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PREFACE

This project report was produced in part to meet the requirements for the M.Sc. in

Mathematics program’s Subject: MAT - 651 Discipline Specific Dissertation in the

academic year 2023–2024.

The research report is on the topic "Convergence of Fourier series." The background

needed for this report is Functional Analysis , Measure Theory , Several Variable Cal-

culus and Elementary theory of Linear Differential Equations. There are a total of

five chapters . Every chapter is relevant and significant in its own right. The chapters

address important aspects of the subject and are organized logically, methodically, and

scientifically to cover every angle.

CHAPTER 1:

The Introductory chapter of this Project report has a brief description about the Fourier

series and its convergence subsequently prerequisites are mentioned, easier formulation

of Fourier series is derived along with some examples and some properties of Fourier

coefficients are proved.

CHAPTER 2:

In this chapter we study Fubinis theorem for two variables. Fubinis theorem will be used

in later part of the report to solve convolution properties and prove results of approxima-

tion to identity in chapter 4.

CHAPTER 3:

In this chapter convolution properties of integrable periodic functions are proved along
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with approximation lemma which is used to prove that convolution of two integrable

functions is continuous.

CHAPTER 4:

In this chapter we first see some basic definitions and proofs concerning Dirichlet ker-

nel and Fejer kernel. Then we prove density of continuous functions in Lp spaces,

define the concept of approximation to identity, show Dirichlet kernel is not an approx-

imation to the identity whereas Fejer kernel is approximation to identity. Finally we

prove sufficient condition for almost everywhere pointwise convergence of Fourier series.

CHAPTER 5:

In this chapter we will see L2 and Lp convergence of Fourier series and define Hilbert

transform, use Hilbert transform to prove convergence of Fourier series in Lp space.

Furthermore we see uniform convergence, an example of divergent Fourier series and

almost everywhere convergence in Lp space.



iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my dissertation guide Dr.M. Kunhanan-

dan, who provided constant support, encouragement, brilliance, advice and motivation

throughout the process. His guidance was a privilege that helped me from selecting my

project topic and suggesting inputs to completing this project .

I would also like to thank other faculties, office staff, my family and friends for their help

and cooperation during my preparation.





v

ABSTRACT

The dissertation revolves around Fourier series which is a sum of sine and cosine

waves that represents a periodic function. The main topic of this dissertation is con-

vergence of Fourier series in different modes .The convergence of a Fourier series is

essential because it determines the accuracy of approximating a periodic function. With-

out convergence, the approximation may fail to capture the essential features of the

function, leading to inaccuracies in modeling physical phenomena or processing signals

in engineering applications. The dissertation includes the concepts like necessary or/and

sufficient conditions for Lp convergence, pointwise convergence, uniform convergence,

almost everywhere convergence in Lp space and specially L2 spaces under Lp spaces.

It will also observe some examples of divergent Fourier series. It illustrates a variety

of concepts, including the uniqueness theorem, the characteristics of convolution of

periodic integrable functions , approximation to the identity, Fubinis theorem and Hilbert

transform.

Keywords: Fourier coefficient; trigonometric polynomial; Dirichlet kernel; Fejer

kernel
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Chapter 1

INTRODUCTION

Fourier series, introduced by the French physicist Joseph Fourier (1768-1830), is one of

the most powerful tools in mathematics, finding mathematical applications in solving

differential equations and technological applications in signal processing, image pro-

cessing, and electrical engineering, among others. A Fourier series is an expansion of a

periodic function in terms of an infinite sum of sines and cosines. It is extremely useful

as a way to break up an arbitrary periodic function into a set of simple terms that can

be plugged in, solved individually, and then recombined to obtain the solution to the

original problem or an approximation to it to whatever accuracy is desired or practical.

Joseph Fourier, when developed Fourier series, did not have any formal definition of

function, and hence he did not investigate about the convergence of these series. In

1876, DuBois Reymond showed the existence of continuous function with divergent

Fourier series, this issues of convergence took precedence, leading to many of the results

investigating the question of convergence of Fourier series in many senses, such as

convergence in the Lp norm for 1 ≤ p < ∞, uniform convergence, and almost everywhere

pointwise convergence.

1
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1.1 PREREQUISITE

Definition 1.1.0.1. Periodic function

A function f is said to be periodic with period L, if for x ∈ D( f ), where D( f )is the

domain of f and if x+L ∈ D( f ) and , L≥ 0 then

f (x+L) = f (x)

The smallest value of L is called the fundamental period of f. If L is the period of f

and m is any integer then mL is also a period of f.

Example, sin mπx
L ; cos mπx

L ;e
imπx

L are periodic functions with period 2L
m .

Definition 1.1.0.2. Even and Odd functions

Assuming the domain of function f is symmetric wrt 0 i.e. if x ∈ D( f ) then -x ∈ D( f )

the function is called even if

f (−x) = f (x) ∀x ∈ D( f )

and the function is odd if

f (−x) =− f (x) ∀x ∈ D( f )

Definition 1.1.0.3. Orthogonal functions

Two functions u and v are said to be orthogonal on an interval [ L’, L] if their product is

integrable and

∫ L

L′
u(x)v(x)dx = 0

where v(x) indicates the complex conjugate.
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We list some standard results

Lemma 1.1.0.4. If f is periodic function with period L ≥ 0 and if f is integrable on every

finite interval then

∫ L

0
f (x)dx =

∫ L+a

a
f (x)dx ∀a ∈ R

Lemma 1.1.0.5. If f is integrable on every finite interval then

∫ a

−a
f (x)dx =

2
∫ a

0 f (x)dx ∀a ≥ 0 if f is even

0 ∀a ≥ 0 if f is odd

Lemma 1.1.0.6. ∫ L

−L

(
cos

mπx
L

)(
cos

nπx
L

)
dx =

0 m ̸= n

L m = n

Lemma 1.1.0.7. ∫ L

−L

(
cos

mπx
L

)(
sin

nπx
L

)
dx = 0

Lemma 1.1.0.8. ∫ L

−L

(
sin

mπx
L

)(
sin

nπx
L

)
dx =

0 m ̸= n

L m = n

Lemma 1.1.0.9. ∫ L

−L

(
sin

mπx
L

)
=
∫ L

−L

(
cos

mπx
L

)
= 0

Lemma 1.1.0.10. ∫ L

−L
einx−imxdx

0 m ̸= n

L m = n
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Lemma 1.1.0.6, 1.1.0.7and 1.1.0.8 implies that the functions sin mπx
L ; cos mπx

L , m =

1,2... are mutually orthogonal set on the interval [-L,L].

1.2 FORMATION OF FOURIER SERIES AND FOURIER

COEFFICIENT

Let us consider the series of the form

a0

2
+

∞

∑
m=0

(
am

(
cos

mπx
L

)
+bm

(
sin

mπx
L

))
(1.1)

The series consists of 2L periodic function therefore if (1.1) converges for all x then the

function to which it converges is also a 2L periodic function.

Let us denote the limiting function by f (x)

f (x) =
a0

2
+

∞

∑
m=0

(
am

(
cos

mπx
L

)
+bm

(
sin

mπx
L

))
(1.2)

We have to determine am and bm.

For that we assume that the integration can legimately be carried out, this is possible

when ∑
∞
m=1 |an|+ |bm|< ∞.

Multiplying cos mπx
L and integrating wrt x in equation (1.2) and then using lemma (1.1.0.7)

,(1.1.0.6),(1.1.0.9). We get

am =
1
L

∫ L

−L
f (x)

(
cos

mπx
L

)
dx m = 1,2 . . . (1.3)
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Similarly, multiplying sin mπx
L and integrating wrt x in equation (1.2) and then using

(1.1.0.7),(1.1.0.8) ,(1.1.0.9) we get

bm =
1
L

∫ L

−L
f (x)

(
sin

mπx
L

)
dx m = 1,2 . . . (1.4)

From(1.3) we have

a0 =
1
L

∫ L

−L
f (x)dx (1.5)

Let f be integrable function (not necessarily periodic) on the interval [-L, L] the Fourier

series of f is trigonometric series (1.1) in this case we write

f (x)∼ a0

2
+

∞

∑
m=0

(
am

(
cos

mπx
L

)
+bm

(
sin

mπx
L

))
(1.6)

where am, bm and a0 can be calculated by (1.3),(1.4)and (1.5)

Now using Eulers formula we get

f (x)∼
∞

∑
m=−∞

cmeimx (1.7)

where the value of cm is given by the following equation.

cm =


am
2 + bm

2i ,m = 1,2, . . .

a0
2 ,m = 0

a−m
2 − b−m

2i ,m =−1,−2, . . .

(1.8)

Now we take the value of L= π and x ∈ T where T is a unit circle (compact metric space)

throughout this report and the integral of the function f is defined to be

∫
T

f =
1

2π

π∫
−π

f (x)dx
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This is true because the map [0,2π) → T, x → eix is a bijection using which we can

transfer the Lebesgue measure on [0,2π) onto the unit circle.

cm can also be given in an integral form

For m positive

cm =
am

2
+

bm

2i

=
1
2

 1
π

π∫
−π

f (x)cos
m
π
− i

π

π∫
−π

f (x)sin
m
π


=

1
2π

π∫
−π

f (x)(cosnx− isinnx)

=
1

2π

∫
π

−π

f (x)e−imxdx

Similarly, we get same integral form for m=0 and for negative values of m

cm =
1

2π

∫
π

−π

f (x)e−imxdx for m ∈ Z (1.9)

cm is called the Fourier coefficient of f and is denoted by f̂ (m)

For example, let us find the Fourier series of signum function on interval [−π,π] is

sgn(x) =


−1 −π ≤ x ≤ 0

0 x = 0

1 0 < x ≤ π
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a0 =
1

2π

π∫
π

sgn(x)dx

1
2π

(

0∫
−π

−1dx+
π∫

0

1dx) = 0

Since the function is odd the value of am = 0

bm =
1
π

π∫
−π

sgn(x)sin(mx)dx

=
1
π

 0∫
−π

−sin(mx)dx)+
π∫

0

sin(mx)dx


=

1
π
(
[cosmx

m

]0

−π

−
[
−cosmx

m

]π

0
)

=


2

mπ
f or odd m

0 f or even m

hence f (x) =
∞

∑
m=1

2
(2m−1)π sin(2m−1)x. For f (x) = x for x ∈ [−π,π]

a0 = 0 and am = 0 as f(x)is odd.

bm =
1
π

π∫
π

xsin(mx)dx

=

[
−x

cosmx
m

+
sinmx

m2

]π

−π

=
(−1)m+12

m

hence f (x) =
∞

∑
m=1

2(−1)m+1

(m) sin(2m−1)x.



1.3 PROPERTIES OF FOURIER COEFFICIENT 8

1.3 PROPERTIES OF FOURIER COEFFICIENT

Let f and g be integrable functions

1. ˆ( f +g)(n) = f̂ (n)+ ĝ(n)

2. ˆ(c f )(n) = c( f̂ (n))

3. ˆτδ f (n) = e−inδ f̂ (n),where τδ f (x) = f (x−δ )

4. ĝ(n) = f̂ (n−m) ; if g(t) = f (t)eimt

5. ˆ( f ′)(n) = in f̂ (n) if f is continuously differentiable.

6. Suppose if f is integrable function (i.e. 1
π

∫
π

−π
| f (x)|< ∞) where the norm is defined

by

∥ f∥= 1
2π

∫
π

−π

| f (x)|dx

then sup
n∈Z

| f̂ (n)| ≤ ∥ f∥.

7. If fm converges uniformly to f then f̂m(n)→ f̂ (n) as m → ∞ .

Proof. Properties 1 and 2 is proved by linearity of functions.

For 3, we use change of variables

ˆτδ f (n) =
1

2π

π∫
−π

τδ f (x)e−inxdx

=
1

2π

π∫
−π

f (x−δ )e−inxdx

=
1

2π

π∫
−π

f (u)e−in(u+δ )dx

= e−inδ f̂ (x)
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For 4, we directly substitute

ĝ(n) =
1

2π

π∫
−π

g(x)e−inxdx

=
1

2π

π∫
−π

f (x)e−i(n−m)xdx

= f̂ (n−m)

For 5, we use integration by parts

ˆ( f ′)(n) =
1

2π

π∫
−π

f ′(x)e−inxdx

= f (x)e−inx −
π∫

−π

−in f (x)e−inxdx

= in f̂ (n)

For 6, we get the result as |eix|= 1

| f̂ (n)|= | 1
2π

π∫
−π

f (x)e−inxdx|

≤ 1
2π

π∫
−π

| f (x)|dx

≤ ∥ f∥1
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For 7 we have | fm(x)− f (x)|< ε for some ε > 0

| f̂m(n)− f̂ (x)|= | 1
2π

π∫
−π

fm(x)e−inx − f (x)e−inxdx|

≤ 1
2π

π∫
−π

| fm(x)− f (x)|dx

<
1

2π
ε

π∫
−π

1dx = ε

Hence the result f̂m(n)→ f̂ (n) as m → ∞



Chapter 2

FUBINIS THEOREM

Definition 2.0.0.1. A general n-dimentional interval I in Rn is of the form I = I1 × I2 ×

. . . In where Ik ∀k = 1,2, . . . is an interval in R1

Definition 2.0.0.2. The bounded interval I in Rn is given by I = I1 × I2 ×·· ·× In where

Ik ∀k ∈ {1,2, . . . ,n} is a bounded interval in R1

Definition 2.0.0.3. I is a compact interval in Rn if I is of the form I = I1 × I2 ×·· ·× In

where Ik ∀k ∈ {1,2, . . . ,n} is a compact interval in R1.

Definition 2.0.0.4. Measure of an interval I in R1 is the absolute difference between the

end points of the interval.

Definition 2.0.0.5. The n-measure I is denoted by µ(I) which is given by µ(I) = µ(I1)×

µ(I2)×·· ·×µ(Ik) where µ(Ik) is the one dimensional measure of Ik ∀k ∈ {1,2, . . . ,n}

Definition 2.0.0.6. A subset T of Rn is said to be n-measure 0 if for all ε > 0, if T can

be covered by a countable collection of n- dimensional intervals the sum of whose n-

measure is less then ε .

11
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Definition 2.0.0.7. A property P is said to hold almost everywhere if M = {x : P does

not hold for x} is of measure 0.

Definition 2.0.0.8. The partition of an interval I in R having end points a and b, is the set

P = {xi : a = x0 < x1 < x2 < .. .xn = b}

If Pk is the partition of Ik into mk parts then the Cartesian product P=P1×P2×·· ·×Pn

partitions I into m = m1.m2 . . .mn parts.

Definition 2.0.0.9. Let J1,J2 . . .Jm be n-dimensional partitions of I.

A step function f defined on I is a function where the value on the interior of Jk

(i.e. (Jk)
◦)∀k ∈ {1,2, . . .n} is same. i.e.

f (x) = ck ∀x ∈ (Jk)
◦

Definition 2.0.0.10. The integral of f on I is defined by the equation

∫
I

f =
n

∑
j=1

c j µ(I j)

Definition 2.0.0.11. Let G be a general n dimensional interval in Rn which need not be

compact. A function f is called the step function of G if there is a compact n dimensional

sub-interval I of G such that f is step function on I and f (x) = 0 for x ∈ (G− I).

The integral f over G is defined by

∫
I

f =
∫

G
f

Definition 2.0.0.12. A real valued function g defined on I in Rn is called upper function

if there is an increasing sequence of step functions fn such that
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a) fn → g almost everywhere on I

b) lim
n→∞

∫
I fn exists.

The sequence { fn} is said to generate g

The integral of g over I is defined by equation

∫
I
g = lim

n→∞

∫
I

fn

The function g is upper function then it is denoted as g ∈U(I)

Definition 2.0.0.13. We say that g is a Lebesgue integrable function if it is of the form

g = u− v

where u and v are upper functions.

The set of all Lebesgue integrable function is denoted by L(I).

The integral of Lebesgue integrable function g is given by

∫
I
g =

∫
I
u−

∫
I
v

We first prove Fubinis theorem for step functions

Theorem 2.0.0.14. Let f be a step function on R2 then for each y in R1 the integral∫
R1 f (x,y)dx exists and, as the function of y is Lebesgue integrable on R1, and moreover

we have ∫ ∫
R2

f (x,y)d(x,y) =
∫
R1

[∫
R1

f (x,y)dx
]

dy (2.1)

Similarly for each x in R1 the integral
∫
R1 f (x,y)dy exists and, as the function of x is

Lebesgue integrable on R1, and moreover we have

∫ ∫
R2

f (x,y)d(x,y) =
∫
R1

[∫
R1

f (x,y)dy
]

dx (2.2)
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Proof. There is a compact interval I= [a,b]× [c,d] such that f is a step function on I and

f (x,y) = 0 i f (x,y) ∈ (R2 − I) (2.3)

If I is partitioned into mn sub-rectangles Ii j = [xi−1,xi]× [y j−1,y j] such that f is constant

in the interior of Ii j say

f (x,y) = ci j if (x,y) ∈ (Ii j)
◦

then

∫ ∫
Ii j

f (x,y)d(x,y) = ci j(xi − xi−1)(y j − y j−1) =
∫ y j

y j−1

[∫ x j

x j−1

f (x,y)dy
]

dx

summing on i and j we get

∫ ∫
I

f (x,y)d(x,y) =
∫ d

c

∫ b

a
f (x,y)dxdy

since f vanishes outside I , (2.1) is proved. Similarly we prove (2.2).

We see some of the theorems for set measure zero.

Theorem 2.0.0.15. Let S be a subset of Rn, S has n-measure 0 if and only if there exists a

countable collection of n-dimensional intervals J1,J2, . . . , the sum of whose n-measures

is finite, such that each point in S belongs to Jk for infinitely many k.

Proof. Assume that S is set of measure zero. Then S can be covered by a countable

collection of n-dimensional intervals {Im1, Im2, . . .} such that ∑
∞
k=1 µ(Imk)<

1
2m .

Let set A consists of all interval Imk for m = 1,2, ... and k = 1,2, .. then A is a countable

collection which covers S.Let us rename it as J1,J2, . . .

we see that
∞

∑
m=1

∞

∑
k=1

µ(Imk)≤
∞

∑
m=1

1
2m = 1
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therefore if a ∈ S then a ∈ Imk for each m and some k we observe that a is in Jk for

infinitely many k.

Conversely , Assume that there is countable collection of n dimensional interval {J1,J2, . . .}

such that ∑
∞
k=1 µ(Jk) converges at each point in S belongs to Jk for infinitely many k.

given ε > 0 ∃N ∈ N such that ∑
∞
k=N µ(Imk)< ε

Each point in S lies in the set
⋃

∞
k=N Jk and thus S is covered by countable a collection of

intervals sum of whose measure is < ε . So S has measure 0.

Definition 2.0.0.16. A real valued function is called measurable on an interval I in Rn if

there is a sequence of step functions { fn} on I such that

lim
n→∞

fn(x) = f (x) almost everywhere on I .

We denote this f by f ∈ M(I).

Definition 2.0.0.17. A subset S of Rn is called measurable if the characteristic function

χS is measurable.

Levi’s theorems for Lebesgue integrable functions:

Levi’s theorem for sequence of Lebesgue integrable function:

Let { fn} be a sequence of functions in L(I) in R such that

a) { fn} converges a.e. on I

b) lim
n→∞

∫
I fn exists.

Then { fn} converges a.e. on I to a limit function f such that f ∈ L(I) and

∫
I

f = lim
n→∞

∫
I

fn

Levi’s theorem for series of Lebesgue integrable function:

Let { fn} be a sequence of functions in L(I) in R such that

a) fn is non negative on almost everywhere on I

b) the series ∑
∞
n=1

∫
I fnconverges
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then the series ∑
∞
n=1 fn converges a.e on I to g in L(I), and we have

∫
I
g =

∫
I

∞

∑
n=1

fn =
∞

∑
n=1

∫
I

fn

Definition 2.0.0.18. If S is an arbitrary subset of R2 and if (x,y) ∈ R2 we denote

Sy = {x : x ∈ R1and(x,y) ∈ S}

Sx = {y : y ∈ R1and(x,y) ∈ S}

Theorem 2.0.0.19. If S is a subset of R2 with 2-measure 0, then Sy has 1-measure 0 for

almost all y in R1, and Sx has 1-measure 0 for almost all x in R1.

Proof. We will prove that Sy has 1-measure 0 for almost all y in R1

Since S has 2-measure 0, by Theorem 2.0.0.15 there is a countable collection of rectangles

Ik such that the series ∑
∞
k=1 µ(Ik) converges (i)

and such that every point (x, y) of S belongs to Ik for infinitely many k.

Write Ik = Xk ×Yk, where Xk and Yk are sub-intervals of R1’. Then,

µ(Ik) = µ(Xk)µ(Yk) = µ(Xk)
∫
R1

χYk =
∫
R1

µ(Xk)χYk

Where χYk is the characteristic function of the interval Yk.

Let gk = µ(Xk)χYk

Then (i) implies that the series ∑
∞
k=1

∫
R1 gk converges.

Now gk is a sequence of non-negative functions in L(R1) such that the series

∑
∞
k=1

∫
R1 gk converges. Therefore, by the Levi theorem for series of lebesgue integrable

function , the series ∑
∞
k=1 gk converges almost everywhere on R1.

In other words, there is a subset T of R1 of 1-measure 0 such that the series

∑
∞
k=1 µ(Ik)χYk converges for all y in R1 −T . (ii)

Take a point y in R1 −T , keep y fixed and consider the set Sy.
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We will prove that Sy has 1-measure zero.We can assume that Sy is nonempty; otherwise

the result is trivial.

Let A(y) = {Xk : y ∈ Yk,k = 1,2, ...}.

Then A(y) is a countable collection of one-dimensional intervals which we relabel as

J1,J2, ... The sum of the lengths of all the intervals Jk converges because of (ii). If x ∈ Sy,

then (x, y) ∈ S so (x, y) ∈ Ik = Xk ×Yk for infinitely many k, and hence x ∈ Jk. for

infinitely many k. By the one-dimensional version of Theorem 2.0.0.15 it follows that Sy

has 1-measure zero for almost all y in R1.

A similar argument proves that Sx has 1-measure zero for almost all x in R1.

Following is a proof for Fubinis theorem for double integral

Theorem 2.0.0.20. Assume f is Lebesgue-integrable on R2. Then we have:

a) There is a set T of 1-measure 0 such that the Lebesgue integral
∫
R1 f (x,y)dx exists for

all y in R1 - T.

b) The function G defined on R1 by the equation

G(y) =


∫
R1 f (x,y)dx; i f y ∈ R1 −T.

0; i f y ∈ T

is Lebesgue-integrable on R1.

c) ∫ ∫
R2

f =
∫
R1

G(y)dy

i.e.
∫ ∫

R2
f (x,y)d(x,y) =

∫
R1

[∫
R1

f (x,y)dx
]

dy

correspondingly

∫ ∫
R2

f (x,y)d(x,y) =
∫
R1

[∫
R1

f (x,y)dy
]

dx
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Proof. We prove the theorem for upper functions. If f ∈U( R2) there is an increasing

sequence of step functions such that fn(x, y) → f(x, y) for all (x, y) in (R2 - S), where S

is a set of 2-measure 0;

Also,

lim
n→∞

∫ ∫
R2

fn(x,y)d(x,y) =
∫ ∫

R2
f (x,y)dydx

Now (x, y)∈ (R2 - S) if, and only if, x∈ R1 - Sy.

Hence

fn(x,y)→ f (x,y) if x ∈ R1 −Sy. (i)

Let tn(y) =
∫

R1 fn(x,y)dx. This integral exists for each real y and is an integrable function

of y.

Moreover, by Theorem 2.0.0.14 we have

∫
R1 tn(y)dy =

∫
R1[
∫
R1 fn(x,y)dx]dy

=
∫
R1 [
∫
R1 fn(x,y)dy]dx

=
∫
R2 fn(x,y)d(x,y)

≤
∫
R2 f

Sequence tn is increasing and lim
n→∞

∫
R1 tn(y)dy exists then we can use the Levis theorem

for sequence of Lebesgue integrable function.

We get function t ∈ L(R1) such that lim
n→∞

tn → t for all y on R1 −T1 where T1 is a subset

of real numbers and has 1-measure 0.

Moreover, ∫
R1

t(y)dy = lim
n→∞

∫
R1

tn(y)dy

Again tn is an increasing function and

tn(y) =
∫
R1

fndx ≤ t(y)
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if y ∈ R1 −T1

Applying Levis theorem again to { fn}. There exists a Lebesgue integrable function g

such that ,

fn(x,y)→ g(x,y) ∀y ∈ R1 −A

Where A has 1-measure 0. (ii)

From (i) and (ii) we have

g(x,y) = f (x,y) ∀x ∈ R1 − (A∪Sy) (iii)

Sy has 1-measure 0 for a.e. y . I.e there is a T2 of 1-measure 0 such that Sy has 1-measure

0 for all y ∈ R1 −T2

Let T = T1 +T2 then T has 1-measure 0 . Then if u ∈ R1 −T then A∪Sy has measure 0

hence (iii) holds. Since
∫
R1 g(x,y) exists if y ∈ R1 −T it follows that

∫
R1 f (x,y) exists if

y ∈ R1 −T

hence (a)

If y ∈ R1 −T . We have

∫
R1

f (x,y)dx =
∫
R1

g(x,y)dx = lim
n→∞

∫
R1

fn(x,y)dx = t(y)

Since t is a Lebesgue integrable function we get (b).

To prove (c)

∫
R1

t(y)dy =
∫
R1

lim
n→∞

tn(y)dy

= lim
n→∞

∫
R1

tn(y)dy

= lim
n→∞

∫
R1

{∫
R1

fn(x,y)dx
}

dy

= lim
n→∞

∫
R1

∫
R1

fn(x,y)d(x,y)

=
∫ ∫

R2
f (x,y)d(x,y)
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By (b) we get (c).

If f ∈ L(R1) then f is of the form u-v where u and v are upper functions then

∫ ∫
R2

f =
∫ ∫

R2
u−

∫ ∫
R2

v

= lim
n→∞

∫
R1

{∫
R1

u(x,y)dx
}

dy− lim
n→∞

∫
R1

{∫
R1

v(x,y)dx
}

dy

= lim
n→∞

∫
R1

{∫
R1

u(x,y)− v(x,y)dx
}

dy

=
∫
R1

{∫
R1

f (x,y)dx
}

dy

Similarly we can prove

∫ ∫
R2

f =
∫
R1

{∫
R1

f (x,y)dy
}

dx.



Chapter 3

CONVOLUTION

Let g and f be periodic integrable functions the convolution f ∗g on [−π,π] is given by

( f ∗g)(x) =
1

2π

∫
π

−π

f (y)g(x− y)dy

Product of two intergable fuctions is integrable hence the convolution makes sense. The

following are some of the properties of convolution of periodic integrable functions

1. f ∗ (g+h) = ( f ∗g)+( f ∗h)

2. (c f )∗g = c( f ∗g) = f ∗ (cg)

3. ( f ∗g) = (g∗ f )

4. ( f ∗g)∗h = f ∗ (g∗h)

5. ( f ∗g) is continuous

6. ˆ( f ∗g)(n) = f̂ (n)ĝ(n)

21
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Proof of 1 and 2 is by linearity of integrable functions.

To prove 3

( f ∗g)(x) =
1

2π

π∫
−π

f (x− y)g(y)dy

let (x-y) = u then we use the lemma (1.1.04) and we get

( f ∗g) = ( f ∗g)(x) =
1

2π

π∫
−π

f (u)g(x−u)du = (g∗ f )(u) = (g∗ f )

To prove 4

( f ∗g)∗h = (( f ∗g)∗h)(x)

=
1

2π

π∫
−π

( f ∗g)(y)(h(x− y))dy

=
1

2π

π∫
−π

 1
2π

π∫
−π

f (z)g(y− z)dz)

(h(x− y))dy

=
1

2π

π∫
−π

f (z)

 1
2π

π∫
−π

g(y− z)h(x− z− (y− z))dy)

dz

In the above step we used Fubinis theorem, now let y -z = u

=
1

2π

π∫
−π

f (z)

 1
2π

π∫
−π

g(u)h(x− z− (u))du)

dz

=
1

2π

π∫
−π

f (z)(g∗h)(x− z)dz

= f ∗ (g∗h)(x)
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To prove 6

ˆ( f ∗g)(n) =
1

2π

π∫
−π

( f ∗g)(x)e−inxdx

=
1

2π

π∫
−π

 1
2π

π∫
−π

f (y)g(x− y)dy)

e−inxdx

=

 1
2π

π∫
−π

1
2π

f (y)e−inydy

 π∫
−π

g(x− y)e−in(x−y)dx)


= f̂ (n)ĝ(n)

To prove 5 we need to prove a lemma because of which the property of convolution holds

for all integrable periodic function.

Lemma 3.0.0.1. (Approximation Lemma):

Suppose f is integrable on a circle and bounded by B the there is a sequence of continuous

functions { fk}∞
k=1 on the circle such that

sup
x∈[−π,π]

| fk(x)| ≤ B ∀k = 1,2, . . .and

∫
π

−π

| f (x)− fk(x)|dx → 0 as k → ∞

Proof. When f is real, given ε > 0,∃ partition P of the interval [−π,π] such that

U(P, f )−L(P, f )≤ ε as f is integrable.

We define step function g on [−π,π] as

g(x) = sup
x j−1≤y<x j

f (y) i f x ∈ [x j−1,x j) f or j = 1,2, . . . ,N
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Function g is a bounded function. and we have

∫
π

−π

|g(x)− f (x)|dx =
∫

π

−π

g(x)− f (x)dx < ε

To modify the step function g to make it continuous we will take small δ > 0, and

define g∗(x) = g(x) when distance between x and partition points in P is more than

δ , g∗(x) = 0 for x ∈ [−π − δ ,−π + δ ]∪ [π − δ ,π + δ ] and g∗(x) is a linear function

from g(x− δ ) to g(x+ δ ) of corresponding partitions we see that g∗ is a continuous

function Since g∗ differs by g in N intervals and g∗ is bounded and length of the N

intervals can be written as scalar times δ we have,

∫
π

−π

|g(x)−g∗(x)|dx ≤ 4BNδ

when δ become very small

∫
π

−π

|g(x)−g∗(x)|dx < ε

By triangle inequality we have ,

∫
π

−π

| f (x)−g∗(x)|dx ≤
∫

π

−π

|g(x)− f (x)|dx+
∫

π

−π

| f (x)−g∗(x)|dx < 2ε

Let 2ε = 1
k and denote g∗ as fk then

∫
π

−π

| f (x)− fk(x)|dx → 0 as k → ∞

If f is a complex function we apply the above proof for real and imaginary part separately

to get the result.
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Now for property 5

( f ∗g)− ( fk ∗gk) = ( f ∗g)− ( fk ∗g)+( fk ∗g)− ( fk ∗gk)

= ( f − fk)∗g+ fk(g∗gk)

(( f − fk)∗g)(x) =
1

2π

∫
π

−π

( f − fk)(x− y)g(y)dy

|(( f − fk)∗g)(x)| ≤ 1
2π

∫
π

−π

|( f − fk)(x− y)||g(y)|dy

=
1

2π

∫
π

−π

|( f (x,y)− fk(x− y))||g(y)|dy

≤ 1
2π

sup
y
|g(y)|

∫
π

−π

|( f − fk)(x− y)|dy

→ 0 as k → ∞

The convergence is uniform.

Similarly fk ∗ (g− gk) converges uniformly to 0 as k tends to infinity.Hence fk ∗ gk

converges uniformly to f ∗g as k tends to infinity.

By continuity of each fk ∗gk we have f ∗g continuous.



Chapter 4

TOWARDS CONVERGENCE

4.1 BASIC DEFINITIONS AND RESULTS

Definition 4.1.0.1. Let f be an integrable function then the Nth partial sum of Fourier

series is f is given by

SN f (t) =
N

∑
m=−N

f̂ (x)eimx

Definition 4.1.0.2. Trigonometric polynomial is a function of the form

P(t) = ∑
m∈Z

aneimt

such that ∃ N ∈ N st ∀m > N am and a−m vanishes and this N is called the degree of the

polynomial

proposition 4.1.0.3. Fourier series of any trigonometric polynomial converges back to

itself

26



4.1 BASIC DEFINITIONS AND RESULTS 27

Proof. we can do this by proving ˆP(n) = an where P is a trigonometric polynomial of

degree p.

ˆP(n) =
1

2π

π∫
−π

∑
m∈Z

ameimxe−inxdx

=
1

2π
∑

m∈Z
am

π∫
−π

eix(m−n) = an

Hence ||SNP−P||= ||
N
∑

m=−N
P̂(x)eimx −

p
∑

n=−p
aneinx||

as N → ∞ ||SNP−P|| → 0

Definition 4.1.0.4. The NthDirichlet kernel is defined to be

DN(t) =
N

∑
m=−N

eimx

we can deduce the property that

SN f = DN ∗ f

SN f (t) =
N

∑
n=−N

f̂ (n)eint

=
N

∑
n=−N

 1
2π

π∫
−π

f (x)e−intdx

eint

=
1

2π

 π∫
−π

f (x)(
N

∑
n=−N

ein(t−x))dx


= ( f ∗DN)(t)
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Definition 4.1.0.5. The Nth Fejer kernel is defined to be

FN(x) =
1
N

N−1

∑
n=0

Dn(x)

If f is an integrable function the Nth Fejer mean of f is defined to be

σN f (x) = (FN ∗ f )(x) =
1
N

N−1

∑
n=0

Sn(x)

(FN ∗ f )(x) =
1

2π

π∫
−π

FN(y) f (x− y)dy

=
1

2π

π∫
−π

1
N

N−1

∑
n=0

Dn(y) f (x− y)dy

=
1

2π

1
N

N−1

∑
n=0

π∫
−π

DN(y) f (x− y)dy

=
1
N

N−1

∑
n=0

(DN ∗ f )(x)

=
1
N

N−1

∑
n=0

Sn(x)

For N ∈ Z we have values of Dirichlet kernel and Fejer kernel as

DN f (x) =
sin
(2N+1

2 x
)

sin( x
2)

FN f (x) =
1
N

(
sin
(Nx

2

)
sin( x

2)

)2
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DN(x) =
N

∑
n=−N

einx

= e−iNx
2N

∑
n=0

einx

=
e−iNx

e
1
2

ei(2N+1)x −1

(e
ix
2 − e−

−ix
2 )

= e−i( 2N+1
2 )x ei(2N+1)x −1

(e
ix
2 − e−

−ix
2 )

=
2i
2i

ei( 2N+1
2 )x − e−i( 2N+1

2 )x

(e
ix
2 − e−

−ix
2 )

=
sin((2N+1

2 )x)
sin( x

2)

We use the result eix−e−ix

2i = sinx

FN(x) =
1
N

N−1

∑
n=0

Dn(x)

=
1
N

N−1

∑
n=0

sin((2n+1
2 )x)

sin( x
2)

=
1
N

1
sin( x

2)

N−1

∑
n=0

ℑ(e
2n+1

2 ix)

=
1

N sin( x
2)

ℑ(
N−1

∑
n=0

e
2n+1

2 ix)

=
1

N sin( x
2)

ℑ(e
ix
2 (

eiNx −1
eix −1

))

=
1

N sin( x
2)

ℑ(
eiNx −1

e
ix
2 − e

−ix
2
)

=
1

N sin( x
2)

ℑ(
eiNx −1
2isin( x

2)
)
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FN(x) =
1

N sin2( x
2)

ℜ(
eiNx −1
−2

)

=
1
N

1− cosNx
2sin2( x

2)

=
1
N

(
2

sin(Nx
2 )

2sin( x
2)

)2

=
1
N

(
sin(Nx

2 )

sin( x
2)

)2

Definition 4.1.0.6. For 1 ≤ p < ∞ ,Lp(T) is the space all measurable function f : (T)→

C such that

∥ f∥p = (
1

2π

∫
π

−π

| f |p)
1
p < ∞

Definition 4.1.0.7. L∞(T) is the set of measurable function f : (T)→ C st

∥ f∥∞ = inf{C ≥ 0 : m({x : f (x)>C}) = 0}< ∞

Since the map [0,2π)→ T,x → eix is.a bijection we can naturally identify Lp[0,2π)

with Lp(T).

(Lp(T),∥.∥p) and (L∞(T),∥.∥∞) are Banach spaces is well known.

4.2 DENSITY OF CONTINUOUS FUNCTIONS IN Lp

We state some basic definitions and results that require

Definition 4.2.0.1. Let X be a normed linear space with norm ∥.∥. Given two subsets F

and G of X with F ⊆ G . We say that F is dense in G provided for each function g in G

s.t. ∀ ε > 0 ∃ a function f in F s.t. || f −g||< ε.
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Also if F is dense in G and G is dense in H then F is dense in H

Definition 4.2.0.2. Let E1,E2, . . . ,En be subsets of R then the function of the form

φ(x) = a1χE1(x)+ a2χE2(x)+ · · ·+ anχEn(x) where a1,a2, . . . ,an are real numbers is

called a simple function.

Theorem 4.2.0.3 (Simple Approximation Theorem). Let E be a measurable set and

f : E → [0,∞] be a non-negative, extended real valued measurable function. Then ∃ a

sequence (φn)
∞
n=0 of measurable simple functions on E s.t.

(a) 0 ≤ φ1 ≤ φ2 ≤, . . . ,≤ f

(b) φn(n)→ f pointwise everywhere on E (Uniformly convergent if f is bounded)

Corollary 4.2.0.4. Let E be measurable set and f : E → [−∞,∞] be extended real valued

measurable function then ∃ a sequence (φn)
∞
n=1 of simple function s.t.

(i) |φn| ≤ | f | ∀ n

(ii) φn → f converges pointwise everywhere on E

Proposition 4.2.0.5. Let E be a measurable set and 1 < p ≤ ∞ then the subspace of

simple function in Lp(E) is dense in Lp(E).

Proof. Let g ∈ Lp(E). First consider p = ∞. There is a subset E0 of E s.t. g is bounded

on E\E0 where m(E0) = 0

We infer from Simple Approximation theorem that there is a sequence of simple function

on E\E0 that converges uniformly on E\E0 to g and therefore converges w.r.t. L∞ norm.

Hence simple functions are dense in L∞(E)

Now suppose 1 < p < ∞

Since g is measurable by Simple Approximation Theorem ∃ a sequence of simple
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functions on E s.t. {φn}→ g pointwise on E and |φn| ≤ |g| on E for all n ∈ N. Each φn

belongs to Lp

We claim φn → g in Lp

|φn −g|p ≤ 2p {|φn|p + |g|p}= 2p+1|g|p on E

Now, |g|p is integral of E . From Dominated Convergence Theorem {φn}→ g in Lp

Since |φn|< |g| and |φn| → |g|

We have |φn −g|p ≤ |g|p and φn and g are Lebesgue integrable.

⇒ |φn −g|p is sequence Lebesgue integrable

|φn −g|p → 0 as |φn −g| → 0 as n → ∞

⇒ lim
n→∞

∫
|φn −g|p =

∫
lim
n→∞

|φn −g|p = 0

⇒{φn}→ g in Lp

Proposition 4.2.0.6. Let [a,b] be a closed, bounded interval and 1 ≤ p < ∞ then the

subspace of step function on [a,b] is dense in Lp.

Proof. The previous proposition tells us that the simple functions are dense in Lp([a,b]).

Therefore it suffices to show that the step function are dense in simple function w.r.t. the

|| · ||p norm.

Each simple function is a linear combination of characteristic functions of measurable

sets. Therefore if each characteristic function can be arbitrarily closely approximated

step function on || · ||p norm.

Since linear combination of step function is step function, so any simple function can be

approximated arbitrarily w.r.t. Lp norm by step function.
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Let g = χA where A is measurable subset of [a,b] and let ε > 0 and seek a step function

f on [a,b] for which || f −g||p < ε

Now since A is measurable ∃ finitely many disjoint collection of open intervals {Ik}n
k=1

for which we define U =
n⋃

k=1

Ik then symmetric difference A∆U = (A\U )∪ (U \A) has

the property that m∗(A∪U )< ε p

Since U is a finite disjoint union of open interval. Then χU is a step function

Moreover, ||χA −χU ||p =
{∫

[a,b] |χA −χU |p
} 1

p

⇒
{∫

[a,b] |χA −χU |p
} 1

p ≤ {
∫

A∆U 1}
1
p = (m(A∆U ))

1
p = (ε p)

1
p = ε

So step function χU approximates characteristic function χA to within ε > 0 w.r.t. Lp

norm.

Proposition 4.2.0.7. Continuous functions are dense in Lp.

Proof. Approximating continuous function to step function.

Let f be continuous function on compact interval [a,b] then f is uniformly continuous in

[a,b].

Let ε > 0 be given then ∃ δ > 0 s.t. | f (x)− f (y)|< ε where |x− y|< δ

Let P be a partition P = {a = x0,x1,x2, . . . ,xn = b} such that |xi − xi−1| < δ for i =

1,2, . . . ,n

∀ x ∈ [xi,xi−1) let g(x) = sup
x∈[xi,xi−1)

f (x) then g is a step function

then |g(x)− f (x)|< ε ∀ x ∈ [a,b]

⇒ sup
x∈[a,b]

|g(x)− f (x)| ≤ ε

⇒ ||g− f ||pp = 1
(b−a)

∫ b
a |g− f |p ≤ ε p(b−a)

⇒ ||g− f ||p < ε Hence continuous functions are dense in Lp

as step functions are dense in Lp hence continuous functions are dense in LP
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4.3 APPROXIMATION TO THE IDENTITY

A family of functions {Kn}n∈N is an approximation to the identity if the following three

properties hold

(a) 1
2π

∫
π

−π
Kn(x)dx = 1 ∀n

(b) supn∈N
1

2π

∫
π

−π
|Kn(x)|dx < ∞

(c)
∫

δ≤x≤π
|Kn(x)|dx → 0 as n → ∞ ∀δ > 0

Theorem 4.3.0.1. Let {Kn}n∈N is an approximation to the identity then for any continu-

ous function f we have as n→ ∞

∥Kn ∗ f − f∥∞ → 0

furthermore for any f ∈ Lp(T) with 1 ≤ p < ∞ we have as n→ ∞

∥Kn ∗ f − f∥p → 0

Proof. Suppose f is continuous. Since T is compact, f is uniformly continuous in T. So

let x,y ∈ T and let ε > 0 and δ > 0 satisfy

|x− y|< δ then | f (x)− f (y)|< ε

f is a function on a compact space hence f is bounded

⇒ | f (x)|< M ∀x ∈ T.
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Then

|(Kn ∗ f )(t)− f (t)|= | 1
2π

π∫
−π

Kn(t − x) f (x)dx− f (t)|

= | 1
2π

π∫
−π

Kn(t − x) f (x)dx− f (t)
1

2π

π∫
−π

Kn(t − x)dx|

= | 1
2π

π∫
−π

Kn(t − x)( f (x)− f (t))dx|

≤ 1
2π

∫
|x−t|<δ

|Kn(t − x)||( f (x)− f (t))|dx

+
1

2π

∫
δ≤|x−t|<π

|Kn(t − x)||( f (x)− f (t))|dx

≤ 1
2π

∫
|x−t|<δ

|Kn(t − x)|εdx+2M
1

2π

∫
δ≤|x−t|<π

|Kn(t − x)|dx

≤ (ε)M′+2M
1

2π

∫
δ≤|x−t|<π

|Kn(t − x)|dx

= εM′ as n → ∞

We get the second term tends to zero as n tends to infinity by the second property of

approximation to the identity. Now since ε is arbitrary and above is true for all t.

||Kn ∗ f − f ||∞ → 0 as n → ∞

Now for the second part when f ∈ Lp then by density of continuous functions in Lp

∃g ∈ C (T) such that || f −g||p < ε for some ε > 0. Next, we use Minikowskis integral

inequality (||
∫

f ||p ≤
∫
|| f ||p).
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We have

||Kn ∗ ( f −g)||p = || 1
2π

π∫
−π

Kn(y)( f −g)(x− y)dy||p ,(x ∈ T)

≤ 1
2π

π∫
−π

||Kn(y)( f −g)(x− y)||pdy

=
1

2π

π∫
−π

 1
2π

π∫
−π

|Kn(y)( f −g)(x− y)|pdx

 1
p

dy

=
1

2π

π∫
−π

|Kn(y)|dy

 1
2π

π∫
−π

|( f −g)(x− y)|pdx

 1
p

≤ ||Kn||1|| f −g||p

< ε sup
n∈N

||Kn||1.

Therefore

||Kn ∗ f − f ||p ≤ ||Kn ∗ f −Kn ∗g||p + ||Kn ∗g−g||p + ||g− f ||p

< ε sup
n∈T

||Kn||1 + ||Kn ∗g−g||∞ + ε

< ε(nsup
n∈T

||Kn||1 +2)

Hence we get the second result.

Next we show that Dirichlet kernel in not an approximation to the identity.This result

will be useful to show that for some conditions the Fourier series does not converge to

the functions in L1 and L∞ space.

Proposition 4.3.0.2. ∥DN∥1 =
1

2π

∫
π

−π
|DN(x)|dx ≥ 4

π2 log(2N +2).

In particular ∥DN∥→ ∞ as N → ∞
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Proof.

|DN(t)|= |
sin (2N+1)t

2
sin t

2
| ≥ |

sin (2N+1)t
2

t
2

|

As |sinx| ≤ |x|, ∀x > 0 Now for (kπ

2 ≤ t ≤ (k+1)π
2 ) where k = 0,1,2, . . .2N

1
2π

π∫
−π

|DN(t)|dt =
1

2π

π∫
=0

4
|sin( (2N+1)t

2 )|
t

dt

=
1

2π

(2N+1)π
2∫

0

4
|sin t|

t
dt

≥ 4
π

2N

∑
k=0

(k+1)π
2∫

kπ

2

|sin t|
(k+1)π

dt

=
4

π2

2N

∑
k=0

1
k+1

≥ 4
π2 log(2N +2)≥ 4logN

π2

Hence we get the result.

Proposition 4.3.0.3. Fejer kernel form an approximation to the identity

Proof. To prove first condition of approximation to the identity

1
2π

∫
π

−π

FN(x)dx =
1

2π

∫
π

−π

1
N

N−1

∑
n=0

Dn(x)dx

=
1

2π

∫
π

−π

1
N

N−1

∑
n=0

n

∑
m=−n

eimxdx

=
1

2π

1
N

N−1

∑
n=0

n

∑
m=−n

π∫
−π

eimxdx

= 1
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Now since Fn(x) = 1
n(

sin nx
2

sin x
2
)2 which is positive. Therefore from 1 we get 2.

To prove (3) i.e.
∫

δ≤|x|≤π
|Fn(x)|dx → 0 as n → ∞ ∀δ > 0

∫
δ≤|x|≤π

|FN(x)|dx ≤
∫

δ≤|x|≤π

1
n
(
sin nx

2
sin x

2
)2dx

≤
∫

δ≤|x|≤π

1
n
(

1
sin x

2
)2dx . . .(a)

Now to prove that (sin δ

2 )
2 ≤ (sin x

2)
2

x ∈ [−π,π] this implies that x
2 ∈ [−π

2 , π

2 ], Since δ ≤ |x| ≤ π

sin(−π

2 )≤ sin(−δ

2 )≤ sin(δ

2 )≤ sin(π

2 ) after squaring we get the result and substituting

in (a) we get∫
δ≤|x|≤π

1
n(

1
sin x

2
)2dx ≤ 1

n
1

(sin δ

2 )
2 2(δ −π)→ 0 as n → ∞

Corollary 4.3.0.4. Trigonometric polynomials are dense in Lp.

Proof. let f ∈ Lp(T) and h is a trigonometric function

where h = FN ∗ f = σN f .

Since {FN}N∈N is an approximation to the identity the for any f ∈ Lp(T) with 1 ≤ p < ∞

∥FN ∗ f − f∥p → 0 as n → ∞

Corollary 4.3.0.5. (Riemann- Lebesgue Lemma )

For any integrable function i.e. ( f ∈ L1 ) we have f̂ (n)→ 0 as n → ∞

Proof. Let P be trigonometric polynomial such that ∥ f −P∥1 < ε f or ε > 0

P has a degree N then P̂(n) = 0 for any |n|> N

Hence for any |n|> N we have

| f̂ (n)|= | f̂ (n)− P̂(n)|= |( ˆf −P)(n)| ≤ ∥ f −P_1 < ε
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Theorem 4.3.0.6. (Uniqueness theorem)

If f̂ (n) = 0 ∀n ∈ Z then f = 0 a.e

Proof. Suppose f̂ (n) = 0,∀n ∈ Z

SN f (x) =
N

∑
n=−N

f̂ (n)einx = 0 ∀N ∈ N

σN f (x) = FN ∗ f (x) = 1
N

N−1
∑

n=0
Sn f (x) = 0

∥ f∥1 = ∥σN f − f∥1 → 0 as n → ∞

hence f is 0 almost everywhere.

We also have if f̂ (n) = ĝ(n)∀n ∈ Z then f = g almost everywhere.

Next is a theorem for sufficient condition for almost everywhere pointwise convergence

Theorem 4.3.0.7. Suppose ∑
n∈N

| f̂ (n)|< ∞ the SN f converges to f almost everywhere.

In particular f is equal to a continuous function almost everywhere.

Proof. |SN f (x)| ≤ ∑
n∈N

| f̂ (n)| for every x , SN f (x) converges point wise to some function

g .Further the convergence is uniform as ∑
n∈N

| f̂ (n)| < ∞,then there exists some p ∈ N

such that for all n > p
∞

∑
k=n

| f̂ (n)|< ε .

Hence for N,M > p

|SN f (x)−SM f (x)| ≤
N

∑
n=M+1

| f̂ (n)|

and this does not depend on x.

since SN f is continuous implies g is continuous.
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ĝ(n) =
1

2π

π∫
−π

g(x)e−inxdx

=
1

2π

π∫
−π

lim
N→∞

SN f (x)e−inxdx

=
1

2π

π∫
−π

lim
N→∞

(
N

∑
n=−N

f̂ (n)einx

)
e−inxdx

=
1

2π

π∫
−π

f (x)e−inxdx

= f̂ (n) f or every n ∈ N

Since f̂ (n) = ĝ(n) which implies that f=g almost everywhere and f is continuous almost

everywhere.



Chapter 5

LP CONVERGENCE

5.1 L2 CONVERGENCE

We start with

Definition 5.1.0.1. A function f is convex on interval [a,b] if for any two points

x1 and x2 in [a,b] and any 0 < λ < 1,

f (λ (x1)+(1−λ )x2)≤ λ f (x1)+(1−λ ) f (x2)

Using the definition of convex function we prove the Hölders inequality.

Proposition 5.1.0.2. Hölders inequality gives for f ∈ Lp and g ∈ Lq where 1
p +

1
q = 1

then

∥ f g∥1 ≤ ∥ f∥p∥g∥q

Proof. Since f ∈ Lp and g ∈ Lq we have 0 < ∥ f∥p,∥g∥q < ∞

Wlg define F(x) = | f (x)|
∥ f∥p

and G(x) = |g(x)|
∥g∥q

41
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∫
F pdµ =

∫ | f (x)|p

∥ f∥p
p

dµ =
1

∥ f∥p
p

∫
| f (x)|pdµ = 1

similarly
∫

Gq = 1

Now we define s(x) = log
(
| f (x)|
∥ f∥p

)p
and t(x) = log

(
|g(x)|
∥g∥q

)q

es(x) =

(
| f (x)|
∥ f∥p

)p

which implies F(x) = e
s(x)

p and similarly G(x) = e
t(x)

q

ex is a convex function we put λ = 1
q

e
1
q t(x)+ 1

p s(x) ≤ 1
q

e
t(x)

q +
1
p

e
s(x)

p

which gives

F(x)G(x)≤ G(x)q

q
+

f (x)p

p
(5.1)

Integrating left side of (i)we get

∥FG∥1 =
∫

|FG|dµ =
∫ | f g|1

∥ f∥p∥g∥q
dµ =

∥ f g∥
∥ f∥p∥g∥q

dµ (5.2)

integrating right hand side of (i)

∫ F(x)p

p
+

G(x)q

q
dµ =

1
p

∫
F(x)pdµ +

1
q

∫
G(x)qdµ =

1
p
+

1
q
= 1 (5.3)

from (5.1), (5.2) and (5.3) we get the result.

Proposition 5.1.0.3. L2(T) is a Hilbert space with inner product ⟨ f ,g⟩=
∫
T

f (x)g(x)dx
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Proof. ⟨ f ,g⟩=
∫
T

f (x)g(x)dx ≤ ∥ f∥2∥ḡ∥2 < ∞ hence the inner product is well defined.

To check the conditions for inner product space

Let f,g and h ∈ L2

1) ⟨a f +bg,h⟩=
∫
(a f +bg)(x)h(x)dx = a⟨ f ,h⟩+b⟨g,h⟩

2) ⟨g, f ⟩=
∫

g(x) f (x) =
∫

g(x) f (x)dx = ⟨ f ,g⟩

3) ⟨ f , f ⟩=
∫
| f (x)|2dx ≥ 0

If ⟨ f , f ⟩= 0 ⇔
∫

f (x)g(x)dx = 0 ⇔
∫
| f (x)|2dx = 0 a.e.

Proposition 5.1.0.4. Let en(t) = eint the {en}n∈Z is orthogonal set

⟨em,en⟩=
∫
T

ei(m−n)tdt =

 1 i f m = n

0 i f m ̸= n

Proposition 5.1.0.5. Let f ∈ L2

1) SN f is the best degree N trigonometric L2 approximation to f. I.e. for any given

trigonometric polynomial P of degree atmost N , we have ∥ f −SN f∥2 ≤ ∥ f −P∥2

2)∥ f −SN f∥2 → 0 as n → ∞

3)(Parsevals identity)

∥ f∥2
2 = ∑

n∈Z
| f̂ (n)|2

Proof. Let P be a trigonometric polynomial of degree atmost N. Let Q = SN f −P then

Q is a trigonometric polynomial as well having degree atmost N

Let Q =
N
∑

n=−N
anen then we have
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⟨ f −SN f ,Q⟩= ⟨ f ,
N

∑
n=−N

anen⟩−⟨
N

∑
n=−N

ˆf (n)en,
N

∑
n=−N

anen⟩

=
∫

f (x)
N

∑
n=−N

ane−n −
∫ N

∑
n=−N

f̂ (n)enane−n

=
N

∑
n=−N

f̂ (n)an −
N

∑
n=−N

f̂ (n)an

= 0 . . .(i)

Similarly ⟨Q, f −SN f ⟩= 0 (ii)

∥ f −P∥2
2 = ⟨ f −P, f −P⟩

= ⟨ f − (SN f −Q), f − (SN f −Q)⟩

= ⟨( f −SN f )−Q,( f −SN f )−Q⟩

= ⟨( f −SN f ),( f −SN f )⟩−⟨Q,( f −SN f )⟩

−⟨( f −SN f ),Q⟩+ ⟨Q,Q⟩

= ∥ f −SN f∥2
2 +∥Q∥2

2

≥ ∥ f −SN f∥2
2

Since σN f = FN ∗ f is a trigonometric polynomial of degree less than N and

∥ f −σN f∥2 → 0 as N → ∞

therefore

∥ f −SN f∥2 ≤ ∥ f −σN f∥2 → 0 as N → ∞

Since SN f is a trigonometric function by (i) and (ii) we have

⟨( f −SN f ),SN f ⟩= ⟨SN f ,( f −SN f )⟩= 0
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∥ f∥2
2 = ⟨ f , f ⟩

= ⟨( f −SN f )+SN f ,( f −SN f )+SN f ⟩

= ∥ f −SN f∥2
2 + ⟨(SN f ),(SN f )⟩

= ∥ f −SN f∥2
2 +

∫
T

(
N

∑
n=−N

f̂ (n)en)(
N

∑
n=−N

f̂ (n)endµ

= ∥ f −SN f∥2
2 +

∫
T

N

∑
n=−N

| f̂ (n)|2dµ

= ∥ f −SN f∥2
2 +

N

∑
n=−N

| f̂ (n)|2x

as n → ∞

∥ f∥2
2 = ∑

n∈Z
| f̂ (n)|2

5.2 LP CONVERGENCE

Definition 5.2.0.1. For a pair p,q with 1 ≤ p < q < ∞ and a continuous linear operator

T : Lp(T)→ Lq(T) the operator norm is defined by ∥T∥p,q = sup{∥T f∥q : ∥ f∥p = 1}

To prove that Sn is a continuous linear operator.Let f,g be functions inLp and a be a

real value

Sn(a f +g) =
n

∑
k=−n

ˆ(a f +g)(k)eikx

=
n

∑
k=−n

a ˆ( f )(k)eikx + ĝ(k)eikx

= aSn f +Sng
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hence linear.

To prove that Sn is bounded

|Sn f |=

∣∣∣∣∣ n

∑
k=−n

f̂ (k)eikx

∣∣∣∣∣≤ n

∑
k=−n

∣∣ f̂ (k)∣∣
=

n

∑
k=−n

∣∣∣∣∣∣
∫
T

f (y)e−ikydy

∣∣∣∣∣∣
≤

n

∑
k=−n

∫
T

| f (y)|dy =
n

∑
k=−n

∥ f∥1

≤
n

∑
k=−n

∥ f∥p∥1∥q . . .(Hölders inequality)

=
n

∑
k=−n

∥ f∥p = (2N +1)∥ f∥p

hence Sn is a continuous linear operator.

Theorem 5.2.0.2. Let 1 ≤ p < ∞ then following are equivalent.

1) ∥Sn f − f∥p → 0 as n → ∞ ∀ f ∈ Lp(T)

2) sup
n∈N

∥Sn∥p < ∞

where ∥Sn∥p = ∥Sn∥Lp→Lp is an operator norm when viewing Sn as an operator from Lp

to itself.

Proof. Suppose (2) is true. Then ∀n ∈ N we have

sup
n∈N

∥Sn∥p < ∞. Now σn f is a trigonometric polynomial and and since trigonometric

polynomials are dense in Lp we have N such that

∥σn f − f∥< ε ∀n > N.

Now σn f is a trigonometric polynomial therefore by proposition 4.1.0.3 Sn(σn f ) = σn f
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∥Sn f − f∥p = ∥Sn f −Sn(σn f )+σn f − f∥p

≤ ∥Sn( f −σn f )∥p +∥σn f − f∥p

≤ ∥Sn∥p∥ f −σn f∥p +∥σn f − f∥p

≤ (∥Sn∥+1)ε

≤ sup
n∈N

(∥Sn∥+1)ε → 0 . . .as n → ∞

Conversely, ∥Sn f − f∥→ 0 as n → ∞ ∀ f ∈ Lp(T)

∥Sn f − f∥< M f for some M f and ∀n ∈ N

So

∥Sn f∥p ≤ ∥ f∥p +∥SN f − f∥p = ∥ f∥p +M f ∀n ∈ N

We use the Uniform boundedness theorem and get ∥Sn∥ ≤ M for some real M and ∀n.

Hence

sup∥Sn∥ ≤ M < ∞

This theorem also holds for continuous function by density of continuous functions

in Lp functions.

Theorem 5.2.0.3. sup
N∈N

∥SN∥1 = ∞ and sup
N∈N

∥SN∥C (T)→C (T) = ∞

Consequently ∃ f ∈ L1(T) and ∃g ∈ C (T) such that SN f and SNg do not converge to f

and g in L1 and L∞ norm respectively.

Proof. ∥FN∥1 =
∫
T

FN(x)dx = 1

and ∥SN∥1 = sup{∥SN f∥1 : ∥ f∥1 = 1}

Therefore

∥SN∥1 ≥ ∥SN(FM)∥1 = ∥DN ∗FM∥1 →∥DN∥1 as M → ∞
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as ∥DN∥> c logN we have sup
N∈N

∥SN∥1 = ∞

Let f = sgn(DN) then ∥ f∥∞ = 1

∥SN∥∞ ≥ ∥SN f∥∞ ≥ |SN f (0)|

= |(DN ∗ f )(0)|= |
∫
T

DN(y) f (0− y)dy|

= |
∫
T

DN(y)sgnDN(−y)dy|

= ∥DN∥1 > c logN

Hence we have sup
N∈N

∥SN∥∞ = ∞

Now if f /∈ C (T) and for ε > 0, ∃g ∈ C (T) such that ∥g− f∥1 < ε and ∥g∥∞ = 1

∥SN(g− f )∥∞ = sup
x∈T

|SN(g− f )(x)|a.e

= sup
x∈T

|
N

∑
n=N

ˆ(g− f )(n)einx|

≤ sup
x∈T

N

∑
n=N

| ˆ(g− f )(n)|

< ε(2N +1)

For continuous function g we have

∥SN∥C (T)→C (T) ≥ ∥SN f∥∞

≥ ∥SNg∥∞ −∥SN(g− f )∥∞

≥C logN − (2N +1)ε
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Letting ε → 0

∥SN∥C (T)→C (T) ≥C logN

Hence

sup
N∈N

∥SN∥C (T)→C (T) → ∞

∥SN f − f∥1 ≥
∫
T

|SN f (x)|dx−
∫
T

| f (x)|dx → ∞ as N → ∞

∥SNg−g∥∞ = sup |SNg−g| a.e ≥ ∥SNg∥∞ −∥g∥∞ → ∞ as N → ∞

5.3 HILBERT TRANSFORM

For 1 < p < ∞ we will investigate the issues of convergence in Lp by considering the

Hilbert transform.

Definition 5.3.0.1. For trigonometric polynomial f we define the Hilbert transform of f

by

H f (t) = ∑
n∈Z

−isgn(n) f̂ (n)eint

The Riesz projection P+ and P− are defined by

P+ f (t) =
∞

∑
n=1

f̂ (n)eint and P− f (t) =
−1

∑
n=−∞

f̂ (n)eint

A f (t) = P+ f (t)+ f̂ (0) =
∞

∑
n=0

f̂ (n)eint

S+N f =
2N

∑
n=0

f̂ (n)eint
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All the above operators are well defined for trigonometric polynomial. This is because

for trigonometric polynomial f (x) = ∑
n∈Z

aneinx, f̂ (n) = f (n) and an = 0∀n > N where

N is the degree of the polynomial.

S+N f is well defined for all Lp functions.

for g ∈ Lp

|S+N f (t)|= |
2N
∑

n=0

∫
T

f (x)ein(x−t)dx|= ∥ f∥1 ≤ ∥ f∥p f or 1 ≤ p < ∞

Theorem 5.3.0.2. Let f ∈ C (T) then f̂ (n) = O( 1
nm )∀m > 0

In particular f̂ (n) = O(n−2) and ∑
n∈Z

| f̂ (n)|< ∞

Proof. ˆ( f ′)(n) = in f̂ (n). By continuously differentiating m times we get

ˆ( f m)(n) = inm f̂ (n) ∀m ∈ N

ˆ( f m)(n) → 0 as n → ∞ by Riemann Lebesgue Lemma. So { ˆf m(n)}n∈Z s a bounded

sequence.

ˆ( f m)(n) = (in)m f̂ (n)

| ˆ( f m)(n)|= |(in)m f̂ (n)|

| f̂ (n)|= | ˆ( f m)(n)|
nm ≤ C

nm

for some real C.

Hence operators are well defined for function in C ∞

Proposition 5.3.0.3. Let 1 < p < ∞ the following are equivalent :

1)∥H∥p < ∞

2)∥P+∥p < ∞

3) sup
N∈N

∥SN∥p < ∞

4) sup
N∈N

∥S+N∥p < ∞

5)∥A∥p < ∞
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Proof. f can be written as

f (x) = P+ f (x)+P− f (x)+ f̂ (0) =
∞

∑
n=−∞

f̂ (n)einx

and

H f =−iP+ f + iP− f and iHF = P+ f −P− f

f + iH f = 2P+F + f̂ (0)

⇒ P+ f =
1
2
( f + iH f − f̂ (0)

and also | f̂ (0)| ≤ ∥ f∥1 ≤ ∥ f∥p

Hence by the above equation the boundedness of P+ and H is equivalent

This shows (1)⇔ (2)

If g(t) = f (t)eiNt

then

f̂ (n−N) =
∫
T

f (x)ei(n−N)xdx =
∫
T

f̂ (n)eiNxdx = ĝ(n)dx

N

∑
n=N

f̂ (n)eint = e−iNt
2N

∑
n=0

f̂ (n−N)eint =
2N

∑
n=0

ĝ(n)eint

Hence ∥SN f∥p = ∥S+N g∥p we also have ∥ f∥= ∥g∥

∥SN∥p = ∥S+N∥p

Hence we have (3)⇔ (4)

Suppose (4) holds therefore sup
N∈N

∥S+N∥p < ∞

∥A f∥p = ∥ liminf
N→∞

S+N f∥p ≤ liminf
N→∞

∥S+N f∥p ≤ (sup
N∈N

∥S+N∥p)∥ f∥p

⇒∥A f∥p < ∞ ∀ f ⇒∥A∥p < ∞
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Hence (4)⇒ (5)

S+N f (t) =
∞

∑
n=0

f̂ (n)eint −
∞

∑
n=2N+1

f̂ (n)eint

= A f (t)− ei(2N+1)t
∞

∑
n=0

f̂ (n+2n+1)eint

= A f (t)− ei(2n+1)tAg(t)

where g = f (n+2N +1) and ∥ f∥p = ∥g∥p

sup
N∈N

∥S+N f∥ ≤ ∥A∥p∥ f∥p +∥A∥p∥g∥p = 2∥A∥p∥ f∥p

for smooth f

Hence by density of f in Lp we have (5) ⇒ (4)

Since A f = P+ f + f̂ (0)⇒ (5)⇔ (1)

(We have (3) ⇔ (4)⇔ (5)⇔ (1)⇔ (2) )

Corollary 5.3.0.4. Let 1 < p < ∞ then SN f converges to f in Lp norm

∀ f ∈ Lp(T)⇔∥H∥p < ∞

Proof. For 1 < p < ∞ we have

∥SN f − f∥p → 0 as n → ∞ ⇔ sup
n inN

∥SN∥p < ∞ ⇔∥H∥p < ∞

Theorem 5.3.0.5. Riesz Thorin interpolation theorem :

Let 1 ≤ p1, p2,q−1,q2 ≤ ∞. Suppose T is an operator which is bounded mapping from

Lp1(T) to Lq1(T) and Lp2(T) to Lq2(T)

Let A = ∥T∥Lp1→Lq1 and B = ∥T∥Lp2→Lq2 then for any 0 ≤ α ≤ 1 we have

∥T f∥qα
≤ A1−αBα∥ f∥pα

where 1
pα

= 1−α

p−1 +
α

p2
and 1

qα
= 1−α

q−1 + α

q2
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Theorem 5.3.0.6. Let 1 < p < ∞ then there exist constant Ap such that

∥H f∥p ≤ Ap∥ f∥p

for all trigonometric polynomials f and H extends to a bounded operator from Lp(T)→

Lp(T)

Hence, SN f converges to f in the Lp norm for all f ∈ Lp(T) for 1 < p < ∞.

Proof. Let f be a non zero real valued trigonometric polynomial with f̂ (0) = 0 then

f̂ (−n) =
∫
T

f (x)einxdx =
∫
T

f (x)einx = f̂ (n)

as f(x) is a real valued function.

H f (x) =−i ∑
n>0

f̂ (n)einx + i ∑
n<0

f̂ (n)einx

= ∑
n>0

−i f̂ (n)einx + i ∑
n>0

f̂ (−n)e−inx

= ∑
n>0

f̂ (n)einx + i f̂ (n)einx

= 2Re

(
∑
n>0

−i f̂ (n)einx

)

Hence H is also a real valued function.

( f + iH f )(x) = f (x)+ i(∑
n∈Z

−isgn(n) f̂ (n)einx)

= ∑
n∈Z

f̂ (n)einx + i(∑
n∈Z

−isgn(n) f̂ (n)einx)

= ∑
n∈Z

(1+ i(−isgn(n)) f̂ (n)einx = ∑
n>0

f̂ (n)einx
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If we take k ∈N then ( f + iH f )2k will have positive frequency and
∫
T
( f + iH f )2k = 0

this is because f is a trigonometric polynomial.

0 =
∫
T

( f + iH f )2k =
∫
T

2k

∑
j=0

i j
(

2k
j

)
(H f ) j f 2k− j

Combining the real parts

k

∑
j=0

∫
T

(−1)k
(

2k
2 j

)
(H f )2 j f 2k−2 j = 0

∫
T

(−1) jH f 2k =−
k−1

∑
j=0

∫
T

(−1) j
(

2k
2 j

)
(H f )2 j f 2k−2 j

Hence

∥H f∥2k
2k = |

∫
T

H f |2k

= |−
k−1

∑
j=0

∫
T

(−1) j
(

2k
2 j

)
(H f )2 j f 2k−2 j|

≤
k−1

∑
j=0

(
2k
2 j

)
∥(H f )2 j f 2k−2 j∥1

For each j we have

∥(H f )2 j f 2k−2 j∥1 ≤ ∥(H f )2 j∥ k
j
∥ f 2k−2 j∥ k

k− j
by holders inequality

= (
∫
T

|H f 2 j|
k
j )

j
k (
∫
T

| f 2k−2 j|
k

k− j )
k− j

k

= ∥H f∥2 j
2k∥ f∥2k−2 j

2k
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Let R = ∥H f∥2k
∥ f∥2k

hence we have R2k ≤
k−1
∑
j=0

(2k
2 j

)
R2 j

Polynomial x2k −
k−1
∑
j=0

(2k
2 j

)
x2 j has an even degree and the polynomial tends to infinity

as x tends to infinity. If x2k −
k−1
∑
j=0

(2k
2 j

)
x2 j ≤ 0 then there exists a constant C2k such that

|x| ≤C2k.

Hence we have |R| ≤C2k

Therefore we have ∥H f∥2k ≤C2k∥ f∥2k for all trigonometric polynomial with f̂ (0) = 0

now we remove the restriction that f̂ (0) = 0

Hilbert transform of an constant function is 0

∥H f∥2k = ∥H f −H f̂ (0)∥2k = ∥H( f − f̂ )(0)∥2k

≤C2k∥( f − f̂ )(0)∥2k ≤ 2C2k(∥ f∥2k)

Now suppose f is not necessarily a real valued trigonometric polynomial

let f (x) =
n
∑
−N

aneinx the we have

f (x) =
N

∑
−N

aneinx =
N

∑
−N

an +a−n

2
einx +

N

∑
−N

an −a−n

2
einx

=

((
a0 +a0

2

)
+

N

∑
n=1

an +a−n +a−n +an
einx +E−inx

2

)

+ i

((
a0 −a0

2

)
+

N

∑
n=1

an −a−n −a−n +an
einx + e−inx

2

)

= (ℜa0 +
N

∑
n=1

ℜ(an +a−n)cos(nx))+ i(ℑa0 +
N

∑
n=1

ℜ(an −a−n)sin(nx))

If we take P as the real part of f(x) and Q to be the imaginary part of f(x) then P and Q

are the real valued trigonometric polynomials and f = P+ iQ

∥H f∥2k ≤ ∥HP∥2k +∥iHQ∥2k ≤ 2C2k(∥P∥2k +∥Q∥2k)≤ 4C2k∥ f∥2k
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hence there is a Ap such that ∥H f∥p ≤ Ap∥ f∥p ∀ trigonometric polynomial when p= 2k

with k ∈ N

Since any p≥ 2 is in the interval of the form [2k,2k+2] the Riesz Thorin interpolation

theorem extends this result for all p ≥ 2 . Since trigonometric polynomials are dense in

Lp(T) H extends to a bounded operator on Lp(T) as well.

For 1 < p < 2 we use the fact that H is skew adjoint i.e. for f,g ∈ L2(T) we have

⟨H f ,g⟩=
∫
T

H f (x)g(x)dx =
∫
T

∑
n∈Z

−isgn(n) f̂ (n)einxg(x)dx

= ∑
n∈Z

−isgn(n) f̂ (n)
∫
T

einxg(x)dx = ∑
n∈Z

−isgn(n) f̂ (n)ĝ(n)

= ∑
n∈Z

−isgn(n)
∫
T

f (x)e−inxdxĝ(n)

=
∫
T

f (x) ∑
n∈Z

−isgn(n)ĝ(n)einx =
∫
T

− f (x)Hg(x)dx = ⟨− f ,Hg⟩

If 1
p +

1
q = 1 with q ≥ 2 then

|⟨H f ,g⟩|= |⟨ f ,Hg⟩| ≤ ∥ f∥p∥Hg∥q ≤Cq∥ f∥p∥g∥q

If f is a trigonometric polynomial and g =
(
|H f |p

H f

)
then g ∈ Lq(T)

∥g∥q =

∫
T

∣∣∣∣∣ |H f |p
H f

∣∣∣∣∣
q
 1

q

=

∫
T

∣∣∣∣∣ |H f |p
H f

∣∣∣∣∣
p

p−1


p−1
p

= ∥H f∥p−1
p

we get

∥H f∥p
p =

∣∣∣∣∣∣
∫
T

H f
|H f |p

H f

∣∣∣∣∣∣= |⟨H f ,g⟩| ≤Cq∥ f∥p∥H f∥p−1
p
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hence ∥H f∥p ≤Cq∥ f∥p and H is a bounded for trigonometric polynomials for 1 < p < 2.

By the density of trigonometric polynomials in Lp(T) we can extend H to bounded

operator on Lp(T).

5.4 UNIFORM CONVERGENCE

Definition 5.4.0.1. Let 0 < α < 1 the f : T→ C satisfies a Lip-α condition if there is a

constant C such that

| f (t)− f (x)| ≤C|t − x|α ∀t,x ∈ T

The minimum such C is called the Lip-α constant of f and is denoted by [ f ]α and

C α(T) is a set of all functions satisfying the Lip-α condition.

The minimum value of C exists by the compactness of T

if β ≥ α and f ∈ C β (T) then for all x, t ∈ T

| f (t)− f (x)| ≤C|t − x|β ≤C|t − x|α |t − x|β−α ≤C′|t − x|α

Hence f ∈ C α(T)

hence C β ⊆ C α

Theorem 5.4.0.2. Suppose 0 < α < 1 the there exist a constant kα such that ∀ f ∈ C α

we have

∥SN f − f∥< Kα [ f ]αN−α logN

In particular ∥SN f − f∥→ 0 as n → ∞

Proof. FN(x) = 1
N (

sin Nx
2

sin x
2
)2 we use the property that if | x

2 | ≤
π

2 then sin x
2 ≥ 2x

2π
and

|sin(nx)| ≤ n|sinx|.
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we get estimated value of FN(x)≤ min{N, π2

Nx2}

|σN f (0)− f (0)|= |
∫
T

f (x)FN(−x)dx−
∫
T

f (0)FN(−x)dx|

≤
∫
T

| f (x)− f (0)||FN(−x)|dx

≤ 1
2π

∫
|x|< π

N

[ f ]α |x|αNdx+
∫

π

N <|x|<π

|x|α( π2

N|x|2
)dx

= [ f ]α

(
2N( π

N )
α+1

α +1
+

2π2

N(α −1)
(πα−1 − (

π

N
)α−1)

)
≤Cα [ f ]αN−α

for some constant Cα

If we take f = τy(x) f = f (x− y) in the previous result we get

|σN f (x)− f (x)| ≤Cα [ f ]αN−α

Now since SN(σN f ) = σN f as σN f is trigonometric polynomial

∥SN f − f∥∞ = ∥SN f −SN(σN f )+σN f − f∥∞

≤ ∥DN ∗ ( f −σN f )∥∞ +∥σN f − f∥∞

≤ (∥DN∥1 +1)∥σN f − f∥∞

= (C logN +1)Cα [ f ]αN−α

< Kα [ f ]αN−α logN

C 1(T)⊆ C α(T) as 0 < α < 1

hence the uniform convergence of Fourier series follows for C 1 But the rate of conver-

gence is not same.
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5.5 CONVERGENCE IN SOBOLEV SPACES

One family of subspace of L2(T) which does provide rate of L2 convergence is the family

of Sobolev spaces.

Definition 5.5.0.1. Let s> 0 the Sobolev space Hs(T) is defined to be the set of functions

f such that

∥ f∥Hs = (| f̂ (0)|+ ∑
n∈Z

|n|2s| f̂ (n)|2)
1
2 < ∞

Proposition 5.5.0.2. ∥SN f − f∥2 ≤ 1
N2s∥ f∥Hs

Proof.

∥SN f − f∥2 = ∥
N

∑
n=−N

f̂ (n)einx − f (x)∥2

= (
∫
T

|
N

∑
n=−N

f̂ (n)einx − f (x)|2dx)
1
2

= (
∫
T

|
N

∑
n=−N

f̂ (n)einx −
∞

∑
n=−∞

f̂ (n)einx|2dx)
1
2

= (
∫
T

| ∑
|n|>N

f̂ (n)einx|2dx)
1
2 ≤ ∑

|n|>N
| f̂ (n)|2

≤ 1
N2s ∑

|n|>N
||n|2s f̂ (n)|2

≤ 1
N2s∥ f∥Hs
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5.6 DIVERGENCE OF FOURIER SERIES

Example due to Fejer of a continuous function whose Fourier series is Divergent at a

point.

Theorem 5.6.0.1. ∃ f ∈ C (T) such that SN f (x) diverges for some x.

Proof. Let p and n be positive integers and let

Qp,n =
cospx

n
+

cos(p+1)x
n−1

+· · ·+ cos(p+n−1)x
1

− cos(p+n+1)x
1

−·· ·− cos(p+2n)x
n

ˆQp,n(m) =


1

2(n−k) i f |m|= p+ k f or 0 ≤ k ≤ n−1
−1
2k i f |m|= p+n+ k f or 1 ≤ k ≤ n

0 otherwise

We get this by using the identity cosx = eix+e−ix

2 Now we use the identity that

cos(a−b) = 2sinasinb and we get

Qp,n(x) =
n

∑
k=1

cos(p+nk)x+ cos(p+n+ k)x
k

= 2sin((p+n)x)
n

∑
k=1

sinkx
k

Partial sums of
∞

∑
k=1

sinkx
k are uniformly bounded .Hence there is a C such that

|Qp,n|<C ∀p,n,x

|Qp,n| is bounded and has a convergent subsequence which is also continuous say |Qpk,nk |

If ∃
∞

∑
k=1

|ak|< ∞ then
∞

∑
k=1

akQpk,nk converges uniformly to a continuous function fak,pk,nk

for any sequence {pk}{nk}

In particular if pk+1 > pk +2nk∀k then Qpk,nkandQpk+1,nk+1 have the disjoint frequencies

for all k so,
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f̂ (m) =


ak

2(nk− j0)
if |m|= pk + j for 0 ≤ j < nk −1

−ak
2 j if |m|= pk +nk + j for 1 < j < nk

0 otherwise

Let ak =
1
k2 and p− k = n− k = 2k2

Let f = fak,pk,nk be defined as above then

|Spk+nk−1 f (0)−Spk−1 f (0)|= | ∑
pk≤| j|≤pk+nk−1

f̂ (m)|

= |2
nk−1

∑
n=0

1
2k2(nk − j)

|= 1
k2

nk−1

∑
n=0

1
(nk − j)

=
1
k2

nk

∑
n=1

1
( j)

≥ 1
k2 log(nk) = log2

Hence Fourier series at point 0 does not exist.

Theorem 5.6.0.2. There is a continuous function g whose Fouries series diverges at

everywhere dense set of points.

Proof. let f be a function like in the above theorem

let {xi}i∈N be an everywhere dense subset of T having rational order.

Then if {εi}i∈N be such that for εi > 0, ∑
i∈N

εi < ∞ for all i, then the sum
∞

∑
i=1

ε1 f (x− xi)

converges uniformly to a continuous function g.

This sum of the coefficient diverges at point xi hence we get the result.
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5.7 ALMOST EVERYWHERE CONVERGENCE IN

LP SPACE

Definition 5.7.0.1. Let f ∈ L1(T) the maximal operator M is defined by

M f (x) = sup
N∈N

|SN f (x)|

Then we have the theorem:

Let 1 < p < ∞ then there is a constant C for which

∥M f∥p ≤C∥ f∥p ∀ f ∈ Lp(T)

Theorem 5.7.0.2. (Markov’s inequality)

Let f ∈ Lp(T) and λ > 0 let Eλ = {x : | f (x)| ≥ λ} then m(Eλ )≤
∥ f∥p

p
λ p

Proof. We estimate

∥ f∥p
p =

∫
T
| f |p ≥

∫
Eλ

| f |p ≥
∫

Eλ

λ p ≥ λ p.m(Eλ )

Hence we get the result.

Theorem 5.7.0.3. (Carleson’s Theorem)

Let f ∈ Lp(T) , where 1 < p < ∞ the SN f converges to f almost everywhere.
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Proof. Let g be a trigonometric polynomial then SNg = g for large enough N . then for

any x we have

limsup
N

|SN f (x)− f (x)|= limsup
N

|SN f (x)−SNg(x)+g(x)− f (x)|

≤ limsup
N

|SN(g− f )(x)|+ |g(x)− f (x)|

≤ M( f −g)(x)+ |g(x)− f (x)|

For any ε > 0

Let Dε = {x : limsup
N

|SN f (x)− f (x)| ≥ ε}

Eε = {x : |M( f −g)(x)≥ ε

2}

Fε = {x : |g(x)− f (x)| ≥ ε

2}

If limsup
N

|SN f (x)− f (x)| ≥ ε then M( f −g)(x)≥ ε

2 or |g(x)− f (x)| ≥ ε

2

Hence Dε ⊆ Eε ∪Fε and m(Dε)≤ m(Eε)+m(Fε)

By Markov’s inequality

m(Eε)≤ 2p

ε p∥M( f −g)∥p
p ≤ 2p

ε p∥( f −g)∥p
p

m(Fε)≤ 2p

ε p∥( f −g)∥p
p

Hence m(Dε)≤ 2p

ε p (Cp +1)p∥( f −g)∥p
p

since trigonometric polynomials are dense in Lp it follows that m(Dε) = 0 ∀ε

thus

m(x : limsup
N

|SN f (x)− f (x)| ≥ 0)

= m(
∞⋃

k=1
{x : limsup

N
|SN f (x)− f (x)| ≥ 1

k}) = m(
∞⋃

k=1
D 1

k
) = 0

Hence the proof.



Chapter 6

ANALYSIS AND CONCLUSIONS

In the introductory chapter the formulas derived for Fourier coefficient is useful to find

the Fourier series of periodic integrable functions. Properties of Fourier coefficients

simplify theorems in later chapters.

In the second chapter we prove the Fubinis theorem for two variables which helps in

computation of double integral using iterated integral of a Lebesgue integral function .

We can interchange the order of iterated integration using Fubinis theorem.

In the third chapter we define convolution of periodic integrable functions. Convolution

of periodic integral functions have distributive, commutative, associative properties.

Convolution of two periodic integrable function is continuous and Fourier coefficient of

convolution of the two periodic integrable functions is product of the Fourier coefficient

of first function and the Fourier coefficient of the second function.

We also prove that if we have an integrable function then the function can be approximated

to a continuous function

In the fourth chapter we prove that Fourier series of trigonometric polynomials converge

back to itself, continuous functions are dense in Lp spaces, Dirichlet kernel is not a

approximation to the identity but Fejer kernel is approximation to the identity which is

64
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very important result as using it we prove trigonometric functions are dense in Lp spaces,

Riemann-Lebesgue lemma and uniqueness theorem.

Also, If the absolute sum of Fourier coefficient is finite then Fourier series of a function

converges to the function, which is a sufficient condition for almost everywhere pointwise

convergence.

In the fifth chapter we prove Holders inequality and use it to prove that inner product

of L2 space is defined and then prove L2 is a Hilbert space. If f is a function in L2 then

Fourier series of the function converges to the function.

We conclude that if the supremum of the operator norm of partial sum where the operator

of partial sums is from Lp to Lp is finite then function in Lp approximates to the a Fourier

series and vice versa.

Next we defined Hilbert transforms using it we get convergence of Fourier series of a

function in Lp to the function in Lp space.If a function satisfies the Lip-α condition then

partial sums of Fourier series converges uniformly to the function. Taking an example

we show that there is a function which is continuous that cannot converge to Fourier

series of the function. Lastly we have if a function in Lp then partial sums of the Fourier

series converges to the function almost everywhere.
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