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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the
Subject: MAT - 651 Discipline Specific Dissertation of M.Sc. in Mathematics in the
academic year 2023-2024. The topic assigned for the research report is: " A Study of
Continued Fraction and its applications." This survey is divided into three chapters. Each
chapter has its own relevance and importance. The chapters are divided and defined in a

logical, systematic and scientific manner to cover every corner of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of the Continued

fraction and the history of continued fraction.

SECOND CHAPTER:

This chapter deals with the Finite simple continued fraction. In this chapter we will
dicuss some general definitions of continued fraction.Also some important properties

,theorems and examples of continued fraction

THIRD CHAPTER:

In this chapter we will studying convergents and will use convergents and some related

theorems to solve linear Diophantine equations.

FOURTH CHAPTER:

In this chapter we will be solving Linear Diophantine equation with the help of continued

fraction. Also discussing some cases of linear Diophantine Equation.



i

FIFTH CHAPTER:

In the last chapter we will discuss applications of Continued fraction.Here we apply

continued fractions in calendar construction and in music .
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ABSTRACT

This is an expository study of continued fractions collecting ideas from several different
sources including textbooks and journal articles. This study focuses on several applica-
tions of continued fractions from a variety of levels and fields of mathematics. Studies
begin with looking at a number of properties that pertain to continued fractions and then
move on to show how applications of continued fractions is relevant.In this dissertation,
we study historical background of continued fractioin in the beginning of the project.Then
we deals with the finite simple continued fraction.The definitions, notations, and basic
results are shown.Then we study the convergents, their properties and some examples on
them .Also, we use convergents and some related theorems to solve linear Diophantine
equations.Finally, we apply continued fractions in calendar construction and in music.

Keywords: Continued fraction;finite simple continued fraction;convergents;linear

Diophantine equation;calendar construction
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Chapter 1

Introduction

1.1 Introduction

Continued fraction is a different way of looking at numbers. It is one of the most powerful
and revealing representations of numbers that is ignored in mathematics that we have
learnt during our study stages.

A continued fraction is a way of representing any real number by a finite (or infinite)
sum of successive divisions of numbers. Continued fractions have been used in different
areas of mathematics. Continued fractions are used in solving the Diophantine and Pell’s
equations. Moreover, there is a connection between continued fractions and chaos theory
as Robert M. Corless wrote in his paper in 1992.

The use of continued fractions is also important in mathematical treatment to problems
arising in certain applications, such as calendar construction, astronomy, music and

others.
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1.2 History

Mathematics is constantly built upon past discoveries. So, inorder to understand and to
make contributions towards continued fractions, it is necessary to study its history. We
can find examples of Continued Fractions throughout mathematics as far back as 2000
years ago. However, there is no systematic development of the subject, and because of
this the origin of continued fractions is hard to pin down. Much of it’s historical part is
taken from the book C.D.Olds [O1d63,Ch.1].

The origin of the continued fractions is traditionally placed at the time of the discovery
of the Euclidean Algorithm [O1d63,Ch.1]. The Eucldean Algorithm is used to find the
greatest common divisor(gcd) of two integers say a and b.

For more than a thousand years, any work that used continued fractions was restricted
to specific examples.The Indian mathematician Aryabhata (d.550AD) used a continued
fraction to solve a linear indeterminate equation [Old3, Ch.1](equations that have more
than one solution such as ax + by = c).Rather than generalizing this method,his use of
continued fractions was used solely in specific examples .

Others that used continued fraction are Rafael Bombelli(b. ¢. 1530) and Pietro Cataldi(1548-
1626)[0O1d63,Ch.1].Bombelli was the first mathematician to make use of the concept of
continued fractions in his book I’Algebra that was published in 1572. His approxima-
tion method of the square root of 13 produced what we now interpret as a continued
fraction. Cataldi did the same for the square root of 18.Besides these examples, however,
both of them failed to examine closely the properties of continued fractions.

Daniel Schwenter (1585-1636) found approximations to g—; by finding the gcd of 177
79 19 31
d

e(l)nd 233, and from these Calculations he determined the convergents T04’'25°' 2’1 an
1 [01d63,Ch.1].
In 1761, Lambert proved the irrationality of 7 using a continued fraction of tan x. He

also generalized Euler work on e to show that both and tan x are irrationals if x is nonzero
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rational.

Wallis represented the identity % In his book Opera Mathematica (1695), Wallis ex-
plained how to compute the n'" convergent and discovered some of the properties of
convergents. On the other hand, Brouncker found a method to solve the Diophantine
Equation x> — Ny* = 1.

In the nineteenth century, the subject of continued fractions was known to every mathe-
matician and the theory concerning convergents was developed. In 1813, Carl Friedrich
Gauss derived a very general complex -valued continued fraction by a clever identity
involving the hypergeometric function. Henri Pade defined Pade approximant in 1892.
In fact, this century can probably be described as the golden age of continued fractions.
Jacobi, Perron, Hermite, Cauchy, Stieljes and many other mathematicians made contribu-
tions to this field.

In 1776, Lagrange used continued fractions in integral calculus where he developed a
general method for obtaining the continued fraction expansion of the solution of a differ-
ential equation in one variable. The field of continued fractions continues to grow, and
is useful in a variety of fields. Rob Corless analyzed the connection between continued
fractions and chaos theory in his paper “Continued Fractions and Chaos” [Cor92, Pg.213].
Additionally, continued fractions are used in computer algorithms for computing rational

number approximations to real numbers.



Chapter 2

Finite Simple Continued Fractions

2.1 General Definitions

Definition 2.1.0.1. A continued fraction (c.f.) is an expression of the form

bo

aop +
b

a +
by
ar +
b3

asz +
as+ .

where ag,ay,...... ,bo,b1, ... can be either real or complex numbers.
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Definition 2.1.0.2. A simple(regular) continued fraction is a continued fraction of the

form

ap +

a +

a+—-
1
asz +

as+ .

The numbers a; , i =0,1,2,..... are called partial quotient of the c.f..

A simple continued fraction can have either a finite or infinite represntation.

Definition 2.1.0.3. A finite simple continued fraction is a simple continued fraction with

a finite number of terms.In symbols:

ap -+

a+

ap +
+
1

ay—1+ —
ap

It is called an 1" - order continued fraction and has (n+ 1) elements (partial quotients).

It is also common to express the finite simple continued fraction as
1 1 1 1 ol [ ]
— —....— 0Or S1m as |ap,ai,an, ....,Ay|.
a1+ ar+ a, ply 0,d1,d2, yUn
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Example: 2.1.0.4.

1+

24—
1

3+ ——

1

1+ —
+6

Definition 2.1.0.5. An infinite simple continued fraction is a simple continued fraction

with an infinite number of terms. In symbols:

1
ap +
1
ap+
1
ar +
1
az +
as+ -
1 )
It can be also expressed as ag + ————.... or simply as [ag,a;, a2, ....].
a+ax+
Example: 2.1.0.6.
1
6+
1
1+
1
I+
1
2+ 64---

Definition 2.1.0.7. A segment of an n'"- order simple continued fraction is a continued

fraction of the form [ag, a1, as, ....,a;] where 0 < k < n and arbitrary k > 0 if the continued

fraction is infinite.



2.1 General Definitions 8

A remainder of an n'"- order finite simple continued fraction [a,,a,_1,...,a,] where
0<r<n.
Similarly [a,,a,—_1,....] is a remainder of an infinite simple continued fraction for arbitrary

r>0.

Examples:

1. [0,1,2] is a segment of the finite simple continued fraction [0,1,2,1,4] and |2, 1,4]

18 a remainder of it.

2. 6,1,5,1] is a segment of the infinite simple continued fraction [6,1,5,1,5,1,5,....]

and [5,1,5,1,5,....] is a remainder of it.
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2.2 Properties and Theorems

Every rational number can be expressed as a finite simple continued fraction.Before we

prove it and explain the way of expansion, we will introduced the continued fractions by

studying the relationship between Euclidean Algorithm, the Jigsaw puzzle and continued

fraction.Jigsaw puzzle uses picture analogy to clarify how to convert a rational number

into a continued fraction. The explanation of the puzzles’s steps is through the following

example.

Example:

Find greatest common divisor of 64 and 17.
Solution:

Using Euclidean algorithm, we have:

64=3x17+13

17=1x13+4
13=3x4+1
4=4%x1+0

Then ged (64,17) = 1.

Now, consider a 64 by 17 rectangle.

64

17

(2.1)

(2.2)

(2.3)

(2.4)

In terms of pictures, split the rectangle into 3 squares each of side length 17 and only

one 17 by 13 rectangle.
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17

Next, it is clear that we can split the 17 by 13 rectangle into one square of one side length

13 and only one 13 by 4 rectangle.

17

Similarly , split the 13 by 4 rectangle into 3 squares each of side length 4 and a 4 by 1

rectangle.

13

Finally, we can place 4 squares , each of side length 1, inside the 4 by 1 rectangle with

no remaining rectangles.
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11

We can notice that each divisor g in the Euclidean algorithm represents the length of the

side of a square. For instance, the divisor 17 in equation () represents the length of the

sides of the squares that we obtain from the first splitting step. Moreover, ged (64,17) is

the length of the side of the smallest square which equals 1.

Now, divide equation ( 2.1) by 17 to get,

64_3+13
17 17

Also, divide equation ( 2.2) by 13 to obtain,

and

Then write each proper fraction in the previous equations in terms of its reciprocal as

follows:

64, 1
7T

13
17 _,, 1
B 1

(2.5)

(2.6)
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13

- — 34 2.7
1 3+ 2.7)

Substitute equation (2.7) into equation (2.8) to obtain the following :

17 1
F=l+—7 (2.8)
34+ —
"3

Then, substitute equation (2.8) into equation (2.5) to get,

64 1
34
17 *

I+ —

St 5

. : : : : 64
This is the continued fraction representation of the rational number T

Note that by writing % =[3,1,3,4] , we do not mean an equality , but just a representa-
tion of the rational number 17 by its continued fraction [3,1,3,4].

This expression relates directly to the geometry of the rectangle as squares with the
Jigsaw pieces as follows:

3 squares each of side length 17, 1 square of side length 13, 3 squares each of side length
4 and 4 squares each of side length 1.

So, it’s clear that the partial quotients of the continued fraction [3, 1,3, 4] represent the
number of squares that result from the splitting steps.

However, there is no need to use picture analogy each time we want to express a rational
number as a continued fraction. The expansion of rational numbers into continued frac-
tions is related to Euclidean algorithm as we have shown in the previous example.This
relation will be studied closely in the proof of Theorem 2.0.0.4.

. p . . . .
Now, to express any rational number — as a continued fraction, we proceed in this manner.
q

: . : ; : a
We split the rational number into a quotient ay and a proper fraction, say b Ifa=1or



2.2 Properties and Theorems 13

1
b =1, stop. Otherwise, repeat the process by considering the reciprocal n of the proper

a

. a. : I B : . a
fraction 3 instead of B. Again, split 5 into a quotient “a;” and a proper fraction, 3

)
say again. Repeat this process until we get a proper fraction %, which is always the case
for any rational number.

It is clear that if the rational number p is positive and less than 1, then the continued
fraction begins with zero, i.e.,ag = 0. l\qfloreover, if the rational number is negative, then

the continued fraction is [a;,ay,a3, ....,a,] where ag < 0 and ay,as, ...a, > 0.

The Continued Fraction Algorithm:

This algorithm is a systematic approach that is used to find the continued fraction ex-
pansion of any rational number.Let y be any non-integer rational number .To find its
continued fraction expansion, we follow the next steps:

Step 1: Set y = yq .The first partial quotient of the continued fraction is the greatest

integer less than or equal to yg(i.e. ap = [[yo]]) where [[.]] is the greatest integer function.

Step 2: Define y; = ——— and set a; = [[y1]].
Yo — [[vo]]
As long as y; is non-integer, continue in this manner:
1

Y2 = ——— @ =[n]l.

yi =[]

1 [, where yi — [[n]] =0

Yk = 77 » Gk = [Vkl], WheIe yr — [[Vk|| = Y.

Yi—1 = [[k=1]]

Step 3: Stop when we find a value y, € N

Note: This algorithm is also true for any real number. In this case, the process may
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continue indefinitely.

102
Example: 2.2.0.1. Calculate the continued fraction expansion of =5 using the contin-

ued fraction algorithm.

102 3
Solution: Let yg = 55 ~ 1.8545454545. Then ag = [[yo]] = HEH —1
! I 1 55
M vl 102 _ PRI (R 70212766,a1 = [[y1]]
1 R P 4
- = = = ~5875,a) = _5
T %3 R S B 2 =[]
a7 477 47 .
- = = = — ~1.142857143,a3 = [[y3]] = 1
S (7 R N A 5 = [Ds]]
. s 80 8 T
= == = — — — 7,a — — 7
(R S At T o
=~ 5]l

We stop here since y4 =7 € N. Thus [1,1,5,1,7] is the continued fraction representation

102
f_
155

Conversely:
Given a continued fraction representation of a number y, we find y by using the following

relationship repeatedly:
1

[Cl(),a],"' 7an—17ai’l] — [Cl(),a],"' yAp—1 +_]
n

Example: 2.2.0.2. Find the rational number who has the continued fraction representa-

tion [2,1,3,1].

1

Solution: [2,1,3,1] =[2,1,3+ T]
1
=[2,1,4]=[2,1+ ]

1
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1 5
:[2,1+Z]:[2,Z]
—P+5l=+5]=[3]

4

Theorem 2.2.0.3. Every finite simple continued fraction represents a rational number.

Proof. Let [ag,a1,ay,....,a,] be a given n'" - order finite simple continued fraction.
We show that this continued fraction represents a rational number using induction on the

number of partial quotients.

1 1

If n=1, then [ao,al]:a0+_zw
aj aj

apa; +1

Since ag and a; are integers , then is a rational number.

ai
Now assume any finite simple continued fraction with k < n partial quotients represents

a rational number.Then:

1
lag,ay, ....,a] = ap + ] =ao+
1 Y
al+
1
a+—
1
+—
1
ag—1+—
ay
1
where, Y = a; + = lay,az,a3,...,az].
1
ap +
1
asz+
1
_|_—
1
Ag—1+—
ag

Since [ag,ay,....,a] is a finite simple continued fraction with k partial quotients, it
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d d
represents a rational number , say —. So, ¥ = }, f#0.

d
Thus, [ag,a1,a2,...,a;] = ap + v = ap + 7= ao—l—g = %C which is a rational

f

number since ag,d and f are integers.
So, any finite simple continued fraction [ag,ay, ..., a,|represents a rational number for

any n € N. ]

Theorem 2.2.0.4. Every rational number can be represented as a finite simple continued
fraction in which the last term can be modified so as to make the number of terms in the

expansion either even or odd.
Proof. Let 4 ,q > 0 be any rational number. By the Euclidean algorithm
q

p=gq.a +r,0<r <gq (2.9)
g=ri.ax+nr,0<rn<rn (2.10)
ry = r2.a3+r3,0 <r3<nmn

rm=r3.a4+r4,0<ryg<r3

Tn—3 ="rtp—2.0p—1+1p—1,0 <ry_1 <rp_2
Tnp =ap.ry—1+0

The quotients a;,as,ay, ..,a, and the remainders ry,ro,r3,..,r,—| are positive integers,
while a; can be positive integer, negative integer or zero.

Now, dividing equation ( 2.9) by g and then taking the reciprocal of the proper fraction
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we get :

r 1
£:a1+—l:a1+7,0<r1<q
q q =

r

Also divide equation (2.10) by r and take the reciprocal of the proper fraction to get:

r 1
I+ B =yt 5,0<n<n @.11)
r r —

2

Repeating the same process to each equation in the above Euclidean algorithm , we have

ry r3 1
—:a3—|——:a3+ﬁ,0<r3<r2 (2.12)
rn rn =
r3
1) ry4 1
—:a4+—:a4+ﬁ,0<r4<r3 (2.13)
r3 r3 -
r4
rpn—3 Fpn—1 1
n =dau—1+ z :an,1+m,0<1’n,1 < rp—2 (2.14)
n—2 n-2 n
'n—1
'n—2
:aI’L
In—1

Now, substituting 9 and E back into equations (2.11) through (2.14) yields:

A T
p 1 1 1
—=a;+ 1 =a)+ 1 =a)+ i
4 az—i—r— Qt—7 az + i
3 Ty
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Continue in the same manner to get:

P_at L
1 a + i
asz + i
as+ i
R T
an—1+ —F——=
rn—2
(rn—l)
:>B:a1—|— ! i
1 a + i
asz + i
as + i
B
an_1+a—n

= la1,a2,a3, ...,Gn).
Thus, every rational number can be represented as a finite simple continued fraction.
In fact, we can always modify the last partial quotient n of this representation so that the

number of terms is either even or odd.

1 1
If a, =1, then 7= 1
ay—1+— ap—1+—+ Sl
a, 1
p
and ; - [6117327--7an717an] - [a17a27---;an71 + 1]
1 1 1
Else, if @, > 1, then = i — T
ap—1+— ap—1+ ay—1+
—1)+1 |
an (an—1)+ (a”_1)+f
and s — [a17a27,,,an_1,an] — [al,az,...,an_l,an— 1, 1]. U

Theorem 2.2.0.5. Let p and q be two integers such that p > g > 0. Then [ag,ay, ....,dn—1,ap)
is a continued fraction representation of i if and only if kf has [0,a9,ay,....,ay—1,a,) as
q p

its continued fraction representation.
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Proof. Since p > g > 0, P > 1 and equals
q

1
ap +
1
a+
1
a+
1
+_
an
. . P _ P
where ay is the greatest integer less than = = [[5]] > 0.
The reciprocal of L is,
1_ ! —0+ 1
p 1 1
ap+ ap+
1 1
ap+ a +
1 1
a + as +
1 1
an al’l
Conversely, since p > ¢ > 0,0 < % < 1 and equals
q_ 0+ 1 _ 1
p 1 1
ap+ ap+
1 1
a)+— a +
1 1
a+ ap +
1 1
+— o
an an

The reciprocal of 9 i

= [Oaal;aZa“;an—laan]
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SN

ap+

ap +

= [00701,02,03...,(1”].

20



Chapter 3

Convergents

In order to have a thorough understanding of continued fractions, we must study some of
their properties in details.

37
Consider the continued fraction representation [2,2,7] of the rational number 5 The

segments of this continued fraction are:

1 1
2]=222]=2+7,02.27 =2+ —
2+ -

Since each segment is a finite simple continued fraction, it represents a rational number.

These segments are called convergents of the continued fraction [2,2,7].

Definition 3.0.0.1. Let [ag,ay,...,a,] be a finite simple continued fraction representation

of a rational number B.Its segments:
q

1
co = [ao] = ag,c1 = lag,a1] = ap+ —,c2 = [ap,a1,a2) = ap + _—
ai
ay+—
az
1
Cp = [ao,al,az,....an] :a0+ 1
aH-—l
a+ i
S
al’l
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are all called convergents of the continued fraction with ¢, is the k" convergent,

k=0,1,2,...,n.

Note: Here we have n+ 1 convergents and each convergent c; represents a rational

number of the form ¢, = Pk where p; and g, are integers with ¢, = B.
dk q
We shall use the representation of a convergent ¢, = [ag,ay, ..., a;] and Pk interchange-

qk
ably to mean the same thing.

Example: 3.0.0.2. Find all of the convergents for the continued fraction [3,5,1,7].

Solution:
co=1[3]=3
16
C1:[3,5]:3+—:?
1 119
C2:[3,5,1]:3+—1:3+6€
5+T
1 1 8 149
c3=13,5,1,71=3+ :3+—:3+—7:3+E:H
5+ —— 545 54—
1+1 8 8
7 7

149
Note that the 3" convergent ¢3 = el represents the fraction itself.

The following theorem gives a recursion formula to calculate the convergents of a

continued fraction.

Theorem 3.0.0.3. (Continued Fraction Recursion Formula)

Consider the continued fraction |ay,ay,ay, ....a,| of a given rational number. Define
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p-1=1,p =0

g-1=0,g =1
.Then

Pk = agPr—1+ Pk—2

qk = arqr—1 + qk—2

Jork=0,1,2,...nwhere py, p1,..., pn are the numerators of the convergents of the given

continued fraction and qo,q1,...qn are their denominators.

Proof. We prove this theorem using induction on k.

For k =0, we have :
= @ :Clo = @ = a()-l +O = ao'pil +p72
qo0 L ap0+1  ap.q-1+g-2

€0

Therefore, po = app—1 + p—2 and qo = apg—1 +q—2
For k = 1,we have :
D1 1 apar+1 ajap+1  ar.po+p-1

q1 aj a arl4+0  ai.go+q-1
Therefore, p;y = ay.po+p—1 and g1 = a1.qo+q-1

Thus , the formula

Pk = axPr—1+ Pk—2

qk = arqr—1+ qk—2

is true for k=0, 1.

Assume the theorem is true for k = 2,3, ..., j, where j < n.
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1.€.
ai.Pr—1+ pr—
Ck:ﬂ: k-Pk—1 1 Pk—2 3.1
qr  Ak-qr—1 1+ qgr—2

,fork=2,3,..., ].

So, pk = axpk—1 + pr—2 and gx = arqgr—1 + qr—2

Now , we prove that the formula is true for the next integer j+ 1.

1 I
Cj+1:[a0,a1, ..... 7aj7aj+1]:a()+ — g+
! 1
at aj +
! 1
@+t 1 ar+ :
B A I
1 : 1 |
@y — 4t
{ J aj J —aj+1
= [ap,a1,a2,....a; + ].
dj+1

This suggests that we can calculate ¢ from the formula of ¢; obtained from equation
(3.1) after replacing k by j. Before we continue, we must make sure that the values of
Pj-1,Pj—2,49j—1,9j—2 won’t change if a; in equation (3.1) is replaced by another number.

To do this, first replace k in the equation by j— 1, and then by j —2, j — 3 to get:
Pj-1 _ @j-1-Pj-2 +Ppj-3
qgj-1  aj-1.9j-2+4;j-3

Ci—1—=

iy = PiT2 _ 4i=2Pi3 +Dj-4
/ qgj-2 aj-2.9j-3+qj-a

pj-3 _ 4j-3.Pj-4 +pj-s
qj-3 aj-3.9j-4+gj-s

Cj—3—=

We notice that p; | and ¢;_; depend only on a;_; while the numbers p;_2,p;-3,9;-2,9;-3
depend upon the preceding d’s, p's and ¢'s. Thus, the numbers p;_1,p;j—2,9j—1,4j—2
depend only on ag,ay,..,a;j—1 and not on a;.This implies that they will remain the same

1
when we replace a; by a; + —.
@41
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Back to equation (3.1), replace a; by a; + to get:
aj+1
1 aajr1+1

@t gt ()P
oy — aj+1 _ aj+1 (3.2)
AL 1 - ajaji1 +1 )

(@aj+——)qj-1+qj—> (—————).qj-1t4gj-2

aj+1 aj+1

Multiply the numerator and denominator of equation (3.2) by a1 and rearrange the

terms to obtain:
- (@jajr1+1)-pj1+ajnpja _ aji(apj1+pj2)+pj-
/ (ajajr1+1).qgji—1+ajr1qj—2  ajri(ajgj—1+qj-2) +qj-1

But from our assumption, ajp; 1+ pj 2 =pjandajqj 1+q;j-2=q;.

ajr1Pj+Ppj-1

Then, cj11 =
! aj+19;t4qj-1

Thus, the formula is true for k = j+ 1. So, by induction, the theorem is true for

0<k<n. O

Note:

S

—L and P2 are not convergents p_1,p_»,q—1 and g_, are just initial values
-1 q-2
sed to calculate ¢ and ¢ .

1.

£ Q

2. ¢ >0,k=0,1,2,..,n.

3. Since a; >0 for 1 <k <nmand g; >0 for 0 <k < n, it follows that g, > qx_1,k=

2,3,..,n.

Example: 3.0.0.4. Find the convergents of the continued fraction representation of the

rational number 171 using Continued Fraction Recursion Formula.
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Solution:
’ " . . 320 .
First of all, the continued fraction representation of 1 is [1,1,6,1,3,2,2] and we have
ap = 1,611 = 1,a2 = 6,a3 = 1,614 = 3,a5 = 2,616 =2,
With

pP-1= 17p72 :07

g-1=0,g =1

calculate p; and g; using the recursion formula.

Pk = QkPk—1+ Pk—2
qr = arqgrk—1 + qk—2

Here, k=0,1,...,6.
For k = 0:

po=aop—1+por=1x1+0=1

go=aog-1+q2=1x0+1=1

For k= 1:

pir=aipot+p-1=1x14+1=2

q1=aiqo+qg-1=1x1+0=1

For k = 2:
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pr=ap1+py=6x2+1=13

Gp=axq1+qo=6x1+1=7

For k = 3:
p3=azpr+p1=1x134+2=15
G=a3q2+q1=1xT7+1=8
For k = 4:
psa=asp3+pr=3x15+13 =158
g4 =asq3+qr=3x8+7=731
For k= 5:
ps =asps+p3=2x58+15=131
qs =asqs+q3=2x314+8=70
For k = 6:

P6 = agps+ pa=2x 131458 =320

ge =asqs+qa=2x70+31 =171
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1 2 13

ThuS,C():—O:—:I,CI:&:__Q,CZ:&——,

go 1 q 1 92 7
B _pa 8 _ps Bl B30
T 80 g 37 g5 7007 g 171

The last convergent, cg in this example, must be equal to the rational number the
continued fraction represents.
However, a convergent table can be used to save time in calculating p; and g;. Following

table explains the manner.

k -2 -1 0 1 2 n
a ao a a a,
Y
Pk p2=0&t—p.= I€—py / P P2 vee | Pn

/
G g>=1 | q1=0<€q0 | ¢ | q | ... | ... | ... | g«

The first row of the table is filled with the values of k that always range from —2 to n. In
the second row, we write the partial quotients of the given continued fraction. Now, to
fill the 3"d and 4'h rows, we write the values p_ , =0,g > =1, p_1=1,¢g_; = 0 under
k= —2, k = —1, respectively. Then we compute the values of pk’s and gk’s using the

recursion formula. For example, to find p; and ¢q; , we follow the arrows, (look at the
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table):

a a

b o
a n Po q-1 + qo

.&

This manner gives us the following equations which we obtain when we set k =1 in the

recursion formula:

P1=aipo+p-1
q1 =aiqo+q-1

In the same process we find p; and ¢; for each value of k.

The last row contains the convergents ck’s, where ¢, = = ,0<k<n.
qk

Back to our example, the table is filled in the same manner and the result is:

k| -2 -1 0|1 [2]3|4]5 |6

a 1 1 e |1 (3|2 |2

: / / -

m | o 1< 14 > 13/ 15 | 58<-131° [320

i 8 [ 31|70 |171
15 |58 | 131 1320

- 8 (31| 70 171
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Theorem 3.0.0.5. (Difference of Successive Convergents Theorem)

| k—1
Ck—Ck—lzﬁ,lﬁkén
qkqk—1

To prove this theorem we need the following lemma.

Lemma 3.0.0.6. Let Px be the k' convergent of the continued fraction |ag,ay,ay,....ay),
qk
where py and q; are defined as in Theorem 3.0.0.3. Then:

Pr—1qk — Pegk—1 = (=¥, =1 <k <n.

Proof. This lemma will be proved by induction on k and using the formula that we have
proved in the previous theorem. Direct calculations show the theorem is true for k = —1,
Oand 1.

Fork=—1:p_2g 1—p_1g-2=00—-11=—1=(-1)"
Fork=0:p_190—pog—1=11—ap.0=1=(-1)°

For k = 1 : poq1 — p1go = ag.a1 — (apa; +1).1 = apa; —apa; —1 = —1 = (—1)!
Assume the lemma is true for some integer s < n, i.e. ps_1¢s — psqs—1 = (—1)°.

Now, for k = s+ 1, we have :

Psqs+1 — Ps+19s = Ps(@s119s +qs—1) — (As11P5+ Ps—1)4s-

= Psts11qs+ Psqs—1 — g 1P5qs+ Ps—14s = —1.(Ps 195 — psgs—1) = —1.(—=1)* = (= 1)* .
Therefore, the formula is true for k = s+ 1 and so by induction the lemma is true for
—1<k<n.

O

Proof. of Theorem 3.0.0.5: For 1 <k <n:
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_ Pk Pk—1 _ Pr9k—1 — Pk—19k _  Pk—19k — Pk4k—1
Ck—Ck—1 = — — — - —

dk  qk—1 qkqk—1 qkqk—1

Using Lemma 3.0.0.6,

| k .| k+1 -1 k—1
Ck_cH:( ) _ =)™ =) 0
qk9k—1 9k9k—1 9k9k—1

Example: 3.0.0.7. Verify Lemma 3.0.0.6 using the convergents of the continued fraction
[1,1,6,1,3,2,2].

Solution: Using the values of pk’s = 1, 2, 13, 15, 58, 131, 320 and gk's =1, 1, 7, 8, 31,
70, 171 obtained in Example 3.0.0.4, we get:

Fork=—1:p g 1 —p_1g2=0x0—1xl=—1=(-1)"!

Fork=0: p_1q0—pog—1 = 1x1 —1x0 =1 = (—1)°
For k = 1: poqi — p1go = 1x1 —2x1 = —1 = (—1)!
For k = 2: p1g2 — p2q1 = 2x7 — 13x1 =1 = (—1)?
For k = 3: prq3 — p3ga = 13x8 — 15x7 = —1 = (—1)?
For k = 4: p3qs — paqs = 15x31 —58x8 =1 = (—1)*
For k = 5: p4qs — psqs = 58x70 — 131x31 = (—1)°

For k = 6: psqs — peqs = 131x171 —320x70 = (—1)°

Thus, p—1qx — pegi—1 = (—1)%, =1 <k lego.

(-1)a

Corollary 3.0.0.8. ¢, —cr > = k 2<k<n.
qrkdk—1
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-1 k—1 | k—2
and Ck—1 —Ck—2 = ( )

Proof. By Theorem (3.0.0.5), ¢y —cr—1 = ( -_—
qk9k—1 qk—19k-2

Adding these two equations, we get:

(—l)k 1+ (—l)k 2
drkdrk—1 qik—19k—2

(D) ge a4+ (1) g,
B qkqk—19k—2
(=D g —qi2)

B qkqk—19k—2

Ck—Ck—1=

But from the continued fraction recursion formula, gy — qr_» = arqi_1.

Thus,cy —cp_p = (—1)* " (axgr—1) _ (=D () _ (—1D)*(ay) -

Qk9k—19k—2 9k9k—2 9kdk—2
Corollary 3.0.0.9. For 1 <k < n, p; and q; are relatively prime.

Proof. Letd = gcd(pi,qr)-

Then d divides py_1qx — prqi—1 = (—1)%,1 <k <n.

Hence,d = 1 = gcd(py,qx)-So, px and g are relatively prime for all 1 <k < n. To
illustrate this property, consider the convergents of the continued fraction in Example
3.0.0.4 We find that

ged(pr,q1) = ged(2,1) = 1;gcd(p2,q2 = ged(13,7) = 1,

ged(p3,q3) = ged(15,8) = 1;gcd(pa,qs = ged(58,31) =1,

ged(ps,qs) = ged(131,70) = 1;gcd(pe,q6 = ged(320,171) = 1.

Thus, py and gy, are relatively prime for each value of k, where 1 < k < 6. ]

Example: 3.0.0.10. Given [1,1,1,3,1,2] is the continued fraction representation of the

39
rational number 75 find the convergents.

Solution: Applying Theorem , we find the convergents of [1,1,1,3,1,2]:

lei—2 3 11 _14 _39
co= 1,01 = ’C2_2’C3_ 7764_ 9’C5_25
Notice that:
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3 14
. The even convergents 1, 29 form an increasing sequence and approach the actual

39
value % from below, i.e. ¢ < ¢ < c4.

. The odd convergents 2, 5 form a decreasing sequence and approach the actual

value % from above, i.e. ¢c; > ¢3 > cs.

39 )
. The convergents c; approach the actual value %5 as k increases, where 0 < k < 5.

. 39
Moreover, they are alternatively less than and greater than %5 except the last
convergent cs.
39 .
Therefore, we conclude that ¢y < ¢2 < ¢4 < — = ¢5 < ¢3 < c;.Following figure

25
llustrates these notes.

C]
C3

Cs 39
25
Cy
2
Co
These notes lead to the following theorem.
Theorem 3.0.0.11. Let cq,cy,. .. ,c, be the convergents of the continued fraction.Then

even—numbered convergents form an increasing sequence and odd -numbered convergents

form a decreasing sequence. Moreover every odd-numbered convergent is greater in

value than every even-numbered convergent. In other words:

Com < Com425Com+3 < Comy1 and ¢2j < Copy1,m, j,r > 0.

Proof. By Corollary 3.0.0.8,

-1 2k
eop— e p = DT sy (3.3)
Q2k92k—2
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Since ag, g, qr—> > 0, then ¢ — cp—2 > 0. Hence,

Cok > Cog—2- (3.4)

Thus, the even—numbered convergents form an increasing sequence co < ¢z < C4, ....

Similarly, by Corollary 3.0.0.8,

-1 2k+102k i
Cokt+1 — C2k—1 = ()—+,k > 1. (3.5)
q2k+192k—1
and so
Cok—1 > Ct1 (3.6)

Thus, the odd—numbered convergents form an decreasing sequence c; > ¢3 > cs,....

Finally, put k =25+ 1,5 > 0 in Theorem 3.0.0.5 we obtain:

(_1)2s
Cosp] —Cs = —— > 07
q2s+192s

With q25+19q25’(_1)25 > O,We get

€25 < C25+1 (3.7)

From (3.4),(3.6) and (3.7):

o< < ... <O g1 < Cp—1 < ... <03 <c,iFn=2k+1

and

o<y <. < <oy <Cpp—1 < ... <3< cq,iFn=2k



Chapter 4

Solving Linear Diophantine Equations

4.1 Linear Diophantine equation

Many puzzles, enigmas and trick questions lead to mathematical equations whose so-
lutions are required to be integers.Such equations are called Diophantine equations,

named after the Greek mathematician Diophantus who wrote a book about them.

Definition 4.1.0.1. Diophantine Equation is an algebraic equation in one or more un-
knowns with integral coefficients such that only integral solutions are sought. This type

of equations may have no solution, a finite number or an infinite number of solutions.

Example: 4.1.0.2. The following equations are Diophantine equations, where integral
solutions are required for x, y and z.

LSy =T,2—yV =7,—%+5y=9

Definition 4.1.0.3. Linear Diophantine Equation "LDE'" in two variables x and y is
the simplest case of Diophantine equations and has the form Ax + by = ¢ where a, b and

c are integers.

35



4.1 Linear Diophantine equation 36

Example: 4.1.0.4. 3x+ 5y =1,6x —4y =2, —5x+ 5y = 8 are linear Diophantine equa-

tions in two variables.

In this chapter we are interested in solving linear Diophantine equations in two variables.
i.e., finding integral solutions of Ax+ by = c. If a and b are both zeros, then the equation
is either trivially true when ¢ = O or trivially false when ¢ = 0.

Moreover, if one of a or b equals zero, then the case is also trivial. So we omit these two
cases and assume that both a and b are nonzero integers.

Geometrically, this equation represents a line in the Cartesian plane that is not parallel to
either axis. Solutions of the equation Ax + by = c are the points on the line with integral
coordinates. Points with integral coordinates are called lattice points.

However, does every linear Diophantine equation Ax +by = ¢ have an Integral solution?
If not, what are the conditions necessary for a LDE to have a solution? The following

theorem answers these questions.

Theorem 4.1.0.5. Let a, b and c be integers with ab # 0. The linear Diophantine equation
ax+ by = c is solvable if and only if gcd(a,b) divides c. If (xo,Yy0) is a particular solution

of the LDE, then all its solutions are given by:

(x,y) = (x -l—Lt —LI)
W)= 0 ged(a,b) Y0 ged(a,b)

where t is an arbitrary integer.

Proof. First, we show that if the LDE ax+ by = c is solvable, then gcd(a,b) divides c.
Suppose (x,y;) is a solution of ax+ by = c. Then, ax; + by; = c.

But gcd(a,b) divides both a and b, then, gcd(a,b) divides ax; + by;.

i.e. gcd(a,b) divides c.

Next, we want to prove that if gcd(a,b) divides ¢, then the LDE ax + by = ¢ is solvable.
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Suppose that ged(a,b) divides c. Then ¢ = k.gcd(a,b) for some integer k.

Now, 3 two integers m and n such that ma +nb = ged(a,b).

Multiply both sides of this equation by k to get: kma + knb = kgcd(a,b) = c.

Thus xg = km, yo = kn is a solution of the LDE ax + by = c. Therefore, the LDE is
solvable.

Now assume that (xg,yo) is a particular solution of ax+ by = c, then

b a
— ——tandy= — ¢t t€Zal tisfy the LDE:
TN () M T geafayp) ! € RO SIS e
a
= by = —t)+blyg — ————t
ax+by a(x0+gcd(a,b) )+b00 gcd(a,b) )
= ax+b B ab
ax = ax
Y g gced(a,b) e d(a,b)

= axo+byy=c

Thus, (xo + t) is a solution for any integer t.

b ; a
gcd(a,b) )0 ged(a,b)
Finally, we want to prove that any solution (x?,y?) of the LDE ax+ by = c is of the form

(xo + t,y0 — t)for some integer 7.

b a
gcd(a,b) gcd(a,b)
Since (xp,yo) and (x?,y?) are solutions of ax+ by = c, then:
axo+byy = c and ax’ + by’ = c. That is axg + byg = ax’ + by’

Hence,
a(¥' —x0) = b(yo—') (4.1)

Dividing both sides of this equation by gcd(a, b), we have:
a

b
R SV - - o
sedap) " 0 ged@p Y
b
Note that m =aj and W = by € Z are relatively prime. So, we obtain

ai(x' = x0) = b1(yo—)

This shows that b; divides a;(xX' —xp). But, since ,gcd(aj,b) = 1, then by divides
(X' —xp).

Hence,

b
' xp=bit=———t11t€7 4.2
X —Xp 1 gcd(a,b)’ S 4.2)
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b
That is x’ = —1.
at1s x x0+gcd(a,b)

a
Similarly, y = yo — ——t.
imilarly, y' = yo gcd(ab)

Thus, every solution (xo + t),t € Z of the linear Diophantine

a
7t ——
gcd(a,b) 0 gcd(a,b)
equation is of the desired form. U

Note:We conclude from this theorem that every solvable linear Diophantine equation

ax + by = ¢ has infinitely many solutions. They are given by the general solution:

= — ¢

* x0+gcd(a,b)
and

. _a

S0 gcd(a,b)

where t is an arbitrary integer.

By giving different values to ¢, we can find any number of particular solutions.

Corollary 4.1.0.6. Suppose that gcd(a,b) = 1. Then the LDE ax + by = c is solvable
for all integers c. Moreover, if (xo,y0) is a particular solution, then the general solution

isx=xo+bt,y=yy—at,t €7

Example: 4.1.0.7. Determine whether the following LDE?s are solvable.
a)6x+ 18y =30

b)2x+3y =17

c)ox+8y =15

d)59x —29y = -5

Solution: a)gcd(6,18) = 6 which divides 30, then the LDE 6x + 18y = 30 is solvable.
b)ged(2,3) = 1, so 2x+ 3y = 7 is solvable.
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c)ged(6,8) = 2, but 2 does not divide 15, then 6x 4 8y = 15 is not solvable.
d)ged(59,29) = 1, so 59x — 29y = —5 is solvable.

4.2 How to find a particular solution to the LDE ax +

by = c?

It is not difficult to find a particular solution. One of the methods that are used is the
Euclidean Algorithm method.
To find a particular solution to a solvable LDE ax + by = ¢, we follow these steps.

Step 1: Write (a,b) as a linear combination of a and b. That is:

aro+ bsy = ged(a,b)

where rg and s are integers.

Step 2: multiply both sides of this equation by ¢ and then divide it by gcd(a,b):

ro Xc so X €

a(gcd(a, b)> (gcd(a, b)

)=c¢

ro Xc so X €

W’yo = gcd(Tb)> as a particular solution the linear

Step 3: we obtain (xo =
Diophantine equation.

Note: LDE’s were known in ancient China and India as applications to Astronomy and
puzzles. The following puzzle is due to the Indian Mathematician Mahavira (ca. A.D.

850).

Example: 4.2.0.1. Twenty-three weary travelers entered the outskirts of a lush and

beautiful forest. They found 63 equal heaps of plantains and seven single fruits, and



4.2 How to find a particular solution to the LDE ax+ by = c¢? 40

divided them equally.Find the number of fruits in each heap and the number of fruits

received by each traveller.

Solution:
Let x denote the number of fruits in a heap and y denote the number of fruits received
from each traveller.

Then we get the linear Diophantine equation:

63x+7=123

1.e.

63x —23y = -7

Here x and y must be positive, so we are looking for positive integral solutions of the
LDE.
Since gcd(63,23) = 1, then, by Corollary 4.1.0.6, the LDE is solvable.

To find a particular solution, we apply the Euclidean Algorithm:

63 =2x23+17 (4.3)
23=1x17+6 (4.4)
17=2%x6+5 (4.5)
6=1x5+1 (4.6)

5=5x1
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Now, use equations (4..3), (4.4), (4.5) and (4.6) in reverse order to get:

1=6-1x5
=6—1x5
—6-1(17-2x6)
=3x6—-1x17
=3x(23-1x17)—1x17
=3x23-4x17
=3x23—-4x(63—-2x23)
=11x23—-4x63
Thus, 63(—4) —23(—11) = 1. Multiplying both sides of Thus equation by —7, we have:
63(—4 x —7) —23(=11 x —7) = —7.
That is : 63(28) — (23)(77) = —7.
Therefore, (28,77) is a particular solution of 63x — 23y = 7.
By Corollary 4.1.0.6,the general solution of the LDE is:
(x,y) = (28 —23¢,77 — 63¢) , ¢ is arbitrary integer.
Finally, since x > 0 and y > 0, then:
28 —23t >0and 77— 63t >0
=1 < z—i ~1.217andt < % ~1.222
So, (x,y) = (28 —23¢,77 — 63t ),where ¢ is an integer less than or equal to 1, is a positive

integral solution of the LDE 63x+ 7 = 23y.
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4.3 Continued Fractions and Linear Diophantine Equa-

tions

Another way to find a particular solution to a solvable LDE ax + by = c is the continued
fraction method. Our approach to explain this method will be a step-by-step process until
we’ll be able to find integral solutions to any solvable LDE of the form Ax+ by = c. This

method depends on the formula stated in Lemma 3.0.0.6

4.3.1. Solving the LDE ax+ by =1 ; a and b are positive relatively prime inte-
gers

. a 3 : . .
To solve this LDE, we express b as a finite simple continued fraction.

a
E = [a()?al ’ "'7an—17an]
Then we calculate the convergents cg,cy,¢2,...,ch—1,¢,. The last two convergents

Pl and ¢, = Fu with the relation stated in Lemma 2.1 are the key to the

' dn—1 qn
solution: p,—1qn — Pnqn—1 = (_1)n

Ch—1 =
With p, = a and g, = b we have: bp,_| —ag,—1 = (—1)"
Or

a(=1)""gu1 +b(=1)"pp1 = 1

Comparing this equation with the LDE ax + by = 1, we conclude that:
(xo = (—=1)""'g,_1,y0 = (—1)"p,_1) is a particular solution of ax+by = 1.
Therefore, if n is even, then (xo,y0) = (—¢u—1,pn—1) and if n is odd, then (xq,yo) =

(CInfl , —pnfl)-

We have four cases ax 4 by = c according to the sign of both a and b:
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Casel:a>0and b >0
Equation : ax+ by =1
Solution : (xp,y0) = ((=1)" 'g,_1,(=1)"pa_1)

Case2:a>0and b <0
Equation : ax —by =1

Solution : (x0,y0) = ((—=1)" g, 1,(=1)" " 'p, 1)

Case3:a<0and b >0
Equation : —ax+by =1
Solution : (x0,y0) = ((—=1)"gn—1,(=1)"pn—1)

Case4:a<0and b <0
Equation : —ax—by =1
Solution : (xg,y0) = ((—1)"gn—1,(=1)""'pu_1)

Example: 4.3.0.1. Solve the LDE 204x+ 91y = 1 using continued fraction method.

Solution:

First of all, gcd(204,91) = 1, then the LDE is solvable.

. . 04 o . .
To find a particular solution, we represent oL as a finite simple continued fraction.

204
e =[2,4,7,3
91 [777]

Then we construct the convergent table as shown in the following table

From this table n =3, p,_1 = p» =65 and g, = g2 = 29.

43
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k 2 -1 0 1 2 3
a 2 4 7 3
D 0 1 2 9 65 204
G 1 0 1 4 29 91
Ck 2,1 2 65 204
1 4 29 91

Thus, a particular solution to the LDE 204x —91y =1 is:

x0=(—1)?x29=129

yo=(—1)*x65 =65

Finally, by Corollary 2.3, the general solution is:

x=29+4+(-91)r=29—-91z
y=65—-204¢

t 1s an arbitrary integer.
Now, what if we replace the number 1 in any LDE in the cases above by another integer

“c”? In other words, what is the particular solution of the LDE ax+by = c, gcd(a,b) = 1?

4.3.2. Solving the LDE ax+ by = ¢, where a, b and c are integers, gcd(a,b) = 1.
The first step in solving this LDE is to find a particular solution (xg,yo) of the LDE
ax+ by = 1 using the formulas we’ve studied and derived according to the case we have.

From axy + byy = 1, we have: a(cxo) +b(cyp) = c.
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Thus, (cxo,cyp) is a particular solution of the LDE ax+by =c .

4.3.3. Solving the LDE Ax+ By = C, where A, B and C are integer gcd(A,B) # 1.
As we have proved in Theorem 2.8, the LDE Ax + By = C is solvable if and only if
gcd(A, B) divides C. If so, divide both sides of the LDE by gcd (A, B) to reduce it to the

equation of the form:

ax+by=c 4.7)

where a , b and c are integers, gcd(a,b) = 1.
The solution of equation (3.5) has been discussed and is easy to solve.
Finally, any solution of this equation is automatically a solution of the original equation

Ax+By=C.

Example: 4.3.0.2. Solve the LDE 65x — 182y = 299 using continued fraction method.

Solution:
Here, gcd(65,182) = 13, and 13 divides 299. So, the LDE 65x — 182y = 299 is solvable.
Divide both sides of the equation 65x — 182y = 299 by 13 to get the LDE 5x — 14y = 23.

Now, we find a particular solution to the LDE 5x — 14y = 1.

5
4= [0,2,1,4].The following table is the convergent table.

From this table : n =3, p, = 1,9, = 3.
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k -2 -1 0 1 2 3
ay 0 2 1 4
Pr 0 1 0 1 1 J
Qi 1 0 1 2 3 14
1 1 S
Ci 0 2 3 14

Thus, a particular solution to the LDE 5x — 14y = 1 is:

So, (23x0,23y0) = (69,23) is a particular solution to the LDE 5x — 14y = 23.

Finally, the general solution is:

x =69+ (—14)r =69 — 14t

y=23-5¢

,t 1s an arbitrary integer.

Note:The continued fraction method for finding a particular solution for a solvable LDE
is equivalent to the Euclidean algorithm method. This is due to the fact that the continued
fraction of % is derived from the Euclidean. However, generating the convergents using
the recurrence relations to solve a LDE is quicker than to find Euclidean algorithm

equations and then use them in reverse order.



Chapter 5

Applications

5.1 Calendar Construction

The construction of a calendar that accurately determines the seasons by counting the
days is an important issue for human beings since ancient time. Seasons depend on the
revolution on the Earth around the Sun while days depend on the rotation of the Earth
about its axis.

The Julian calendar used the approximation 365& days for 1 year. It was carried out by
extending one extra day every four "common” years to form a "leap” year. After 1600
years, the error accumulated to 10 days. Pope Gregory XIII revised it by omitting one
leap year every century except every fourth century.This is based on the approximation
365—— days for a year. The Gregorian calendar is more accurate yet simple to use. By

400
definition, a tropical year (the time it takes for the Earth to revolve around the Sun once) is

315569259747

= 4,7,1 1,1,3,1 1,1,1,1,2
864000000 [365,4,7,1,3,5,6,1,1,3,1,7,7,1,1,1,1,2]
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days long and the construction of a calendar reduces to selecting an approximation of the

€Iror

7750361

Cc = m = [0,4,7,1,3,5,6,1,1,3,1,7,7,1,1,1,1,2]

between the tropical year and the common year. The first few convergents of ¢ are in the

following table:

P
gk
0
() _
1
1
1 —
4
, L
29
8
3 _
33
4 31
128
163
5 _
373

So the Julian calendar is just a realization of the first convergent. If our notation system
was based on powers of 2 instead of powers of 10, it could be possible to design a
calendar in which leap years occur every fourth year with every thirty-second leap year
omitted. The annual error would be

31

— 2L £ 0.00001128
7188
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which amounts to be the loss of one day every hundred thousand years. However, this is
not as easy to use as the Julian calendar. In fact, nobody used this calendar. Actually it is
not proposed anywhere in the world besides in Russia by Russian astronomer Medler in

1864.

5.2 Music

In music, an octave is the interval between one musical note and another with double
or half its frequency. The ancient Greeks realized that sounds which have frequencies
in rational proportion are perceived as harmonious. The great scientist and philosopher
Pythagoras noticed that subdividing a vibrating string into rational proportions produces
consonant sounds. This is because the length of a string is inversely proportional to
its fundamental frequency. If basic frequencies a and b have ratio a/b = m/n for some
small integers m and n, the sound will be consonant as they will have overtones in
common. The ancient Greeks found the consonance of “octaves” g = %) and “perfect
fifths” (a/b = 3/2). They combined these to get a scale, but an approximation is needed

to keep the scale finite. They had to find a power of 3/2 to approximate a power of 2.

a log(2)

3
3\" 3 p o 18 (5)
(—) =2"= omm o 2= L

2 — =
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be:

Figure 5.1: Octave [36]

5% aN

&

=
;

&
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Figure 5.2: Perfect fifth [38]
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It turns out that,

~
Q

o)
N
| W
~_
[S—Y

24 i
34 I
14+ ——
R
v B
9k
;L
2
3
2 -
5
7
3 _
12
s
41

7
It is the approximation 7= 0.583 which suggests an octave of 12 steps, with a perfect
fifth equal to 7 semitones. If 5 is chosen then there will be too few notes, while choosing

7
41 gives too many notes. Actually the error of choosing T amounts to

log (3> 7
(2) =L
2) 12 0.002785

3
log) (§>

which is smaller than 0.3%.
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