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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-
ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics
in the academic year 2023-2024.

The topic assigned for the research report is: " Multiplicative And Additive Arithmetic
Functions And Formal Power Series" This survey is divided into three chapters. Each
chapter has its own relevance and importance. The chapters are divided and defined in a

logical, systematic and scientific manner to cover every nook and corner of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report we define arithmetic functions and we look at
the different arithmetic function and some examples based on them. Also, We will study

the Dirichlet Convolution and Unitary Convolution and theorems based on these topics.

SECOND CHAPTER:

This chapter will discuss new concepts of arithmetic functions.we will also give the char-

acterization of Completely Multiplicative and Additive Arithmetic Functions.

THIRD CHAPTER:

In this chapter we will discus a relationship between formal power series and arithmetic

functions. However, we will need to first define the concept of formal power series.
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ABSTRACT

The theory of arithmetic functions and the theory of formal power series are classical
and active parts of mathematics. Algebraic operations on sets of arithmetic functions,
called convolutions, have an important place in the theory of arithmetic functions. The
theory of formal power series also has its place firmly anchored in abstract algebra.

A first goal of this thesis will be to present a parallelism of known characterizations of
the concepts of multiplicative and additive for arithmetic functions on the one hand and
for formal power series on the other.Later, the proofs of some main results on completely
and specially multiplicative functions has been replaced with new proofs using Bell series.
This was a second goal of giving new proofs using Bell series, and so we bring the two
topics (arithmetic functions and formal power series) closer together. I found this topic
interesting and intriguing. I dived deep into the paper,studied its concepts and theorems
to gain thorough understanding. In this paper I observed that a many theorem that were

previously solved can be solved in a simpler way using the bell series.

Keywords: Arithmetic functions; Completely multiplicative functions; Additive func-

tions; Specially multiplicative functions; Bell series; Formal power series
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Notations and Abbreviations

A The set of all arithmetic functions

T Is the number of positive divisors of n

o Is the sum of all positive divisors of

u The Mobius Function

0] Euler’s totient function

f*g | Dirichlet Convolution

(A,*) | Set of arithmetic functions with binary operation
f®g | Unitary Convolution

4 Unit function

i Identity function

M Set of non-zero multiplicative arithmetic function
U(A) | The set of units/ invertible elements

A Louiville Lambda function

w Is the sum of prime powers where p® exactly divides $n
R Commutative ring with unity

fp(x) | Is called the Bell Series of f modulo p
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Chapter 1

Arithmetic Functions and Convolutions

Introduction

The theory of Arithmetic Functions has always been a vital part of Number Theory. In this
chapter we will define arithmetic functions and look at the different arithmetic function
and some examples based on them. Also, We will study the Dirichlet Convolution and

Unitary Convolution and theorems based on these topics.

1.1 Arithmetic Functions

An arithmetic, arithmetical or number-theoretic function is any function defined on the
set of positive integers (natural numbers) N ={1,2,3,---} with values in the set of complex
numbers . We will focus on the ring of arithmetic functions with the standard addition
of functions and the Dirichlet convolution or unitary convolution as the multiplicative
operation.

The following definitions and arithmetic functions of this chapter can be found in Sivara-
makrishnan [12], Burton [2], McCarthy [6] and Niven [8]. However, notations may be

different.

Definition 1.1.0.1. By R. Shivaramakrishnan: A function f : N — C is said to be an

Arithmetic function



1.2 Dirichlet Convolution and Unitary Convolution

Definition 1.1.0.2. By I. Niven: An Arithmetic function f is one whose domain is the

positive integers and whose range is a subset of the complex numbers.

Notation 1.1.0.3. The set of all arithmetic functions will be denoted by
A={f:N—>C}

We give some examples of the arithmetic functions that will be used and discussed

throughout this paper.

Example 1.1.0.4. Euler Totient function(¢)
n
¢(n):Z’ LVYneN
k=1
where the ' indicates that the sum is extended over those k relatively prime to n.

Note That:When p is a prime number we have ¢(p) = p—1

Example 1.1.0.5. Divisor Function(t)

7(n) = Z 1V n eN, is the number of positive divisors of n.
din

Example 1.1.0.6. Sum of Divisor Function(o)

o(n) = Z d ¥ n €N, is the sum of all positive divisors of n.
dln

Example 1.1.0.7. The mobius Function ()
1 if n=1,
u(n) =1 (-1)f if  n=py.ps...px with distinct primes

0 if otherwise

1.2 Dirichlet Convolution and Unitary Convolution

1.2.1 Dirichlet Convolution

Definition 1.2.1.1. Let f and g be arithmetic functions, then the Dirichlet Convolution is

defined as
(f*9)m =) fd)g(5)¥n e

dn



1.2 Dirichlet Convolution and Unitary Convolution

Before we discuss the properties of the structure (A, %), it would be quite helpful to
illustrate this operation through example. So, if we take two arithmetic functions f, g
More concretely, let us take p and o and the integer 12, we obtain
(rx0)(12) =1(1)o(12) + 1(2)0(6) + T(3)0(4) + 7(4)(3) + T(6)0(2) + T(12)0(1)
=128+29+27+34+43+121
=96

Also, we can notice,
T(l)=1lando(1)=1

Now, let us examine the properties of the structure (A, *)

Notation 1.2.1.2. (A, *) - is a set of all arithmetic fuctions with a binary operation.

Definition 1.2.1.3. Monoid- A monoid is a set that is closed under an associative binary

operation and has an identity element.
Theorem 1.2.1.4. The structure (A, *), is a commutative monoid.

Proof. It needs to be shown that the operation is commutative, associative, and has identity.

To show that this structure is commutative, we need to verify this property

frg=gx*f

for all arithmetic functions f, g in A.So,

(fre)m =) fde() = D fdg(dy)

dln didr=n

= 3 s)fn =Y s@f )= (gx

didr=n dn

Now we will verify the associative property

(fxg)xh=fx*(gxh)

3



1.2 Dirichlet Convolution and Unitary Convolution

for any f,g € A

S0,

[(f *g)*h](n) = Z [(f * g)(d)]h(d3)

ddy=n

=SS fdngnns)

ddy=n d\dy=n

= > fWdgld)h(ds)

didrd3=n

By a similar calculation, it can be shown

[fr@emlm = > fld)g(da)h(ds)

didrdsy=n
which implies this structure is associative.

To determine the identity element, we need to identify e € A with the property

fre=exf=f

forall feA

To do this, consider the arithmetic function

e(n) =

Then it follows

(fxe)n) = Zf(d)e(g) = fMem)+---+ f(n)e(1) =0+0+---+ f(n) = f(n)

din

This implies that the arithmetic function e is the Dirichlet identity. With this, we have

shown that (A, %), is a commutative monoid. ]



1.2 Dirichlet Convolution and Unitary Convolution

Now that the properties of this structure have been identified, it would be beneficial to

determine what it’s inverses are.

Notation 1.2.1.5. The set of units/ invertible elements of the structure (A,x*) will be
denoted by
U(A) ={f € Alfisinvertible}

Which are these elements?

Theorem 1.2.1.6. The invertible elements of the structure (A, ), are exactly those arith-

metic functions with the property f(1) #0 i.e
UA) ={f e Alf(1) #0}

Proof. To prove this, it must be shown that f € U(A) <1(1)# 0
So, let f € U(A). This implies that there exists an arithmetic function f € A

with the property
(f=f)=e

then since e(1) = 1,

e(1) = (f* H(1) = FDF(D)

= f(1)#0

Conversely, let us assume f(1) # 0. Now, we will define the following arithmetic function

recursively such that

5 ifn=1
~n .

~7n 2 @I ifn>1

dn
So, for n = 1 we have

fn) =

- ~ 1 ~ 1
* 1) = DF=)=Ff(DHf(DH)=Ff1)-—=1=¢(1
UM)%ﬂWQﬂm)ﬂ”m e(1)



1.2 Dirichlet Convolution and Unitary Convolution

For n > 1 we have

<f*f)(n)=2f(d>f(§):f(l)f<n>+ > f(d)ﬂg)

din dn,n>1

Notice,

~ 1 ~n
- D Ff(=
f=—25 d|n§,n>1 F@F )

Therefore,

> D) ==fms)

dn,n>1

Then this is what follows

FOfm+ > f(d)f(g) = f()f = f()f(n) = 0~e(n)

din,n>1

So, we can say

(f * F)(n) = e(n)

for all natural numbers n.
This implies, f is the inverse of f.
Therefore, arithmetic functions with the property, f(1) # 0, are inverse elements of (A, *)

O

Definition 1.2.1.7. Let f be an arithmetic function, then f is called multiplicative if

f(mn) = f(m)f(n) when (m,n) =1

Definition 1.2.1.8. Let f be an arithmetic function, then f is called Completely multi-
plicative if

f(mn) = f(m)f(n) Vm,n



1.2 Dirichlet Convolution and Unitary Convolution

Notation 1.2.1.9. The set of all non-zero multiplicative arithmetic functions will be
denoted by
M= {f € A—{o}| f is multiplicative}

Note that o(n) =0 Vn € N is the Zero function.
Theorem 1.2.1.10. The structure (M, ) is an abelian group.

Proof. It is sufficient to prove that M is a subgroup of U(A),

since U(A)is an abelian group. It needs to be shown that

1. The set M is a nonempty subset of U(A).

2. If arithmetic functions f and g are multiplicative, then their convolution, f * g, is a
multiplicative arithmetic function.

3. If f is a multiplicative arithmetic function, then its inverse, f , 1s a multiplicative

arithmetic function. ]

Definition 1.2.1.11. Let f and g be arithmetic functions, then

(f+o)n) = f(n)+gn) VfgeHA

Theorem 1.2.1.12. The algebraic structure (A, +, ) is an integral domain.
Proof. e Itis trivial to verify that (A, +) is an abelian group.

e (\A,+) is associative and commutative.

The arithmetic function o(n) = 0 is the additive identity.

For all arithmetical functions f, the additive inverse is f .

We also know (A, +) is a commutative monoid.

* distributes over +.



1.2 Dirichlet Convolution and Unitary Convolution

1.2.2 Unitary Convolution

Definition 1.2.2.1. Let n be a positive integer. Then d, a divisor of n, with the property

n
d,~)=1

is called a unitary divisor of 7.

Definition 1.2.2.2. Let f and g be arithmetic functions, then the Unitary Convolution is

defined as
n
(f®8)= ) fld)g(HV¥neN

d|ln

where d||n means that d runs through the unitary divisors of n.
Theorem 1.2.2.3. (A, +,®) is a commutative ring with unity.

Proof. 1. First we show that (A, +) is an abelian group.

(f+8)m) = f(n) +g(n) = g(n) + f(n) = (g + f)(n)

Hence Abelian

ii. To show that (A, ®) is associative and commutative.

(fog)m =Y fds(:)

dln

now, d = dl,% =d»,(d;,d>) = 1 hence,

(foR)m= ) fdgd)

d1d2=n

= ). ald)fd)

didy=n



1.2 Dirichlet Convolution and Unitary Convolution

n
= D 8@

dln

=(g®f)n)

hence it is commutative.

To show associativity i.e TST (f@g)®h=f®(gdh)

[(FoQ)@hlm) = ) [(f@2)d)Ih(d3)

d-ds

=1 D fdgd)hds)

d-ds di-dr=d

= > fd)gd)h(ds)

dy-dy-d3=d

Similarly calculating

[foon]l= > fd)g(dh(ds)

di-dy-d3=d

Hence implies associativity

1ii. @ distributes over +.

[F@(g+mlm = ) fd)g+h()

dln

- Z fdDlg(dr) +h(dr)]

didy

= > fldng(d)+ Y fdh(d)

didy didy

n n
= D f@ds()+ ) fdh()

d|ln dln

= (feg)n)+(feh(n)



1.2 Dirichlet Convolution and Unitary Convolution

[(f+@@mm) = D (f+Ah)(5)

d||n

= D [f(d) +g(d)]h(dy)

didy

= Z fldh(dz) + g(d)h(dr)

didy

n n
= ) f@Dh(5)+ > g(dh()

dln dln

=(fehm+(feg)n)

iv. Dirichlet’s identity is the unitary convolution.

e(n) =
0 if n>1

Then it follows

(from=) fde()
dln

=f(De(m) +---+ f(n)e(1)
=0+0+--+ f(m)=F(n)

(fxe)=f(n)=(exf) O

We introduce this structure, because we will be using it later in Chapter 3.

However, let us now discuss some applications to the theorems we have introduced

10



1.3 More on o, 7tand ¢

1.3 More on o, 7and ¢

First, let’s introduce a few more arithmetic functions.
Unit Function

{(m)=1 VneN

Identity Function

i(n)=n Vne€ N Itis important to note that:

o [(mn)=1=1.1=_L(m){(n)
e i(m.n) =m.n=1i(m)i(n)

This implies that the arithmetic functions £ and i are both multiplicative.
We introduce these functions here because they have a special relationship with some of

the arithmetic functions we have already discussed.

Definition 1.3.0.1. Let f be an arithmetic function, then

Fn) =) f(d

dln
is called the Summation of f.

This summation function will allow us to verify some important properties concerning
the arithmetic functions we have discussed. One of those properties is determining

multiplicative functions.

Theorem 1.3.0.2. If f is a multiplicative arithmetic function, then the summation of f is a

multiplicative arithmetic function.

Proof. Let f € M and let F be the summation of f, then
F = fd)= Y fd)1= ) f@d)i()

din din dln
S0,

F=fx

11



1.3 More on o, 7tand ¢

f and ¢ are both multiplicative arithmetic functions This implies F is a multiplicative
arithmetic function, because, as we have shown, (M, %) is closed. O
Theorem 1.3.0.3. We have Z u(d)=e(n)Yn>1

dn

Proof. letn=1

D ud)=1=e(l)

dll

. Now,let n = p be prime. Therefore,

D 1 =p(D)+u(p)=1-1=e(p)

dlp

If n = p®, where a > 2, then,

D H@ = (D) +p(p)+p(p™) + -+ p(d) = 1= 140440 =0 = e(p)
dip®

So for the prime factorization,n = p{", p3*--- p/*,we have

Therefore for any n € N we have Z u(d) = e(n). O
dn

With this we come to a nice corollary.

Corollary 1.3.0.4. p is the Dirichlet inverse of {

Proof. e(m)= ) ud)= Y ud)-1= ) uld)-£(2) = (u* O)n).
din din din
this implies

=
Il
EAN

12



1.3 More on o, 7tand ¢

This corollary gives us the following theorem which is called the Mobius Inversion

Formula

Theorem 1.3.0.5. Let f be an arithmetic function, then

Fn)= > fd)ifand only if f(n) = ) F(d) u(})

dn dn
Proof. let F= fx(

e Fxl=fx{*]
e Fxl=fxe

— Fxu=f

Corollary 1.3.0.6. An arithmetic function, f, is multiplicative if and only if the summation

of f is multiplicative.

Proof. let f € M and F be the summation of f

Then,
Fin)= ) f(d)

din

=) f@:1

n
= ) J@C)

din
f and 7 are multiplicative arithmetic functions.
—we have shown (M, ) is a closed structure.
= F is a multiplicative arithmetic function.

Conversely,

Fn) =) f(d
din
Then,

fn) = ) Fd) u(y) = f = Fxp

dn

13



1.3 More on o, 7tand ¢

f and p are multiplicative arithmetic functions.
— f is a multiplicative arithmetic function O
Theorem 1.3.0.7. We have Z d(d)=nVn>1
dn
Corollary 1.3.0.8. o, tand¢ are multiplicative arithmetic functions.

Proof. Let the equation Z ¢(d) =n Vn > 1 hold, then
dn

n=in)= Y HDE) = G *0)n)

dln

and,

¢(n) = (i) = (i+p)(n)

. Which shows us that ¢ is multiplicative. Now let’s look at the sum of divisors function

)= 1= ) Ll= ) L dE5) = CxHm)

dln din dln
. This implies that 7 is a multiplicative function.

Also,
o)=Y d= ) d1= ) id)= [+

dln din din
Similarly, o~ can be said to be a multiplicative function.

Hence o, T and ¢ are multiplicative arithmetic functions. O

Theorem 1.3.0.9. If n > 1 with the prime factorization n = p‘;‘l . pgz e pzk then

(a;+1)

Kk
7(n) =

i=1

Proof. Let p be prime and @ > 1. The set

D(p™) ={1,p,p* -+, p*)

14



1.3 More on o, 7tand ¢

is the set of all positive divisors of p® . Therefore
(P =a+l

We will now consider the prime factorization, n = p‘fl pg". Since, we have just shown

that 7 is multiplicative, it follows that

k
) =(p - PP = TP T(pf) = (@1 + D+ D = [ J@i+ D
i=1

Theorem 1.3.0.10. If n > 1 with the prime factorization n = p{', p3*--- p;* then

k

1
= | | 1-—
p(n)=n| |( pi)

i=1

Proof. Let n = p be prime. Then

1
p(p)=p-1=p(l--)
p

Now, let n = p® where a > 1
We desire those integers who are relatively prime to pX. It can be seen that the integers

who are not relatively prime are those of the form

1 a

p.2p,3p,--,p* " -p=p

Therefore, there are p®~! integers who are not relatively prime to p® ,so we can say

1
¢(p™) =p*—p*=p*(1--)
p

15



1.3 More on o, 7tand ¢

If we let n = p{', p5?--- p}¥, the prime factorization of n, then it follows from ¢ being

multiplicative that

a1 a2 @ (¢3] (0 Q, a 1 a 1
ST P3P = 9P S = P (1= ) pit (L= =)

1 1 k 1
l——)(1=—)= | |1__
i Pl) ( Pk) niZI( Pi)

]
Theorem 1.3.0.11. If n > 1 with the prime factorization n = p{', p3*--- p;* then
k a;+1
o(n) = L
D pi—1
Proof. Let n = p where p is prime and « > 1, then
a+l _ 1
o) =1+p+p*+--+p¥= P
p—1
Therefore, for
n= pﬁlll’ng "'p:kv
the prime factorization of n,we have
ay+1 ay+1 k a;+1
P -1 Dy -1 p; -1
a(py' Py ) = a(piD) o (p) = =| |—=—
bra Tk ! k pi—1 pi—1 U pi—1
m|

Theorem 1.3.0.12. If f and g are multiplicative arithmetic functions with positive values

and n > 1, then n is prime if and only if

(f x8)(n) = (f +8)n)

16



1.3 More on o, 7tand ¢

Proof. Let n be prime, then

(f*8)n) = Zf(d)g(g) =f(Dgm)+fm)g(1) = 1-gm)+ f(n)-1 = f(n)+g(n) = (f +&)(n)

din
Conversely,

let us suppose(f * g)(n) = (f + g)(n) and n is not prime. Then

D Fdg() = fw) +5(n)

dn

This implies
> F @)+ g+ fmg(h) = ) +5(n)

dn,d#1,n

Thus we can conclude

n
>, fa@s(x)=0

din,d+#1,n
This leads to a contradiction, since it is assumed that f, g > O for any positive integer n.

So, we can conclude that » must be prime. O

Corollary 1.3.0.13. Let n > 1, then n is prime if and only if

on)+¢(n) =n.t(n)

Proof. Let n be prime. We also known

(0 *$)(n) = n-7(n)
Notice,

TEp=(ix)xp==i*(xg)=ixi
Now,

(i*i)(n):zz'(d)i(g)zzcz.g=n~21 — n-1(n)

din din dn

17



1.3 More on o, 7tand ¢

m]

Corollary 1.3.0.14. Let n > 1, then n is prime if and only if

7(n) +¢(n) = o(n)
Proof. Let n be prime, then
(T+@)(n) = (T ¢)(n)
Therefore,
Tap=((xDxp=0{x((xP)={xi=0

m]

18



Chapter 2

Characterization of Completely
Multiplicative and Additive Arithmetic

Functions

As of now we have only seen arithmetic functions and multiplicative arithmetic functions.
This chapter will discuss new concepts of arithmetic functions, those of which were studied

by Carlitz and Niederreiter, Lambek, and Schwab.

2.1 Completely Multiplicative Functions

In the previous chapter we discussed the concept of multiplicative functions. However, our
previous definition was only concerned with relatively prime elements of non-negative

integers. Now we will expand this property to any two non-negative integers

Definition 2.1.0.1. An arithmetic function, f, is said to be completely multiplicative if

f(nm) = f(n) f(m)

for all n,m positive integers.

19



2.1 Completely Multiplicative Functions

With this, we can show some properties that these types of functions will possess.

Theorem 2.1.0.2. If f is an arithmetic function then the following statements are equiva-

lent.

1. fis completely multiplicative
2. f(gxh)= fg= fhfor all arithmetic functions g and h

3. f(g=xg) = fgxfgforall arithmetic functions g

4. fr=f=f.
Proof. (1)= (2)

Let f be completely multiplicative, then

Fg W1 = FDY g @A) = ) fg(dh() = Y f(d-)g(dh(%)

din din din

n n n n
= Z N f(8(dh(=) = Z [AD)DILF (DR = 1f 8+ frl(n)

dln dln
2)=0)
Assume,

f(gxh)=fgxfh

for all g,he A

Then, it immediately follows that

flgxg)=fgxfg

=@
Assume
flg=g)=fg*fg
Then, for all g
Jr=f@«=fl«fl=f-1=f-1=f=f

20



2.1 Completely Multiplicative Functions

4= (1)

Suppose f* f = f1.
We will show inductively that f is completely multiplicative.

Now take n = 1, then

(f =) = f) ) =D f(D) = 1.f(1)

Therefore, f(1) =1 or f(1) =0.

€1

Now take n > 2 and let n = p|

D5 Do and a(n) =ep +ex+--+ep

Then, it is enough to show

Jm) = ffp) - f(pm)™

So, let a(n) = 1, then n is prime, say n = p, which implies

2f(p) =t(p)f(p) = fF(D)f(p)+ f(p)f(1) =2f(1) f(p)

Suppose this is true for all n with a(n) < k and k > 1.

Now we take n with a(n) = k+ 1 which gives

T fm =Y fDFC) =2 W+ Y D)

dn din,d+1,n

Now, letd =dy and 2 =d,, sod; -d> = n.
Also, a(dy) - a(dy) < k Then,

() f(n) = 2f (1) f(n) + Z f(d1)f(d2)

din,d+#1,n

Now, this fulfils the inductive step, so

(mf(n) =2f()f(m)+ @) =2 f(n) = fFD)f(p)" - f(pm)™
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2.2 Completely Additive Functions

Since n is not prime, it is clear to see that 7(n) > 2. So, for both f(1) =1 and f(1) =0 we

get the desired result. O

2.2 Completely Additive Functions

Now, we will introduce a set of functions which have a similar property to the multiplicative

functions, however, the functions are not split by multiplication, but by addition.

Definition 2.2.0.1. An arithmetic function, f, is said to be completely additive if

Jfn.m) = f(n)+ f(m)

for all n,m positive integers.

Example 2.2.0.2. A familiar example of a completely additive function is the logarithmic

function, as it is well known that
1. log(n.m) = log(n)+log(m) Yn,mN.

2. An immediate consequence of this property is, if f € S
then f(1) = f(1.1) = f(1) + f(1)
= f(1)=0
Definition 2.2.0.3. Q(n) = Z a is the sum of prime powers where p® exactly divides n
plin
Example 2.2.0.4. Q(12) =Q(223)=2+1=3
Q30)=Q235)=1+1+1=3
when n =1 we get

Q1)=0
because, 1 has no prime divisors.

If we take arbitrary n = p{", p3*--- p* and m = ¢|' ,qu . qf " both being the canonical

@
1
factorization of natural numbers nm,
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2.2 Completely Additive Functions

then we have

Q(n-m) = Q(p?'.pgz---pzk.qfl.qu--'qlﬁ’) =@+ tap+Bi++fy

= Q(n) + Q(m)

This means that Q is completely additive

Now with this we can define a function which we can show to be completely multiplicative
Louiville Lambda function

e A(n) = (-1)¥™

Following the fact that Q(1) = 0 we see that A(1) = 1 and since Q is completely additive

we get for any natural number n,m,
A, m) = (=1)20m = ()+m) - ()R ) = A1) A(m)

Before we discuss additional properties of this function, it would be beneficial to introduce
another arithmetic function, but first we must add a restriction to our definition of the

completely additive arithmetic function.

Definition 2.2.0.5. An arithmetic function, f, is said to be additive if

fnm) = f(n)+ f(m)
when (n,m) = 1.

Additive arithmetic functions, much like multiplicative arithmetic functions, only sat-
isfy this “splitting” property for relatively prime natural numbers. The following function
gives an example of this property.

e w(n) :Z 1 is the number of distinct primes, p', which divide n.
p'ln
Note the different values of w.

Let p be prime, then

W)=Y 1=00(p)=) 1=1

Pl plp
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2.2 Completely Additive Functions

It follows that when a > 1, we have

w(p®) = lel

P lp®

This implies that when n = p{"--- p;* the prime factorization of n, that

wm=wp'pypy= > 1=k
PP py2p K

Notice, if n = p{',p5*---p;* and m = ¢ ',qu : q’lg ! the prime factorization of n and m

where (n,m) = 1 then,

wn)+wm)=k+1=wh.m)
This implies that w is additive.

We will now discuss some of the properties of completely additive functions

Theorem 2.2.0.6. If f is an arithmetic function then the following statements are equiva-

lent.

1. f is completely additive
2. f(gxh)= fgxh+g= fh for all arithmetic functions g and h

3. f(g*g)=2(fg=*g) for all arithmetic functions g

4. fr=2f*0).

Proof. (1) = (2)

Let f be completely additive, then

[Fg W1 = FDLY | g@h(Z)] = " Fg(dh(%)

din dln

n n n n
= L@ s = D [f(d)+ fClgh(5)

din dln
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2.2 Completely Additive Functions

= D DR+ ) fEIgh(Z)

dln dn

=[fgxh+gx*fhl(n)

2)=03)
Let,

fgxh)=fegxh+gxfh

forall g,he A

Then we have,

fgxg)=fgxg+gxfg=rfgxg+fgxg=2(fg*g)

=@
Let
f(gxg)=2(fg*g)
Then,
JT=f({x)=2(f{+) =2(f-1%0) =2(f *{)
4)= ()
Suppose

Jr=2(f*0)

and let n = p.Then

Fp)r(p) =2f(p) =2(f*O) = f(p) = f(D+ f(p) = f(1) =0

Now, letneN,n>1andn = pllcl - -pf’ .Then, it will be shown,when m =k +- - -+ k;, that

f) =kif(p)+---+k f(pr)
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2.2 Completely Additive Functions

So,it M; =0,1,2,--- kifori=1,2,---tand M = M| X My X --- X M, then

1 . . . .
sfeyr= > fQl Py = Y f )

(iy~ieM (iy i) EM,iy +++ir#m

by induction

1
Sfeyry=fm+ Y [0+ +if(po)]

(i1-i)eM,ii++i;#m

Now,

, . 1 - t t
(il~~-i,)eM,ZiI:+...+i,¢m[llf(pl) +o i f(p)] = E[L_l[(ki + 1)][; ki f(pi)] — ; ki f (i)

This implies

1
fmy= > kif(py)
i=1
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Chapter 3

Multiplicative and Additive Power Series

In this chapter we will discus a relationship between formal power series and arithmetic

functions. However, we will need to first define the concept of formal power series.

3.1 The Formal Power Series

Definition 3.1.0.1. Let R be a commutative ring with unity and N, =0, 1,2, ... with
f:N, — Rsuch that f = (ap,a,a2,...,q;,...) = (a;)ien, and a; € R
Then define,

R’ ={ff = (aien,}

with the properties
L. f+g=(a;i +biien,

2. f-g= (coken, Ck = Z aib;
i+j=k

We will show that R’ with addition and multiplication forms a commutative ring with

unity,
Theorem 3.1.0.2. (R’, +,-) is a commutative ring with unity

Let us formalize this concept by introducing some notation.
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3.1 The Formal Power Series

Notation 3.1.0.3.
(1,0,0,0....) = x°
0,1,0,0.....) = x'
Also,
(0,0,0,...1..) = x*

where there are k many terms before 1.

Example 3.1.0.4. (a,0,0,0,...) = ax’ + bx' = a(1,0,0,0.....) + b(0,1,0,0.....)

We will call these a, b € R coeflicients of x.

With this we can say

Now we can define the following

Definition 3.1.0.5. The ring R’ is called the formal power series in x with coefficients in

R is denoted by R[[x]].The elements of R[[x]] are infinite expressions of the form

[ee]
f(x) = agx® +ax! +orapxk = Zakxk
k=0

and addition and multiplication are defined as

Example 3.1.0.6. A few well known examples of formal power series
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3.2 Bell Series

1. Geometric Series

(o]

1
S(X)ZZXkZITx

2. Exponential Series
ok
X
exp(x) = Z ol
k=0

where exp(x) represents the traditional exponential function and k! = k.(k—1)...1.

3. Logarithmic Series

log(—) = Z D

A known property of the exponential function is sort of a reverse additive property
exp(z+w) =exp(z).exp(w)Vz,w € C

So, if we have exp(ax),where a € N,, then we obtain

= (ax)k
Z =exp(ax) = exp(x+---+x) = exp(x).exp(x)...exp(x)

o (O @
IR RN

Let us introduce a type of power series which gives an immediate connection to arithmetic

functions

3.2 Bell Series

In this section and the following, we will be addressing the known results found in Apostol
regarding the concept of Bell Series and their connection to arithmetic functions. Then,
we will come to results proposed by McCarthy. However, we will verify them using Bell

Series
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3.2 Bell Series

Definition 3.2.0.1. Let f be an arithmetic function and p be a prime. Then the formal

power series

Fr0 =" f(pht

k=0

is called the Bell Series of f modulo p.

This concept was first studies by E. T. Bell in order to observe multiplicative properties

of arithmetic functions with power series

Example 3.2.0.2. The mobius Function (1)
To illustrate an example of this type of series, recall the Mobius function. It can be observed

that
pp(0) = > p(ph)t
k=0

Remember, the Mobius function is defined as follows

1 if n=lI,
u(n) =4 (-1)% if n=pi.ps...px with distinct prime

0 if if there exists a prime such that p*|n
Therefore,

.Up(x):Z/l(pk)xk: 124D x40+ 40X+ =1-x
k=0

Example 3.2.0.3. Dirichlet identity function

Also, we can see the Bell series representation of the Dirichlet identity function by

(o]

ep(x) = > e(p)rke,(x) = e(p")x® +e(p)x! +e(pP)r + -
k=0

=1404+0+---=1

This gives us a good representation of the mobius and identity function, but how would
we define the other arithmetic functions we have discussed?
Let us recall the completely multiplicative function, then this result and proof from Apostol

follows immediately.
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3.2 Bell Series

Theorem 3.2.0.4. If f is a completely multiplicative arithmetic function, then

1
0 =4 - f(p)x

Proof. Let f be completely multiplicative and p prime with K > 1, then

FPY = fp)-- f(p) = f(p)*

S0,
Fr0= D> FP =D = 1 (ot
k=0 k=0 k=0
m]
Note, that the above expression yields a geometric power series, meaning Z 1-xk=
k=0
1

1-x

S 1
L-(f(p)0) = fp(x) = ———
,;0 P 1-f(p)x

Example 3.2.0.5. We have studied quite a few completely multiplicative functions in this

paper so their power series representations are the following

_ 1 1
1. §p(x)—1—§(p)x—ﬂ

LHS-
1
== e T T
RHS-
L0 = Y L = 20 + L(p)xt + L (PPt + -
k=0
2 2 1
=l+lx+1lx"+---=14+x+x"+--- =
1—-x
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3.2 Bell Series

. _ 1 _
2. lP(x) T 1-i(p)x T 1-px

LHS-
(p)=p= 1 1
l = =
p)=p 1-i(p)x 1-px
RHS-
-_Oo-kk_~0+~11.22
ip(x) = D ip )k = i(pOti(p ! +i(p?) + -
k=0
1
= l+p.x+p2.x2+--- = 1+(px)+(px)2+--- =
1-px
; 1 __1
3. lg(x) T 1-i(pY)x T 1-pPx
LHS-
1 1
. a (07
= fr—t =
wH=p 1-i(p¥)x 1-p*x
RHS-

i) = D (PO = PO + (P + (P
k=0

1
=1+p%x+p* 2+ =

1-p%x

_ 1 1
4. Ap(x) = —A(p)x — T+x

LHS-
1 1 1

A == T T T e~ Tox
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3.2 Bell Series

RHS-

() = > AP = A0 AP Hx! + AP + -
k=0

1
= 1+(-Dx+ 1.2 +=DP+ =l —x+x2 -+ = —
1+x

Before we continue it is important to discuss the following theorem.

Theorem 3.2.0.6. If f and g are multiplicative arithmetic functions, then f = g if and only
if
I p x)=g p(x)

for all primes p

Proof. First, let us assume that f = g. Then we see that
5 =2
for any prime,p, and k > 1 Therefore, it is clear to see

I p x)=g p(x)
for all primes p conversely, let
/i p x)=g p(x)

for all primes p. Then,

Fr0= D Fpt =D et
k=0 k=0

This means,

fp(x) = gp(x)

for any powerk. Also, f and gare assumed to multiplicative, therefore, we can say for any

prime p



3.2 Bell Series

m]
Theorem 3.2.0.7. If f,g and h are arithmetic functions and h = f = g, then
hp(x) = fp(x)gp(x)
Proof. Letpbe prime andk > 1. Recall that the divisors of p* are
D: 1’p9p25“' 9pk
S0,
k
ky ky _ PN iNo( i
PN = (PN = ) 1@ e = ) g
dk i+j=k
Then, following our definition of formal power series multiplication, we can say
hp(0) = Y (D FPRPNE = fo(0)- g,(x)
k=0 i+j=k
m]

With this result we can determine the Bell series representation of some arithmetic

functions.

Application 3.2.0.8. Recall

¢=ixu
therefore, we can say

1-x

(1=x) =
l—p-x( ») 1-p-x

¢p(x) = ip(x) - pp(x) =

This is quite significant, since with this we can determine the formula representation of

the Euler totient function

_A=x N Kk N kk N
by (x) = 1_p'x_(1—x).;)px _;)px —x;pxk
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3.2 Bell Series

_ k. k k=1) k _ k_ (k=1)y, .k
—1+;px ;p x—1+;(p p )x

Thus, we can say for k > 1

1
o(p") = p* - pFt = pk(1 - >

Extending this to any natural number n = p{" - p3*--- p/* multiplicative we obtain

d(n) = (P} .p52...p") = d(p{)-d(p5D)...d(p}*)

1 1 1 k 1
— 21 2 % _ 1—
P (1—P1)p2 (l—pz) Py (1_Pk) n!-:]l( i)

This gives us a new way of determining the formula for the totient function, using what
was learned from Apostol.
This gives us reason to believe that there are potentially more formulas of arithmetic

functions which can be derived using Bell Series.

Application 3.2.0.9. Another application of this theorem comes from the arithmetic

Jfunction

00 = "% {= 0qp(x) = iﬁ(X){p(X) = 1_},ax-ﬁ = (l_poz;m

o7 = (= 7p(0) = (0.4 0= Tp(0) = i

Theorem 3.2.0.10. If f is a multiplicative arithmetic function, then f is completely

multiplicative if and only if

f=uf

Proof. First we will assume that f is completely multiplicative. Then, we can say

1
A T
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3.2 Bell Series

Now,

p(0 = > wHEP* = > uph) ()t
k=0 k=0

Recalling a multiplicative property, we can say f(1) = 1. Therefore

= > HPHFPHF = 1= f(p)x
k=0
Also, we can clearly see
ep(x) = (uf)p(x)- fp(x)

This is only the case if pf is Dirichlet inverse of f

Conversely, assume f = uf then we have,

Jp(0) = Wfp(x) = 1= f(p)x

If f is the inverse, it must be that
uf=f=e
which implies

1=~ f(p)x)- fp(x)

This implies

=1 - f(p)x

meaning, f must be completely multiplicative O

Theorem 3.2.0.11. If f is a multiplicative arithmetic function, then f is completely

multiplicative if and only if

f(p)H=0

Ya>2
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3.2 Bell Series

Proof. Let f be completely multiplicative. Then we have f = uf

Jp(0) = uf)p(x) = 1= f(p)x

This implies
fp™=0
Conversely, let, f (pPH=0Va=>2
Then,
Fo0 = FP* =1+ f(p)x

k=0
1

L T

This implies
1

=T Srm

meaning, f must be completely multiplicative. O

Application 3.2.0.12. Since

Then we have,

() = @0 = ) (PPt = 1+x = p(pu(pt)rk = i (x)
k=0 k=0

So we can see that

Application 3.2.0.13. Let
flmy =24
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3.2 Bell Series

then,

2x B 1+x

1-x 1-x

fr= Y2k =14 Y 2ak =14
k=0 k=1

Therefore, we have

Fp(X) = 1(%).Lp(x)

Meaning we have a formalization for this function

2&)(") :#2*42 Z#Z(d)

k=0

Therefore, the arithmetic function 2 is the summation of >
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3.3 Bell Series and Specially Multiplicative Functions

3.3 Bell Series and Specially Multiplicative Functions

In this section we will use Bell Series to verify results shown in the work of McCarthy, in

regards to the concept of specially multiplicative arithmetic functions.

Definition 3.3.0.1. Let f be a multiplicative arithmetic function, then f is said to be
specially multiplicative if

f=gxh
where g and h are completely multiplicative arithmetic functions.
The following result comes from McCarthy

Theorem 3.3.0.2. If f is a multiplicative arithmetic function, then it is specially multi-
plicative if and only if
1
/ p(x) = 1

—bx+cx?

Proof. Let f be specially multiplicative and p be prime, then we have
f=gxh

where g, h are completely multiplicative.

we also have,

_ 1 _ 1
8p(%) = T and hp(¥) = 75057

It is also known, that

1 1 1
1-g(p)x1=h(p)x ~ 1-[g(p)+h(p)lx+[g(p)h(p)]x>

Jp(x0) = gp(x)-hp(x) =

Notice that [g(p) + h(p)]and[g(p)h(p)] are elements of C, so we can see the condition is
satisfied.

Conversely,assume

1
fp(x) = 1

—bx+cx?
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3.3 Bell Series and Specially Multiplicative Functions

where b,c € C. Then we have,

1 1 1

1 —br+cx l—al-x. l—ar-x

fp(x) =

with a; and a; being the roots of quadratic equation,
1—bx+cx?=0

Now,we can say there exists two arithmetic functions g and & where g(p) = a; and

h(p) = a>. Therefore

_ 1 _ 1
8p(%) = T and hp(¥) = 7505

meaning, g and & are completely multiplicative.With this,we can conclude

Jp(X) = gp(x).hp(x)
which implies
f=gxh
= f is specially multiplicative. O
Ilustration 3.3.0.3. g(n) = 2% and h(n) = 392%™
Both functions are completely multiplicative,so the function

f(n) = 2Q(n) , 30(n)

is a specially multiplicative function

Hlustration 3.3.0.4. Also,recall { and i are completely multiplicative,and
T={(x{and o ={*i

Therefore we can say T and o are specially multiplicative.
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3.3 Bell Series and Specially Multiplicative Functions

Now we should recall the property of completely multiplicative functions,that being
if f is completely multiplicative then

f(p*=0Va>2

Theorem 3.3.0.5. If f is a multiplicative arithmetic function, then f is specially multi-
plicative if and only if
fpH=0 Va>3

Proof. Let f be specially multiplicative.Then we have
f=gxh

where g,h are completely multiplicative. Then, it is the case that

f=8xh=pgxuh
which gives us
70 = O 1PH2(HHOQ 1PHREH) = (1 =g (101 = h(p)x)
k=0 k=0

= f(p®")=0 Va>3

Conversely we will say

fpH=0 Va>3

It follows that

Fo0 =Y FPh* = 1+ f(p)x+ F(pH)x?
k=0
Therefore we have,

1 1
1+ f(p)x+ f(p)x2 1= (=F(p)x+ f(p})x?

fp(x) =
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3.3 Bell Series and Specially Multiplicative Functions

So by the previous theorem we see that it must be the case that f is specially multiplicative.

O

Theorem 3.3.0.6. If f is a multiplicative arithmetic function, then f is specially multi-

plicative if and only if

FEUY = F) f(p™) + FE DI - f(p)*]

for all primes, p, and for all > 1.

Proof. Let f be specially multiplicative.Then we have
where g,h are completely multiplicative. Then,

Jp(x) = gp(X)hp(x)

This gives us,

if(p")xk = i( > eha(p/nt
k=0

k=0 i+ j=k

So for k = 1 we obtain

f(p)x=[g(p)h(1)+g(D)h(p)lx = x

and for k = 2 we obtain

FPHx* = > gHA(p )R = [h(p2) + g(p)h(p) + g(p2)]x*
i+j=k

Notice, since g and & are completely multiplicative we see
f@H =) = [h(p2) +g(P)h(p) + g(p2)] = (18(p) + h(p))
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3.3 Bell Series and Specially Multiplicative Functions

= [h(p?*) + g(Ph(p) + g(pP)] - [g(p*) + 28(P)h(p) + h(p*) = —g(p)h(p)

Then RHS,

FOFP+ P DIA(PH - f(p)*]

= [g(P)+h(PIIC D PHAPDI+IC D (PP NI-g(p)h(p)]

i+j=c i+j=a—1

=[( D &'+ DRI+ D PO NI-IC D e(p'+ Dh(p )]

i+j=a i+j=a i+j=a-1

=1 > e@™HpN=C D @O+ Y] 2P

i+j=a i+j=a—-1 i+j=a

=g Ha)+ > e(pHh(p)

i+j=a

= > 8" O™

i+j=a

DR ALCD

i+j=a+1

f(p™"y = LHS

Conversely, let us assume that, for all @ > 1, we have

FUY = F() f(p™) + FEU DI - £(p)*]

Now, f € mathcalM,so f(1) = 1. Also, for any prime p we have,

0=e(p) = (f*Pp) = F)f(p)+ f(p)f(1)

This gives us

f»)=-fp)
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3.3 Bell Series and Specially Multiplicative Functions

Following for p*> we obtain

0=e(p®) = (f = H(PH = FOFPH + F(p) F(p) + F(pH F(1)
which implies
F*) = f()* - F(p*)

Also, for p3 we obtain

0=e(p’) = (f = H(P) = FOFP) + F(p) F(p*) + fF(pD) f(p) + F(7) f(1)

This implies the following

F0*) = =) FHfFPHF(p) - £(p)
) = —F(PXFP)* = FPD) = FPP)=F(P) - F(p?)

= —f(py +2f(P)f(P*) - F(p*)

we have RHS

FPN = F FP™) + FP DI - £(p)*

foralla > 1

Then we can say for @ =2

(0P = FP) )+ FDILFPD = F()*] = 2f(p) f (™) = f(p?)

S0,

F@*) = =)’ +2f () f(pH - F()

=—f()’ +2f (D) f(P*) - 2f (D) f(PH) - F(p*)] =0
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3.3 Bell Series and Specially Multiplicative Functions

Next,

let us assume that it is the case

fip"H=0
when3<a <n
If this is true, then what follows is
. . n+l . .
0=e(p™) = (F= NP ) = (TN = ) FEOFE™)
k=0

= fADFP"™ N+ Fp) f + FEHF P+ Fp™ ) £(1)
= (" Y= F) F P+ L) = FEOIFP" D+ ("

Therefore,

F@E"Y = =" Y+ F) fPD - L ) = FEHIFP"

Since f(p*h) = (f(p)f(p®) + F(p* HIf(P*) - f(p)*]
F™ D ==(F P+ FE D EH = FED+FP) F(PD =1 ) = FEHIf(p" ) =0

So f must be specially multiplicative O

Theorem 3.3.0.7. If f is a multiplicative arithmetic function, then f is specially multi-
plicative if and only if there exists a multiplicative function, F,

such that for all m and n

m n
fenm)= ) fCDFCF)

d|(m,n)
Proof. Let us assume f is specially multiplicative.
If (mn,m’n") = 1, then ((m,n),(m’,n")) = 1 and (mm’,nn") = (m,n)(m’,n’).

It must be shown that there exists some multiplicative function F which satisfies

min(a,B)
Fe™Py= > fp HFPPHF(pY
i=0
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3.3 Bell Series and Specially Multiplicative Functions

forall @, >1

Now, let F' = uG, where G is a completely multiplicative function and for each prime p

G(p) = f(p)* - f(p?)

Using induction

Then, for 8 < @ and 8 = 1 we have since, f is specially multiplicative.

FEUY = F ™) + FEHILFPD - £(p)*] = fF(p) f(pH)G) - fF(p* HG(P)

= f(P) f(PMuDGD) + £(p Hu(p)G(p) = £(p)f(p")F() + f(p* HF(p)

which satisfies the sum.

Now assume for 8 > 1 that the equation holds for §— 1 for all 8 < a. Also,

F(pH=F(p>)=---=0
Therefore we obtain the following

FEOPy = fFE*TE Y = F Y PP + FO (PP F(p)

= [F(D) (D) = FPHGPIF PP + F ) F PP DHup)G(p)
= F(POf D PP = FEPHGPI - F* PP HG(p)

using for 8 what we have

FE™h = f(p) f(pHG) - F(p*HG(P)

We get,

FUP) = FEOLF )PP - FPPHGP) - Fp* D P HG(p)
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3.3 Bell Series and Specially Multiplicative Functions

= FPOFPPF) + FE* PP DHupGp)
= f(POfFPPFD) + F* H PP HF(p)

This is what we needed to show.
Conversely assume the equation defined above holds.

Let p be a prime withm = p® and n = p where @ > 1. Then

FU = FEHFPOFMD + FpHF(p* HF(p)

If we let @ = 1, then

f*) = f(p)* + F(p)

which implies

F(p) = f(pH) - f(p)*

With the equation from theorem satisfied and hence we can say f is specially multiplicative.

O

Theorem 3.3.0.8. If f is a multiplicative arithmetic function, then f is specially multi-
plicative if and only if there exists a completely multiplicative function, G, such that for all

mandn

famfm = Y fCFIGE)

d|(m.n)
Proof. Assume f is specially multiplicative. Then the equation from previous theorem
holds.
So RHS-

mn__, m n__,
2, JCRG @ = ) [ )G @)

d|(m,n) d|(m,n)

_ d\d e
= ) 2, fIOuDIG (DG @)
d|(m,n) DI(2), )
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3.3 Bell Series and Specially Multiplicative Functions

Continuing we obtain

m

n._ k__,
M OR(5)G (k)

m .n k., k ., o
= >, D, TG HG =Y Y f(
d|(m,n) k|(m,n)(d|k) d|(m,n) k|(m,n)(d|k)

m_.n__, k
= D, FEIFGIG'®) Y u(5) = fm) fn)
kl(m,n) (dlk)

=LHS

Since here, (%)=l and k=1
Conversely,

assume the above equation holds.

Letp be a prime and p = m = n, then

B mn p2 p2
fm)f(n) = f(p)f(p) = Z f(ﬁ)G(d) =f(T)G(1)+f(?)G(p)

d|(m,n)

fm)f(n) = f(p)* = f(p*) +G(p)

Therefore,

G(p) = f(p)* - f(p*)
If m = p® and n = p with @ > 1, we obtain

a+1

FfP = Y SEIGE)

d|(p®.p)

a+1 a+1

G+ f(F
p

P
1

= f( )G(p)

= f(p" )+ FP* DI () - F(pP)]

Since G(p) = f(p)2 —f(pz) Therefore,

FEOfP) = FE*H+ F* D= + f(p)*]
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3.4 Multiplicative and Additive Power Series

FEU = FOf(p)+ FET DL - £(p)*]

This means, by Theorem, f is specially multiplicative m|

3.4 Multiplicative and Additive Power Series

This section we will discuss the embedding of the formal power into the unitary ring of
arithmetic functions.

Recall (A, +,d) is the unitary ring and let us consider the formal power series ring C[[x]]

Theorem 3.4.0.1. The ring C[[x]] can be embedded in the unitary ring of arithmetic

functions.

Proof. Consider the map n : C[[x]] — A such that

(> @) (n) = () aum

k=0

Let n=p¢' - p’* where pi --- pk are distinct primes and @ > 1, then
1 k p

(> @) )+ 1Y b )n) = () awm + @) by = Klag + kb
k=0 k=0

=k!(ar+by) = U(Z(Clk + b)) = U(Z apx* + Z brx*)(n)

k=0 k=0
Also,
() a)m @Y brk)n) = 0w & 0 bu = Klag!by
k=0 k=0
= () (@)'aq-(= >'bk -k'Zadbk n(Z(Z aib)x*)(n) = n(Zakx" me")(n)
dlk k=0 i+j=k

Therefore, 77 is a homomorphism.

We can also show that this mapping is injective.
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3.4 Multiplicative and Additive Power Series

Let,
(> ax)m) = n(y | arx)om)
k=0 k=0

This implies,

w(n)!aymy = wim)!agym)

Now this is only the case when w(n) = w(m). Therefore, n and m must a product of primes,

both with k factors, meaning 7 is injective.

So, C[[x]] can be embedded A O

we can determine the characteristics of a formal power series in C[[x]] as if it were an

arithmetic function.

(&)

Definition 3.4.0.2. A formal power seriesZ akxk € C[[x]] is called multiplicative if
k=0

[0}
arithmetic function U(Z apx¥) is multiplicative.

k=0
Definition 3.4.0.3. A formal power seriesZ akxk € C[[x]] 1s called additive if arithmetic
k=0
function n(z arx’) is additive.
k=0
The binary operation

Z akxk O} Z bkxk = Z k!akbkxk
k=0 k=0 k=0

will give us the opportunity to create analogues for the properties studied in chapter 2 with

multiplicative and additive formal power series.

Theorem 3.4.0.4. Let Z akxk € C[[x]] be a non-zero power series.Then the following are
k=0
equivalent
1. Z agx is multiplicative
k=0

ak
2. ap =g VkeN

3. i akxk ® (i bkxk . i ckxk) = (i akxk © i bkxk) (i akxk ® i ckxk)
k=0 k=0 k=0 k=0 k=0 k=0 k=0
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3.4 Multiplicative and Additive Power Series

(6]

for all Z bkxk, Z ckxk € C[[x]]

k=0 k=0
4. Z Zkakxk = Z akxk . Z akxk
k=0 k=0 k=0
Proof. (1) = (2)

Let Z akxk be multiplicative, then
k=0

1= ad)(1) = w(Dlay(1) = ao

k=0

a1 =10 ax)(p") = w(p)lau(P?) = ag

k=0

So we can say,

af =0 a® )P0 ad)(pp)
k=0 k=0

=10 @) P} py) = Kl
k=0
2= 1)

k
Let a; = 7+ Vn e Nand let n,m € N st. (m,n) = 1 then,

k

(6] o) a
U(Z ax*)(m.n) = n(z k_: *Nm-n) = at]u(m-n)
k=0 k=0 "

ap™ e = a? . a = (Y axdymy-n() )
k=0 k=0
2 =0)

k
Let a; = ak—} Vn € N then,

k

ok I ok e 0o k [
4k AN ky = il Ak
(; o Q;)bkx )(;0 o @;ckx )—(;k.k!bkxk)(;k.k!ckx)

(o)

= (i a'l‘bkxk)(i dieex®) =) () bicp)
k=0 k=0

k=0  it+j=k
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3.4 Multiplicative and Additive Power Series

»|_»

@Z(Z bcj)x = ku(Zbkxk chx

k=0 i+j=k

() =)

Let the distributive property hold.Then

ki:(:) Zkakxk = g)akxk O] g) i—];xk
Recall,
exp(x) = ;O kl!xk
This would imply
» i—fx" » 200 = exp()- exp(o) = (Z % )(Z
k=0 k=0
— — 2K - - 1
:kZ:;)akaQkZ:Ok'x kz::akx o( k' kZ::k_
= (i akxkcai —'xk) (i akxk . i l‘xk) = i akxk i akxk
k=0 k=0 k=0 k=0 k k=0 k=0
4) = (2) N N
Assume Z 2k akx = Z akxk . Z akxk holds
k=0 k=0 k=0
iZ akxk = i a,agX
k=0 r,5=0
= i arQj—rX
k=0,0<r<k
= i(i arQj—r)X
k=0 r=0
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3.4 Multiplicative and Additive Power Series

Thus,

(&)

Zkak = Zarak_,

r=0

- Zkak =aqapaip+a1ai-1 +axap-2 +---+ag_1a1 +aragp

Yap = 2ap + (@1ap-1 + apag—a + -+ + qr-1a1)

=2
= (2" -ay = (@1ak-1 + @ax2 +++-+a_1dg) e (1)

k
To prove a; = % VkeN

we prove by induction

Fork=1;
a)
aly = F
assume
a
ay = )

For k+1 by (1) above

1
Ak+1 = (2k+1—_2)-(a1ak+a2ak-1 +--+aray)
using induction
k 2 k-1 k1
1 aja;  aja; aja,

Wl = ot Zg) Tk T 2Mk=D)1 R

= ar’! ( | + ! + 1 )
k=) 1k 21k —1)! k!1!
LA k+ D! (k+DU Gkt D)
Ck+ D! QK2 1K 2(k=1)! k1!
ak+1 1
L [(k+ D+ &) K+ 1)+ +(k+1))

T k+ D! 2T

using binomial expansion

ak+1

T k+ 1)

Af+1
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3.4 Multiplicative and Additive Power Series

Hence shown that (4) = (2) i
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3.4 Multiplicative and Additive Power Series

Theorem 3.4.0.5. Let Z akxk € C[[x]] be a non-zero power series.Then the following are

. =0
equivalent

1. Z akxk is additive
k=0
2. aO:Oandak:(ka—ll),VneN

3. Zakx Q(Zbkx chxk):

kO

(Zakx @Zbkx) chxk]+ (Zakx @chx) Zbkxk]

for all Z bkx Z ckx € C[[x]]

k=0
4. ZZkakxk Z Zakx
Proof. (1) = (2)

Let Z ak)/‘ be additive, then
k=0

0=n() &) (1) = w(D)!ay(1) = ag
k=0

a1 =1 a)(p™) = w(p™)au(P”) = ag

k=0

So we can say,

kai = n(Z ar )P} +17(Z a)(p)

= 77(2 ax)(p] -+ pt) = Klag
k=0

Therefore
ai
(k—1)!

ay =

(2) = (1)

Leta; = ﬁ VYn € N and let n,m € N st. (m,n) = 1 then,
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3.4 Multiplicative and Additive Power Series

[o¢) (o) k .
1Y @ty = (Y ) m ) = wm-na)
k=0 k=0 )
= w(ma; + w(na; = n(Z — )+ n(Z — )

=10 @) m)+1()y | arx)(n)
k=0 k=0

(2) =03)

Let a; = Vn € N then,

(k 1)’

Zk alxkOZbkx) chxk +[(Z

kachxk) Zbkxk]

(o]

Zkalbkx chxk+2kalckxk Zbkxk

k=0 k=0

i Z ialb,-cj)xk+ i( Z ialcibj)xk = i[ Z ial(biCj+Cibj)]xk

k=0 i+ j=k k=0 i+ j=k k=0 i+ j=k

= i[kal Z (bicj)lx* = Z x @(i bicrx®)
=y

i+j=k
ik— @(ib xk~ic xk)
A k k
k=0 k=0 k=0
3) =@
Let the distributive property hold.Then
(S [S¢] [S] 2
Z 2kakxk = Z akxk © Z ka
k=0 k=0 k=0
Recall,
o 1
exp(x) = —xk
k!
k=0



3.4 Multiplicative and Additive Power Series

This would imply
o0 (o) 1
Zk— = ) (@0 = exp()-exp(x) = (Z o )(Z
k=0 k=0
therefore,
[ee] [ee] (o) [ee] (o] 1
_ k <k k R Lk
—Zakx @Zk'xk—Zakx @(Z k'x Zk'x)
k=0 =0 k=0 k= k=0
=10 a0 ) 13 ) I+ @k Y a3 b))
k=0 = k=0 k=0 k=0 k=
SNt S 2
k k!
k=0 k=0
4 =2
oo [o0) 2 o0
Assume ZZkakxk = EXk Z kx holds
k=0 k=0 k=0
i2ka X" = i Ea x*
k = ér
k=0 r,s=0
)
= _ak—sxk
g!
k=0,0<s<k
= Z(Z _ak s)x
=0 5=0°
Thus,
2% = iga
k — o k—s
s=0
— 2%q, = 2a +£a +£a Ea La 3a
k= 24k %1 2,k2 3,k3 *k=1D)! k—k+1t 1 ek
ok 5 2 2 2 2 2
— Zaip = ak+Fak 1+5ak 2+ yak 3+ (k—l)' an
2 2 2 2
k  — — —_— 1. N et — (1 00000 e e e e e e e
= 2" -2 = [ -1+ 5702+ 3yak-3+ - (k_l)!al (D
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3.4 Multiplicative and Additive Power Series

To prove ax = g2y Yk €N

we prove by induction

Fork=1;
aj &
assume
ai
a = ——
Y
For k+1 by (1) above
P S S e 20
Ak+1 = —ai+ —ai-1+ —ax-2+-- ar+——a
T TR TR Th =1 (!
using induction
2 aj ai aj aj ai
Ap+1 = ( + + +ot——t+—)
Qk=2) " 11(k=1)! 21(k=2)! 3!(k-3)! k=D (k)!
B 2 al( k! N k! N k! e k! +k!)
_(Zk—2)k! 1Nk-1)! 21(k-2)! 3%(k-3)! k=D  k)!

using binomial expansion

Hence shown that (4) = (2)

1 a
(2k-1) E(Zk -D

ai

a = —
k+1 X!
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Chapter 4

Analysis and Conclusions

In Chapter 1 we defined arithmetic functions and looked at the different arithmetic function
and some examples based on them. Also, We will study the Dirichlet Convolution and
Unitary Convolution and theorems based on these topics. we stated and proved some basic
theorems that we would require in the later part.

In Chapter 2 we discussed some new concepts of arithmetic functions.we gave the
characterization of Completely Multiplicative and Additive Arithmetic Functions. we also
defined some more arithmetic functions.

In Chapter 3 we looked at the multiplicative and additive power series. The main
interest of the author was to see the relationship between formal power series and arithmetic
functions. We first defined the concept of formal power series and the Bell Series, then we
discussed the Bell series and specially multiplicative functions. we verified the Bell series
expansion for the different arithmetic functions. we also proved some theorems and parts

of the theorem that were left unsolved.
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