

3

u3

2

u2

7

v3

10

v2

5

61

32

710

8 4

Figure 22: Labeling for friendship graph F3

For k ≥ 15, we label the vertices as follows: The function f : V (G) → N ∪ {0}

is defined as follows:

f(ui) = i for i = 1, 2, ..., k

f(v1) =
5k + 1

4

f(v2) = 3k + 1

f(vk−1) =
5k − 3

2

f(vk−3) =
5k − 5

2

f(vk−2i) = 3k − 2− i for i = 0, 1, ...,
k − 3

2
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f(v2i) =



3k−1
2

+ i for i = 2, 3, ..., k−7
4

2k − 3 for i = k−3
4

3k−3
2

+ i for i = k+1
4
, k+5

4
, ..., k−5

4
;

It can be easily verified that f is injective, the induced edge function gf is also

injective, the highest vertex label used is 3k + 1 and m(Fk) = 3k − 1.

Corollary 2.2.6. grac(Fk) = 3k + 1 = q + 1 for k ≡ 2 or 3(mod 4).

If the vertices of the complete graph K5 are labeled from the set {0, 2, 7, 8, 11},

then the set of edge labels is {1, 2, 3, 4, 5, 6, 7, 8, 9, 11}. Hence M(K5) = 11,

grac(K5) = 11 and m(K5) = 9.

Similarly if we label the vertices of K6 either from the set {0, 1, 4, 10, 12, 17}

or {0, 4, 6, 9, 16, 17}, then the set of edge labels is {1, 2, . . . , 13, 16, 17}. Hence we

have M(K6) = 17 and m(K6) = 13 = q − 2.

For Kn, 6 ≤ n ≤ 8 we have observed that m(Kn) < q − 1 and determining the

exact value of m(Kn) for n ≥ 7 is an open problem.
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2.3 On k-Hypergraceful Labelings of Complete Graphs

In this section, the characterization of k-hypergraceful complete graphs Kp when

p − 4 ≤ k ≤ p − 1 is done. The results are present through a series of lemmas.

The following notation is used.

Let πp = (a1, a2, . . . , at) be a sequence of positive integers with a1 ≤ a2 ≤ . . . ≤

at and t =

p

2

. If ai occurs ri times in the sequence, then we write the sequence

as πp = (ar11 , ar22 , . . . , arss ).

Lemma 2.3.1. The complete graph Kp is (p − 4)-hypergraceful if p ≥ 8 and p is

even.

Proof. Let f be a labeling of Kp with the elements of the set S ∪ T where

S = {0, 3, 4, 6} and T = {8, 9, . . . , p + 3}. Note that the elements of the sets

S and T are from the set {0, 1, . . . , q} which are the labels of the vertices of

Kp. It can be easily verified that π8 = (14, 24, 34, 43, 53, 63, 72, 82, 91, 101, 111) and

π10 = (16, 26, 36, 45, 54, 64, 73, 83, 93, 102, 111, 121, 131). Now let p ≥ 12. Let L1 =

{gf (uv) : u, v ∈ S}, L2 = {gf (uv) : u, v ∈ T}, and L3 = {gf (uv) : u ∈ S, v ∈ T},

where the integers in each Li are in ascending order. Then

L1 = {1, 2, 32, 4, 6},

L2 =
{
1p−5, 2p−6, 3p−7, . . . , (p− 6)2, (p− 5)1

}
,

L3 = {2, 3, 42, 53, 63, 73, 84, 94, . . . , (p− 3)4, (p− 2)3, (p− 1)3, p2, p+ 1, p+ 2, p+ 3}.
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Hence it follows that πp = (1r1 , 2r2 , 3r3 , . . . , (p+ 3)rp+3) where

ri =



p− 4 if 1 ≤ i ≤ 3;

p− 5 if i = 4;

p− 6 if i = 5, 6;

p− 8 if i = 7;

p− i if 8 ≤ i ≤ p− 4;

4 if i = p− 3;

3 if i = p− 2, p− 1;

2 if i = p;

1 if i = p+ 1, p+ 2, p+ 3.

Clearly ri ≤ p − 4 for all i and ri ≤ rj if i ≤ j. Hence πp gives a (p − 4)-

hypergraceful decomposition of Kp.

Lemma 2.3.2. The complete graph Kp is (p−4)-hypergraceful if p = 4t+1, where

t ≥ 2.

Proof. Let f be a labeling of Kp with the elements of the set S ∪ T where

S = {0, 2, 4, 5} and T = {8, 9, . . . , p + 3}. It can be easily verified that π9 =

(15, 25, 34, 44, 53, 63, 73, 83, 92, 102, 111, 121). Now let p ≥ 13. Let L1 = {gf (uv) :

31



u, v ∈ S}, L2 = {gf (uv) : u, v ∈ T}, and L3 = {gf (uv) : u ∈ S, v ∈ T}, where the

integers in each Li are in ascending order. Then

L1 = {1, 22, 3, 4, 5},

L2 =
{
1p−5, 2p−6, 3p−7, . . . , (p− 6)2, (p− 5)1

}
,

L3 = {3, 42, 52, 63, 73, 84, 94, . . . , (p− 2)4, (p− 1)3, p2, (p+ 1)2, (p+ 2)1, (p+ 3)1}.

Hence it follows that πp = (1r1 , 2r2 , 3r3 , . . . , (p+ 3)rp+3), where

ri =



p− 4 if i = 1, 2;

p− 5 if i = 3, 4;

p− 6 if i = 5;

p− 7 if i = 6;

p− 8 if i = 7;

p− i if 8 ≤ i ≤ p− 4;

4 if i = p− 3, p− 2;

3 if i = p− 1;

2 if i = p, p+ 1;

1 if i = p+ 2, p+ 3.
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Clearly ri ≤ p−4 for all i and ri ≤ rj if i ≤ j. Hence πp gives a (p−4)-hypergraceful

decomposition of Kp.

Lemma 2.3.3. The complete graph Kp is (p−4)-hypergraceful if p = 4t+3, where

t ≥ 3.

Proof. The labeling given in Lemma 2.3.1 is also a (p − 4)-hypergraceful

labeling of Kp where p = 4t+ 3 and t ≥ 3.

Lemma 2.3.4. The complete graph K11 is 7-hypergraceful.

Proof. Let f be the labeling of K11 with the elements of the set S ∪ T where

S = {0, 4, 6, 7} and T = {9, 10, 11, 12, 13, 14, 15}. It can be easily verified that

π11 = (17, 27, 37, 46, 55, 65, 74, 83, 93, 102, 112, 121, 131, 141, 151). Hence f gives a 7-

hypergraceful labeling of K11.

Lemma 2.3.5. The complete graph K7 is not 3-hypergraceful.

Proof. Suppose there exists a 3-hypergraceful labeling of K7 with label set

S with decomposition G1, G2, G3 of sizes (m1,m2,m3). Since 7 − 2j is a perfect

square when j = 3, it follows from Remark 1.0.4 that each mi is odd. Hence the

possible cases for (m1,m2,m3) are:

• (1, i, 20− i) where i = 1, 3, 5, 7 or 9,

• (3, i, 18− i) where i = 3, 5, 7 or 9,
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• (5, i, 16− i) where i = 5 or 7,

• (7, 7, 7).

We claim that f does not induce any of the above twelve decompositions.

Case 1. (m1,m2,m3) = (1, 1, 19).

The sequence of edge labels is (13, 21, 31, . . . , 191). Without loss of generality, we

may assume that 0, 19, 1 ∈ S. Now to get the label 1 for the second edge, two

consecutive integers i, i+1 must be in S for some i ≥ 2. However, in this case, the

edge label i occurs twice which is a contradiction. Therefore, f does not induce

the decomposition (1, 1, 19).

Case 2. (1, 3, 17).

The sequence of edge labels is (13, 22, 32, 41, 51, . . . , 171). Without loss of generality,

we may assume that 0, 17, 1 ∈ S. Now to get the label 1 for the second edge, i

and i + 1 must be in S and i ≤ 3. Hence 2, 3 ∈ S. Now 4, 5 cannot belong to S.

So to get label 3 for the second edge, 6 must be in S. Now 7 cannot be an edge

label. Therefore, f does not induce the decomposition (1, 3, 17).

Case 3. (1, 5, 15).

The sequence of edge labels is (13, 22, 32, 42, 52, 61, 71, . . . , 151). Without loss of

generality, we may assume that 0, 15, 1 ∈ S. To get two more edges with label 1,

we have the following possibilities:

(a) 2, 3 ∈ S

34



(b) 3, 4, 5 ∈ S

(c) 2, 4, 5 ∈ S

In case (a), for edges to have edge labels 3 and 11, we must have 6, 11 ∈ S and

the label 9 is repeated twice, which is a contradiction. In cases (b) and (c), label 5

for the second edge cannot appear. Therefore, f does not induce the decomposition

(1, 5, 15).

Case 4. (1, 7, 13).

The sequence of edge labels is (13, 22, 32, 42, 52, 62, 72, 81, 91, . . . , 131). Without loss

of generality, we may assume that 0, 13, 1 ∈ S. Now the set {6, 7} cannot be a

subset of S. To get label 1 for three edges we have the following possibilities:

(a) 2, 3 ∈ S

(b) 3, 4, 7, 8 ∈ S or 4, 5, 7, 8 ∈ S

(c) 2, i, i+ 1 ∈ S for i = 4, 5 or j, j + 1, j + 2 ∈ S for j = 3, 4

In case (a), label 7 for two edges cannot be obtained. In case (b), the edge label

3 repeats more than twice which gives a contradiction. In case (c), if 2, i, i+1 ∈ S

then label 10 for an edge cannot appear and if j, j + 1, j + 2 ∈ S then label 11 for

an edge cannot appear. Therefore, f does not induce the decomposition (1, 7, 13).

Case 5. (1, 9, 11).

The sequence of edge labels is (13, 22, 32, 42, 52, 62, 72, 82, 92, 101, 111). Without loss
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of generality, we may assume that 0, 11, 1 ∈ S. To get label 9 for two edges, 2 and

9 must be in S. So to get label 8 for the second edge, 8 must be in S. Now the

label 3 for the second edge cannot be obtained. Therefore, f does not induce the

decomposition (1, 9, 11).

Case 6. (3, 3, 15).

The sequence of edge labels is (13, 23, 33, 41, 51, . . . , 151). Without loss of generality,

we may assume that 0, 15, 1 ∈ S. To get label 1 for 3 edges, we have to include

2 and 3 in S and to get label 11 for an edge, we must have 11 in S. Now label 7

for an edge cannot be obtained. Therefore, f does not induce the decomposition

(3, 3, 15).

Case 7. (3, 5, 13).

The sequence of edge labels is (13, 23, 33, 42, 52, 61, 71, . . . , 131). Without loss of

generality, we may assume that 0, 13, 1 ∈ S. To get label 1 for two more edges, we

have the following possibilities:

(a) 2, 3 ∈ S

(b) 3, 4, 5 ∈ S

(c) 2, 4, 5 ∈ S

In case (a), to get label 9 for an edge, we must have 9 ∈ S. Now the label 3

for an edge cannot be obtained. In case (b), label 11 for an edge cannot appear
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and in case (c), label 10 for an edge cannot appear. Therefore, f does not induce

the decomposition (3, 5, 13).

Case 8. (3, 7, 11).

The sequence of edge labels is (13, 23, 33, 42, 52, 62, 72, 81, 91, . . . , 111). Without loss

of generality, we may assume that 0, 11, 1 ∈ S. To get the edge label 9 we have

the following two cases:

(a) 9 ∈ S

(b) 2 ∈ S

In case (a), to get label 7 for two edges, 4 and 7 must be in S. Now the label

1 for the second edge cannot appear. In case (b), to get label 8 for an edge, either

8 or 3 must be in S. If 3 ∈ S, then label 7 for two edges cannot appear. If

8 ∈ S, then to get label 7 for a second edge, either 4 must be in S or 7 must be

in S. In either case, edge label 5 cannot appear. Therefore, f does not induce the

decomposition (3, 7, 11).

Case 9. (3, 9, 9).

In order to get the sequence of edge labels as (13, 23, 33, 42, 52, 62, 72, 82, 92), we

have to assign the labels to the vertices of K7 from the set {0, 1, . . . , 9}, which is

not possible, as we cannot get label 9 for two edges.

Case 10. (5, 5, 11).

The sequence of edge labels is (13, 23, 33, 43, 53, 61, 71, . . . , 111). Without loss of
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generality, we may assume that 0, 11, 1 ∈ S. To get label 1 for two more edges, we

have the following possibilities:

(a) 2, 3 ∈ S

(b) 3, 4, 5 ∈ S

(c) 2, 4, 5 ∈ S

In case (a), label 5 for three edges cannot appear. In cases (b) and (c), label

5 for two edges cannot appear. Therefore, f does not induce the decomposition

(5, 5, 11).

Case 11. (5, 7, 9).

The sequence of edge labels is (13, 23, 33, 43, 53, 62, 72, 81, 91). Without loss of gener-

ality, we may assume that 0, 9, 1 ∈ S. To obtain label 7 for two edges, the integers

2 and 7 must be in S. Now to obtain label 6 for a second edge, either 6 ∈ S or

3 ∈ S. In both cases, label 5 for another edge cannot be obtained. Therefore, f

does not induce the decomposition (5, 7, 9).

Case 12. (7, 7, 7).

In this case, to get the sequence of edge labels (13, 23, 33, 43, 53, 63, 73), we have to

assign the labels to the vertices of K7 from the set {0, 1, . . . , 7}. One can easily see

that no labeling from this set can give label 7 for three edges. Thus we see that

none of the above decompositions have a 3-hypergraceful labeling of K7. Hence

K7 is not 3-hypergraceful.
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Theorem 2.3.6. The complete graph Kp is (p − 4)-hypergraceful if and only if

p ≥ 8.

Proof. Suppose p ≥ 8. If p = 2t, t = 4, 5, . . ., then by Lemma 2.3.1, Kp

is (p − 4)-hypergraceful. If p = 4t + 1, t ≥ 2, then by Lemma 2.3.2, Kp is

(p − 4)-hypergraceful. If p = 4t + 3, t ≥ 3, then by Lemma 2.3.3, Kp is (p − 4)-

hypergraceful. Finally, by Lemma 2.3.4, K11 is 7-hypergraceful. Therefore if

p ≥ 8 then Kp is (p − 4)-hypergraceful. Conversely, Suppose that Kp is (p − 4)-

hypergraceful. We need to prove that p ≥ 8. Instead, we prove the contrapositive

statement. Suppose that p < 8. By Theorem 1.0.1, K5 is nongraceful; by Theorem

1.0.6, K6 is not 2-hypergraceful and by Lemma 2.3.5, K7 is not 3-hypergraceful.

Therefore, if p < 8 then Kp is not (p− 4)-hypergraceful.

Lemma 2.3.7. The complete graph Kp is (p− 3)-hypergraceful if p ≥ 7.

Proof. Let f be a labeling of Kp with the elements of the set S ∪ T where

S = {0, 2} and T = {5, 6, . . . , p+2}. Let L1 = {gf (uv) : u, v ∈ S}, L2 = {gf (uv) :

u, v ∈ T} and L3 = {gf (uv) : u ∈ S, v ∈ T}, where the integers in each Li are

in ascending order. Then L1 = {2}, L2 = {1p−3, 2p−4, 3p−5, . . . , (p − 4)2, (p − 3)1}

and L3 = {3, 4, 52, 62, 72, . . . , p2, (p + 1)1, (p + 2)1}. Hence it follows that πp =

(1r1 , 2r2 , 3r3 , . . . , (p+ 2)rp+2), where
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ri =



p− 3, if i = 1, 2;

p− 4, if i = 3;

p− 5, if i = 4;

p− i, if 5 ≤ i ≤ p− 2;

2, if i = p− 1, p;

1, if i = p+ 1, p+ 2.

Clearly ri ≤ p − 3 for all i and ri ≤ rj if i ≤ j. Hence πp gives a (p − 3)-

hypergraceful decomposition of Kp.

Lemma 2.3.8. The complete graph K6 is 3-hypergraceful.

Proof. Consider the labeling of K6 with the elements of {0, 1, 3, 4, 5, 7}.

One can easily verify that the corresponding sequence of induced edge labels

is (13, 23, 33, 43, 51, 61, 71). The decomposition G1, G2 and G3 of K6 have sizes

(4, 4, 7).

Theorem 2.3.9. The complete graph Kp is (p− 3)-hypergraceful for all p ≥ 4.

Proof. The result follows from Theorem 1.0.1, Theorem 1.0.6, Lemma 2.3.7

and Lemma 2.3.8.
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Theorem 2.3.10. The complete graph Kp is (p− 2)-hypergraceful for all p ≥ 3.

Proof. Let f be a labeling of Kp with the elements of the set S∪T where S =

{0} and T = {2, 3, . . . , p}. Let L1 = {gf (uv) : u, v ∈ S}, L2 = {gf (uv) : u, v ∈ T}

and L3 = {gf (uv) : u ∈ S, v ∈ T}, where the integers in each Li are in ascending

order. Then L1 = ∅, L2 = {1p−2, 2p−3, 3p−4, . . . , (p − 4)3, (p − 3)2, (p − 2)1} and

L3 = {2, 3, . . . , p − 1, p}. Hence it follows that πp = (1r1 , 2r2 , 3r3 , . . . , prp), where

ri =



p− 2, if i = 1;

p− i, if 2 ≤ i ≤ p− 1;

1, if i = p.

Clearly ri ≤ p − 2 for all i and ri ≤ rj if i ≤ j. Hence πp gives a (p − 2)-

hypergraceful decomposition of Kp.

Theorem 2.3.11. The complete graph Kp is (p− 1)-hypergraceful for all p ≥ 2.

Proof. We label the vertices ofKp from the set {0, 1, . . . , p−1}. It can be easily

verified that the sequence of edge labels πp = (1p−1, 2p−2, 3p−3, . . . , (p−2)2, (p−1)1).

Hence Kp is (p− 1)-hypergraceful for all p ≥ 2.
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0 1
1

K2 is 1-hypergraceful

3 2

0

1

23

K3 is 1-hypergraceful

π3 = (1, 2, 3)

2 1

0

1

12

K3 is 2-hypergraceful

π3 = (12, 2)

Figure 23: k-hypergraceful labelings of K2 and K3
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0
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3

4 6

5

1

K4 is 1-hypergraceful

π4 = (1, 2, 3, 4, 5, 6)

2 4

3

0

2
1

2 4

1

3

K4 is 2-hypergraceful

π4 = (12, 22, 3, 4)

1 3

2

0

2
1

1 3

1

2

K4 is 3-hypergraceful

π4 = (13, 22, 3)

Figure 24: k-hypergraceful labelings of K4
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4 7

21

4 7
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6

3

K5 is 2-hypergraceful

π5 = (12, 22, 32, 4, 5, 6, 7)

0

52

3 4

52

3

4

2

3

11

2

1

K5 is 3-hypergraceful

π5 = (13, 23, 32, 4, 5)

0

41

2 3

41

2

3

2

3

11

2

1

K5 is 4-hypergraceful

π5 = (14, 23, 32, 4)

Figure 25: k-hypergraceful labelings of K5
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3 5

4

71
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4
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22
4

2

4

33

1 1

K6 is 3-hypergraceful

π6 = (13, 23, 33, 43, 5, 6, 7)

0
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3 5

4

62

3 5

3

4
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3

2

4
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1 1

K6 is 4-hypergraceful

π6 = (14, 24, 33, 42, 5, 6)

0
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3
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2 4

3

4

11
3

2

3
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1 1

K6 is 5-hypergraceful

π6 = (15, 24, 33, 42, 5)

Figure 26: k-hypergraceful labelings of K6
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K7 is 4-hypergraceful

π7 = (14, 24, 33, 42, 52, 62, 72, 8, 9)
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45
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1

3
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21

7

5

4

32

1

K7 is 5-hypergraceful

π7 = (15, 25, 34, 43, 52, 6, 7)

0
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34

5

6

1

2

34
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1

3

12

1

5
4

3

21

6

5

4

32

1

K7 is 6-hypergraceful

π7 = (16, 25, 34, 43, 52, 6)

Figure 27: k-hypergraceful labeling of K7
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The existence of k-hypergraceful labelings of cycles is investigated. It is known

that if n ≡ 1 or 2(mod 4), then the cycle Cn is nongraceful [8] and if n ≡ 1(mod 4),

then Cn is also not 2-hypergraceful [2]. The following theorems determines the least

k for which Cn, n ≡ 1 or 2(mod 4) is k-hypergraceful.

Theorem 2.3.12. If n ≡ 1(mod 4), then Cn is 3-hypergraceful.

Proof. Let Cn = (a1, b1, a2, b2, . . . , an−1
2
, bn−1

2
, an+1

2
, a1). Let f : V (Cn) →

{0, 1, . . . , n} be defined as follows:

f(ai) =


0, for i = 1;

i, for 2 ≤ i ≤ n+1
2
;

and

f(bi) =



1, for i = 1;

n+ 2− i, for 2 ≤ i ≤ n−1
4
;

n+ 1− i, for n−1
4

+ 1 ≤ i ≤ n−1
2
.

It can be easily verified that f is injective and the sequence of corresponding edge

labels is (13, 21, 31, . . . , (n− 2)1). Hence Cn is 3-hypergraceful.
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a1 1

b1

2

a2
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a5

1

1

7

6
4

2

1

3

5

n ≡ 1(mod 4)

Cn is 3-hypergraceful

(13, 2, 3, 4, 5, 6, 7)

Figure 28: 3-hypergraceful labeling of C9

Theorem 2.3.13. If n ≡ 2(mod 4), then Cn is 2-hypergraceful.

Proof. Let Cn = (a1, b1, a2, b2, . . . , an
2
, bn

2
, a1). Let f : V (Cn) → {0, 1, . . . , n}

be defined as follows:

f(ai) =



0, for i = 1;

n+ 2− i, for 2 ≤ i ≤ n+2
4
;

n+ 1− i, for n+2
4

+ 1 ≤ i ≤ n
2
.
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and

f(bi) = i, for 1 ≤ i ≤ n

2
.

It can be easily verified that f is injective and the sequence of corresponding edge

labels is (12, 21, . . . , (n− 1)1). Hence Cn is 2-hypergraceful.

0

a1 1

b1

10

a2

2

b2

9

a33

b3

7

a4

4

b4

6

a5

5

b5

1

9

8

7

6

3

2

4

1

5

n ≡ 2(mod 4)

Cn is 2-hypergraceful

(12, 2, 3, 4, 5, 6, 7, 8, 9)

Figure 29: 2-hypergraceful labeling of C10
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3 CONCLUSION AND SCOPE

The crossing numbers of the graphs Gk × Pn, k ∈ {1, 2, 3}, for n ≥ 1 are obtained

i.e.

1. cr(G1 × Pn) = 2(n− 1)

2. cr(G2 × Pn) = 3n− 1

3. cr(G3 × Pn) = 3n− 1.

A new measure of gracefulness m(G) of a graph G which is less than q, whereas

grac(G) is greater than q is introduced. The problem of determining m(G) for

several classes of nongraceful graphs remains open.

The existence of k-hypergraceful labeling of complete graphs and cycles is in-

vestigated. In this connection, the following conjecture.

Conjecture 3.0.1. For any connected graph G, there exists a positive integer k

such that G is k-hypergraceful.

The hypergraceful index hi(G) is then defined to be the least positive integer

k such that G is k-hypergraceful. Since hi(G) = 1 if and only if G is graceful, this

parameter gives another measure of gracefulness of graphs.
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It follows from Theorem 2.3.6 that hi(Kp) ≤ p − 4 for all p ≥ 8. Also, it follows

from Theorem 2.3.12 and Theorem 2.3.13 that hi(Cn) = 2 if n ≡ 2(mod 4) and 3

if n ≡ 1(mod 4).

The most well-known conjecture on graceful labeling is Kotzig’s conjecture

which states that every nontrivial tree is graceful; which still remains open. The

following weaker conjecture.

Conjecture 3.0.2. Every nontrivial tree is 2-hypergraceful.
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