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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-
ject: MAT-651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is "GRACEFUL LABELING OF TREES."
This survey is divided into 4 chapters. Each chapter has its own importance. The chapters

are divided and defined in a logical and systematic manner to cover all the topics.

FIRST CHAPTER :

Introduction and history of this dissertation report in based on graph labeling in graph
theory. We will also be discussing about problem of graph labeling and the origin of the

problem.

SECOND CHAPTER:

In this chapter we have tried to give brief idea on recent results on graceful labeling.

Some classes of trees are shown to be graceful like paths, caterpillar, etc.

THIRD CHAPTER:

In this chapter we have tried to give brief idea on new classes of trees like superstar

extended superstar which are gracefully labeled.

FOURTH CHAPTER:

This chapter deal with transformed trees and transfer. The main aim is to determine the

given tree to transformed trees and some classes of trees which are graceful.
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ABSTRACT

A tree is a connected acyclic graph on n vertices and n — 1 edges. Graceful labeling
of a tree is a labeling of its vertices with the numbers from O to n — 1 so that no two
vertices share a label, labels of edges being absolute difference of the labels of its end
points are also distinct. There is a famous conjecture named Graceful tree conjecture or
Ringel-Kotzig Conjecture that says "All trees are graceful" Almost 50 year old conjecture
is yet to be proved. However. researchers have been able to prove that many classes
of trees are graceful. In this dissertation we stydy that the classes of Superstar and
Extended Superstar are graceful. A tree with one internal node and k leaves is said
to be a star Sy x or a complete bipartite graph K ;. Superstar is a tree that consists of
several stars all connected to a single star by sharing their leaves. If we remove all the
leaves of a superstar then we will get a spider tree which has already been proved to be
graceful. Extended superstar is a tree that consists of several superstars all connected

to a single star by sharing their leaves. We also study that extended superstars are graceful.

KEYWORDS: Trees, Graceful labeling, Superstars, Spiders, Extended superstars.
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Chapter 1

INTRODUCTION

Graph theory deals with the study of graphs, which are mathematical structures represent-
ing a set of vertices or objects connected by any set of lines these lines are called edges.
The study of graph is a very important tool for the applications of different subjects,
such as chemistry, biochemistry, computer science, communication network, and coding

theory.

Graph is collection of points called vertices and lines between those points called
edges. Graph labeling is the assignment of labels where the vertices or edges or both are
assigned real values subject to certain conditions have often been motivated by their use
in various applied fields and their mathematical interest. Most graph labeling methods
trace their origin to one introduced by Rosa in 1967 or given by Graham and Sloane in

1980. Graph labeling was first introduced in the mid 1960s.

Graph labeling where the vertices are assigned values subject to certain conditions

have often been motivated by practical problems. Labeled graphs serve as useful mathe-
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matical models for a broad range of applications such as Coding theory which includes
the design of good radar type codes, syncset codes, missile guidance codes and con-
volution codes with optimal auto correlation properties. They facilitate the optimal

nonstandard encoding of integers.

An injection mapping f:V — { 0,1,.....,m} issaid to be graceful if the induced edge
function is defined by g¢ (uv)=|f(u) — f(v)| whenever uv € E and the resulting edge
labels are all distinct and are from the set { 1,2,.....,m} . The graph which admits such
a labeling is called a graceful graph. In other words, A graceful labeling of a graph
with m edges is a labeling of its vertices with some subset of the integers from 0 to m
inclusive, such that no two vertices share a label, and each edge is uniquely identified by
the absolute difference between its endpoints, such that this magnitude lies between 1
and m inclusive. TREE: Connected acyclic graph is a tree. GRACEFUL LABELING
OF A TREE is a labeling of its vertices with the numbers from O to n — 1 so that no two

vertices share a label.

The Ringel-Kotzig conjecture that all trees are graceful has been the focus of many
papers. Many classes of trees have been shown to be graceful. However, it has not yet
been possible to prove the conjecture for all trees. A lot of work have been done by many
researchers towards proving this conjecture. So far some special classes of trees have
been shown to be graceful. For example, paths, caterpillars, symmetrical trees, spider

trees, star trees, banana trees etc.

There are many graph labeling techniques like Graceful Labeling, Harmonious Label-
ing, Magic-type Labeling, Antimagic-type Labeling, Prime and Vertex Prime Labelings,
Edge-graceful Labelings, Radio Labelings, Line-graceful Labelings, k-sequential Label-

ings, Product and Divisor Cordial, Edge Product Cordial, Difference Cordial Labelings,



Prime Cordial labelings, Geometric labelings, Mean Labelings, Irregular Total Label-
ings, Square Sum Labelings and Square Difference Labeling and so on. However we
shall concentrate on graceful labeling that has received attention of a wider scientific

community. The name “Graceful Labeling” has come up thanks to Solomon W. Golomb.

In graph theory, a major unproven conjecture is the Graceful Tree conjecture (GTC)
or Ringel-Kotzig conjecture, named after Gerhard Ringel and Anton Kotzig which
hypothesizes that “all trees are graceful”. The Ringel-Kotzig conjecture is also known as

the “Graceful Labeling Conjecture”.



Chapter 2

CLASSES OF GRACEFUL TREES

2.1 Path

A path is a tree whose vertices can be ordered as vy, Vv, ....., v, and the edges are v;, vy
fori=1,2,......,n— 1. This sequence represents a connected series of vertices in the tree
structure.

—0 900 9©

Figure 2.1: Path

Theorem 2.1.0.1. All paths are graceful.

Proof: Let P, be the path with n edges and n+ 1 vertices. Label P, by starting at one
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end of the path and alternate between the smallest and largest remaining label along the

path.

Example: 2.1.0.2. Graceful labeling of paths Py and Py is shown below

p, O O-0-0O-C
IAOROa0a0a0a020202020

Figure 2.2: Gracefully Labeled Path

2.2 Caterpillars

A caterpillar is a tree where after removing all its leaves the remaining graph is a path.

O K
O—oO O

O

IR
G/

Figure 2.3: Caterpillar
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Theorem 2.2.0.1. All caterpillars are graceful.

Proof. Let C be a caterpillar on n vertices. A caterpillar is labeled from one end with
0 and its adjacent vertices are labeled using unused largest label ending in labeling the
next vertex on the path with the smallest of the largest labels used. Its adjacent vertices
are labeled using the smallest so far unused labels alternately. While we are labeling
the vertices largest unused edge labels are generated. An example of gracefully labeled

caterpillar is shown in the figure 2.4. U

Figure 2.4: Gracefully Labeled Caterpillar
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2.3 Super Caterpillars

Let Ty be any arbitrary caterpillar and 7; i = 1, ....., k be caterpillars with |Ti| = m number
of vertices and sum total of vertices is the same in odd levels of all pairs 75;;1 and T5;;».
In case k being an odd number one caterpillar will be without a pair. Let one end of each
caterpillar be joined to the vertex v by an edge. Then the resulting tree is called a super

caterpillar. An example of supercaterpillar is shown in the figure 2.5 and 2.6.

Root
() () O Q
O
O O
O o ©O 00 ®
Arbitrary Pair Without pair

@® Even level
O Odd level

Figure 2.5: Supercaterpillar with Odd k&
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Root
() ) >
®
O
O O
O 5 °d o ~
Arbitrary Pair Pair

® Even level
O Odd level

Figure 2.6: Supercaterpillar with Even &, with an Arbitrary Caterpillar Joined with a
Root

Theorem 2.3.0.1. All super caterpillars are graceful.

Proof. Let us assume that we have k caterpillars joined to V and that each caterpillar has
the same number of m vertices also a total of s; vertices in odd levels s; being equal for
each pair of caterpillars 75, , and T3, , . We also denote the vertex of T; connected to V
by V;. Let us label V by 0. Now vertices of caterpillars will be in turn labeled using the

smallest and largest labels following caterpillar labeling schemes so that edge numbers
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are generated in descending order. The endpoint of 77 connected to V is labeled k,,, and
we will use up m labels in 77 of which s; large namely, k,, kyy—1,......ky, — 51 + 1 and
m-s1 small labels namely 1, .....,m-s].

Thus the last edge label created is &, - 51 - (m-s1) =(k— 1)m+ 1. In the next caterpillar,
both the smallest and largest labels will differ by 1 from the labels used in the previous
tree. One vertex will get label k,,, -s1 + 1 and the other one m - 51 resulting in edge label
km-s1 - (m-s1 +1)=(k — 1)m — 1 missing the label(k — 1)m. We are going to use up m-s,
large and s, small labels in 75 in bottom up way.

Note that so=s; 7> will be labeled in such a way that V> ends getting the smallest unused
label, that is, label m. In this way in tandem vertices of odd levels will be numbered by
big and small numbers, respectively, for odd and even indexed caterpillars. This will
result in label (v;)= (k— [(i — 1)/2])m for odd i whereas label (v;)=im/2 is for even ones.
For each pair of caterpillars labels (k+ [(k— 1)/2])m and im/2 will be missing which
will be generated on edges incident to vertex v.

Now assume that we have one arbitrary caterpillar 7 and any & caterpillars having the
same number of vertices m and that the last caterpillar has m vertices but not necessarily
having equal number of vertices in odd levels as all previous pairs have. One end of
backbone of each caterpillar is connected to V. So total number of edges in the tree
will be k,,, +mg. Now start labeling 7j in such a way that we end up labeling V' by s¢
shifting label of V by sg. Large labels have also been shifted by mqg-(mo) — (so), thus
producing (k — [(i — 1/2)])m labels on the edge incident to V, which we have missed in
moving from one caterpillar to the next. Now for 77 we are left with numbers from sp+1
to ky+mo-m+so= (k— 1)m+mg+s . This way all V, adjacent to root V,will be labeled
by multiples of m. After we have completed labeling all pairs of caterpillars, we will

be left with consecutive integers to label the vertices of the unpaired caterpillar and
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generate the remaining smallest possible edge labels. An example of gracefully labeled

supercaterpillar is shown in the figure 2.7. U

50 ¢ 10 40 20 30

Figure 2.7: Gracefully Labeled Super Caterpillar

2.4 Extended Super Caterpillars

Let there be an even number k), caterpillars, each having m vertices and sum total number
of vertices in odd (or even) levels of those caterpillars are the same. These caterpillars
are grouped in k groups each having p caterpillars. Let the group i of caterpillars be
connected to a vertex v; which is connected to vertex v. Then the resulting tree is called

a extended super-caterpillar. An example of extended super caterpillar is shown in the

figure 2.8.
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v

Figure 2.8: Super Caterpillar

Theorem 2.4.0.1. All extended super caterpillar are graceful.

Proof. Theorem 2.3.0.1 asserts that we can label each group k of caterpillars with root
viforall i = 1,2.....,k gracefully. Root v, connected to all v;, is labeled 0 and labels of
the remaining vertices in the tree are incremented by one. Let s be the total number of
vertices in each group. For group i, we will be labeling all odd level vertices by adding
an offset (k — 1)i and for even level vertices (i — 1)s where i = 1,2,3,.....,k. So v; gets
label (k — 1)i, and therefore edge (v,v;) gets label (k —i)s.

We will get the consecutive edge labels having the largest differences (k—0)s—1 to
(k—2)s+1to in groups T; and T, for i = 1 except (k— 1)s and k . Similarly, next
consecutive differences (k—2)s — 1to(k —4)s+ 1 are found in 7; and T;_;; fori =2
again missing (k —3)s and (k—2)s.

So in general we can say that differences (k—2(d —1))s—1to (k—2d)s+ 1 are gen-
erated while missing (k+2d + 1)s and (k+2(d —1))s where i = 1,2,....., [k/2]. These

numbers are multiples of s which have already been generated in edges (v,v;) i = 1,.....,k.
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An example of gracefully labeled extended super caterpillar is shown in the figure

2.9. ]
0
. 10 19 29 38 47
55 469 44 45 36 24 25 17 18 9
37 27 26
2 4 3 21 494 48
11 147 12 13 20 31 323330 39 /42 40 41

p 8

54 52 3 a3 -
35 15 16 51
5 22 23 50 L\

Figure 2.9: Gracefully Labeled Extended Super Caterpillar

2.5 Symmetrical Trees

A rooted tree in which every level contains vertices of same degree is called symmetrical

tree.

Theorem 2.5.0.1. All symmetrical trees are graceful.

Proof. The proof has been shown by induction on the number of layers that all symmet-
rical trees are graceful and there exists a graceful labeling which assigns the number 1 to
the root.

If T is a symmetrical tree with O layers then it consists of 0 edges and just one vertex,
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and clearly there is a graceful labeling which assigns 1 to that vertex. Suppose we have
proved that for some / > 0 all symmetrical trees with </ — 1 layers are graceful and each
of them has a graceful labeling which assigns the number 1 to the root.

The idea of the induction step is to consider a rooted symmetrical tree for which we know
that its k children 77,75, ....., T} are graceful. We label the children with their graceful
labeling and then add certain numbers to each of the vertices .

We order the children from left to right. Then if » is the number of vertices in each child,
we start from the 0" layer of the children and add (k — 1) to the root of Tj, (k—2)n to
the root of 7»,....., and 0 to the root of the k' one. Then for the first layer we start from
right to left and add (k — 1)n to each of the vertices in the 1st layer of 7 then we add
(k—2)n to each of the vertices in the 1st layer of Tj1,....., and O to each of the vertices
in the first layer of 7.

So then we go on with the second layer and we start from left to right and so on until we
finish with the last layer. Then we write nk + 1 on the root of the new tree. Then we do
the transformation x — nk + 2 + x to each of the vertices so that we can have 1 at the root
and the resulting labeling as we show in the sequel is graceful. An example of gracefully

labeled symmetrical tree is shown in the figure 2.10. U
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1 2 4 5 8 9 12 11

Figure 2.10: Gracefully Labeled Symmetrical Trees

2.6 Spider Trees

A spider tree is a tree with at most one vertex of degree greater than 2. If such a vertex
exists, it is called the branch point of the tree. A leg of a spider tree is any one of the

paths from the branch points to a leaf of the tree.

Step 1: Label the centre vertex with label 0.

Step 2: Follow any one path and label the first vertex of that path which is adjacent to the

centre with maximum label.

Step 3: Then choose the next path and label the first vertex of that path which is adjacent to

centre with least label among all.

Step 4: For the next path we label the first vertex which is adjacent to the centre with

maximum label which is unused.
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Step 5: For this path we label the first vertex which is adjacent to the centre with minimum

label which is unused.

Step 6: Follow the above procedure and label the remaining vertices of the path.

Step 7: An example is shown in the figure 2.11.

Figure 2.11: Gracefully Labeled Spider Tree
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2.7 Banana Trees

A banana tree consists of a vertex v joined to one leaf of any number of stars. An example

is shown in the figure 2.12.

QO @

Figure 2.12: Gracefully Labeled Banana Tree

2.8 Coconut Trees

A coconut Tree CT (m,n) is the graph obtained from the path P, by appending m new

pendent edges at an end vertex of P,. An example is shown in the figure 2.13.
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Figure 2.13: Gracefully Labeled Coconut Tree

2.9 Olive Trees

An olive tree T} 1s a spider tree with k legs with lengths 1,2,...,k respectively. An

example is shown in the figure 2.14 and 2.15.
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Figure 2.14: Gracefully Labeled Olive Tree

Figure 2.15: Gracefully Labeled Olive Tree
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NEW CLASSES OF GRACEFUL TREES

3.1 Star

A tree with one internal node and k leaves is termed as star, denoted as S; ; which is
essentially a complete bipartite graph K ;. An example of gracefully labeled star is

shown in the figure 3.1.

Figure 3.1: Gracefully Labeled Star

19
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3.2 m-Star

A m-Star has a single root node with any number of paths of length m attached to it. An

example of gracefully labeled m-star is shown in the figure 3.2

Figure 3.2: Gracefully Labeled m-Star

3.3 Superstar

Let a tree T consist of stars S(i,k;), i =0, 1,...,I with k; leaves. Each S;,k; i =1,...,1
shares exactly one leaf with Sy,kg. This S,k is called the root star whereas S;, ki,
i=1,...,I are called leaf stars. Then T is said to be a superstar denoted by SS. An

example of superstar is shown in the figure 3.3.
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Figure 3.3: Superstar

3.3.1 Steps to Label the Superstar

Step 1

First of all we have to find out the value of /and Max; and the center vertex of root star,
lp will be labeled by min{ I,Max;} . As for the below example I =5 and Max; = 6,

therefore, /[p=5 which is shown in the below figure 3.4.



O
O O\O
O

>{;

Figure 3.4: Step 1 SS

O

O

Step 2

Next we have to find an arbitrary star and we have to label the center vertex of all the
leaf stars by /; where [;=0, 1, .....,I — 1. Therefore, we labeled all the center vertex of leaf

star by 0,1,2,3,4 which is shown in the below figure 3.5.
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O/f
oI

Figure 3.5: Step 2 SS
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Step 3

Now we have to label the leafs of all star starting from the star whose center vertex is
labeled by 0 and then 1,2,3,4,5. Therefore, we label them starting with maximum label

and so on which is shown in the below figure 3.6.

N

AN

24

Figure 3.6: Step 3 SS

O

O
O
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Step 4

Now we have labeled the leafs of star i for which /;=1, 2, 3 which is shown in the below
example. If we follow the procedure to label all the vertices then we get the edge label
in descending order starting from m, ..., 1 consecutively. In this way we label super star

gracefully. An example of gracefully labeled SS is shown in the figure 3.7.

>

®

Figure 3.7: Step 4 SS



3.3 Superstar

Algorithm 1

1. 1+ 1 < total number of star of superstar, where i =0, 1, .....
2. m < total number of edge of a superstar.
3. k < number of leaf of each star §; ;.
4. §; y < leaf star of a Superstar
5. 8S; + root star
6. S, < number of leaf of root star.
7. Max;, < 0
8. lp + root of §S;
9. C=0,where C=0,1,....1 —Max;
10. fori=0to I do
11. Count k; for each S; x
12. if Max;, < k; then
13. Maxy, = k;
14. end if
15. end for
16. if Max; > I then

17. ly=I
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18.

19.

20.

21.

22.

23.

24.

25.

26.

2.

28.

29,

30.

31.

32

33,

34.

39,

fori=0to/—2do

repeat

Find S; «

until k; > lp-i

Root of §; y=i

Connect [j to the leaf of S; ; labeled with m — i-k;+ly
for m + 1 down to m-k;+1 do
Leaf of §; ,=m—1
m=m—1

end for

from down tom —1I do

Leaf of SS;=m — 1
m=m-—1

end for

else

lo = Maxy,

for i = 0 to Max,-1 do

repeat

27
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36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

al,

32

I35,

Find S;, k

until k; > lp— i

Root of S,k =i

Connect [y to the leaf of S; x labeled with m —i -k;+ Iy
for m+ 1 down to m-k; +1 do
Leaf of §; j=m—1
m=m-—1

end for

for m down to m-SS; x do
Unshared Leaf of SS;=m — 1
m=m-—1

end for

fori = Max;+ 1to I do
repeat

Find S; x

until lo —i > ki

Root of S;, k=1

Connect [j to the leaf of S; ; labeled with m —C

28
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4. C=C+1

55. form+1 down tom —k; +1 do
56. Leafof §;;=m—1

57T m=m—1

58. end for

59. end if

Lemma 3.3.1.1. Algorithm I labels center vertices of stars by labels 0,1, ...,J whereas
leaves of stars with root labels 0,1, ...,i labeled consecutively with labels from m to

m— ):3.:1 ki+1 and edges get labels m down to m — Z;Zl ki-i.

Proof. Let us label leaves of the star centre of which has been labeled i = 1. Since
lo-1;less thanky, the leaf common to root star and the star being labeled can be labeled in
a way that root star edge gets label mky, leaves get labels from m down to m — ky, edges
are labeled consecutively from m down to m-ki-1+1.

Assume that we have labeled i + 1 stars with vertex labels of centres from O to i and leaf
labels from m down to mz;: 1 ki+1 inducing edge labels from m down to m — 23':1 ki-1.
Now we are labeling leaves of star centre of which has been labeled i + 1.

We label the leaf common to root star and star centre of which has been labeled by
i+ 1 in such a way that it induces edge label m — ):5':1 k; — i, then the other edge labels
up to m— ):;:1 k; — i can be generated by using vertex labels from j=1m— ):j-: 1 ki
to m— Z?;ll ki. In case root star vertices are labeled not at the last then its yet j =1
unlabeled vertices should be labeled. U
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Theorem 3.3.1.2. All superstars are graceful.

Proof. By lemma 3.3.1.1 systematically labels leaves with labels from m down to J + 1,
centres of stars already labeled by O to J. This induces edge labels from m down to 1.

Hence this is a graceful labeling of a superstar. O

Figure 3.8: Gracefully Labeled Superstar
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3.4 Extended Superstar

Let ESS be an extended superstar with m edges and stars S;;; i € I; contained in the
superstar SS where j = 1,2,...,J. Among all the stars S(i, k; one star is a root star and
rest of them are included in leaf superstars. Therefore total number of leaf superstars is J.
If all the leaf of superstars SS; share exactly one leaf with the leaf of the root then the

resulting tree is called an Extended Superstar ESS. An example of ESS is shown in the

figure 3.9
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Figure 3.9: Extended Superstar
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3.4.1 Steps to Label Extended Superstar

Step 1

First we have to identify total number superstar in the given extended superstar which is
Jj = 3 for the below example and total number of edges m = 69. Therefore, We have to
take an arbitrary superstar j = 1 and label the superstar gracefully using 1 where p = m.
After labeling j”* superstar the value of p =51 and i =4. Then we have to label the
center vertex of root star, /o o by i = 5 and shared vertex of root star by p which is shown

in the figure 3.10.

Figure 3.10: Step 1
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Step 2

Now we have to label the unshared leaf of root star by p down to p- total number of
unshared leaf of root star that is 2. Therefore the unshared leaf of root star will be labelled

by 50 and 49 which is shown in the figure 3.11.

® 5
o ;@%Q .
©0 © \ O

©
@.®

Figure 3.11: Step 2
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Step 3

Now take another superstar and first label the shared leaf of root star by p = 48. Now
p =47 and i = 6. Then label the superstar in the same way which is shown in the figure

Figure 3.12: Step 3

Step 4

In this step we have to label the Superstar for j = 3 and we have p =31 and i = 12. As

J > 2, therefore, first we have to label the superstar gracefully in the same way then have
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to label the shared vertex of root star by p — i+ 1 + [y o=25 which is shown in the figure

3.13.

Figure 3.13: Step 4

Algorithm 2

1. 1=« least possible label
2. p = m <+ largest possible label

3. call Superstar(i, p)
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4. label center of the root star < i
5. label shared vertex of root star and leaf Superstar $S; < p
6. label shared vertex of root star and leaf superstar SS, < p—1
7. call superstar(i, p)
8. for j=3toJ do
9. call superstar (i, p)
10. label shared vertex of root star and leaf superstar SS; <~ p—1—i+1lpo
11. end for
Theorem 3.4.1.1. All extended superstars are graceful.
Proof. We have already discussed how to label superstar gracefully there-
fore, we have omitted the labeling technique of superstar here. Let us
assume for simplicity, SS; is a superstar and ESS is an extended superstar.
Now let [y ¢ be the label of the center of root star. First take an arbitrary
superstar $S; for j = 1,2,.....,J and using previously described Algorithm
1 label the superstar gracefully. Let p be the largest possible label yet be

used after labeling SS;. Then label the center of root star, [y o=i where

i is the immediate next least possible label and label the shared leaf of
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root star and superstar SS1 by p. Now we have to label the unshared leaf
of root star from p down to total number of unshared leaf of root star.
After that, the shared leaf of root star and Superstar SS, will be labeled
by p—1. Then for j = 2 take another arbitrary superstar and label the
superstar in the same way. But for j = 3, .....,J the shared leaf of root star
and superstar SS; will be labeled by p —1—i+1p,0 and the remaining
superstars will be labelled by using the label of superstar. Therefore all the
label of vertices and edges of extended superstar will be distinct and from
the set 1,2,...,m and 0,2, ...,m respectively. This way we have labeled all

the vertices and edges of the extended superstar gracefully. (]
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Figure 3.14: Gracefully Labeled Extended Superstar



Chapter 4

TRANSFORMED TREES

4.1 Transformed Trees

Let T be a tree and uq and vy be two adjacent vertices in 7. Let there be
two pendant vertices u# and v in T such that the length of ugu path is equal
to the length of vov path. If the edge ugvy is deleted from 7" and u, v are
joined by an edge uv then the transformation of 7 is called an elementary
parallel transformation (an ept) and the edge ugvy is called a transformable
edge. If by a sequence of ept’s T can be reduced to a path then 7 is called
a Tp-tree(transformed tree) and any such sequence of mappings (ept’s)
denoted by P, is called a parallel transformation of 7. The path of 7" under

P is denoted as P(T).

39
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A class of tree called 7Tp trees (transformed trees) are created by taking

a gracefully labeled chain and shifting some of the edges.

o o O O O 0O 0O O—CO

O O o *O—0O" O *O—0O' O

Figure 4.1: Transformed Tree

4.1.1 Diameter Four Trees with Central Vertex of Even Degree

VARV
NS

Figure 4.2: A Rooted Tree T with a Central Vertex of Degree 2
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VARV,
\(i 7/
\7/

Figure 4.3: The First Partial Labeling of T

6 g
a4
Figure 4.4: The First Attempt to Label T Gracefully Fails

Theorem 4.1.1.1. Let T be a diameter four tree with a central vertex of
degree 2 and 4k+1 vertices for some kEN. Then T has a graceful labeling

where the central vertex has the maximum label.

Proof. Since T has 4k + 1 vertices, the maximum vertex label to be used

in a graceful labeling of T is 4k. We assign 4k to the central vertex and 0
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6
\
2 0

N /
\7/

Figure 4.5: A Second Partial Labeling of T

)\ /7
it

Figure 4.6: The Second Attempt to Label 7" Gracefully Fails
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\ /

6 53

\ /
0
\ 7/
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Figure 4.7: The Third Partial Labeling of T
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l 7
{
Figure 4.8: The Third Attempt to Label 7" Gracefully Fails

and 2k to its two neighbours.

If T is a symmetrical tree, we may label it as assigning the labels 2k + 1,2k + 2, ...,4k — 1
to the neighbours of 0 and the labels 1,2, ...,2k — 1 to the neighbours of 2k.

Otherwise, a graceful labeling of T can be obtained by beginning with this

graceful labeling of the symmetrical tree and performing the particular

2k—0 transfer required. More specific if 0 and 2k each have an odd yet

unequal number of leaves, a graceful labeling of T can be obtained by

performing a 2k—0 transfer of the second type.

Otherwise if 0 and 2k each have an even number of leaves, then a graceful

labeling of T can be obtained by performing a 2k — 0 transfer of the first

type.
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Figure 4.9: A Graceful Labeling of a Diameter Four Tree with 9 Vertices and Central
Vertex of Degree 2

4.2 Transfer

A u—v transfer is a transfer of end edges from vertex u to vertex v. A
u—v transfer followed by a v — w transfer may be denoted by u—v—w
etc.

Step of transfers is illustrated in figure 4.10, 4.11, 4.12 , 4.13 and 4.14.



4.2 Transter

Figure 4.10: Step 1 Transfer

\\_\ / //
'\\\///

Figure 4.11: Step 2 7! 0 to 7
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1 2 3 45
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Figure 4.12: Step 3 T12 7to1

45
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3 1 1 2 5! 6

\ /N TS
N\ / \\//
7

Figure 4.13: Step4 7, 0 to 7

\ /

— 6 — @
Figure 4.14: Step 5 T22 7tol

4.3 Graceful Trees Built By Transfers

4.3.1 Crabs

Let G be a tree such that its central vertex v is of degree 3, and two of
its neighbours, call them v; and v, each have k neighbors that are not vy
and k — 1 of which are leaves, while the third neighbour of v call it v3 has
degree 2, i.e it has a single neighbour that is not vy and this neighbour is a
leaf. Let the non-leaf neighbours of v; and v, that are not vy be denoted

uy and u, respectively. We further suppose that u and u; are of degree
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2, and that their second neighbors (i.e neighbors other than v; and v,,
respectively) are leaves. We say that such a tree G is a crab leg with index
k. Consider a graph formed by joining two identical crab legs together by
an edge connecting their central vertices to be a crab. Example of crab is
shown in the figure 4.15. Steps to label crab is shown in the figure 4.16,

4.17,4.18, 4.19.

uq U2
(U] (%)

Uy

Figure 4.15: Crab
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\\\\ ?_/ ///

6 7 8.9

\\\'///

\ 1/ \\ \ _/ //
I/ \\\///
0 1

Figure 4.17: Step that Performs a 0—11 Transfer

4.3.2 Butterflies

Let G be a tree constructed by identifying three copies of P, and two
copies of P3 with the central vertex v (i.e three 3 copies of P, and 2 copies
of P53 are extending from vg). Furthermore, attach a leaf to each of the
3 vertices that are not vy in 1 of the copies of P;. Finally let vy have an

even number of leaves. We say that such a graph G is a butterfly wing.
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Figure 4.18: Step that Performs a 11—1 Transfer

Consider a graph formed by joining two identical butterfly wings together
by an edge connecting their central vertices to be a butterfly. Example of

butterfly and gracefully labeled butterfly is illustrated in figure 4.20 and

4.21.
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Figure 4.19: A Gracefully Label Crab Leg Graph with Index k =3
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/
\\

1]\

Figure 4.20: Butterfly

1 — 15\
/13/16\ \\
L 10 _ 7
/ ll\ 6
16 12
17//""/0\3
S
\'_;’\ . 9
]

Figure 4.21: Gracefully Labeled Butterfly



Chapter 5

CONCLUSION

In Chapter 1 we have introduced the problem of graceful labeling and
the origin of this problem 1s discussed. Chapter also discussed history of

Graph Labeling.

In Chapter 2 we have discussed different classes of trees that have been
proved graceful to strengthen the Graceful Tree Conjecture that is "All
trees are Graceful". Classes of trees like paths, caterpillars, symmetrical

trees, etc have been shown graceful.

In Chapter 3 we have introduced new classes of trees like superstar

extended superstar that are proved graceful which implies a partial effort

52
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to prove Graceful Tree Conjecture.

In Chapter 4 we have talked about transformed trees and transfer. Some

classes of trees are also discussed.
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