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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-

ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: " Multiplicative And Additive Arithmetic

Functions And Formal Power Series" This survey is divided into three chapters. Each

chapter has its own relevance and importance. The chapters are divided and defined in a

logical, systematic and scientific manner to cover every nook and corner of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report we define arithmetic functions and we look at

the different arithmetic function and some examples based on them. Also, We will study

the Dirichlet Convolution and Unitary Convolution and theorems based on these topics.

SECOND CHAPTER:

This chapter will discuss new concepts of arithmetic functions.we will also give the char-

acterization of Completely Multiplicative and Additive Arithmetic Functions.

THIRD CHAPTER:

In this chapter we will discus a relationship between formal power series and arithmetic

functions. However, we will need to first define the concept of formal power series.
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ABSTRACT

The theory of arithmetic functions and the theory of formal power series are classical

and active parts of mathematics. Algebraic operations on sets of arithmetic functions,

called convolutions, have an important place in the theory of arithmetic functions. The

theory of formal power series also has its place firmly anchored in abstract algebra.

A first goal of this thesis will be to present a parallelism of known characterizations of

the concepts of multiplicative and additive for arithmetic functions on the one hand and

for formal power series on the other.Later, the proofs of some main results on completely

and specially multiplicative functions has been replaced with new proofs using Bell series.

This was a second goal of giving new proofs using Bell series, and so we bring the two

topics (arithmetic functions and formal power series) closer together. I found this topic

interesting and intriguing. I dived deep into the paper,studied its concepts and theorems

to gain thorough understanding. In this paper I observed that a many theorem that were

previously solved can be solved in a simpler way using the bell series.

Keywords: Arithmetic functions; Completely multiplicative functions; Additive func-

tions; Specially multiplicative functions; Bell series; Formal power series
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Notations and Abbreviations

A The set of all arithmetic functions
τ Is the number of positive divisors of n
σ Is the sum of all positive divisors of
µ The Möbius Function
ϕ Euler’s totient function
f ∗g Dirichlet Convolution
(A,∗) Set of arithmetic functions with binary operation
f ⊕g Unitary Convolution
ζ Unit function
i Identity function
M Set of non-zero multiplicative arithmetic function
U(A) The set of units/ invertible elements
λ Louiville Lambda function
ω Is the sum of prime powers where pα exactly divides $n
R Commutative ring with unity
fp(x) Is called the Bell Series of f modulo p
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Chapter 1

Arithmetic Functions and Convolutions

Introduction

The theory of Arithmetic Functions has always been a vital part of Number Theory. In this

chapter we will define arithmetic functions and look at the different arithmetic function

and some examples based on them. Also, We will study the Dirichlet Convolution and

Unitary Convolution and theorems based on these topics.

1.1 Arithmetic Functions

An arithmetic, arithmetical or number-theoretic function is any function defined on the

set of positive integers (natural numbers) N ={1,2,3, · · · } with values in the set of complex

numbers . We will focus on the ring of arithmetic functions with the standard addition

of functions and the Dirichlet convolution or unitary convolution as the multiplicative

operation.

The following definitions and arithmetic functions of this chapter can be found in Sivara-

makrishnan [12], Burton [2], McCarthy [6] and Niven [8]. However, notations may be

different.

Definition 1.1.0.1. By R. Shivaramakrishnan: A function f : N→ C is said to be an

Arithmetic function
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1.2 Dirichlet Convolution and Unitary Convolution

Definition 1.1.0.2. By I. Niven: An Arithmetic function f is one whose domain is the

positive integers and whose range is a subset of the complex numbers.

Notation 1.1.0.3. The set of all arithmetic functions will be denoted by

A = { f : N→ C}

We give some examples of the arithmetic functions that will be used and discussed

throughout this paper.

Example 1.1.0.4. Euler Totient function(ϕ)

ϕ(n) =
n∑

k=1

′

1, ∀ n ∈ N

where the
′

indicates that the sum is extended over those k relatively prime to n.

Note That:When p is a prime number we have ϕ(p) = p−1

Example 1.1.0.5. Divisor Function(τ)

τ(n) =
∑
d|n

1 ∀ n ∈ N, is the number of positive divisors of n.

Example 1.1.0.6. Sum of Divisor Function(σ)

σ(n) =
∑
d|n

d ∀ n ∈ N, is the sum of all positive divisors of n.

Example 1.1.0.7. The mobius Function (µ)

µ(n) =


1 if n = 1,

(-1)k if n =p1.p2...pk with distinct primes

0 if otherwise

1.2 Dirichlet Convolution and Unitary Convolution

1.2.1 Dirichlet Convolution

Definition 1.2.1.1. Let f and g be arithmetic functions, then the Dirichlet Convolution is

defined as

( f ∗g)(n) =
∑
d|n

f (d)g(
n
d

)∀n ∈ N
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1.2 Dirichlet Convolution and Unitary Convolution

Before we discuss the properties of the structure (A,∗), it would be quite helpful to

illustrate this operation through example. So, if we take two arithmetic functions f ,g

More concretely, let us take µ and σ and the integer 12, we obtain

(τ∗σ)(12) = τ(1)σ(12)+τ(2)σ(6)+τ(3)σ(4)+τ(4)σ(3)+τ(6)σ(2)+τ(12)σ(1)

= 128+29+27+34+43+121

= 96

Also, we can notice,

τ(1) = 1 and σ(1) = 1

Now, let us examine the properties of the structure (A,∗)

Notation 1.2.1.2. (A,∗) - is a set of all arithmetic fuctions with a binary operation.

Definition 1.2.1.3. Monoid- A monoid is a set that is closed under an associative binary

operation and has an identity element.

Theorem 1.2.1.4. The structure (A,∗), is a commutative monoid.

Proof. It needs to be shown that the operation is commutative, associative, and has identity.

To show that this structure is commutative, we need to verify this property

f ∗g = g∗ f

for all arithmetic functions f ,g inA.So,

( f ∗g)(n) =
∑
d|n

f (d)g(
n
d

) =
∑

d1d2=n

f (d1)g(d2)

=
∑

d1d2=n

g(d2) f (d1) =
∑
d|n

g(d) f (
n
d

) = (g∗ f )(n)

Now we will verify the associative property

( f ∗g)∗h = f ∗ (g∗h)

3



1.2 Dirichlet Convolution and Unitary Convolution

for any f ,g ∈ A

so,

[( f ∗g)∗h](n) =
∑

dd3=n

[( f ∗g)(d)]h(d3)

=
∑

dd3=n

[
∑

d1d2=n

f (d1)g(d2)]h(d3)

=
∑

d1d2d3=n

f (d1)g(d2)h(d3)

By a similar calculation, it can be shown

[ f ∗ (g∗h)](n) =
∑

d1d2d3=n

f (d1)g(d2)h(d3)

which implies this structure is associative.

To determine the identity element, we need to identify e ∈ A with the property

f ∗ e = e∗ f = f

for all f ∈ A

To do this, consider the arithmetic function

e(n) =


1 if n = 1

0 if n > 1

Then it follows

( f ∗ e)(n) =
∑
d|n

f (d)e(
n
d

) = f (1)e(n)+ · · ·+ f (n)e(1) = 0+0+ · · ·+ f (n) = f (n)

This implies that the arithmetic function e is the Dirichlet identity. With this, we have

shown that (A,∗), is a commutative monoid. □
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1.2 Dirichlet Convolution and Unitary Convolution

Now that the properties of this structure have been identified, it would be beneficial to

determine what it’s inverses are.

Notation 1.2.1.5. The set of units/ invertible elements of the structure (A,∗) will be

denoted by

U(A) = { f ∈ A| f isinvertible}

Which are these elements?

Theorem 1.2.1.6. The invertible elements of the structure (A,∗), are exactly those arith-

metic functions with the property f (1) , 0 i.e

U(A) = { f ∈ A| f (1) , 0}

Proof. To prove this, it must be shown that f ∈ U(A)⇐⇒f(1), 0

So, let f ∈ U(A). This implies that there exists an arithmetic function f̃ ∈ A

with the property

( f ∗ f̃ ) = e

then since e(1) = 1,

e(1) = ( f ∗ f̃ )(1) = f (1) f̃ (1)

⇐⇒ f (1) , 0

Conversely, let us assume f (1) , 0. Now, we will define the following arithmetic function

recursively such that

f̃ (n) =


1

f (1) if n = 1

− 1
f (1)

∑
d|n

f (d) f̃ (
n
d

) if n > 1

So, for n = 1 we have

( f ∗ f̃ )(1) =
∑
d|1

f (d) f̃ (
1
d

) = f (1) f̃ (1) = f (1) ·
1

f (1)
= 1 = e(1)

5



1.2 Dirichlet Convolution and Unitary Convolution

For n > 1 we have

( f ∗ f̃ )(n) =
∑
d|n

f (d) f̃ (
n
d

) = f (1) f̃ (n)+
∑

d|n,n>1

f (d) f̃ (
n
d

)

Notice,

f̃ (n) = −
1

f (1)

∑
d|n,n>1

f (d) f̃ (
n
d

)

Therefore, ∑
d|n,n>1

f (d) f̃ (
n
d

) = − f̃ (n) f (1)

Then this is what follows

f (1) f̃ (n)+
∑

d|n,n>1

f (d) f̃ (
n
d

) = f (1) f̃ − f (1) f̃ (n) = 0− e(n)

So, we can say

( f ∗ f̃ )(n) = e(n)

for all natural numbers n.

This implies, f is the inverse of f̃ .

Therefore, arithmetic functions with the property, f (1) , 0, are inverse elements of (A,∗)

□

Definition 1.2.1.7. Let f be an arithmetic function, then f is called multiplicative if

f (mn) = f (m) f (n) when (m,n) = 1

Definition 1.2.1.8. Let f be an arithmetic function, then f is called Completely multi-

plicative if

f (mn) = f (m) f (n) ∀m,n

6



1.2 Dirichlet Convolution and Unitary Convolution

Notation 1.2.1.9. The set of all non-zero multiplicative arithmetic functions will be

denoted by

M= { f ∈ A−{o}| f is multiplicative}

Note that o(n) = 0 ∀n ∈ N is the Zero function.

Theorem 1.2.1.10. The structure (M,∗) is an abelian group.

Proof. It is sufficient to prove thatM is a subgroup ofU(A),

sinceU(A)is an abelian group. It needs to be shown that

1. The setM is a nonempty subset ofU(A).

2. If arithmetic functions f and g are multiplicative, then their convolution, f ∗ g, is a

multiplicative arithmetic function.

3. If f is a multiplicative arithmetic function, then its inverse, f̃ , is a multiplicative

arithmetic function. □

Definition 1.2.1.11. Let f and g be arithmetic functions, then

( f +g)(n) = f (n)+g(n) ∀ f ,g ∈ A

Theorem 1.2.1.12. The algebraic structure (A,+,∗) is an integral domain.

Proof. • It is trivial to verify that (A,+) is an abelian group.

• (A,+) is associative and commutative.

• The arithmetic function o(n) = 0 is the additive identity.

• For all arithmetical functions f, the additive inverse is f̃ .

• We also know (A,+) is a commutative monoid.

• ∗ distributes over +.

□
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1.2 Dirichlet Convolution and Unitary Convolution

1.2.2 Unitary Convolution

Definition 1.2.2.1. Let n be a positive integer. Then d, a divisor of n, with the property

(d,
n
d

) = 1

is called a unitary divisor of n.

Definition 1.2.2.2. Let f and g be arithmetic functions, then the Unitary Convolution is

defined as

( f ⊕g) =
∑
d||n

f (d)g(
n
d

)∀n ∈ N

where d||n means that d runs through the unitary divisors of n.

Theorem 1.2.2.3. (A,+,⊕) is a commutative ring with unity.

Proof. i. First we show that (A,+) is an abelian group.

( f +g)(n) = f (n)+g(n) = g(n)+ f (n) = (g+ f )(n)

Hence Abelian

ii. To show that (A,⊕) is associative and commutative.

( f ⊕g)(n) =
∑
d||n

f (d)g(
n
d

)

now, d = d1,
n
d1
= d2, (d1,d2) = 1 hence,

( f ⊕g)(n) =
∑

d1d2=n

f (d1)g(d2)

=
∑

d1d2=n

g(d2) f (d1)

8



1.2 Dirichlet Convolution and Unitary Convolution

=
∑
d||n

g(d) f (
n
d

)

= (g⊕ f )(n)

hence it is commutative.

To show associativity i.e TST ( f ⊕g)⊕h = f ⊕ (g⊕h)

[( f ⊕g)⊕h](n) =
∑
d·d3

[( f ⊕g)(d)]h(d3)

=
∑
d·d3

[
∑

d1·d2=d

f (d1)g(d2)]h(d3)

=
∑

d1·d2·d3=d

f (d1)g(d2)h(d3)

Similarly calculating

[ f ⊕ (g⊕h)] =
∑

d1·d2·d3=d

f (d1)g(d2)h(d3)

Hence implies associativity

iii. ⊕ distributes over +.

[ f ⊕ (g+h)](n) =
∑
d||n

f (d)(g+h)(
n
d

)

=
∑
d1d2

f (d1)[g(d2)+h(d2)]

=
∑
d1d2

f (d1)g(d2)+
∑
d1d2

f (d1)h(d2)

=
∑
d||n

f (d)g(
n
d

)+
∑
d||n

f (d)h(
n
d

)

= ( f ⊕g)(n)+ ( f ⊕h)(n)

9



1.2 Dirichlet Convolution and Unitary Convolution

[( f +g)⊕h)](n) =
∑
d||n

( f +g)(d)(h)(
n
d

)

=
∑
d1d2

[ f (d1)+g(d1)]h(d2)

=
∑
d1d2

f (d1)h(d2)+g(d1)h(d2)

=
∑
d||n

f (d)h(
n
d

)+
∑
d||n

g(d)h(
n
d

)

= ( f ⊕h)(n)+ ( f ⊕g)(n)

iv. Dirichlet’s identity is the unitary convolution.

e(n) =


1 if n = 1

0 if n > 1

Then it follows

( f ∗ e)(n)=
∑
d||n

f (d)e(
n
d

)

= f (1)e(n)+ · · ·+ f (n)e(1)

=0+0+ · · ·+ f (n)= f (n)

( f ∗ e) = f (n) = (e∗ f ) □

We introduce this structure, because we will be using it later in Chapter 3.

However, let us now discuss some applications to the theorems we have introduced

10



1.3 More on σ,τand ϕ

1.3 More on σ,τand ϕ

First, let’s introduce a few more arithmetic functions.

Unit Function

ζ(n) = 1 ∀n ∈ N

Identity Function

i(n) = n ∀n ∈ N It is important to note that:

• ζ(m.n) = 1 = 1.1 = ζ(m)ζ(n)

• i(m.n) = m.n = i(m)i(n)

This implies that the arithmetic functions ζ and i are both multiplicative.

We introduce these functions here because they have a special relationship with some of

the arithmetic functions we have already discussed.

Definition 1.3.0.1. Let f be an arithmetic function, then

F(n) =
∑
d|n

f (d)

is called the Summation of f .

This summation function will allow us to verify some important properties concerning

the arithmetic functions we have discussed. One of those properties is determining

multiplicative functions.

Theorem 1.3.0.2. If f is a multiplicative arithmetic function, then the summation of f is a

multiplicative arithmetic function.

Proof. Let f ∈M and let F be the summation of f , then

F(n) =
∑
d|n

f (d) =
∑
d|n

f (d).1 =
∑
d|n

f (d)ζ(
n
d

)

so,

F = f ∗ ζ

11



1.3 More on σ,τand ϕ

f and ζ are both multiplicative arithmetic functions This implies F is a multiplicative

arithmetic function, because, as we have shown, (M,∗) is closed. □

Theorem 1.3.0.3. We have
∑
d|n

µ(d) = e(n) ∀n ≥ 1

Proof. let n = 1

∑
d|1

µ(d) = 1 = e(1)

. Now,let n = p be prime. Therefore,

∑
d|p

µ(d) = µ(1)+µ(p) = 1−1 = e(p)

If n = pα, where α ≥ 2, then,

∑
d|pα
µ(d) = µ(1)+µ(p)+µ(pα)+ · · ·+µ(d) = 1−1+0+ · · ·+0 = 0 = e(pα)

.

So for the prime factorization,n = pα1
1 , p

α2
2 · · · p

αk
k ,we have

∑
d|n

µ(d) = 0 = e(n)

Therefore for any n ∈ N we have
∑
d|n

µ(d) = e(n). □

With this we come to a nice corollary.

Corollary 1.3.0.4. µ is the Dirichlet inverse of ζ

Proof. e(n) =
∑
d|n

µ(d) =
∑
d|n

µ(d) ·1 =
∑
d|n

µ(d) · ζ(
n
d

) = (µ∗ ζ)(n).

this implies

µ = ζ̃

. □

12



1.3 More on σ,τand ϕ

This corollary gives us the following theorem which is called the Möbius Inversion

Formula

Theorem 1.3.0.5. Let f be an arithmetic function, then

F(n) =
∑
d|n

f (d) if and only if f (n) =
∑
d|n

F(d) µ( n
d )

Proof. let F= f ∗ ζ

⇐⇒ F ∗ ζ̃ = f ∗ ζ ∗ ζ̃

⇐⇒ F ∗ ζ̃ = f ∗ e

⇐⇒ F ∗µ = f

□

Corollary 1.3.0.6. An arithmetic function, f , is multiplicative if and only if the summation

of f is multiplicative.

Proof. let f ∈M and F be the summation of f

Then,

F(n) =
∑
d|n

f (d)

=
∑
d|n

f (d) ·1

=
∑
d|n

f (d)ζ(
n
d

)

f and τ are multiplicative arithmetic functions.

=⇒we have shown (M,∗) is a closed structure.

=⇒ F is a multiplicative arithmetic function.

Conversely,

F(n) =
∑
d|n

f (d)

Then,

f (n) =
∑
d|n

F(d) µ( n
d ) =⇒ f = F ∗µ

13



1.3 More on σ,τand ϕ

f and µ are multiplicative arithmetic functions.

=⇒ f is a multiplicative arithmetic function □

Theorem 1.3.0.7. We have
∑
d|n

ϕ(d) = n ∀n ≥ 1

Corollary 1.3.0.8. σ,τandϕ are multiplicative arithmetic functions.

Proof. Let the equation
∑
d|n

ϕ(d) = n ∀n ≥ 1 hold, then

n = i(n) =
∑
d|n

ϕ(d)ζ(
n
d

) = (ϕ∗ ζ)(n)

and,

ϕ(n) = (i∗ ζ̃) = (i∗µ)(n)

. Which shows us that ϕ is multiplicative. Now let’s look at the sum of divisors function

τ(n) =
∑
d|n

1 =
∑
d|n

1.1 =
∑
d|n

ζ(d)ζ(
n
d

) = (ζ ∗ ζ)(n)

. This implies that τ is a multiplicative function.

Also,

σ(n) =
∑
d|n

d =
∑
d|n

d.1 =
∑
d|n

i(d)ζ(
n
d

) = (i∗ ζ)(n)

Similarly, σ can be said to be a multiplicative function.

Hence σ, τ and ϕ are multiplicative arithmetic functions. □

Theorem 1.3.0.9. If n > 1 with the prime factorization n = pα1
1 · p

α2
2 · · · p

αk
k then

τ(n) =
k∏

i=1

(αi+1)

Proof. Let p be prime and α ≥ 1. The set

D(pα) = {1, p, p2, · · · , pα}

14



1.3 More on σ,τand ϕ

is the set of all positive divisors of pα . Therefore

τ(pα) = α+1

We will now consider the prime factorization, n = pα1
1 · · · p

αk
k . Since, we have just shown

that τ is multiplicative, it follows that

τ(n) = τ(pα1
1 · · · p

αk
k ) = τ(pα1

1 ) · · ·τ(pαk
k ) = (α1+1) · · · (αk +1) =

k∏
i=1

(αi+1)

□

Theorem 1.3.0.10. If n > 1 with the prime factorization n = pα1
1 , p

α2
2 · · · p

αk
k then

ϕ(n) = n
k∏

i=1

(1−
1
pi

)

Proof. Let n = p be prime. Then

ϕ(p) = p−1 = p(1−
1
p

)

Now, let n = pα where α ≥ 1

We desire those integers who are relatively prime to pk. It can be seen that the integers

who are not relatively prime are those of the form

p,2p,3p, · · · , pα−1 · p = pα

Therefore, there are pα−1 integers who are not relatively prime to pα ,so we can say

ϕ(pα) = pα− pα−1 = pα(1−
1
p

)

15



1.3 More on σ,τand ϕ

If we let n = pα1
1 , p

α2
2 · · · p

αk
k , the prime factorization of n, then it follows from ϕ being

multiplicative that

ϕ(pα1
1 , p

α2
2 · · · p

αk
k ) = ϕ(pα1

1 )ϕ(pα2
2 ) · · ·ϕ(pαk

k ) = pα1
1 (1−

1
p1

) · · · pαk
k (1−

1
pk

)

n(1−
1
p1

) · · · (1−
1
pk

) = n
k∏

i=1

(1−
1
pi

)

□

Theorem 1.3.0.11. If n > 1 with the prime factorization n = pα1
1 , p

α2
2 · · · p

αk
k then

σ(n) =
k∏

i=1

pαi+1
i −1
pi−1

Proof. Let n = p where p is prime and α ≥ 1, then

σ(n) = 1+ p+ p2+ · · ·+ pα =
pα+1−1

p−1

Therefore, for

n = pα1
1 , p

α2
2 · · · p

αk
k ,

the prime factorization of n,we have

σ(pα1
1 pα2

2 · · · p
αk
k ) = σ(pα1

1 ) · · ·σ(pαk
k ) =

pα1+1
1 −1

p1−1
· · ·

pαk+1
k −1

pk −1
=

k∏
i=1

pαi+1
i −1
pi−1

□

Theorem 1.3.0.12. If f and g are multiplicative arithmetic functions with positive values

and n > 1, then n is prime if and only if

( f ∗g)(n) = ( f +g)(n)

.
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1.3 More on σ,τand ϕ

Proof. Let n be prime, then

( f ∗g)(n)=
∑
d|n

f (d)g(
n
d

)= f (1)g(n)+ f (n)g(1)= 1 ·g(n)+ f (n) ·1= f (n)+g(n)= ( f +g)(n)

Conversely,

let us suppose( f ∗g)(n) = ( f +g)(n) and n is not prime. Then

∑
d|n

f (d)g(
n
d

) = f (n)+g(n)

This implies ∑
d|n,d,1,n

f (d)g(
n
d

)+ f (1)g(n)+ f (n)g(1) = f (n)+g(n)

Thus we can conclude ∑
d|n,d,1,n

f (d)g(
n
d

) = 0

This leads to a contradiction, since it is assumed that f ,g > 0 for any positive integer n.

So, we can conclude that n must be prime. □

Corollary 1.3.0.13. Let n > 1, then n is prime if and only if

σ(n)+ϕ(n) = n.τ(n)

Proof. Let n be prime. We also known

(σ∗ϕ)(n) = n ·τ(n)

Notice,

σ∗ϕ = (i∗ ζ)∗ϕ == i∗ (ζ ∗ϕ) = i∗ i

Now,

(i∗ i)(n) =
∑
d|n

i(d)i(
n
d

) =
∑
d|n

d ·
n
d
= n ·
∑
d|n

1 = n ·τ(n)

17



1.3 More on σ,τand ϕ

□

Corollary 1.3.0.14. Let n > 1, then n is prime if and only if

τ(n)+ϕ(n) = σ(n)

Proof. Let n be prime, then

(τ+ϕ)(n) = (τ∗ϕ)(n)

Therefore,

τ∗ϕ = (ζ ∗ ζ)∗ϕ = ζ ∗ (ζ ∗ϕ) = ζ ∗ i = σ

□

18



Chapter 2

Characterization of Completely

Multiplicative and Additive Arithmetic

Functions

As of now we have only seen arithmetic functions and multiplicative arithmetic functions.

This chapter will discuss new concepts of arithmetic functions, those of which were studied

by Carlitz and Niederreiter, Lambek, and Schwab.

2.1 Completely Multiplicative Functions

In the previous chapter we discussed the concept of multiplicative functions. However, our

previous definition was only concerned with relatively prime elements of non-negative

integers. Now we will expand this property to any two non-negative integers

Definition 2.1.0.1. An arithmetic function, f , is said to be completely multiplicative if

f (nm) = f (n) f (m)

for all n,m positive integers.
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2.1 Completely Multiplicative Functions

With this, we can show some properties that these types of functions will possess.

Theorem 2.1.0.2. If f is an arithmetic function then the following statements are equiva-

lent.

1. f is completely multiplicative

2. f (g∗h) = f g∗ f h for all arithmetic functions g and h

3. f (g∗g) = f g∗ f g for all arithmetic functions g

4. f τ = f ∗ f .

Proof. (1) =⇒ (2)

Let f be completely multiplicative, then

[ f (g∗h)](n) = f (n)[
∑
d|n

g(d)h(
n
d

)] =
∑
d|n

f (n)g(d)h(
n
d

) =
∑
d|n

f (d ·
n
d

)g(d)h(
n
d

)

=
∑
d|n

f (d) f (
n
d

)g(d)h(
n
d

) =
∑
d|n

[ f (d)g(d)][ f (
n
d

)h(
n
d

)] = [ f g∗ f h](n)

(2) =⇒ (3)

Assume,

f (g∗h) = f g∗ f h

for all g,h ∈ A

Then, it immediately follows that

f (g∗g) = f g∗ f g

(3) =⇒ (4)

Assume

f (g∗g) = f g∗ f g

Then, for all g

f τ = f (ζ ∗ ζ) = f ζ ∗ f ζ = f ·1∗ f ·1 = f ∗ f

20



2.1 Completely Multiplicative Functions

(4) =⇒ (1)

Suppose f ∗ f = f τ.

We will show inductively that f is completely multiplicative.

Now take n = 1, then

( f ∗ f )(1) = f (1) f (1) = τ(1) f (1) = 1. f (1)

Therefore, f (1) = 1 or f (1) = 0.

Now take n ≥ 2 and let n = pe1
1 , p

e2
2 · · · p

em
m and α(n) = e1+ e2+ · · ·+ em

Then, it is enough to show

f (n) = f (1) f (p1)e1 · · · f (pm)em

So, let α(n) = 1, then n is prime, say n = p, which implies

2 f (p) = τ(p) f (p) = f (1) f (p)+ f (p) f (1) = 2 f (1) f (p)

Suppose this is true for all n with α(n) ≤ k and k ≥ 1.

Now we take n with α(n) = k+1 which gives

τ(n) f (n) =
∑
d|n

f (d) f (
n
d

) = 2 f (1) f (n)+
∑

d|n,d,1,n

f (d) f (
n
d

)

Now, let d = d1 and n
d = d2, so d1 ·d2 = n.

Also, α(d1) ·α(d2) ≤ k Then,

τ(n) f (n) = 2 f (1) f (n)+
∑

d|n,d,1,n

f (d1) f (d2)

Now, this fulfils the inductive step, so

τ(n) f (n) = 2 f (1) f (n)+ (τ(n)−2) f (n) = f (1) f (p1)e1 · · · f (pm)em
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2.2 Completely Additive Functions

Since n is not prime, it is clear to see that τ(n) > 2. So, for both f (1) = 1 and f (1) = 0 we

get the desired result. □

2.2 Completely Additive Functions

Now, we will introduce a set of functions which have a similar property to the multiplicative

functions, however, the functions are not split by multiplication, but by addition.

Definition 2.2.0.1. An arithmetic function, f , is said to be completely additive if

f (n.m) = f (n)+ f (m)

for all n,m positive integers.

Example 2.2.0.2. A familiar example of a completely additive function is the logarithmic

function, as it is well known that

1. log(n.m) = log(n)+ log(m) ∀n,mN .

2. An immediate consequence of this property is, if f ∈ S

then f (1) = f (1.1) = f (1)+ f (1)

=⇒ f (1) = 0

Definition 2.2.0.3. Ω(n) =
∑
pα||n

α is the sum of prime powers where pα exactly divides n

Example 2.2.0.4. Ω(12) = Ω(22.3) = 2+1 = 3

Ω(30) = Ω(2.3.5) = 1+1+1 = 3

when n = 1 we get

Ω(1) = 0

because, 1 has no prime divisors.

If we take arbitrary n = pα1
1 , p

α2
2 · · · p

αk
k and m = qβ1

1 ,q
β2
2 · · ·q

βl
l both being the canonical

factorization of natural numbers nm,
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2.2 Completely Additive Functions

then we have

Ω(n ·m) = Ω(pα1
1 .p

α2
2 · · · p

αk
k .q

β1
1 .q

β2
2 · · ·q

βl
l ) = α1+ · · ·+αk +β1+ · · ·+βl

= Ω(n)+Ω(m)

This means that Ω is completely additive

Now with this we can define a function which we can show to be completely multiplicative

Louiville Lambda function

•λ(n) = (−1)Ω(n)

Following the fact that Ω(1) = 0 we see that λ(1) = 1 and since Ω is completely additive

we get for any natural number n,m,

λ(n,m) = (−1)Ω(n.m) = (−1)Ω(n)+Ω(m) = (−1)Ω(n).(−1)Ω(n) = λ(n)λ(m)

Before we discuss additional properties of this function, it would be beneficial to introduce

another arithmetic function, but first we must add a restriction to our definition of the

completely additive arithmetic function.

Definition 2.2.0.5. An arithmetic function, f , is said to be additive if

f (n.m) = f (n)+ f (m)

when (n,m) = 1.

Additive arithmetic functions, much like multiplicative arithmetic functions, only sat-

isfy this “splitting” property for relatively prime natural numbers. The following function

gives an example of this property.

• ω(n) =
∑
p′ |n

1 is the number of distinct primes, p
′

, which divide n.

Note the different values of ω.

Let p be prime, then

ω(1) =
∑
p′ |1

1 = 0,ω(p) =
∑
p′ |p

1 = 1
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2.2 Completely Additive Functions

It follows that when α ≥ 1, we have

ω(pα) =
∑
p′ |pα

1 = 1

This implies that when n = pα1
1 · · · p

αk
k the prime factorization of n, that

ω(n) = ω(pα1
1 pα2

2 · · · p
αk
k ) =

∑
p′ |p

α1
1 p
α2
2 ···p

αk
k

1 = k

Notice, if n = pα1
1 , p

α2
2 · · · p

αk
k and m = qβ1

1 ,q
β2
2 · · ·q

βl
l the prime factorization of n and m

where (n,m) = 1 then,

ω(n)+ω(m) = k+ l = ω(n.m)

This implies that ω is additive.

We will now discuss some of the properties of completely additive functions

Theorem 2.2.0.6. If f is an arithmetic function then the following statements are equiva-

lent.

1. f is completely additive

2. f (g∗h) = f g∗h+g∗ f h for all arithmetic functions g and h

3. f (g∗g) = 2( f g∗g) for all arithmetic functions g

4. f τ = 2( f ∗ ζ).

Proof. (1) =⇒ (2)

Let f be completely additive, then

[ f (g∗h)](n) = f (n)[
∑
d|n

g(d)h(
n
d

)] =
∑
d|n

f (n)g(d)h(
n
d

)

=
∑
d|n

f (d,
n
d

)g(d)h(
n
d

) =
∑
d|n

[ f (d)+ f (
n
d

)]g(d)h(
n
d

)
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2.2 Completely Additive Functions

=
∑
d|n

f (d)g(d)h(
n
d

)+
∑
d|n

f (
n
d

)g(d)h(
n
d

)

= [ f g∗h+g∗ f h](n)

(2) =⇒ (3)

Let,

f (g∗h) = f g∗h+g∗ f h

for all g,h ∈ A

Then we have,

f (g∗g) = f g∗g+g∗ f g = f g∗g+ f g∗g = 2( f g∗g)

(3) =⇒ (4)

Let

f (g∗g) = 2( f g∗g)

Then,

f τ = f (ζ ∗ ζ) = 2( f ζ ∗ ζ) = 2( f ·1∗ ζ) = 2( f ∗ ζ)

(4) =⇒ (1)

Suppose

f τ = 2( f ∗ ζ)

and let n = p.Then

f (p)τ(p) = 2 f (p) = 2( f ∗ ζ) =⇒ f (p) = f (1)+ f (p) =⇒ f (1) = 0

Now, let n ∈N,n> 1 and n= pk1
1 · · · p

kt
t .Then, it will be shown,when m= k1+ · · ·+kt, that

f (n) = k1 f (p1)+ · · ·+ kt f (pt)
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2.2 Completely Additive Functions

So, if Mi = 0,1,2, · · · ,ki f ori = 1,2, · · · t and M = M1×M2× · · ·×Mt, then

1
2

f (n)τ(n) =
∑

(i1···it)∈M

f (pi1
i · · · p

it
t ) = f (n)+

∑
(i1···it)∈M,i1+···+it,m

f (pi1
i · · · p

it
t )

by induction

1
2

f (n)τ(n) = f (n)+
∑

(i1···it)∈M,i1+···+it,m

[i1 f (p1)+ · · ·+ it f (pt)]

Now,

∑
(i1···it)∈M,i1+···+it,m

[i1 f (p1)+ · · ·+ it f (pt)] =
1
2

[
t∏

i=1

(ki+1)][
t∑

i=1

ki f (pi)]−
t∑

i=1

ki f (pi)

This implies

f (n) =
t∑

i=1

ki f (pi)

□
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Chapter 3

Multiplicative and Additive Power Series

In this chapter we will discus a relationship between formal power series and arithmetic

functions. However, we will need to first define the concept of formal power series.

3.1 The Formal Power Series

Definition 3.1.0.1. Let R be a commutative ring with unity and No = 0,1,2, ... with

f : No −→R such that f = (a0,a1,a2, ...,ai, ...) = (ai)i∈No and ai ∈ R

Then define,

R′ = { f | f = (ai)i∈No}

with the properties

1. f +g=(ai+bi)i∈No

2. f ·g= (ck)k∈No ck =
∑

i+ j=k

aib j

We will show that R′ with addition and multiplication forms a commutative ring with

unity,

Theorem 3.1.0.2. (R′,+, ·) is a commutative ring with unity

Let us formalize this concept by introducing some notation.
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3.1 The Formal Power Series

Notation 3.1.0.3.

(1,0,0,0.....) = x0

(0,1,0,0.....) = x1

Also,

(0,0,0, ...1...) = xk

where there are k many terms before 1.

Example 3.1.0.4. (a,b,0,0, ...) = ax0+bx1 = a(1,0,0,0.....)+b(0,1,0,0.....)

We will call these a,b ∈ R coefficients of x.

With this we can say

R′ = R[[x]] = { f =
∞∑

k=0

akxk}

Now we can define the following

Definition 3.1.0.5. The ring R′ is called the formal power series in x with coefficients in

R is denoted by R[[x]].The elements of R[[x]] are infinite expressions of the form

f (x) = a0x0+a1x1+ · · ·+akxk + · · · =

∞∑
k=0

akxk

and addition and multiplication are defined as

∞∑
k=0

akxk +

∞∑
k=0

bkxk =

∞∑
k=0

(ak +bk)xk

∞∑
k=0

akxk.
∞∑

k=0

bkxk =

∞∑
k=0

(
∑

i+ j=k

aib j)xk

Example 3.1.0.6. A few well known examples of formal power series
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3.2 Bell Series

1. Geometric Series

S (x) =
∞∑

k=0

xk =
1

1− x

2. Exponential Series

exp(x) =
∞∑

k=0

xk

k!

where exp(x) represents the traditional exponential function and k! = k.(k−1)...1.

3. Logarithmic Series

log(
1

1− x
) =

∞∑
k=0

xk

k

A known property of the exponential function is sort of a reverse additive property

exp(z+w) = exp(z).exp(w)∀z,w ∈ C

So, if we have exp(ax),where a ∈ No, then we obtain

∞∑
k=0

(ax)k

k!
= exp(ax) = exp(x+ · · ·+ x) = exp(x).exp(x)...exp(x)

=

∞∑
k=0

(x)k

k!
· · ·

∞∑
k=0

(x)k

k!
= (

∞∑
k=0

(x)k

k!
)a

Let us introduce a type of power series which gives an immediate connection to arithmetic

functions

3.2 Bell Series

In this section and the following, we will be addressing the known results found in Apostol

regarding the concept of Bell Series and their connection to arithmetic functions. Then,

we will come to results proposed by McCarthy. However, we will verify them using Bell

Series
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3.2 Bell Series

Definition 3.2.0.1. Let f be an arithmetic function and p be a prime. Then the formal

power series

fp(x) =
∞∑

k=0

f (pk)xk

is called the Bell Series of f modulo p.

This concept was first studies by E. T. Bell in order to observe multiplicative properties

of arithmetic functions with power series

Example 3.2.0.2. The mobius Function (µ)

To illustrate an example of this type of series, recall the Möbius function. It can be observed

that

µp(x) =
∞∑

k=0

µ(pk)xk

Remember, the Möbius function is defined as follows

µ(n) =


1 if n=1,

(-1)k if n=p1.p2...pk with distinct prime

0 if if there exists a prime such that p2|n
There f ore,

µp(x) =
∞∑

k=0

µ(pk)xk = 1 · x0+ (−1) · x1+0 · x2+ ·+0 · xk + · · ·= 1− x

Example 3.2.0.3. Dirichlet identity function

Also, we can see the Bell series representation of the Dirichlet identity function by

ep(x) =
∞∑

k=0

e(pk)xkep(x) = e(p0)x0+ e(p1)x1+ e(p2)x2+ · · ·

= 1+0+0+ · · · = 1

This gives us a good representation of the mobius and identity function, but how would

we define the other arithmetic functions we have discussed?

Let us recall the completely multiplicative function, then this result and proof from Apostol

follows immediately.
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3.2 Bell Series

Theorem 3.2.0.4. If f is a completely multiplicative arithmetic function, then

fp(x) =
1

1− f (p)x

Proof. Let f be completely multiplicative and p prime with K ≥ 1, then

f (pk) = f (p) · · · f (p) = f (p)k

so,

fp(x) =
∞∑

k=0

f (pk)xk =

∞∑
k=0

f (p)kxk =

∞∑
k=0

1 · ( f (p)x)k

□

Note, that the above expression yields a geometric power series, meaning
∞∑

k=0

1 · xk =

1
1− x

∞∑
k=0

1 · ( f (p)x)k = fp(x) =
1

1− f (p)x

Example 3.2.0.5. We have studied quite a few completely multiplicative functions in this

paper so their power series representations are the following

1. ζp(x)= 1
1−ζ(p)x=

1
1−x

LHS-

ζ(p) = 1 =⇒
1

1− ζ(p)x
=

1
1− x

RHS-

ζp(x) =
∞∑

k=0

ζ(pk)xk = ζ(p0)x0+ ζ(p1)x1+ ζ(p2)x2+ · · ·

= 1+1.x+1.x2+ · · · = 1+ x+ x2+ · · · =
1

1− x
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3.2 Bell Series

2. ip(x) = 1
1−i(p)x =

1
1−p·x

LHS-

i(p) = p =⇒
1

1− i(p)x
=

1
1− px

RHS-

ip(x) =
∞∑

k=0

i(pk)xk = i(p0)x+i(p1)x1+ i(p2)x2+ · · ·

= 1+ p.x+ p2.x2+ · · · = 1+ (px)+ (px)2+ · · · =
1

1− px

3. iαp(x) = 1
1−i(pα)x =

1
1−pα·x

LHS-

i(pα) = pα =⇒
1

1− i(pα)x
=

1
1− pαx

RHS-

iαp(x) =
∞∑

k=0

iα(pk)xk = iα(p0)x0+ iα(p1)x1+ iα(p2)x2+ · · ·

= 1+ pα.x+ p2α.x2+ · · · =
1

1− pαx

4. λp(x) = 1
1−λ(p)x =

1
1+x

LHS-

λ(p) = (−1) =⇒
1

1−λ(p)x
=

1
1− (−1)x

=
1

1+ x
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3.2 Bell Series

RHS-

λp(x) =
∞∑

k=0

λ(pk)xk = λ(p0)x+λ(p1)x1+λ(p2)x2+ · · ·

= 1+ (−1).x+1.x2+ (−1)x3+ · · · = 1− x+ x2− x3+ · · · =
1

1+ x

Before we continue it is important to discuss the following theorem.

Theorem 3.2.0.6. If f and g are multiplicative arithmetic functions, then f = g if and only

if

fp(x) = gp(x)

for all primes p

Proof. First, let us assume that f = g. Then we see that

f (pk) = g(pk)

for any prime,p, and k ≥ 1 Therefore, it is clear to see

fp(x) = gp(x)

for all primes p conversely, let

fp(x) = gp(x)

for all primes p. Then,

fp(x) =
∞∑

k=0

f (pk)xk =

∞∑
k=0

g(pk)xk

This means,

fp(x) = gp(x)

for any powerk. Also, f and gare assumed to multiplicative, therefore, we can say for any

prime p

f = g
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3.2 Bell Series

□

Theorem 3.2.0.7. If f ,g and h are arithmetic functions and h = f ∗g, then

hp(x) = fp(x)gp(x)

Proof. Letpbe prime andk ≥ 1. Recall that the divisors of pk are

D = 1, p, p2, · · · , pk

so,

h(pk) = ( f ∗g)(pk) =
∑
dk

f (d) ·g(
pk

d
) =
∑

i+ j=k

f (pi)g(p j)

Then, following our definition of formal power series multiplication, we can say

hp(x) =
∞∑

k=o

(
∑

i+ j=k

f (pi)g(p j))xk = fp(x) ·gp(x)

□

With this result we can determine the Bell series representation of some arithmetic

functions.

Application 3.2.0.8. Recall

ϕ = i∗µ

therefore, we can say

ϕp(x) = ip(x) ·µp(x) =
1

1− p · x
· (1− x) =

1− x
1− p · x

This is quite significant, since with this we can determine the formula representation of

the Euler totient function

ϕp(x) =
1− x

1− p · x
= (1− x) ·

∞∑
k=0

pkxk =

∞∑
k=0

pkxk − x
∞∑

k=0

pkxk
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3.2 Bell Series

= 1+
∞∑

k=1

pkxk −

∞∑
k=1

p(k−1)xk = 1+
∞∑

k=1

(pk − p(k−1))xk

Thus, we can say for k ≥ 1

ϕ(pk) = pk − pk−1 = pk(1−
1
p

)

Extending this to any natural number n = pα1
1 · p

α2
2 · · · p

αk
k multiplicative we obtain

ϕ(n) = ϕ(pα1
1 .p

α2
2 ...p

αk
k ) = ϕ(pα1

1 ).ϕ(pα2
2 )...ϕ(pαk

k )

= pα1
1 (

1
1− p1

).pα2
2 (

1
1− p2

)...pαk
k (

1
1− pk

) = n
k∏

i=1

(1−
1
pi

)

This gives us a new way of determining the formula for the totient function, using what

was learned from Apostol.

This gives us reason to believe that there are potentially more formulas of arithmetic

functions which can be derived using Bell Series.

Application 3.2.0.9. Another application of this theorem comes from the arithmetic

function

•σα = iα ∗ ζ=⇒ σαp(x) = iαp(x).ζp(x) = 1
1−pαx .

1
1−x =

1
(1−pαx).(1−x)

•τ = ζ ∗ ζ =⇒ τp(x) = ζp(x).ζp(x)=⇒ τp(x) = 1
(1−x)2

Theorem 3.2.0.10. If f is a multiplicative arithmetic function, then f is completely

multiplicative if and only if

f̃ = µ f

Proof. First we will assume that f is completely multiplicative. Then, we can say

fp(x) =
1

1− f (p)x
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Now,

(µ f )p(x) =
∞∑

k=0

(µ f )(pk)xk =

∞∑
k=0

µ(pk) f (pk)xk

Recalling a multiplicative property, we can say f (1) = 1. Therefore

=

∞∑
k=0

µ(pk) f (pk)xk = 1− f (p)x

Also, we can clearly see

ep(x) = (µ f )p(x) · fp(x)

This is only the case if µ f is Dirichlet inverse of f

Conversely, assume f̃ = µ f then we have,

f̃p(x) = (µ f )p(x) = 1− f (p)x

If f is the inverse, it must be that

µ f ∗ f = e

which implies

1 = (1− f (p)x) · fp(x)

This implies

fp(x) =
1

1− f (p)x

meaning, f must be completely multiplicative □

Theorem 3.2.0.11. If f is a multiplicative arithmetic function, then f is completely

multiplicative if and only if

f̃ (pα) = 0

∀α ≥ 2
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Proof. Let f be completely multiplicative.Then we have f̃ = µ f

f̃p(x) = (µ f )p(x) = 1− f (p)x

This implies

f̃ (pα) = 0

Conversely, let, f̃ (pα) = 0 ∀α ≥ 2

Then,

f̃p(x) =
∞∑

k=0

f (pk)xk = 1+ f (p)x

fp(x) =
1

1+ f (p)x

This implies

fp(x) =
1

1− (− f (p)x)

meaning, f must be completely multiplicative. □

Application 3.2.0.12. Since

λ̃ = µλ

Then we have,

λ̃p(x) = (µλ)p(x) =
∞∑

k=0

µ(pk)λ(pk)xk = 1+ x =
∞∑

k=0

µ(pk)µ(pk)xk = µ2
p(x)

So we can see that

λ̃ = µ2

Application 3.2.0.13. Let

f (n) = 2ω(n)
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3.2 Bell Series

then,

fp(x) =
∞∑

k=0

2ω(pk)xk = 1+
∞∑

k=1

2xk = 1+
2x

1− x
=

1+ x
1− x

Therefore, we have

fp(x) = µ2
p(x).ζp(x)

Meaning we have a formalization for this function

2ω(n) = µ2 ∗ ζ =

∞∑
k=0

µ2(d)

Therefore, the arithmetic function 2ω is the summation of µ2.
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3.3 Bell Series and Specially Multiplicative Functions

3.3 Bell Series and Specially Multiplicative Functions

In this section we will use Bell Series to verify results shown in the work of McCarthy, in

regards to the concept of specially multiplicative arithmetic functions.

Definition 3.3.0.1. Let f be a multiplicative arithmetic function, then f is said to be

specially multiplicative if

f = g∗h

where g and h are completely multiplicative arithmetic functions.

The following result comes from McCarthy

Theorem 3.3.0.2. If f is a multiplicative arithmetic function, then it is specially multi-

plicative if and only if

fp(x) =
1

1−bx+ cx2

Proof. Let f be specially multiplicative and p be prime, then we have

f = g∗h

where g, h are completely multiplicative.

we also have,

gp(x) = 1
1−g(p)x and hp(x) = 1

1−h(p)x

It is also known, that

fp(x) = gp(x) ·hp(x) =
1

1−g(p)x
1

1−h(p)x
=

1
1− [g(p)+h(p)]x+ [g(p)h(p)]x2

Notice that [g(p)+h(p)]and[g(p)h(p)] are elements of C, so we can see the condition is

satisfied.

Conversely,assume

fp(x) =
1

1−bx+ cx2
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3.3 Bell Series and Specially Multiplicative Functions

where b,c ∈ C. Then we have,

fp(x) =
1

1−bx+ cx2 =
1

1−a1 · x
·

1
1−a2 · x

with a1 and a2 being the roots of quadratic equation,

1−bx+ cx2 = 0

Now,we can say there exists two arithmetic functions g and h where g(p) = a1 and

h(p) = a2. Therefore

gp(x) = 1
1−g(p)x and hp(x) = 1

1−h(p)x

meaning, g and h are completely multiplicative.With this,we can conclude

fp(x) = gp(x).hp(x)

which implies

f = g∗h

=⇒ f is specially multiplicative. □

Illustration 3.3.0.3. g(n) = 2Ω(n) and h(n) = 3Ω(n)

Both functions are completely multiplicative,so the function

f (n) = 2Ω(n) ∗3Ω(n)

is a specially multiplicative function

Illustration 3.3.0.4. Also,recall ζ and i are completely multiplicative,and

τ = ζ ∗ ζ and σ = ζ ∗ i

Therefore we can say τ and σ are specially multiplicative.
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3.3 Bell Series and Specially Multiplicative Functions

Now we should recall the property of completely multiplicative functions,that being

if f is completely multiplicative then

f̃ (pα) = 0 ∀α ≥ 2

Theorem 3.3.0.5. If f is a multiplicative arithmetic function, then f is specially multi-

plicative if and only if

f̃ (pα) = 0 ∀α ≥ 3

Proof. Let f be specially multiplicative.Then we have

f = g∗h

where g,h are completely multiplicative. Then, it is the case that

f̃ = g̃∗ h̃ = µg∗µh

which gives us

f̃p(x) = (
∞∑

k=0

µ(pk)g(pk)xk)(
∞∑

k=0

µ(pk)h(pk)xk) = (1−g(p)x)(1−h(p)x)

=⇒ f̃ (pα) = 0 ∀α ≥ 3

Conversely we will say

f̃ (pα) = 0 ∀α ≥ 3

It follows that

f̃p(x) =
∞∑

k=0

f̃ (pk)xk = 1+ f̃ (p)x+ f̃ (p2)x2

Therefore we have,

fp(x) =
1

1+ f̃ (p)x+ f̃ (p2)x2
=

1
1− (− f̃ (p))x+ f̃ (p2)x2
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3.3 Bell Series and Specially Multiplicative Functions

So by the previous theorem we see that it must be the case that f is specially multiplicative.

□

Theorem 3.3.0.6. If f is a multiplicative arithmetic function, then f is specially multi-

plicative if and only if

f (pα+1) = f (p) f (pα)+ f (pα−1)[ f (p2)− f (p)2]

for all primes, p, and for all ≥ 1.

Proof. Let f be specially multiplicative.Then we have

f = g∗h

where g,h are completely multiplicative. Then,

fp(x) = gp(x)hp(x)

This gives us,
∞∑

k=0

f (pk)xk =

∞∑
k=0

(
∑

i+ j=k

g(pi)h(p j))xk

So for k = 1 we obtain

f (p)x = [g(p)h(1)+g(1)h(p)]x = x

and for k = 2 we obtain

f (p2)x2 =
∑

i+ j=k

g(pi)h(p j))x2 = [h(p2)+g(p)h(p)+g(p2)]x2

Notice, since g and h are completely multiplicative we see

f (p2)− f (p)2 = [h(p2)+g(p)h(p)+g(p2)]− ([g(p)+h(p)])2

42



3.3 Bell Series and Specially Multiplicative Functions

= [h(p2)+g(p)h(p)+g(p2)]− [g(p2)+2g(p)h(p)+h(p2) = −g(p)h(p)

Then RHS,

f (p) f (pα)+ f (pα−1)[ f (p2)− f (p)2]

= [g(p)+h(p)][(
∑

i+ j=α

g(pi)h(p j))]+ [(
∑

i+ j=α−1

g(pi)h(p j))][−g(p)h(p)]

= [(
∑

i+ j=α

g(pi+1)h(p j))]+ [(
∑

i+ j=α

g(pi)h(p j+1))]− [(
∑

i+ j=α−1

g(pi+1)h(p j+1))]

= [(
∑

i+ j=α

g(pi+1)h(p j))− (
∑

i+ j=α−1

g(pi+1)h(p j+1))]+ [(
∑

i+ j=α

g(pi)h(p j+1))]

= g(pi+1)h(1)+
∑

i+ j=α

g(pi)h(p j+1)

=
∑

i+ j=α

g(pi+1)h(p j+1)

=
∑

i+ j=α+1

g(pi)h(p j)

f (pα+1) = LHS

Conversely, let us assume that, for all α ≥ 1, we have

f (pα+1) = f (p) f (pα)+ f (pα−1)[ f (p2)− f (p)2]

Now, f ∈ mathcalM,so f (1) = 1. Also, for any prime p we have,

0 = e(p) = ( f ∗ f̃ )(p) = f (1) f̃ (p)+ f (p) f̃ (1)

This gives us

f̃ (p) = − f (p)
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Following for p2 we obtain

0 = e(p2) = ( f ∗ f̃ )(p2) = f (1) f̃ (p2)+ f (p) f̃ (p)+ f (p2) f̃ (1)

which implies

f̃ (p2) = f (p)2− f (p2)

Also, for p3 we obtain

0 = e(p3) = ( f ∗ f̃ )(p3) = f (1) f̃ (p3)+ f (p) f̃ (p2)+ f (p2) f̃ (p)+ f (p3) f̃ (1)

This implies the following

f̃ (p3) = − f (p) f̃ (p2) f (p2) f̃ (p)− f (p3)

) = − f (p)( f (p))2− f (p2))− f (p2)(− f (p))− f (p3)

= − f (p)3+2 f (p) f (p2)− f (p3)

we have RHS

f (pα+1) = f (p) f (pα)+ f (pα−1)[ f (p2)− f (p)2]

for all α ≥ 1

Then we can say for α = 2

f (p3) = f (p) f (p2)+ f (p)[ f (p2)− f (p)2] = 2 f (p) f (p2)− f (p3)

so,

f̃ (p3) = − f (p)3+2 f (p) f (p2)− f (p3)

= − f (p)3+2 f (p) f (p2)− [2 f (p) f (p2)− f (p3)] = 0
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3.3 Bell Series and Specially Multiplicative Functions

Next,

let us assume that it is the case

f̃ (pα) = 0

when 3 ≤ α ≤ n

If this is true, then what follows is

0 = e(pα+1) = ( f ∗ f̃ )(pα+1) = ( f̃ ∗ f )(pα+1) =
n+1∑
k=0

f (pi) f (pn+1−i)

= f̃ (1) f (pn+1)+ f̃ (p) f (pn)+ f̃ (p2) f (pn−1)+ f̃ (pn+1) f (1)

= f (pn+1)− f (p) f (pn)+ [ f (p)2− f (p2)] f (pn−1)+ f̃ (pn+1)

Therefore,

f̃ (pn+1) = − f (pn+1)+ f (p) f (pn)− [ f (p)2− f (p2)] f (pn−1)

Since f (pα+1) = ( f (p) f (pα)+ f (pα−1)[ f (p2)− f (p)2]

f̃ (pn+1)=−( f (p) f (pn)+ f (pn−1)[ f (p2)− f (p)2])+ f (p) f (pn)−[ f (p)2− f (p2)] f (pn−1)= 0

So f must be specially multiplicative □

Theorem 3.3.0.7. If f is a multiplicative arithmetic function, then f is specially multi-

plicative if and only if there exists a multiplicative function, F,

such that for all m and n

f (mn) =
∑

d|(m,n)

f (
m
d

) f (
n
d

)F(d)

Proof. Let us assume f is specially multiplicative.

If (mn,m′n′) = 1, then ((m,n), (m′,n′)) = 1 and (mm′,nn′) = (m,n)(m′,n′).

It must be shown that there exists some multiplicative function F which satisfies

f (pα+β) =
min(α,β)∑

i=0

f (pα−i) f (pβ−i)F(pi)
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3.3 Bell Series and Specially Multiplicative Functions

for all α,β ≥ 1

Now, let F = µG, where G is a completely multiplicative function and for each prime p

G(p) = f (p)2− f (p2)

Using induction

Then, for β ≤ α and β = 1 we have since, f is specially multiplicative.

f (pα+1) = f (p) f (pα)+ f (pα−1)[ f (p2)− f (p)2] = f (p) f (pα)G(1)− f (pα−1)G(P)

= f (p) f (pα)µ(1)G(1)+ f (pα−1)µ(p)G(p) = f (p) f (pα)F(1)+ f (pα−1)F(p)

which satisfies the sum.

Now assume for β > 1 that the equation holds for β−1 for all β ≤ α. Also,

F(p2) = F(p3) = · · · = 0

Therefore we obtain the following

f (pα+β) = f (pα+1+β−1) = f (pα+1) f (pβ−1)+ f (pα) f (pβ−2)F(p)

= [ f (p) f (pα)− f (pα−1)G(P)] f (pβ−1)+ f (pα) f (pβ−2)µ(p)G(p)

= f (pα)[ f (p) f (pβ−1)− f (pβ−2)G(P)]− f (pα−1) f (pβ−1)G(p)

using for β what we have

f (pα+1) = f (p) f (pα)G(1)− f (pα−1)G(P)

We get,

f (pα+β) = f (pα)[ f (p) f (pβ−1)− f (pβ−2)G(P)]− f (pα−1) f (pβ−1)G(p)
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= f (pα) f (pβ)F(1)+ f (pα−1) f (pβ−1)µ(p)G(p)

= f (pα) f (pβ)F(1)+ f (pα−1) f (pβ−1)F(p)

This is what we needed to show.

Conversely assume the equation defined above holds.

Let p be a prime withm = pα and n = p where α ≥ 1. Then

f (pα+1) = f (p1) f (pα)F(1)+ f (p1) f (pα−1)F(p)

If we let α = 1, then

f (p2) = f (p)2+F(p)

which implies

F(p) = f (p2)− f (p)2

With the equation from theorem satisfied and hence we can say f is specially multiplicative.

□

Theorem 3.3.0.8. If f is a multiplicative arithmetic function, then f is specially multi-

plicative if and only if there exists a completely multiplicative function, G, such that for all

m and n

f (m) f (n) =
∑

d|(m,n)

f (
mn
d2 )G(d)

Proof. Assume f is specially multiplicative. Then the equation from previous theorem

holds.

So RHS- ∑
d|(m,n)

f (
mn
d2 )G′(d) =

∑
d|(m,n)

f (
m
d
·

n
d

)G′(d)

=
∑

d|(m,n)

∑
D|( m

d ), nd )

f (
m
d

D
) f (

n
d

D
)µ(D)G′(D)G′(d)
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Continuing we obtain

=
∑

d|(m,n)

∑
k|(m,n)(d|k)

f (
m
k

) f (
n
k

)µ(
k
d

)G′(
k
d

)G′(d) =
∑

d|(m,n)

∑
k|(m,n)(d|k)

f (
m
k

) f (
n
k

)µ(
k
d

)G′(k)

=
∑

k|(m,n)

f (
m
k

) f (
n
k

)G′(k)
∑
(d|k)

µ(
k
d

) = f (m) f (n)

=LHS

Since here, µ( k
d ) = 1 and k = 1

Conversely,

assume the above equation holds.

Letp be a prime and p = m = n, then

f (m) f (n) = f (p) f (p) =
∑

d|(m,n)

f (
mn
d2 )G(d) = f (

p2

1
)G(1)+ f (

p2

p2 )G(p)

f (m) f (n) = f (p)2 = f (p2)+G(p)

Therefore,

G(p) = f (p)2− f (p2)

If m = pα and n = p with α ≥ 1, we obtain

f (pα) f (p) =
∑

d|(pα,p)

f (
pα+1

d2 )G(d)

= f (
pα+1

1
)G(1)+ f (

pα+1

p2 )G(p)

= f (pα+1)+ f (pα−1)[ f (p)2− f (p2)]

Since G(p) = f (p)2− f (p2) Therefore,

f (pα) f (p) = f (pα+1)+ f (pα−1)[− f (p2)+ f (p)2]
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f (pα+1) = f (pα) f (p)+ f (pα−1)[ f (p2)− f (p)2]

This means, by Theorem, f is specially multiplicative □

3.4 Multiplicative and Additive Power Series

This section we will discuss the embedding of the formal power into the unitary ring of

arithmetic functions.

Recall (A,+,⊕) is the unitary ring and let us consider the formal power series ring C[[x]]

Theorem 3.4.0.1. The ring C[[x]] can be embedded in the unitary ring of arithmetic

functions.

Proof. Consider the map η : C[[x]] −→A such that

η(
∞∑

k=0

akxk)(n) = ω(n)!aω(n)

Let n = pα1
1 · · · p

αk
k ,where p1 · · · pk are distinct primes and α ≥ 1, then

η(
∞∑

k=0

akxk)(n)+η(
∞∑

k=0

bkxk)(n) = ω(n)!aω(n)+ω(n)!bω(n) = k!ak + k!bk

= k!(ak +bk) = η(
∞∑

k=0

(ak +bk)xk)(n) = η(
∞∑

k=0

akxk +

∞∑
k=0

bkxk)(n)

Also,

η(
∞∑

k=0

akxk)(n)⊕η(
∞∑

k=0

bkxk)(n) = ω(n)!aω(n)⊕ω(n)!bω(n) = k!ak!bk

= (
∑
d|k

(d)!ad · (
k
d

)!b k
d
= k!
∑
d|k

adb k
d
= η(

∞∑
k=0

(
∑

i+ j=k

aib j)xk)(n) = η(
∞∑

k=0

akxk ·

∞∑
k=0

bkxk)(n)

Therefore, η is a homomorphism.

We can also show that this mapping is injective.
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Let,

η(
∞∑

k=0

akxk)(n) = η(
∞∑

k=0

akxk)(m)

This implies,

ω(n)!aω(n) = ω(m)!aω(m)

Now this is only the case when ω(n) = ω(m). Therefore, n and m must a product of primes,

both with k factors, meaning η is injective.

So, C[[x]] can be embedded A □

we can determine the characteristics of a formal power series in C[[x]] as if it were an

arithmetic function.

Definition 3.4.0.2. A formal power series
∞∑

k=0

akxk ∈ C[[x]] is called multiplicative if

arithmetic function η(
∞∑

k=0

akxk) is multiplicative.

Definition 3.4.0.3. A formal power series
∞∑

k=0

akxk ∈ C[[x]] is called additive if arithmetic

function η(
∞∑

k=0

akxk) is additive.

The binary operation

∞∑
k=0

akxk ⊙

∞∑
k=0

bkxk =

∞∑
k=0

k!akbkxk

will give us the opportunity to create analogues for the properties studied in chapter 2 with

multiplicative and additive formal power series.

Theorem 3.4.0.4. Let
∞∑

k=0

akxk ∈ C[[x]] be a non-zero power series.Then the following are

equivalent

1.
∞∑

k=0

akxk is multiplicative

2. ak =
ak

1
k! ∀k ∈ N

3.
∞∑

k=0

akxk ⊙ (
∞∑

k=0

bkxk ·

∞∑
k=0

ckxk) = (
∞∑

k=0

akxk ⊙

∞∑
k=0

bkxk) (
∞∑

k=0

akxk ⊙

∞∑
k=0

ckxk)
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for all
∞∑

k=0

bkxk,

∞∑
k=0

ckxk ∈ C[[x]]

4.
∞∑

k=0

2kakxk =

∞∑
k=0

akxk ·

∞∑
k=0

akxk

Proof. (1) =⇒ (2)

Let
∞∑

k=0

akxk be multiplicative, then

1 = η(
∞∑

k=0

akxk)(1) = ω(1)!aω(1) = a0

a1 = η(
∞∑

k=0

akxk)(pα) = ω(pα)!aω(Pα) = a0

So we can say,

ak
1 = η(

∞∑
k=0

akxk)(pα1
1 ) · · ·η(

∞∑
k=0

akxk)(pαk
k )

= η(
∞∑

k=0

akxk)(pα1
1 · · · p

αk
k ) = k!ak

(2) =⇒ (1)

Let ak =
ak

1
k! ∀n ∈ N and let n,m ∈ N st. (m,n) = 1 then,

η(
∞∑

k=0

akxk)(m.n) = η(
∞∑

k=0

ak
1

k!
xk)(m ·n) = aω(m·n)

1

aω(m)+ω(n)
1 = aω(m)

1 ·aω(n)
1 = η(

∞∑
k=0

akxk)(m) ·η(
∞∑

k=0

akxk)(n)

(2) =⇒(3)

Let ak =
ak

1
k! ∀n ∈ N then,

(
∞∑

k=0

ak
1

k!
xk ⊙

∞∑
k=0

bkxk)(
∞∑

k=0

ak
1

k!
xk ⊙

∞∑
k=0

ckxk) = (
∞∑

k=0

k!
ak

1

k!
bkxk)(

∞∑
k=0

k!
ak

1

k!
ckxk)

= (
∞∑

k=0

ak
1bkxk)(

∞∑
k=0

ak
1ckxk) =

∞∑
k=0

ak
1(
∑

i+ j=k

bic j)xk)
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=

∞∑
k=0

ak
1

k!
xk ⊙

∞∑
k=0

(
∑

i+ j=k

bic j)xk =

∞∑
k=0

ak
1

k!
xk ⊙ (

∞∑
k=0

bkxk ·

∞∑
k=0

ckxk)

(3) =⇒(4)

Let the distributive property hold.Then

∞∑
k=0

2kakxk =

∞∑
k=0

akxk ⊙

∞∑
k=0

2k

k!
xk

Recall,

exp(x) =
∞∑

k=0

1
k!

xk

This would imply

∞∑
k=0

2k

k!
xk =

∞∑
k=0

1
k!

(2x)k = exp(x) · exp(x) = (
∞∑

k=0

1
k!

xk)(
∞∑

k=0

1
k!

xk)

=

∞∑
k=0

akxk ⊙

∞∑
k=0

2k

k!
xk =

∞∑
k=0

akxk ⊙ (
∞∑

k=0

1
k!

xk ·

∞∑
k=0

1
k!

xk)

= (
∞∑

k=0

akxk ⊙

∞∑
k=0

1
k!

xk) · (
∞∑

k=0

akxk ·

∞∑
k=0

1
k!

xk) =
∞∑

k=0

akxk ·

∞∑
k=0

akxk

(4) =⇒ (2)

Assume
∞∑

k=0

2kakxk =

∞∑
k=0

akxk ·

∞∑
k=0

akxk holds

∞∑
k=0

2kakxk =

∞∑
r,s=0

arasxr+s

=

∞∑
k=0,0≤r≤k

arak−rxk

=

∞∑
k=0

(
∞∑

r=0

arak−r)xk
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3.4 Multiplicative and Additive Power Series

Thus,

2kak =

∞∑
r=0

arak−r

=⇒ 2kak = a0ak +a1ak−1+a2ak−2+ · · ·+ak−1a1+aka0

=⇒ 2kak = 2ak + (a1ak−1+a2ak−2+ · · ·+ak−1a1)

=⇒ (2k −2)ak = (a1ak−1+a2ak−2+ · · ·+ak−1a0) · · · · · · · · · (1)

To prove ak =
ak

1
k! ∀k ∈ N

we prove by induction

For k = 1;

a1 =
a1

1

1!

assume

ak =
ak

1

k!

For k+1 by (1) above

ak+1 =
1

(2k+1−2)
· (a1ak +a2ak−1+ · · ·+aka1)

using induction

ak+1 =
1

(2k+1−2)
· (

a1ak
1

1!k!
+

a2
1ak−1

1

2!(k−1)!
+ · · ·

ak
1a1

1

k!1!
)

=
ak+1

1

(2k+1−2)
· (

1
1!k!
+

1
2!(k−1)!

+ · · ·
1

k!1!
)

=
ak+1

1

(k+1)!
·

1
(2k+1−2)

(
(k+1)!

1!k!
+

(k+1)!
2!(k−1)!

+ · · ·
(k+1)!

k!1!
)

=
ak+1

1

(k+1)!
·

1
(2k+1−2)

[(k+1)+ (k)(k+1)+ · · ·+ (k+1))

using binomial expansion

ak+1 =
ak+1

1

(k+1)!
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3.4 Multiplicative and Additive Power Series

Hence shown that (4) =⇒ (2) □
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3.4 Multiplicative and Additive Power Series

Theorem 3.4.0.5. Let
∞∑

k=0

akxk ∈ C[[x]] be a non-zero power series.Then the following are

equivalent

1.
∞∑

k=0

akxk is additive

2. a0 = 0 and ak =
a1

(k−1)! ∀n ∈ N

3.
∞∑

k=0

akxk ⊙ (
∞∑

k=0

bkxk ·

∞∑
k=0

ckxk) =

[(
∞∑

k=0

akxk ⊙

∞∑
k=0

bkxk) ·
∞∑

k=0

ckxk]+ [(
∞∑

k=0

akxk ⊙

∞∑
k=0

ckxk) ·
∞∑

k=0

bkxk]

for all
∞∑

k=0

bkxk,

∞∑
k=0

ckxk ∈ C[[x]]

4.
∞∑

k=0

2kakxk =

∞∑
k=0

2
k!

xk ·

∞∑
k=0

akxk

Proof. (1) =⇒ (2)

Let
∞∑

k=0

akxk be additive, then

0 = η(
∞∑

k=0

akxk)(1) = ω(1)!aω(1) = a0

a1 = η(
∞∑

k=0

akxk)(pα) = ω(pα)!aω(Pα) = a0

So we can say,

ka1 = η(
∞∑

k=0

akxk)(pα1
1 )+ · · ·+η(

∞∑
k=0

akxk)(pαk
k )

= η(
∞∑

k=0

akxk)(pα1
1 · · · p

αk
k ) = k!ak

Therefore

ak =
a1

(k−1)!

(2) =⇒ (1)

Let ak =
a1

(k−1)! ∀n ∈ N and let n,m ∈ N st. (m,n) = 1 then,
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3.4 Multiplicative and Additive Power Series

η(
∞∑

k=0

akxk)(m.n) = η(
∞∑

k=0

k ·a1

k!
xk)(m ·n) = ω(m ·n)a1

= ω(m)a1+ω(n)a1 = η(
∞∑

k=0

k ·a1

k!
xk)(m)+η(

∞∑
k=0

k ·a1

k!
xk)(n)

= η(
∞∑

k=0

akxk)(m)+η(
∞∑

k=0

akxk)(n)

(2) =⇒(3)

Let ak =
a1

(k−1)! ∀n ∈ N then,

[(
∞∑

k=0

k ·a1

k!
xk ⊙

∞∑
k=0

bkxk) ·
∞∑

k=0

ckxk]+ [(
∞∑

k=0

k ·a1

k!
xk ⊙

∞∑
k=0

ckxk) ·
∞∑

k=0

bkxk]

=

∞∑
k=0

ka1bkxk ·

∞∑
k=0

ckxk +

∞∑
k=0

ka1ckxk ·

∞∑
k=0

bkxk

=

∞∑
k=0

(
∑

i+ j=k

ia1bic j)xk +

∞∑
k=0

(
∑

i+ j=k

ia1cib j)xk =

∞∑
k=0

[
∑

i+ j=k

ia1(bic j+ cib j)]xk

=

∞∑
k=0

[ka1

∑
i+ j=k

(bic j)]xk =

∞∑
k=0

k ·ak
1

k!
xk ⊙ (

∞∑
k=0

bkckxk)

=

∞∑
k=0

k ·ak
1

k!
xk ⊙ (

∞∑
k=0

bkxk ·

∞∑
k=0

ckxk)

(3) =⇒(4)

Let the distributive property hold.Then

∞∑
k=0

2kakxk =

∞∑
k=0

akxk ⊙

∞∑
k=0

2k

k!
xk

Recall,

exp(x) =
∞∑

k=0

1
k!

xk
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3.4 Multiplicative and Additive Power Series

This would imply

∞∑
k=0

2k

k!
xk =

∞∑
k=0

1
k!

(2x)k = exp(x) · exp(x) = (
∞∑

k=0

1
k!

xk)(
∞∑

k=0

1
k!

xk)

therefore,

=

∞∑
k=0

akxk ⊙

∞∑
k=0

2k

k!
xk =

∞∑
k=0

akxk ⊙ (
∞∑

k=0

1
k!

xk ·

∞∑
k=0

1
k!

xk)

= [(
∞∑

k=0

ak ⊙

∞∑
k=0

1
k!

xk) ·
∞∑

k=0

1
k!

xk]+ [(
∞∑

k=0

ak ⊙

∞∑
k=0

1
k!

xk) ·
∞∑

k=0

1
k!

xk)]

=

∞∑
k=0

akxk ·

∞∑
k=0

2
k!

xk

(4) =⇒ (2)

Assume
∞∑

k=0

2kakxk =

∞∑
k=0

2
k!

xk ·

∞∑
k=0

akxk holds

∞∑
k=0

2kakxk =

∞∑
r,s=0

2
s!

arxk

=

∞∑
k=0,0≤s≤k

2
s!

ak−sxk

=

∞∑
k=0

(
∞∑

s=0

2
s!

ak−s)xk

Thus,

2kak =

∞∑
s=0

2
s!

ak−s

=⇒ 2kak = 2ak +
2
1!

ak−1+
2
2!

ak−2+
2
3!

ak−3+ · · ·+
2

(k−1)!
ak−k+1+

2
k!

ak−k

=⇒ 2kak = 2ak +
2
1!

ak−1+
2
2!

ak−2+
2
3!

ak−3+ · · ·+
2

(k−1)!
a1+

2
k!

a0

=⇒ (2k −2)ak =
2
1!

ak−1+
2
2!

ak−2+
2
3!

ak−3+ · · ·+
2

(k−1)!
a1 · · · · · · · · · (1)
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3.4 Multiplicative and Additive Power Series

To prove ak =
a1

(k−1)! ∀k ∈ N

we prove by induction

For k = 1;

a1 =
a1

0!

assume

ak =
a1

(k−1)!

For k+1 by (1) above

ak+1 =
1

(2k −2)
(

2
1!

ak +
2
2!

ak−1+
2
3!

ak−2+ · · ·+
2

(k−1)!
a2+

2
(k)!

a1)

using induction

ak+1 =
2

(2k −2)
(

a1

1!(k−1)!
+

a1

2!(k−2)!
+

a1

3!(k−3)!
+ · · ·+

a1

(k−1)!1!
+

a1

(k)!
)

=
2

(2k −2)
a1

k!
(

k!
1!(k−1)!

+
k!

2!(k−2)!
+

k!
3!(k−3)!

+ · · ·+
k!

(k−1)!1!
+

k!
(k)!

)

using binomial expansion

=
1

(2k −1)
a1

k!
(2k −1)

ak+1 =
a1

k!

Hence shown that (4) =⇒ (2) □
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Chapter 4

Analysis and Conclusions

In Chapter 1 we defined arithmetic functions and looked at the different arithmetic function

and some examples based on them. Also, We will study the Dirichlet Convolution and

Unitary Convolution and theorems based on these topics. we stated and proved some basic

theorems that we would require in the later part.

In Chapter 2 we discussed some new concepts of arithmetic functions.we gave the

characterization of Completely Multiplicative and Additive Arithmetic Functions. we also

defined some more arithmetic functions.

In Chapter 3 we looked at the multiplicative and additive power series. The main

interest of the author was to see the relationship between formal power series and arithmetic

functions. We first defined the concept of formal power series and the Bell Series, then we

discussed the Bell series and specially multiplicative functions. we verified the Bell series

expansion for the different arithmetic functions. we also proved some theorems and parts

of the theorem that were left unsolved.
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