
Basic Theory of Congruences

A Dissertation for

MAT-651 Discipline Specific Dissertation

Credits: 16

Submitted in partial fulfilment of Masters Degree

M.Sc. in Mathematics

by

Miss. Chandani Rajbhargav Mistry

22P0410016

ABC ID : 884-952-308-287

201602898

Under the Supervisor of

Mr. Brandon Fernandes

School of Physical & Applied Sciences

Mathematics Discipline

GOA UNIVERSITY

APRIL 2024

Examined by: Seal of the School





DECLARATION BY STUDENT 

T hereby declare that the data presented in this Dissertation report entitled, "Basic 

Theory of Congruences" is bascd on the results of investigations carricd out by me in the 

Mathematics Discipline at the School of Physical & Applied Sciences, Goa University 

under the Supervision of Mr. Brandon Fernandes and the same has not been submitted 

clsewhere for the award of a degrec or diploma by me. Further, I understand that Goa 

University will not be responsible for the correctness of observations / experimental or 
other findings given the dissertation. 

I hereby authorize the University authorities to upload this dissertation on the dissertation 

repository or anywhere else as the UGC regulations demand and make it available to any 

Onc as nceded. 

Date: als2o24 
Place: GOA UNIVERSITY 

Signature: 

Student Name: Chandani Rajbhargav Mistry 

Seat no: 22P0410016 





COMPLETION CERTIFICATE 

This is to certily that the dissertation report "Basic Theory of Congruences is a 

bonafide work carried out by Miss. Chandani Rajbhargav M1stry under my supervison in 

partial ultilment of the requirements for the award of the degree of Master of Sciencc in 

Mathematics in the Discipline Mathematics at the School of Physcal & Appied Sciences 

Goa University. 

Date: 10]osl094 

Dale: 

Signature 

Signature of Ho� of the Dept 

1olsfzo24 
Place: Goa University 

Supervisor: Mr Brandon Fernandes 

Unversty 

School Stamp 





i

PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-

ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: "Basic Theory of Congruences." This

survey is divided into five chapters. Each chapter has its own relevance and importance.

The chapters are divided and defined in a logical, systematic and scientific manner to

cover every nook and corner of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of Congruences and

the history of number theory.

SECOND CHAPTER:

This chapter deals with the Concept of Congruences. In this topic we have discuss the

Elementary Properties of Congruences, also have discussed topics like Complete Residue

System and Reduced Residue System.

THIRD CHAPTER:

In this chapter we have introduce a type of congruence, that is, Linear Congruences.

The main aim is to prove some basic result concerning this type of congruences, and, in

particular, some theorems that are related to this topic, for example, Fermat’s Theorem,

Euler’s Theorem and so on. We have also discussed one application here. .
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FOURTH CHAPTER:

This chapter deal with another type of congruence that is, Identical Congruences. Our

main focus is on topics like Order of Integers and Primitive roots which are often used in

solving problems in congruences. .

FIFTH CHAPTER.

This chapters deals with one more type of congruence, that is, Quadratic Congruences.

This topic includes the Quadratic Congruences and Quadratic Residues. .
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Chapter 1

INTRODUCTION

The great German mathematician Gauss was the first to introduce the concept of congru-

ence in number theory and to invent an appropriate symbol to denote it. With this tool

Gauss was able to revolutionize the science of numbers.

Gauss (1777-1855) is considered by many as the greatest mathematician in history. His

researches pervaded all the known branches of mathematics of his time, geometry, analy-

sis, algebra, complex numbers, mechanics, electricity and magnetism, astronomy, and

above all, theory of numbers in which he particularly took great delight.
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Chapter 2

Congruences

2.1 Introduction

In this chapter we introduce the elementary concepts and elementary properties of congru-

ences. The concept of congruence was proposed by K. F. Gauss about 1800. Congruences

often arise in everyday life.

For instance, if the second of January is Sunday, then 9, 16, 23, 30 of the same month

are all Sundays, since when they are divided by 7, the remainders are all 2.

Gauss introduced a remarkable notation which simplifies many problems concerning

divisibility of integers. In so doing he created a new branch of number theory called the

theory of congruences, the foundations of which are discussed in this chapter.

2
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2.2 Concept of Congruences and its Elementary Proper-

ties

Definition 2.2.1. Let a and b be any two integers. If a positive integer m divides a−b,

then we say a is congruent to b modulo m.

i.e.

a ≡ b (mod m) (2.1)

Expression (2.1) is called the congruence, m is called the modulus of the congruence,

and b is called a residue of a (mod m).

Theorem 2.2.2. Congruence relations satisfy the following properties of equivalence:

Proof. : Reflexive Law: a ≡ a (mod m)

Symmetric Law: If a ≡ b (mod m), then b ≡ a (mod m).

Transitive Law: If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

Addition Law: If a ≡ b (mod m) and c ≡ d (mod m), then a+ c ≡ b+d (mod m).

Multiplication Law: If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m).

Exponential Law: If a ≡ b (mod m) and k ∈ N then ak ≡ bk (mod m)

Cancellation Law: If a ≡ b (mod m) and gcd(a,m) = 1, then ac ≡ bc (mod m) ⇒

c ≡ d (mod m).
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2.3 Complete Residue System

Definition 2.3.1. Let a ≡ b (mod m). If 0 ≤ b < m then b is called the least residue of

a (mod m).

Definition 2.3.2. A set of m integers whose least residues (mod m) are 0,1,2, ....,m−1

in some order is called complete system (mod m).

Example: 2.3.3. The set of integers

{−5,11,59,−13,−57,26,49}

is a complete system (mod 7) because the set consist of 7 integers whose least residue

(mod 7) are 2, 4, 3, 1, 6, 5, 0 which is a permutation of the numbers o, 1, 2, 3, 4, 5, 6.

Theorem 2.3.4. A set of integers is a complete system (mod m) if and only if the set

consist of m integers which are incongruent (mod m).

Proof. i. First suppose the set is a complete system (mod m). Then by definition

it has m integers whose least residues (mod m) are 0,1, . . . ,m−1 in some order.

Since this residues are incongruent (mod m), it follows that the m integers of the

set are all incongruent (mod m). This proves the only if part of the theorem.

ii. Conversely, suppose that the set consist of m integers which are incongruent

(mod m). This implies that the least residues of the integers are: m in numbers,

belongs to the set {0,1, . . . ,m− 1} and are all different. It follows that the least

residues of the m integers of the set are {0,1, . . . ,m−1} in some order.

Therefore the set is a complete system (mod m).
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Theorem 2.3.5. Any m integers in arithmetical progression with common difference

relatively prime to m form a complete system (mod m).

Proof. Let the integers in A.P. be

a,a+ t, . . . ,a+(m−1)t (2.2)

such that (t,m) = 1. We shall prove that these m integers are incongruent (mod m).

Suppose these are not. This implies that

a+ it ≡ a+ jt (mod m) (2.3)

for some i and j such that i ̸= j.

It follows that it ≡ jt (mod m) and since (t,m) = 1, i ̸= j (mod m), i and j are both less

than m.

Therefore this is a contradiction, since i ̸= j. Hence the integers (2.2) are incongruent

(mod m).

The following theorem is very important and should be committed to memory.

Theorem 2.3.6. Let a be any given integer and let C be any complete system of residues

mod m.Then there exists in C a unique integer b corresponding to a, such that a ≡ b

(mod m).

Proof. Let r be the least residue of a (mod m) so that we have

a ≡ r (mod m), o ≤ r < m. (2.4)
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Also the set of least residues of C (mod m) is S = {0,1, . . . ,m−1}. Hence r belongs

to S. If then b is the unique member of C of which r is the least residue (mod m) then

obviously

r ≡ b (mod m) (2.5)

(2.4) and (2.5) prove that a ≡ b (mod m) and this proves the theorem.
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Example: 2.3.7. The set

(49,20,10,17,−18,−27)

is a complete system (mod 6). Find the integer of the set which is congruent (mod 6)

to 491.

Solution: The least residues of the numbers of the given set are 1,2,4,5,0,3 respectively

and the least residue of 491 (mod 6) is 5. Hence 17 (mod 16). Therefore 17 is the

required number.

Theorem 2.3.8. Every complete system (mod m) has exactly φ(m) integers relatively

prime to m.

Proof. Let C be the complete system. Also let a be any integer of C and r its least residue

modulo m. Then we know (a,m) = 1 if and only if (r,m) = 1. It follows that there are

exactly as many integers prime to m in C as are integers prime to m among (the least

residues of C) 0,1,2, ...,(m−1). But we know that there are exactly φ(m) integers prime

to m. Hence C has exactly phi(m) integers prime to m.

Theorem 2.3.9. Let {a1, . . . ,am} be a complete system (mod m). Let (k,m) = 1. Then

{ka1, . . . ,kam} is also a complete system (mod m).

Proof. Let S = {ka1, . . . ,kam}. Obviously there are m integers in S. Also these integers

are all incongruent (mod m). If this is not true let kai = ka j (mod m) for two different

integers i and j. Then, since (k,m) = 1 we can cancel the factor k from the two sides of

the congruence obtaining ai = a j (mod m). But this contradicts the fact {a1, . . . ,am} is

a complete system (mod m). Therefore the integers of S are incongruent (mod m). It

follows that S is a complete system (mod m).
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Theorem 2.3.10. Let

1. {a1, . . . ,am1} be a complete system (mod m1).

2. {b1, . . . ,bm2} be a complete system (mod m2).

3. (m1,m2) = 1. Then the set C defined by

{aim2 +b jm1, i = 1,2, . . . ,m1, j = 1,2, . . . ,m2}

is a complete system (mod m1,m2)

Proof. i can have m1 different values and j can have m2 different values independent of

each other. Therefore the numbers in C is m1m2. Also the integers of C are incongruent

(mod m1m2.) This can be proved as below:

aim2 +b jm1 ≡ akm2 +blm1 (mod m1m2)

for somr i, j,k and l.

Then in succession we obtain

aim2 +b jm1 ≡ akm2 +blm1 (mod m1),

aim2 ≡ akm2 (mod m1),

ai ≡ ak (mod m1).
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which is impossible unless i = k.

Similarly we can prove that b j ≡ bl (mod m2) which also is impossible unless j = l. It

follows that C is a complete system (mod m1m2.)

2.4 Reduced Residue System

Definition 2.4.1. A set of φ(m) integers whose least residues (mod m) are r1, . . . ,rφ(m)

in some order is called a reduced system of residues (mod m) or briefly a reduced

system (mod m).

Example: 2.4.2. Show that the set

{22,−1,43,46,−19,79,113,452}

is a reduced system (mod 15).

Solution: The least residues (mod 15) of the integers of the set

7,14,13,1,11,4,8,2 (2.6)

respectively. Alsonthe integers less than 15 and prime to it are

1,2,4,7,8,11,13,14. (2.7)

It is easily seen that (2.6) is a permutation of (2.7). Therefore the given set is a reduced

system (mod m).
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Theorem 2.4.3. A set R of integers is a reduced system (mod m) if and only if R has

integers which are incongruent (mod m) and prime to m.

Proof. (A) First suppose that R is a reduced system (mod m). This implies that R has

φ(m) integers, the least residues of which are r1,r2, . . . ,rφ(m) (mod m), in some order.

Now r1,r2, . . . ,rφ(m) are prime to m and are incongruent It follows that the integers of r

are also prime to m and are incongruent (mod m). This proves the only if part of the

theorem.

(B) Conversely, suppose R has φ(m) integers which are incongruent (mod m) and prime

to m. then consider the least residue of these integers (mod m).

1. They are obviously φ(m) in numbers.

2. They belong to the set {r1,r2, . . . ,rφ(m)} because the integers of R being prime to

m their least residues are also prime to m.

3. They are all different since the integers of R are incongruent (mod m).

From (1),(2) and (3) it follows that the least residues of the φ(m) integers of R are

r1,r2, . . . ,rφ(m) in some order. So by definition R is a reduced system (mod m).

Theorem 2.4.4. Let R be any reduced system of residues (mod m) and let a be any

given integer such that (a,m) = 1. Then there exists in R a unique integer, corresponding

to a, say b such that a ≡ b (mod m).

Proof. Let r be the least residue of a (mod m) so that we have

a ≡ r (mod m), 0 ≤ r < m (2.8)
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and

(r,m) = (a,m) = 1. (2.9)

But the set of least residues of R is S = {r1,r2, . . . ,rφ(m)} where r1,r2, . . . ,rφ(m) are all

positive integers less than m and prime to m. It follows from (2.8) and (2.9) that r belong

to S. If then b is the unique member of R of which r is the least residue (mod m) then

obviously

r ≡ b (mod m). (2.10)

(2.8) and (2.10) imply that a (mod m) which proves the theorem.



Chapter 3

LINEAR CONGRUENCES

3.1 Introduction

Just we have equations and their solutions in algebra we have congruences and their

solutions in number theory. For example, 6x ≡ 5 (mod 7) where x is an unknown

number(integer). Any value of x which satisfies the given congruence is called its

solution. Thus if we put x = 2, we find that 6× 2 ≡ 5 (mod 7) is true. Hence x = 2

is a solution. Further it is clear that all integers congruent to 2 (mod 7) namely, x =

. . . ,−12,−5,2,9,16 . . . also satisfies given congruence. Hence each of them is a solution

of given congruence.

But all these congruent solutions are by convention considered as one and the same

solution, and the solution is written x ≡ 2 (mod 7) which obviously includes all the

integers. We could as well have written the solution as x≡−5 (mod 7) or x≡ 9 (mod 7)

12



3.1 Introduction 13

and so on. But we choose to write it as x ≡ 2 (mod 7) because 2 belongs to the set of

least residues (mod 7). This is the usual and standard practice.

Definition 3.1.1. The general form of the congruence of the first degree in one unknown

or variable s is

ax ≡ b (mod m) (3.1)

where m does not divide a. This is called a linear congruence. Any value of x which

satisfies (3.1) is called a solution (or root) of the congruence. Suppose x = h satisfies

(3.1). Then x = h is a solution of (3.1). Obviously all integers congruent to h (mod m)

also satisfy (3.1). Hence they are, by definition, all solutions of the congruence, but

these congruent solutions are not considered as distinct or different solutions. They are

considered to constitute a single solution which is written as

x ≡ r (mod m) (3.2)

where r is the least residue of h (mod m). Obviously (3.2) covers all integers congruent

to h (mod m).

Example: 3.1.2. Solve the congruence

6x ≡ 3 (mod 9)

All the distinct solutions of the given congruence lie in S = {0,1,2, . . . ,8}. We shall then

find out which of these numbers satisfy given congruence. Thus modulo 9 we have:

6×0 ≡ 0, 6×1 ≡ 6, 6×2 ≡ 3 , 6×3 ≡ 0,

6×4 ≡ 6, 6×5 ≡ 3, 6×6 ≡ 0, 6×7 ≡ 6, 6×8 ≡ 3.
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Therefore x =2, 5, 8 satisfy given congruence.

Hence we write the solution as x ≡ 2,5,8 (mod 9).

Theorem 3.1.3. The congruence

ax ≡ b (mod m), (a,m) = 1 (3.3)

has only one solution.

Proof. We know that all the incongruent solutions of (3.3) lie in the complete system

S = {0,1,2, ...,m−1}. Therefore there are as many solutions of given congruence as

there are integers in S1 = {a×0,a×1,a×2, . . . ,a× (m−1)} which are congruent to

b modulo m. Now S i a complete system (mod m) and (a,m) = 1. Hence S1 is also a

complete system (mod m). It follows that there exists one and only one integer say ax0

in S1 such that ax0 ≡ b (mod m). This implies that there is one and only one solution,

namely, x ≡ x0 (mod m).

The above theorem can be put in an alternative form which will be found to be often

very useful.

Theorem 3.1.4. Let (a,m) = 1, and let b be any given integer. Then there exists a unique

integer say x0 in {0,1, . . . ,m−1} such that ax0 ≡ b (mod m)

Note: We shall now consider the solution of the linear congruence in its general form

ax ≡ b (mod m)
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where m does not divide a. Then we shall prove that given congruence is not solvable if

d does not divide b.

Theorem 3.1.5. The congruence

ax ≡ b (mod m), (a,m) = d (3.4)

is solvable only if d divides b.

Proof. Let (3.4) be solvable. Then there exists an integer x0 such that ax0 ≡ b (mod m).

This implies

ax0 −b = mq0 (3.5)

for some integer x0. Now we know that d divides a and m. It immediately follows from

(3.5) that d divides b.

Definition 3.1.6. Two congruences are said to be equivalent if they are satisfied by the

same values of the variables.

Consider the congruence

ax0 ≡ b (mod m) (a,m) = d (3.6)

where d divides b. Dividing throughout by d we obtain the congruence

a
d

x ≡ b
d

(mod
m
d
) (3.7)

where ( a
d ,

m
d ) = 1. We shall show that both the congruences are equivalent.
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1. Let x = x0 satisfy (3.6). This implies ax0 ≡ b (mod m). It follows that

a
d x0 ≡ b

d (mod m
d ). Hence x = x0 satisfies (3.7).

2. Let x = x0 satisfy (3.7).Then

a
d

x0 ≡
b
d

(mod
m
d
).

Multiply by d we get ax0 ≡ b (mod m). This proves that x = x0 satisfy (3.6). Thus

the same value of x satisfy (3.6) and (3.7). Therefore the two congruence are

equivalent.

3.2 Application: Check digits and the ISBN system

Congruences are frequently used to provide an efficient way to detect errors in data

transmission. Suppose that we have a sequence of nine-digit numbers that we need to

enter into a computer. It is important that the data be entered correctly, but the quantity of

numbers to be entered is large enough that we prefer not to double-check them. Instead,

we add a tenth digit, called a "check digit," to each number that will detect some of our

errors. If our nine-digit number is x1x2...x9 we define the tenth digit x10 to be the number

that satisfies

x10 ≡ (x1 + x2 + · · ·+ x9) (mod 10)

We ask the computer to alert us any time we enter a ten-digit number that does not satisfy

the above congruence. Notice that if we take a ten-digit number x1x2...x10 that satisfies

the congruence and replace exactly one digit with a different digit, then the resulting

number no longer satisfies the congruence. Thus, our tenth digit detects an error when
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we have typed exactly one digit incorrectly. Obviously, this will not catch all of our

errors, but we only needed to enter one extra digit rather than retype all nine digits.

The ISBN (International Standard Book Number) scheme employs a slightly more

sophisticated check digit. The ISBN of a book is a 10-digit number grouped into four

blocks of numbers. For example, the ISBN for the fourth edition of The Mathematica

Book [34] is 0-521-64314-7. The first block is determined by the country of publication.

For books published in the U.S., U.K., Australia, New Zealand, or Canada, this number

is 0. The second block indicates the publisher. Any book that has a 521 as its second

block is published by Cambridge University Press. The third block of the ISBN identifies

the title and edition of the book. The final block is the check digit. If x1x2, ...,29 are the

first nine digits of an ISBN, then the check digit is the number x10 satisfying

x10 ≡
9

∑
i=1

ixi (mod 11).

In the case x10 = 10, the character X is used as the tenth digit.) Let’s perform this

calculation for the check digit of The Mathematica Book.

1 ·0+2 ·5+3 ·2+4 ·1+5 ·6+6 ·4+7 ·3+8 ·1+9 ·4 ≡ 7 (mod 11)

The check digit of an ISBN detects not only errors in which one digit has been incorrectly

entered, but also errors in which two digits have been inter- changed. Certainly, these

would be very typical kinds of errors if the numbers are entered by hand. Let’s see what

happens when we make errors of these two types. First, consider the number 0-521-

64714-7 obtained from the ISBN of The Mathematica Book by changing the seventh
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digit from a 3 to 7.

1 ·0+2 ·5+3 ·2+4 ·1+5 ·6+6 ·4+7 ·7+8 ·1+9 ·4 ≡ 2 (mod 11)

The check digit formula produces a 2 instead of 7. If we swap the third and fourth digits

(in the original ISBN) we obtain the number 0-512-64314-7.

1 ·0+2 ·5+3 ·1+4 ·2+5 ·6+6 ·4+7 ·3+8 ·1+9 ·4 ≡ 8 (mod 11)

Again, the congruence defining the check digit produces a number other than 7. This

will always happen for these types of errors.

Proposition 3.2.1. If x1x2...x10 is a valid ISBN and the number x′1x′2...x
′
10 is obtained

from that number by either altering exactly one digit interchanging two unequal digits,

then

x′10 ̸≡
9

∑
i=1

ix′i (mod 11)

Proof. In a valid ISBN,
10

∑
i=1

ixi ≡ 0(mod11).

We will prove that
10

∑
i=1

ix′i ̸≡ 0(mod11).

Suppose that we have an error of the first type; say, x j ̸= x′j for some j. Then
10
∑

i=1
ix′i ≡

10
∑

i=1
ixi − jx j + jx′j (mod 11) ≡ j(x′j − x j) (mod 11)

Since j(x′J −x j) is not divisible by 11, we have proved that the required congruence fails.

Now suppose that we have an error of second type, i.e.,x′j = xk and x′k = x j for some

k ̸= j and x j ̸= xk. Then
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10
∑

i=1
ix′i ≡ (

10
∑

i=1
ixi)+ jxk − jx j + kx j − kxk (mod 11)≡ (k− j)(x j − xk) (mod 11).

Then integers k− j and xJ − xk are non-zero and have absolute less value than 10.

In particular, neither is divisible by 11, and so their product id not divisible by 11.

In this section we shall be concerned with properties of positive integers only. We

first prove the following theorem.

Theorem 3.2.2. Let p be a prime. Then
(p

r

)
= p(p−1)···(p−r+1)

r′ 0 < t < p, is divisible by

p.

Proof. p(p−1) · · · (p− r+1) is the product of r consecutive integers, hence divisible by

r!. But r! is relatively prime to p. It follows that r! divides (p−1)(p−2) · · · (p− r+1).

This implies
p(p−1)(p−2) · · · (p− r+1)

r!

is a multiple of p.

Theorem 3.2.3. If p is a prime then (a+b)p ≡ ap +bp(mod p).

Proof. (a+b)p = ap+
(p

1

)
ap−1b+

(p
2

)
ap−2b2+ · · ·+

( p
p−1

)
abp−1+bp = ap+bp+ terms

divisible by p. By previous theorem it follows that (a+b)p ≡ ap +bp(mod p).

By successive application of the last theorem we can prove the following theorem.

Theorem 3.2.4. (a1 +a2 + · · ·+an)
p ≡ ap

1 +ap
2 + · · ·+ap

n(mod p).
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Proof.

(a1 +a2 + · · ·+an)
p ≡ ap

1 +(a2 +a3 + · · ·+an)
p(mod p)

≡ ap
1 +ap

2 +(a3 +a4 + · · ·+an)
p(mod p).

.

.

≡ ap
1 +ap

2 + · · ·+ap
n(mod p)

3.3 Fermat’s Theorem

This last theorem enables us to prove one of the most famous and beautiful results in the

whole field of number theory. This is known as Fermat’s Theorem. This discovery of

Fermat was found (1640) among his notes written in the margin of a book by Bachet

on number theory. It was Fermat’s practice not to disclose the proof of the theorems he

discovered. So, the theorem remained without proof for a long time, nearly a century,

till the great Euler broke the ice and gave two proofs of the same. He was also able to

generalize the theorem in terms of a new function φ(n) discovered by himself.

Theorem 3.3.1. Let p be a prime, (a, p) = 1. Then ap−1 −1 is divisible by p.

Proof. we have (x1 + x2 + · · ·+ xn)
p ≡ xp

1 + xp
2 + · · ·+ xp

a (mod p).

Letting x1 = x2 = · · ·= xa = 1 we obtain

ap ≡ a(mod p).
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But (a, p) = 1. Therefore we can cancel the common factor a from the two sides of the

congruence. So we get ap−1 ≡ 1 (mod p) which implies ap−1 −1 ≡ 0 (mod p). The

theorem is therefore proved.

There are many ways in which Fermat’s Theorem can be proved. However, the proof

given above is probably the simplest.

Euler generalized Fermat’s theorem in terms of the φ function. He proved that

aφ(m) ≡ 1 (mod m) if (a,m) = 1. We shall prove this result in the next section after

establishing the property of primes.

Theorem 3.3.2. If p is a prime and (a, p) = 1 then

aφ(pb) ≡ 1(mod pb).

Proof. By Fermat’s theorem ap−1 ≡ 1 (mod p). Raising both sides of this congruence

to the power pb−1 we obtain

(ap−1)pb−1
≡ 1(mod p1+b−1)

≡ 1(mod pb)

But

(ap−1)pb−1
= apb−1

(p−1)

= apb−pb−1

= apb−pb−1

= aφ(pb).
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It follows that aφ(rb) ≡ 1 (mod pb).

3.4 Euler’s Theorem

Theorem 3.4.1. Let (a,m) = 1. Then aφ(m) ≡ 1 (mod m)..

Proof. If m = 1,φ(m) = 1 and the theorem is true. Suppose now m ̸= 1. Let m =

pa1
1 pa2

2 · · · pak
k be the canonical decomposition of m. Then obviously φ(pa1

1 ) divides

φ(m).

(Recall that φ(m) is multiplicative). Now

aφ(pa1) ≡ 1(mod pa1
1 ).

Raising both sides of this congruence to the power φ(m)

φ(pσ1
1 )

we obtain

aφ(m) ≡ 1(mod pa1
1 )

Similarly we can prove

aφ(m) ≡ 1(mod pa2
2 )

.

.

aφ(m) ≡ 1(mod pak
k )
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It follows that

aφ(m) ≡ 1(mod[pa1
1 , pa2

2 , ..., pak
k ])

≡ 1 (mod m).

Note that the above theorem is known as Fermat-Euler Theorem.

Fermat’s Theorem is very useful in calculating the residues of numbers whose exponents

are large.

Example: 3.4.2. Find the remainder when 721001 is divided by 31.

72 ≡ 10 (mod 31). Hence 721001 ≡ 101001 (mod 31). Now (10,31) = 1 and 31 is a

prime. It follows that

1030 ≡ 1 (mod 31)

. Raising both sides to the power 33 we obtain

10990 ≡ 1 (mod 31.)

Also

102 ≡ 7 (mod 31).

104 ≡−13 (mod 31).

108 ≡ 14 (mod 31).
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Therefore

721001 ≡ 101001 (mod 31)

≡ 10990 ×108 ×102 ×10 (mod 31)

≡ 1×14×7×10 (mod 31)

≡ 5×10 (mod 31)

≡ 19 (mod 31).

Hence the required remainder is 19.

Example: 3.4.3. Find the least residue of 7973 (mod 72).

Solution : (7,72) = 1. Hence 7φ(72) ≡ 1 (mod 72), that is,

724 ≡ 1 (mod 72)

Consequently

7960 ≡ 1 (mod 72)..

Again we have

72 ≡−23 (mod 72).

74 ≡ 25 (mod 72).

78 ≡−23 (mod 72).
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Hence

7973 = 7960 ×78 ×74 ×7

≡ 1× (−23)×25×7 (mod 72)

≡ (−23)×31 (mod 72)

≡ 7 (mod 72).



Chapter 4

IDENTICAL CONGRUENCES

4.1 Introduction

In algebra we use the equality symbol in two different senses. For example consider the

following

x2 +12 = 7x (4.1)

x2 −7x+12 = (x−3)(x−4) (4.2)

(4.1) is called an equation. It is an equality between two numbers. This happens only

when x = 3 or x = 4

When x = 3 the equality is between 21 and 21 and

when x = 4, between 28 and 28.

On the other hand (4.2) is called an identity. Here the equality is between two algebraic

expressions. The coefficient of each term on the left side of the equality symbol is equal

26
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to the coefficient of the term of the same degree on the right side. The equality therefore

holds good for all values of x. In like manner, in number theory the congruence symbol

is used in two different senses. When we say, for example, that x2 +2x ≡ 1 (mod 7) it

is an ordinary congruence, that is, a congruence between two numbers. The congruence

holds good only when x ≡ 1,4 (mod 7). When x = 1 the congruence is between 3 and

10 and when x = 4, it is between 24 and 10 modulo 7. On the other hand consider

6x2 +7x+9 ≡ x2 +2x+4(mod5).

This is called an identical congruence. Here the congruence is between two algebraic

expressions. The coefficient of each term on the left side of the congruence symbol is

congruent (mod 5) to the coefficient of the term of the same degree on the right side.

Thus

6x2 ≡ x2, 7x ≡ 2x, 9 ≡ 4 (mod 5).

Therefore the congruence holds good for all values of x. It is usual to write the same

congruence symbol for the two types of congruence.

Definition 4.1.1. Let

f (x) = anxn +an−1xn−1 + · · ·+a1x+a0

and

g(x) = bnxn +bn−1xn−1 + · · ·+b1x+b0
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be two integral polynomials of degree n. If ai ≡ bi (mod m) for i = 0,1, ....,n then

f (x) is said to be identically congruent to g(x) modulo m and we write this as f (x)≡

g(x) (mod m) identically.

Throughout this section we assume hence forward that

i. f (x) = anxn +an−1xn−1 + · · ·+a1x+a0

ii. n is less than the modulus in the congruence f (x)≡ 0 (mod p).

Theorem 4.1.2. If b is a solution of

f (x)≡ 0 (mod m) (4.3)

then

f (x)≡ (x−b)h(x) (mod m)

identically where h(x) is a polynomial of degree (n−1) .

Proof. We have f (b)≡ 0 (mod m). Hence

f (x)≡ f (x)− f (b) (mod m)

≡ an(xn −bn)+an−1(xn−1 −bn−1)+ · · ·+a1(x−b) (mod m)

≡ (x−b)h(x) (mod m)

where h(x) is a polynomial of degree n−1.

The following theorem is the converse of the last.
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Theorem 4.1.3. If (x − b) divides f (x) (mod m) then b is a solution of f (x) ≡ 0

(mod m).

Proof. Since (x−b) divides f (x) modulo m it follows that

f (x)≡ (x−b)h(x) (mod m)

where h(x) is some polynomial. Therefore

f (b)≡ (b−b)h(b) (mod m)≡ 0 (mod m).

This proves the theorem.

Theorem 4.1.4. Every congruence

f (x)≡ 0 (mod p) (4.4)

of degree n < p can have at most n incongruent solutions unless f (x) is identically

congruent to zero (mod p).

Proof. If possible let (4.4) have n + 1 incongruent solutions say b1, ...,bn+1. Then

considering the first n solutions and we have

f (x)≡ an(x−b1)(x−b2) · · · (x−bn) (mod p) (4.5)

identically. But since bn+1 is a solution of (4.4),

f (bn+1)≡ 0(mod p).
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Hence

an(bn+1 −b1)(bn+1 −b2) · · · (bn+1 −bn)≡ 0 (mod p). (4.6)

But p does not divide (bn+1 − b1),(bn+1 − b2),(bn+1 − bn). Hence p divides an. So

an ≡ 0 (mod p). The theorem at once (4.5) above.

Theorem 4.1.5. Every congruence f (x)≡ 0 (mod p) of degree n < p can have at most

n incongruent solutions f (x)≡ 0 (mod p) identically.

Proof. We consider that the given congruence is not identical. Then obviously the

theorem holds good when n = 1. Let us then assume that the theorem is true when n = S.

Consider the congruence

f (x)≡ 0 (mod p)

where f (x) is of degree S+1. Let C be one of its solutions. Then

f (x)≡ (x−C)h(x) (mod p)

where h(x) is of degree S. But we know that x−C ≡ 0 (mod p) has only one solution

and by our assumption h(x)≡ 0(mod p) has at most S solutions. It follows that at most

S+1 solutions. Thus the theorem is proved to be true when n = S+1.

The required result is established by induction.

We know that xp−1 −1 ≡ 0(mod p) has exactly (p−1) solutions. Here the number

of solutions is equal to the degree of the congruences. It is curious that this property is

possessed by all divisors of p−1 as the following theorem will show:
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Theorem 4.1.6. Let d be a divisor of (p−1). Then the congruence xd ≡ 0(mod p) has

exactly d solutions.

Proof. d divides (p−1), hence (xd −1) divides (xp−1 −1).

This implies

xp−1 −1 = (x4 −1)h(x) (4.7)

where h(z) is a polynomial of degree (p−1−d) . We write identity (4.7) as an identical

congruence xp−1 −1 ≡ (xd −1)h(x)mod p).

Now, we know that xp−1 − 1 ≡ 0(mod p) has exactly p− 1 solutions, and h(x) ≡ 0

(mod p) at most p−1−d solutions. It follows that

xd −1 ≡ 0 (mod p) (4.8)

has at least p−1− (p−1−d) = d solutions. But (4.8) cannot obviously have more than

d solutions. Therefore it has exactly d solutions.

4.2 Order of Integers

We begin the study of this topic with a simple theorem.

Theorem 4.2.1. The congruence

ax ≡ 1 (mod m) (4.9)

is solvable if and only if (a,m) = 1
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Proof. 1. Let (a,m)= 1. Then by Fermat-Euler theorem we have aφ (m)≡ 1 (mod m).

Thus there is at least one solution of (4.9) namely x = φ(m).

2. Let (4.9) be solvable. Then ax0 ≡ 1 (mod m) for some integer x0. It follows that

(ax0,m) = (1,m) = 1. This implies (a,m) = 1.

Since the congruence ax ≡ 1 (mod m), (a,m) = 1 has at least one solution x = φ(m)

it follows that it has a positive solution. This may be φ(m) or some other smaller integer.

This smallest solution is of special interest to us and is called the exponent to which a

belongs (mod m). This name was suggested by Gauss who was the first to study its

properties. As the name is rather inconvenient to use we will have a simpler expression.

Definition 4.2.2. The smallest positive value of x which satisfies

ax ≡ 1 (mod m)

is called the order of a(modm). This number is usually denoted by the symbol d.

Obviously the order of 1 modulo any integer m is 1 because

11 ≡ 11 (mod m).

Hence we shall generally assume that a > 1 in the following discussion. The statement

that the order of a(modm) is d implies

(a,m) = 1
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ad ≡ 1 (mod m)

ah (mod m),0 < h < d

Example: 4.2.3. Find the order of 3 modulo 16.

Solution: 32 ≡ 9, 33 ≡ 11 34 ≡ 1 modulo 16. So the smallest exponent which satisfies

3x ≡ 1 (mod 1)6 is 4. Therefore the order of 3 (mod 16) is 4.

Example: 4.2.4. Find the orders (mod 9) of all positive integers less then prime to it.

Solution: The positive integers less than 9 and prime to it are 1,3,4,5,7 and 8. Then we

have l1 ≡ 1 (mod 7).

22 ≡ 4, 23 ≡ 8 24 ≡ 7 25 ≡ 5, 26 ≡ 1 (mod 9)

42 ≡ 7, 43 ≡ 1 (mod 9)

52 ≡ 7, 53 ≡ 8 55 ≡ 2, 56 ≡ 1 (mod 9)

72 ≡ 4, 73 ≡ 1 (mod 9)

82 ≡ 1 (mod 9)

Hence the orders of 1,2,4.5,7,8 (mod 9) are 1,6,3,6,3,2, respectively.

Note that φ(9) = 6 So the orders of 2 and 5 (mod 9) are φ(9). Such numbers whose

orders (mod m) are φ(m) are called primitive roots of m. Thus the primitive roots of 9

are 2 and 5.

Theorem 4.2.5. If b ≡ a (mod m), then b has the same order (mod m) as a.

Proof. Let the order of a (mod m) be d. Then ad ≡ 1 (mod m), (a,m) = 1

ah ̸≡ 1 (mod m), 0 < h < d. Now b ≡ a (mod m). Hence (b,m) = (a,m) = 1, bd ≡
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ad ≡ (mod m), bh ≡ ah ̸≡ 1 (mod m) for 0 < h < d. This implies that the order b

(mod m) = d.

Example: 4.2.6. Find the order of 43 (mod 18).

Solution: 43 ≡ 7 (mod 18).

Hence the order of 43 (mod 18) =the order 7 (mod 18) = 3

for, 72 ≡ 13, 73 ≡ 1 (mod 18).

Theorem 4.2.7. Let the order of a (mod m) be d. Then the integers

a,a2, . . . ,ad

are incongruent (mod m).

Proof. Let us assume that the theorem is not true. Then it follows that

ai ≡ a j (mod m) (4.10)

for some i and j such that 0 < i < j ≤ d. Since (am) = 1 we can write (4.10)

a j−i ≡ 1 (mod m) (4.11)

where j− i is a positive integer < d. But congruence (4.11) is impossible because d is

the smallest integer x which satisfies ax ≡ 1 (mod m). Hence the theorem is true.

Theorem 4.2.8. Let ah ≡ ak (mod m). Then h ≡ k (mod d) where d is the order of a

(mod m).
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Proof. Let

h = dq1 + r1, 0 ≤ r1 < d

k = dq2 + r2, 0 ≤ r2 < d

Then ah = adq1+r1 = (ad)q1ar1 (mod m) since ad ≡ 1 (mod m).

Similarly we can prove ak ≡ ar2 (mod m). But ah ≡ ak (mod m). Therefore

ar1 ≡ ar2 (mod m). So, by previous theorem r1 = r2 which implies h− k = d(q1 −q2).

Hence h ≡ k (mod d).

The following theorem is very important and should be committed to memory. It

is the principal tool for deducing several of the results in this and the following few

sections.

Theorem 4.2.9. Let the order of a (mod m) be d, and let

ah ≡ 1 (mod m)

. Then d|h.

Proof. This is very easy after Theorem 4.2.8. We have ah ≡ 1 ≡ a0 (mod m).

It follows that h ≡ 0 (mod d). Hence d divides h.
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Corollary 4.2.10. Let the order of a (mod m) be d. Then d divides φ(m).

Proof. For, by Fermat-Euler theorem aφ(m) ≡ 1 (mod m). So, d divides φ(m).

Thus we see that the order of a given integer (mod m) is to be found only among the

divisors of φ(m).

Example: 4.2.11. Find the order of 5 (mod 29).

Solution: φ(29) = 28 = 22x7. Hence the divisors of φ(29) are 1,2,4,7,14, and 28.

Then we have modulo 29

52 ≡−4,54 ≡ 16

57 ≡ 54 ×52 ×5 ≡ 16× (−4)×5 ≡−1

514 ≡ 1.

Thus the order of 5 (mod 2)9 is 14.

If we know the order of a (mod m) then the orders of a2,a3, . . . are easily determined.

Theorem 4.2.12. Let the order of a (mod m) be d. Then the order of

ak (mod m)

is d
(k,d) .

Proof. Let the order of ak (mod m) = h and let (k,d) = c. Then k
c and d

c are integers

such that (k
c ,

d
c ) = 1. Now ad ≡ 1 (mod m). Hence (ad)

k
c ≡ 1 (mod m). Therefore
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(ak)
d
c ≡ 1 (mod m). It follows from Theorem 4.2.9 that

h divides d
c

On the other hand (ak)h ≡ 1 (mod m). Hence akh ≡ 1 (mod m). So,ddivides kh or d
c

divides k
ch . But (d

c ,
k
c) = 1. Therefore

d
c divides h.

h = d/c = d/(k, d) Then it imply that h = d
c = d

(k,d) .

Example: 4.2.13. Find the order 24 (mod 17).

Solution: Order of 2 (mod 17) = 18. Hence the order of 24 (mod 17) is 4
(4,8) = 2.

A special case of the last theorem is important.

Theorem 4.2.14. Let the order of a (mod m) be d. Then the order of ak (mod m) is d

if and only if (k,d) = 1.

Proof. Clearly, k
(k,d) , the order of ak (mod m), is equal to d if and only if (k,d) = 1.

4.3 Primitive Roots

In the last section we introduced the concept of the order of integers (mod m). Here

we continue to discuss the same topic but focus our attention on those whose order

(mod m) is φ(m).
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Definition 4.3.1. If the order of a (mod m) is φ(m) then a is called a primitive root of

m, or a primitive root (mod m).

Thus the statement that a is a primitive root of m implies

(a,m) = 1

.

aφ(m) ≡ 1 (mod m)

ah ̸≡ 1 (mod m),0 < h < φ(m)

.

Example: 4.3.2. Show that 2 is a primitive root of 11.

Solution: If ad ≡ 1 (mod 11) then d divides φ(11).

The divisors of φ(11) = 10 are 2,5, and 10.

We then find 22 ≡ 4, 25 ≡−1, 210 ≡ 1 (mod 11). So the smallest integer x which satisfies

2x ≡ 1 (mod 11) is 10. This implies 2 is a primitive root of 11.

Example: 4.3.3. Show that 5 is a primitive root of 18.

Solution: φ(18) = 6 = 2×3. Hence the divisors of φ(18) are 2,3, and 6.

52 ≡ 7, 53 ≡−1, 56 ≡ 1 (mod 18). It follows that 5 is a primitive root of 18.

The following theorem indicates the general method of finding the primitive roots of

any given modulus.



4.3 Primitive Roots 39

Theorem 4.3.4. Let (a,m) = 1 then a is a primitive root of m if and only if

a
φ(m)

p ̸≡ 1 (mod m)

for every prime divisor p of φ(m).

Proof. Let a be such that

a
φ(m)

p ̸≡ 1 (mod p)

for every prime divisor p of φ(m). Let us assume that under this condition a is not a

primitive root of m. Then it follows that the order of a (mod m) is some integer k less

than φ(m) . This implies that k divides φ(m) . Thus φ(m)
k is an integer and is therefore

divisible by some prime divisor p of φ(m). Hence

a
φ(m)

p = (ak)
φ(m)

kp ≡ 1 (mod m)

because ak ≡ 1 (mod m). This contradicts above. So, our assumption is untenable and

therefore a is a primitive root of m.

Let a be primitive root of m. Then it follows that

aφ (m)≡ 1 (mod m)

and

ah ̸≡ 1 (mod m),0 < h < φ(m)

. This means that a
φ(m)

p ̸≡ 1 (mod p) for every prime divisor p of φ(m) .
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Theorem 4.3.5. Let g be a primitive root of m, and let

g1 ≡ g (mod m).

Then g1 is also a primitive root of m.

Proof. The order of g (mod m) is φ(m). Hence the order of g1 (mod m) is φ(m).

This implies g1 is a primitive root of m.
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The usefulness of the concept of primitive roots arises chiefly from the following

theorem.

Theorem 4.3.6. Let g be a primitive root of m. Then the set

S = {g,g2, . . . ,gφ (m)}

is a reduced system (mod m).

Proof. (1) There are φ(m) integers in S. Now (g,m) = 1. Hence

(2) the integers of S are all relatively prime to m.. The order of g (mod m) is φ(m).

Therefore

(3) the integers g,g2, . . . ,gφ (m) are all incongruent (mod m).

It follows from (1), (2) and (3) that S is a reduced system (mod m).

Since gφ (m)≡ 1 (mod m) we have the following obvious corollary.

Corollary 4.3.7. If g is a primitive root of m then the set {1,g,g2, . . . ,gφ(m)−1} is a

reduced system (mod m).



Chapter 5

QUADRATIC CONGRUENCES

5.1 Quadratic Congruences

The general form of a quadratic congruence in one variable is

Ax2 +Bx+C ≡ 0 (mod m) (5.1)

Where A is not divisible by m.

To solve this congruence there exists no general and direct method unlike the case of

linear congruence. However we are able to penetrate fairly deep into the problem. Thanks

mainly to the researches of Euler, Legendre, Jacobi, and above all, Gauss. The first step

in the solution of congruence (5.1) is to bring it to simpler form.

The following theorem shows that this is always possible when (2A,m) = 1.

42
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Theorem 5.1.1. The congruence

Ay2 +By+C ≡ 0 (mod m),(2A,m) = 1

can be reduced to the form x2 ≡ a (mod m).

Proof. Multiplying (5.1) by 4A we obtain

4A2y2 +4ABy+4AC ≡ 0 (mod m).

This can be written as

(2Ay+B)2 ≡ B2 −4AC (mod m) (5.2)

If we set

x ≡ 2Ay+B (mod m)

a ≡ B2 −4AC (mod m)

then (5.2) is reduced to the required form

x2 ≡ a (mod m). (5.3)

Suppose now that x = x0 satisfies (5.3). Then we have

2Ay+B ≡ x0 (mod m) (5.4)
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This congruence which enables us to find the values of y satisfying (5.1) is solvable since

(2A,m) = 1.

This completes the proof of the theorem.

Example: 5.1.2. Solve the congruence 3y2 +5y+9 ≡ 0 (mod 11)

Solution: Here (2×3,11) = 1. Hence the required condition is satisfied.

Multiplying the congruence by 4×3 = 12, we obtain

36y2 +60y+108 ≡ 0 (mod 11)

This reduces to

(6y+5)2 ≡ 5 (mod 11)

If we put

x ≡ 6y+5 (mod 11)

the given congruence transformed to

x2 ≡ 5 (mod 11).

The solutions of this by the method of trial are

x ≡±4 (mod 11).

It follows that

6y+5 ≡±4 (mod 11)
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This gives the solutions of the given congruence as

y ≡ 4,9 (mod 11).

The condition in last theorem that 2A should be relatively prime to m is always

satisfied if m is an odd prime p unless p divides A. The following theorem is therefore

an immediate consequence.

In what follows p is supposed to be an odd prime.

Theorem 5.1.3. If the congruence

x2 ≡ a (mod p),(a, p) = 1 (5.5)

is solvable then it has exactly two solutions.

Proof. Let x = x0 be a least solution of (5.5). Then we have x2
0 ≡ a (mod p).

It follows that

(p− x0)
2 ≡ x2

0 ≡ a (mod p).

Hence x = p− x0 is another least solution of (5.1).

Also x0 and p− x0 are incongruent (mod p) for their difference p−2x0 is not divisible

by p.

Thus there exist two incongruent solutions of (5.5) namely

x ≡ x0, p− x0 (mod p).
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But we know congruence (5.5) cannot have more than two solutions because it is of

degree 2.

Let x1 be a third solution other than x0 and p− x0. Then we have

x2
1 ≡ a (mod p)

x2
0 ≡ a (mod p)

Hence

x2
1 ≡ x2

0 (mod p)

=⇒ (x1 − x0)(x1 + x0) is divisible by p.

It follows that either p divides (x1 − x0) or p divides (x1 + x0).

In the first case x1 ≡ x0 (mod p) and in the

second case x1 ≡ p− x0 (mod p)

Thus it is seen that x1 is not a distinct solution. So, Congruence (5.5) cannot have more

than two solutions.

Theorem 5.1.4. Let (a, p) = 1, then either

a
p−1

2 ≡ 1 (mod p) or a
p−1

2 ≡−1 (mod p)

Proof. By Fermat’s theorem ap−1 ≡ 1 (mod p). Hence

(a
p−1

2 −1)(a
p−1

2 +1)≡ 0 (mod p).
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Therefore p divides either a
p−1

2 −1 or a
p−1

2 +1 ; it cannot divide both since in that case

(a
p−1

2 +1)− (a
p−1

2 −1) = 2

would be divisible by p, which is impossible. This proves the theorem.

Theorem 5.1.5. The congruence

x
p−1

2 ≡ 1 (mod p) (5.6)

has exactly p−1
2 solutions namely x ≡ 12,22, . . . ,( p−1

2 )2 (mod p).

Proof. Let

S = {12,22, . . . ,(
p−1

2
)2}.

If t2 is any integer of S, then (t, p) = 1 so that by Fermat’s theorem we have

t p−1 ≡ 1 (mod p)

which can be written as (t2)
p−1

2 ≡ 1 (mod p). Thus

every integer of S is a solution of (5.6) (5.7)

Also

the integers of S are all incongruent (mod p) (5.8)

For, if u2 ≡ v2 (mod p). such that 1 ≤ u ≤ v ≤ p−1
2 then it would follow that

(u− v)(u+ v)would be divisible by p. But this is impossible since both (u− v) and
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(u+ v) are numerically less than p. Moreover p−1
2 divides p−1.

Therefore (5.6) has exactly p−1
2 solutions.

Hence the proof.

Example: 5.1.6. 19 is a prime and 19−1
2 = 9. Hence x9 ≡ 1 (mod 9) has exactly 9

solutions, namely

x ≡ 12,22, . . . ,92 (mod 19)

≡ 1,4,9,16,6,17,11,7,5 (mod 19).

Theorem 5.1.7. Euler’s Criterion

The congruence

x2 ≡ a (mod p),(a, p) = 1 (5.9)

has a solution if and only if

a
p−1

2 ≡ 1 (mod p)

Proof. Let a
p−1

2 ≡ 1 (mod p). Then obviously a is a solution of

x
p−1

2 ≡ 1 (mod p)

.

Therefore a is congruent (mod p) to one of the integers 12,22, . . . ,( p−1
2 )2.

Let this integer be t2. This means t2 ≡ a (mod p). Therefore x = t is a solution of (5.9).

Conversely, Let congruence (5.9) have a solution say, x ≡ b (mod p).

It follows that b2 ≡ a (mod p). Hence

a
p−1

2 ≡ (b2)
p−1

2 ≡ bp−1 (mod p)≡ 1 (mod p)
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by Fermat’s theorem, since (b, p) = 1.

This completes the proof.

The following is the complementary part of Euler’s Criterion.

Theorem 5.1.8.

x2 ≡ a (mod p),(a, p) = 1 (5.10)

has no solution if and only if

a
p−1

2 ≡−1 (mod p).

Proof. (i) Let x
p−1

2 ≡−1 (mod p). Then it follows that a
p−1

2 ̸≡ 1(mod p). Therefore

we conclude that (5.10) has no solution.

(ii) Let (5.10) be not solvable. Then it follows that a
p−1

2 ̸≡ 1(mod p). So we have

a
p−1

2 ≡−1 (mod p).

Corollary 5.1.9. If (a, p) = 1, then ap−1 ≡ 1 (mod p).

Proof. There are only two possibilities. The congruence x2 ≡ a (mod p) has a solution

or has no solution.

In the first case we have

a
p−1

2 ≡ 1 (mod p)
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and in the second case we have

a
p−1

2 ≡−1(mod p).

It follows that in either case ap−1 = 1 (mod p).

5.2 Quadratic Residues

In this section we continue the discussion of quadratic congruences, but here we approach

the subject from a slightly different angle. In what follows it should be remembered that

p is an odd prime.

Definition 5.2.1. Let (a,p)=1 Then

1. If x2 ≡ a (mod p) is solvable, we call ’a’ a quadratic residue of p, or a quadratic

residue of (mod p)..

2. If x2 ≡ a (mod p) is not solvable, we call ’a’ a quadratic non-residue of p.

The definition given above implies that a is a quadratic residue of p if and only if

1. (a, p) = 1

2. a is congruent (mod p) to some square integer.

Example: 5.2.2. (1) 5 is a quadratic residue of 29 because (5,29) = 1 and

(±11)2 ≡ 5(mod29).
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(2) x2 ≡ 3 (mod 7) has no solution, hence 3 is a quadratic non-residue of 7.

(3) 1 is a quadratic residue of every p because x2 ≡ 1 (mod 7) is always solvable.

Theorem 5.2.3. Let a ≡ b(mod p). If a is a quadratic residue of p then b is also a

quadratic residue of p.

Proof. a is a quadratic residue of p. x2 ≡ a (mod p) is solvable. But a (mod p). Hence

x2 ≡ b (mod p) is also solvable. This implies that b is a quadratic residue of p.

In view of what has been proved above we will consider a and b as the same quadratic

residue of p, if a ≡ b (mod p). Thus two quadratic residues of p are distinct if and only

if they are incongruent (mod p). It follows that all the distinct quadratic residues of p

lie in any reduced system (mod p). Usually by quadratic residues of p we will mean

those which lie in the reduced system R = {1,2, ..., p−1}. But those which lie outside R

may also be referred to as residues of p and if any distinction is necessary the former

will be called least quadratic residues of p.

What has been proved and discussed in the last section applies equally well to quadratic

non-residues of p. We only state the theorem.

Theorem 5.2.4. Let a ≡ b (mod p). If a is a quadratic non-residue of p, then b is also a

quadratic non-residue of p.

The following theorem shows how to find the quadratic residues of any given p.

Theorem 5.2.5. p has exactly p−1
2 incongruent quadratic residues namely

12,22, ...,(
p−1

2
)2 (5.11)
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Proof. Every square number relatively prime to p is a quadratic residues of p. It follows

that integers (5.11) are all quadratic residues of p. Moreover it has been proved that these

quadratic residues are all incongruent (mod p).

It remains to prove that there are no more quadratic residues of p. Suppose b is a

quadratic residues of p outside the integers (5.11). Then by definition there exists an

integer c such that

b ≡ c2 (mod p),0 ≤ c ≤ p−1.

This implies

b ≡ c2 ≡ (p− c)2 (mod p)

.But evidently either c2 or (p− c)2 is included among the numbers (5.11). It follows that

b is not a new quadratic residue of p.

Example: 5.2.6. Find all the quadratic residue of 29.

Solution: p = 29 and p−1
2 = 14.

Hence the quadratic residues of 29 are 12,22, ...,142 the residues of these number

(mod 29) and arranging them in ascending order, the quadratic residues of 29 are

1,4,5,67,9,13,16,20,22,23,24,25,28.
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Table of quadratic residues

p Quadratic residues

3 1

5 1,4

7 1, 2, 4

11 1, 3, 4, 5, 9

13 1, 3, 4, 5, 9, 10, 12

17 1, 2, 4, 8, 9, 13, 15, 16

19 1, 4, 5, 6, 7, 9, 11, 16, 17

23 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18

29 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28

31 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28

37 1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36

Theorem 5.2.7. Every odd prime p has exactly p−1
2 quadratic non-residues.

Proof. Any given integer is either a quadratic residue of p or a non-residue.

Hence the least quadratic residues and non-residues of p together form a reduced system

S = {1,2, ..., p−1}modulo p.

But p−1
2 integers of S are quadratic residues of p.

It follows that the remaining integers of S are non-residues.
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Example: 5.2.8. Find the least quadratic non-residues of 17.

Solution: The least quadratic residues of 17 are 1,2,4,8,9,13,15,16.

Deleting these integers from {1,2, ...,16} we find that the non-residues of 17 are 3,5,6,7,10,11,12,14.

There is a close relation between the quadratic residues of p and its primitive roots.

Theorem 5.2.9. Let g be a primitive root of p. Then the quadratic residues of

g2,g4, ...,gp−1 (5.12)

Proof. The integers (5.12) are

(i) square numbers,

(ii) relatively prime to p, and

(iii) incongruent (mod p) because they form a subset of the reduced system {g,g2, ...,gp−1}.

Hence g2,g4, ...,gp−1 are p−1
2 distinct quadratic residues of p. The theorem then

follows immediately since we know that p has exactly p−1
2 quadratic residues.

Example: 5.2.10. 2 is a primitive root of p = 19. Therefore the quadratic residues of 19

are 22 ,24 ,26 ,28 ,210 ,212 ,214 ,216 and 218. The least residues of these integers modulo

p are 4, 16, 7, 9, 17, 11, 6, 5, and 1 respectively.

Therefore the quadratic residues of p are 1, 4, 5, 6, 7, 9, 11, 16, and 17.

Euler’s criterion can now be stated in a slightly different form:
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Theorem 5.2.11. (i) a is a quadratic residue of p if and only if a
p−1

2 ≡ 1 (mod p).

(ii) a is a quadratic non-residue of p if and only if a
p−1

2 ≡−1 (mod p).

We shall now derive some properties of quadratic residues and non-residues.

Theorem 5.2.12. The product of two quadratic residues of p is a quadratic residue.

Proof. Let a1 and a2 be two quadratic residues of p. Then we have

a1a
p−1

2
1 ≡ 1 (mod p)

a
p−1

2
2 ≡ 1 (mod p)

Hence

(a1a2)
k−1

2 ≡ 1 (mod p).

Therefore a1a2, is a quadratic residue of p.

Example: 5.2.13. Find all the quadratic residues of 23.

Solution: There are in all r−1
2 = 32−1

2 = 11 quadratic residue of 23. Of these 1,4.9, and

16 are known at once because integers less than 23.

The rest are calculated as follows:

4×9 ≡ 13,4×16 ≡ 18

and

9×16 ≡ 6mod23).
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Hence 13,18,6 are quadratic residues of 23.

Again we have

9×13 ≡ 2, 4×18 ≡ 3, 6×9 ≡ 8, 4×3 ≡ 12 (mod 23).

Therefore 2,3,8, and 12 are also quadratic residues of 23. Thus all the 11 quadratic

residues are now calculated.

Theorem 5.2.14. The product of a quadratic residue and a non-residue of p is a non-

residue of p.

Proof. Let a be a quadratic residue of p and b a quadratic non-residue of p. Then we

have

a
p−1

2
1 ≡ 1 (mod p), b

n−1
7 ≡−1(mod p).

So,

(ab)
p−1

2 ≡−1 (mod p).

Hence ab is a non-residue of p.

Theorem 5.2.15. The product of two quadratic non-residues of p is a quadratic.

Proof. Let b1 and b2 be two quadratic non-residues of p. Then we have

b
p−1

2
1 ≡−1 (mod p), b

p−1
2

2 ≡−1(mod p).

These two congruences imply (b1b2)
r−1

2 ≡+1mod p) which proves the theorem.



Chapter 6

ANALYSIS AND CONCLUSIONS

Chapter 1 is the Introductory stage of this Project report based on overview of Congru-

ences and the history of number theory.

Chapter 2 deals with the Concept of Congruences. In this topic we have discussed the

Elementary Properties of Congruences, also have discussed topics like Complete Residue

System and Reduced Residue System with examples.

Un Chapter 3 we have introduced a type of congruence, that is, Linear Congruences.

The main aim over here was to prove some basic result concerning this type of congru-

ences, and, in particular, some name theorems with proof that are related to this topic,

for example, Fermat’s Theorem, Euler’s Theorem and so on. We have also discussed one

application here.

Chapter 4 deals with another type of congruence that is, Identical Congruences. Our

57
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main focus was on topics like Order of Integers and Primitive roots which are often used

in solving problems in congruences.

Chapter 5 deals with one more type of congruence, that is, Quadratic Congruences. This

topic includes the Quadratic Congruences and Quadratic Residues.
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