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PREFACE

The topic assigned for the research report is: ” Chinese Remainder Theorem

and its Applications”. The main purpose of this project is to study the different

formulations of Chinese Remainder theorem which includes Polynomial form,

Group theory form, Ring theory form, Chinese Remainder theorem for RNS

to Binary conversion and fast algorithm of Chinese Remainder theorem. The

Chinese Remainder theorem has applications in different fields of mathematics

and also in real life problems. This study will deal with the applications in

mathematics and some applications in real life such as in trading problems, in

arrangement of things and also in secret sharing in the form of integers.

FIRST CHAPTER :

The first introductory chapter contains the history of Chinese Remainder the-

orem along with the statement of the theorem (CRT 1) in Number theory.

SECOND CHAPTER :

The second chapter gives the proof of CRT-1 and the second form of Chinese

Remainder theorem (CRT-2) in Number theory along with its proof and their

examples. It also contains some of the real life applications of Chinese remain-

der theorem.
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x

THIRD CHAPTER :

The third chapter gives formulations of Chinese Remainder theorem in Polyno-

mial form, Group theory form, and Ring theory form with examples.

FOURTH CHAPTER :

The fourth chapter is about Chinese Remainder theorem and RNS systems in

which we will find reverse converter set for RNS to binary conversion.

FIFTH CHAPTER :

The fifth chapter contains a fast algorithm of Chinese Remainder theorem and

its application to Fibonacci Numbers.
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NOTATIONS AND ABBREVIATIONS

Z Set of all integers.
N Set of all Natural numbers.
≡ Congruence notation
∼= isomorphism notation
(a,b) Greatest common divisor of a,b
CRT Chinese Remainder Theorem
RNS Residue Number System
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ABSTRACT

The Chinese Remainder Theorem (denoted by CRT) is an important theorem

in Number theory. In mathematics, the Chinese Remainder theorem states that

if one knows the remainders of the Euclidean division of an integer n by several

integers, then one can determine uniquely the remainder of the division of n by

the product of these integers, under the condition that the divisors are pairwise

coprime. The Chinese Remainder theorem basically gives a rule for obtaining

a simultaneous solution to a set of linear congruence system having coprime

moduli.

With the continuous advancement in algebraic system, the theorem has evolved

into different forms. This study was initiated to learn the various forms of CRT.

The study began with first learning the basic CRT in Number theory and its

proof followed by studying the different forms of CRT and their applications to

various areas of mathematics and also to real life problems..

The conclusion of this study was that CRT has various form and they have

various applications in real life problems which will surely help us in future.

Keywords: Chinese Remainder theorem, Euclidean division, algebraic system,

congruence, coprime, moduli.
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Chapter 1

INTRODUCTION

Chinese Remainder theorem (CRT) is an ancient and important theorem in

Number Theory. The oldest remainder problem in the world was first discov-

ered in a third century Chinese mathematical treatise entitled ”Sun Zi Suanjing”

(The Mathematical Classic of Sun Zi), of which the author was unknown. The

remainder problem is stated below:

Problem: Now there are an unknown number of things. If we count by three,

there is a remainder 2; if we count by five, there is a remainder 3; and if we

count by seven, there is a remainder 2. Find the number of things.

Besides the above problem, the author of ”Sun Zi Suanjing” also provided

the answer and the methods as follows:

Method: If we count by threes and there is a remainder 2, put down 140.

If we count by fives and there is a remainder 3, put down 63.

If we count by sevens and there is a remainder 2, put down 30.

Add them to obtain 233 and subtract 210 to get the answer.

If we count by threes and there is a remainder 1, put down 70.

If we count by fives and there is a remainder 1, put down 21.

1
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If we count by sevens and there is a remainder 1, put down 15.

When a number exceeds 106, the result is obtained by subtracting 105.

The remainder problem in ”Sun Zi Suanjing” is popularly known as the Chinese

Remainder Theorem (CRT), for the reason that it first appeared in a Chinese

mathematical treatise. Sun Zi’s work didn’t contain proof nor a full algorithm.

The complete theorem was first given by Qin Jiushao in 1247 in his mathemat-

ical text named ”Mathematical Treatise in Nine Sections”.

The Chinese Remainder theorem basically gives the necessary condition for

multiple equations to have a simultaneous integer solution. Below is given the

statement of the theorem:

Chinese Remainder Theorem (CRT-1)

Suppose m = m1m2.....mr and m1, m2, ....., mr are positive integers that are

pairwise and mutually prime.

Then for any positive integer a1, a2, ...., ar , congruence equation system:



x ≡ a1(modm1)

x ≡ a2(modm2)

...

x ≡ ar(modmr)

has a solution x =∑r
k=1ak MkM ′

k, where Mk= m
mk

, 1≤k≤r and M ′
k (1≤k≤r)

satisfy MkM ′
k≡1(mod Mk).

We will see the detailed proof of the theorem (CRT-1) in Chapter 2.
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The main aim behind studying this topic is to learn different forms of Chinese

Remainder theorem in Number theory, Ring theory , Group theory, Polynomial

form, new form with moduli sets and a fast algorithm of CRT-1. By studying

these forms we can also see their applications in different areas of mathematics

and also in real life problems.

In this study, chapter 2 will focus on the two forms of Chinese Remainder

theorem in Number theory denoted by CRT-1 and CRT-2[1] and their examples

and application to real life problems[2][3]. In chapter 3 you will see the Chinese

Remainder theorem in different areas of mathematics namely; Polynomial form,

group theory form and Ring theory form with examples[1]. Chapter 4 contains

another modification of Chinese Remainder theorem so as to apply to Residue

number System (RNS) and find a reverse converter set for RNS to convert it

into binary[4]. Also some of its examples are given in this chapter. Next is the

chapter 5 which deals with a Fast algorithm of Chinese Remainder theorem[5]

which makes the calculation easy and thereby reducing the steps involved in

finding the solutions to system of congruence equations with coprime moduli.

Again in this chapter we will see how this fast algorithm can be applied to

Fibonacci Numbers[5].





Chapter 2

CHINESE REMAINDER THEOREM IN

NUMBER THEORY

In this chapter we will see the two forms of Chinese Remainder theorem in

Number theory, ie. the one which we had stated earlier in chapter one, CRT-1

and second one is the modified form of CRT-1, denoted by CRT-2. Let us see

them in sections below.

2.1 Chinese Remainder Theorem 1

In this section we will see the proof of CRT-1 stated in chapter (1). Before going

for the proof, there are several terms, lemmas, and theorems that we need to

know concerning the relatively prime integers which will be required in proving

CRT-1.

Definition 2.1(a)

Let n be a fixed positive integer. Two integers a and b are said to be congruent

modulo n, symbolized by a ≡ b(modn) if n divides the difference a − b; that is,

provided that a − b = kn for some integer k.

5
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Definition 2.1(b): Mutually prime Integers

Two integers a & b not both of which are zero are said to be mutually prime

when gcd(a,b)=1.

Definition 2.1(c) : Divisibility

Let a,b ∈ Z. We say that b divides a if ∃ c ∈ Z such that a = b.c . We denote

b divides a by ”b|a”.

Theorem 2.1.1

Given a,b ∈ Z and a ̸= 0 and b ̸= 0, ∃ x,y ∈ Z such that gcd(a,b)=ax+by .

Proof: Consider the set S of all positive linear combinations of a and b:

S = {au + bv|au + bv > 0; u, v ∈ Z}

For a > 0, taking u = 1 and v = 0: au + bv = a > 0.

For a < 0, taking u = −1 and v = 0; au + bv = −a > 0.

Hence S ̸= ϕ.

S contains positive integers, thus by applying Well-Ordering principle there ex-

ists integers, S must contain a smallest element d.

Thus from the definition of S, ∃ integers x and y for which d=ax+by.

We claim that d=(a,b).

Applying the Division Algorithm to a and b, we can obtain integers q and r

such that a=qd+r, where 0 ≤ r < d.

Then r can be written in the form r = a−qd = a−q(ax+by) = a(1−qx)+b(−qy)

If r > 0, then this implies r ∈ S, contradicting the fact that d is the least integer
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in S (recall that r < d).

Therefore, r=0, and so a=qd, or equivalently d|a.

By similar reasoning, d|b, the effect of which is to make d a common divisor of

a and b.

Now if c is an other arbitrary positive common divisor of the integers a and b,

ie. c|a, c|b

=⇒ c|ax + by

ie. c|d

∴ By definition of greatest common divisor, d=(a,b). □

Theorem 2.1.2: Euclid’s lemma

If a|bc, with (a,b)=1, then a|c.

Proof: We have (a,b)=1 =⇒ ∃ x,y ∈ Z ∋ 1=ax+by

Now, c = c(1) = c(ax+by) = (ac)x+(bc)y

=⇒ a|ac , a|bc

a|(ac)x + (bc)y =⇒ a|c. □

Theorem 2.1.4

The linear congruence ax≡b(modn) has a solution iff d|b where d = gcd(a, n).

If d|b then linear congruence ax≡b(modn) has d mutually incongruent solution

modulo n.

Proof: Since ax ≡ b (mod n).

∴ n|ax − b =⇒ ax-b=ny =⇒ ax-ny=b for y ∈ Z

Now this is a linear Diophantine equation and it can be solved iff d|b where

d=(a,n). Then by theorem (2.1.1) we are done. □
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Now let us see the proof of CRT-1 which we have stated earlier in chapter 1:

Chinese Remainder theorem 1 (CRT-1)

Suppose m = m1m2.....mr and m1, m2, ....., mr are positive integers that are

pairwise and mutually prime. Then for any positive integer a1, a2, ...., ar, con-

gruence equation system:



x ≡ a1(modm1)

x ≡ a2(modm2)

...

x ≡ ar(modmr)

(2.1)

has a solution x =∑r
k=1ak MkM ′

k, where Mk= m
mk

, and M ′
k satisfy

MkM ′
k≡1(mod Mk) , (1≤k≤r).

Proof:

Given Mk= m
mk

= m1m2.....mk−1mk+1....mr, 1≤k≤r

ie. Mk is the product of all the integers mi (i=1,2,...,r) with the factor mk

deleted.

It is given that (mi, mj)=1 ; i̸=j

This implies (Mk, mk)=1 and M ′
k and yk satisfy MkM ′

k + ykmk = 1.

Thus MkM ′
k ≡ 1(modmk) since mk divides MkM ′

k − 1

=⇒ akMkM ′
k ≡ ak(modmk) ; 1≤k≤r

By miMi = mjMj = m, (mi, mj) = 1 for i ̸= j.

=⇒ mi—Mj , i ̸= j.

=⇒ ∑r
k=1 akMkM ′

k ≡ akMkM ′
k ≡ ak(modmk)
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and this implies ∑r
k=1 akMkM ′

k ≡ ak(mod[m1m2....mr]) ≡ ak(modm)

x ≡ ∑r
k=1 akMkM ′

k (mod m) is the solution. □

Now let us see some examples based on CRT-1:

Example: Find the integer solutions of the equation x3 − 1 ≡ 0(mod15).

Solution: Since 15=5 X 3 and (3,5) = 1,

x3 − 1 ≡ 0(mod15) and


x3 − 1 ≡ 0(mod5)

x3 − 1 ≡ 0(mod3)
have the same solution.

x3 − 1 ≡ 0(mod5) =⇒ x3 − 1 = 5k =⇒ x3 = 5k+1

x3 − 1 ≡ 0(mod3) =⇒ x3 − 1 = 3k =⇒ x3 = 3k+1

So,


x3 − 1 ≡ 0(mod5)

x3 − 1 ≡ 0(mod3)
and


x3 ≡ 1(mod5)

x3 ≡ 1(mod3)
have the same solution.

Now


x3 ≡ 1(mod5)

x3 ≡ 1(mod3)
satisfies the preconditions of the theorem CRT-1, thus

solving it we get;

a1=1, a2=1, m1=5, m2=3, m=m1m2=15

M1=3 , M2=5

By MiM
′
i ≡ 1(modmi) we have;

M1M
′
1 ≡ 1(mod5) =⇒ 3M ′

1 ≡ 1(mod5) =⇒ M ′
1 ≡ 3(mod5)

M2M
′
2 ≡ 1(mod3) =⇒ 5M ′

2 ≡ 1(mod3) =⇒ M ′
2 ≡ 1(mod3)

∴ The solution is,

x ≡ (a1M1M
′
1 + a2M2M

′
2) (mod m)

x ≡ (1 X 3 X 3 + 1 X 5 X 1 )(mod 15)

x ≡ 14 (mod 15)
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x ≡ 1 (mod 15) is the required solution.

Example: Solve the system of linear congruence equation

x ≡ 2(mod3)

x ≡ 3(mod5)

x ≡ 2(mod7)
Solution: a1=2, a2=3, a3=2, m1=3, m2=5, m3=7 and they are pairwise prime.

m=m1m2m3=105 M1=35 , M2=21, M3=15

By MiM
′
i ≡ 1(modmi) we have;

M1M
′
1 ≡ 1(mod3) =⇒ 35M ′

1 ≡ 1(mod3) =⇒ M ′
1 ≡ −1(mod3)

M2M
′
2 ≡ 1(mod5) =⇒ 21M ′

2 ≡ 1(mod5) =⇒ M ′
2 ≡ 1(mod5)

M3M
′
3 ≡ 1(mod7) =⇒ 15M ′

3 ≡ 1(mod7) =⇒ M ′
3 ≡ 1(mod7)

∴ The solution is,

x ≡ (a1M1M
′
1 + a2M2M

′
2 + a3M3M

′
3) (mod m)

x ≡ (2 X 35 X (-1) + 3 X 21 X 1 + 2 X 15 X 1)(mod 105)

x ≡ -70 + 63 + 30 (mod 105)

x ≡ 23 (mod 105) is the required solution.

2.2 Chinese Remainder Theorem 2

Let us see the second form of CRT in Number Theory. The theorem is just a

modified form of CRT-1 in which the solution of the congruence system com-

prise of the particular solutions which are obtained by rewriting the system of

congruence equation as some Linear Diophantine equations. First let us see the

what are these linear Diophantine equations and some of its results.
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Definition 2.2(a): Linear Diophantine Equation

The simplest type of Diophantine equation that we shall consider is the linear

Diophantine equation in two unknowns: ax+by = c where a, b, c are given inte-

gers and a, b are not both zero. A solution of this equation is a pair of integers

x0, y0 that, when substituted into the equation, satisfy it; that is, ax0 + by0 = c.

Theorem 2.2.1

The linear Diophantine equation ax + by = c has a solution iff d|c where

d = gcd(a, b). If x0,y0 is any particular solutions of this equation then all

other solutions are given by x = x0 + b
dt, y = y0 + a

dt where t is any arbitrary

constant.

Proof: Suppose ax + by = c be a Linear Diophantine equation.

Then by definition of Linear Diophantine equation ∃ x0, y0 ∋ ax0+by0=c

d=(a,b) =⇒ d|a , d|b

∴ By definition of divisibility, ∃ r,s ∈ Z ∋ a=dr , b=ds ——–(1)

Now we have,

c=ax+by

c=(dr)x+(ds)y

c=d(rx+sy)

=⇒ d|c

Conversely if d|c

∃ t ∈ Z ∋ c=dt

Since d=(a,b) ∃ x0, y0 ∋ d=ax0+by0

Thus we get,
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c = dt

c = (ax0+by0)t

c = a(tx0)+b(ty0)

Hence ax+by=c has a particular solution x = x0t , y = y0t.

Suppose that x0,y0 are particular solutions of given equation and x′, y′ are any

other solutions then

ax0+by0=c=ax′ + by′

ax0+by0=ax′ + by′

b(y0 − y′)=a(x′ − x0) ——–(2)

Put (1) in (2)

dr(x′ − x0)=ds(y0 − y′) =⇒ r(x′ − x0)=s(y0 − y′) ——–(3)

=⇒ r|s(y0 − y′) =⇒ (a
d)|( b

d)(y0 − y′)

Since (a,b)=d =⇒ (a
d , b

d)=1

Then we have, (a
d)|(y0−y′)

Again by definition of divisibility, ∃ t ∈ Z ∋ (y0 − y′)=t(a
d)

=⇒ y′ = y0 − (a
d)t ——–(4)

Now putting (4) in (3) we get,

t (a
d) = (r

s) (x′ − x0)

(x′ − x0) = t (as
dr)

x′ = x0 + ( b
d)t. □

CRT-1 was stated for n relatively coprime moduli but now we will see the

modified form of CRT-1 which is restricted to only 2 coprime moduli. Let us

see what it looks like.
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2.2.2 Chinese Remainder Theorem (CRT-2)

Suppose m = m1m2 where (m1, m2) = 1 and d1 = (a1, m1) and d2 = (a2, m2)

and d1|C1
and d2|C2

.The congruence equations


a1x ≡ c1(modm1)

a2x ≡ c2(modm2)
(2.2)

has a solution. The solution is x≡M1M
′
1q1 + M2M

′
2q2(modm)

where q1 = x1+m1
d1

k1 , q2 = x2+m2
d2

k2 ; (k1, k2 = 1, 2, ...) , x1,x2 are particular

solutions of congruence equation(2.2), MiM
′
i≡1(modmi); i=1,2

Proof: Given d1|C1
and d2|C2

This implies by theorem(2.1.4) a1x≡c1(modm1) and a2x≡c2(modm2) have so-

lutions

Also by theorem (2.1.4), since d1|C1
then the linear congruence a1x≡c1(modm1)

will have d1 mutually incongruent solution modulo m1 and d2|C2
then the linear

congruence a2x≡c2(modm2) will have d2 mutually incongruent solution modulo

m2.

Also given that x1, x2 are particular solutions of system(2.2).

∴ By theorem (2.1.3) q1 = x1+m1
d1

k1 and q2 = x2+m2
d2

k2 are other solutions of

a1x≡c1(modm1) and a2x≡c2(modm2) respectively.

Now since q1 and q2 satisfy the linear congruence equations in (2.2).

∴ system (2.2) and


x ≡ q1(modm1)

x ≡ q2(modm2)
———(i)

have the same number of solutions.

Also note that equations (i) satisfies the preconditions for the CRT-1.
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Hence by CRT-1 the solutions of equations (i) is

x ≡M1M
′
1q1 + M2M

′
2q2(modm)

where MiM
′
i≡1(modmi) ; i = 1, 2 □

Example: Solve the system of linear congruence equation
2x ≡ 1(mod3)

3x ≡ 2(mod4)
——–(1)

Solution: m1=3, m2=4, and they are pairwise prime.

Since (2, 3)|1 and (3, 4)|2, the congruence equation system(1) have solutions and

the number of solutions is d1=(2,3)=1 , d2=(3,4)=1.

So from CRT-2, we know that number of solutions of given system of congru-

ence equation is d = d1d2 = 1.

Now we have 2x ≡ 1 (mod 3) has a particular solution x ≡ 2 (mod 3),

and 3x ≡ 2 (mod 4) has a particular solution x ≡ 2 (mod 4)

ie. q1=2, q2=2

Also, M1 = m
m1

= 12
3 = 4 and M2 = m

m2
= 12

4 = 3

From MiM
′
i ≡ 1(modmi) we get;

M ′
1 ≡ 1(mod3)

M ′
2 ≡ 3(mod4)

Thus from theorem CRT-2 we have,

x ≡M1M
′
1q1 + M2M

′
2q2(modm)

x ≡ (4 X 1 X 2 + 3 X 3 X 2) (mod 12)

x ≡ 26 (mod 12)

x ≡ 2 (mod 12)

is the required solution.
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2.3 Chinese Remainder theorem in Real life

Chinese Remainder theorem has various applications in mathematics as well as

in real life. In this section we will see some real life applications of Chinese

Remainder theorem.

2.2.1 CRT in Trading

The CRT can be applied in trading so as to maximize returns. In trading,

the retailers normally ask for reduction of prices of goods since they have to

resell the commodities and make some profit out of it. Therefore they price

the goods in groups. Most often, some goods are given free to the retailers. If

in case there are more than one retailer who wish o purchase from the same

wholesaler, in that case we can arrange their bid into some linear congruence

and then apply CRT to determine the best bid so as to maximize profit. Let

us see one example on how this is applied to such a problem in trading.

Problem: A wholesaler sells cartons of biscuits. Three retailers agree to buy

the cartons in groups. Retailer one agrees to buy them at every three for $ 55.00

of which two will be left and added free to the retailer. Retailer two agrees to

buy them at every seven for $ 125.00 of which four will be left and given him

free. Retailer three agrees to buy it in tens for $ 175.00 of which six will be

left and added free. Calculate the total number of cartons the wholesaler is

having. Again, if the wholesaler agrees to sell to retailer one, he can sell six
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times of such cartons in a month. If he agrees to sell for retailer two, he can

sell ten times of such cartons in a month. If he agrees to sell for retailer three,

he can sell sixteen times of such cartons in a month. To find which of these

retailers the wholesaler should choose to make the maximum profit in a month

and assuming the cost price of a carton of the biscuit is $ 15.00 with selling

price of $ 20.00 per carton, we look for the profit on each retailer.

Solution:

Claim(i): To find total number of cartons of biscuits the wholesaler has.

Claim(ii): To find which of these retailers the wholesaler should choose to sell

the cartons inorder to make the maximum profit in a month.

To estimate how many cartons are to be sold we use CRT(1):

We have

x ≡ 2(mod3)

x ≡ 4(mod7)

x ≡ 6(mod10)

m1 = 3 , m2 = 7 , m3 = 10

a1 = 2 , a2 = 4, a3 = 6

M = 210 , M1 = 70 ,M2 = 30, M3 = 21

70M ′
1 ≡ 1(mod3) =⇒ M ′

1 ≡ 1(mod3)

30M ′
2 ≡ 1(mod7) =⇒ M ′

2 ≡ 4(mod7)

21M ′
3 ≡ 1(mod10) =⇒ M ′

3 ≡ 1(mod10)

∴ By CRT-1,

x ≡ ∑3
i=1 aiMiMi′ (modM)

=⇒ x ≡ 746(mod210)
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ie. x ≡ 116(mod210)

Hence there are total 116 cartons of biscuits.

Next to find which of these retailers the wholesaler should choose to make

the maximum profit in a month.

For agreement with retailer one:

Total sales = 116
3 = 38 with remainder 2

The selling price in a month = 38 x 6 x 55 = $ 12,540.00

Cost price =15 x 116 x 6 = $ 10,440.00

Profit = 12540.00 - 10440.00 = $ 2,100.00

Hence the profit is $ 2,100.00

For agreement with retailer two:

Total sales = 116
7 = 16 with remainder of 4

The selling price in a month = 16 x 10 x 125 = $ 20,000.00

Cost price =116 x 15 x 10 = $ 17,400.00

Profit = 20000 - 17400.00 = 2,600.00

Hence the profit is $ 2,600.00

For agreement with retailer three:

Total sales = 116
10 = 11 with remainder of 6

The selling price in a month = 16 x 11 x 175 = $ 30,500.00

Cost price =116 x 16 x 15 = $ 27,840.00

Profit = 30500 - 27840.00 = $ 2,960.00

Hence the profit is $ 2,960.00
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Hence the wholesaler should agree to do business with retailer three so as to

earn maximum profit for that month.

2.2.2 CRT in Information Retrieval or Leakage

Confidential information shared between people can be retrieved using CRT if

one of them died unfortunately or one of them misplaced the information.

Problem: Consider a confidential message to be in the form of an integer, K

= 1000 and shared into three distinct messages among three people in such

a way that K can be retrieved by working together the secret messages of all

three people but not by the participation of fewer people. We thus, choose the

pairwise coprime say, pi such that
3
√

K < pi <
√

K

ie. 10 < pi < 31.6

We choose p1 = 11 , p2 = 13 , p3 = 17.

Finding the residues of K modulo pi we get

x ≡ 10(mod11)

x ≡ 12(mod13) ———(1)

x ≡ 14(mod17)

Solution: Suppose that we know the secret messages of all three people, ie. we

are given system(1) and we have to find the confidential message K.Then we

proceed as follows:

Now here 11,13,17 are pairwise coprime moduli and hence by using CRT-1 we

can find the simultaneous solution of system(1)

m1 = 11 , m2 = 13 , m3 = 17 , m = 2431
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M1 = 2431
11 = 221 , M2 = 187 , M3 = 143

MiM
′
i ≡ 1(modmi)

221M ′
1 ≡ 1(mod11) =⇒ M ′

1 = 1

187M ′
2 ≡ 1(mod13) =⇒ M ′

2 = 8

143M ′
3 ≡ 1(mod17) =⇒ M ′

3 = 5

Thus the system(1) satisfies the hypothesis of CRT-1 and thus we get

x ≡ ∑3
i=1 aiMiMi′ (modm)

x ≡ 30172(mod2431)

ie. x = 1000 = K which is the desired confidential message.

Now if one of the 3 people is perished, by the use of CRT the full message

can be retrieved using the available secret messages of the remaining people.

x ≡ 10(mod11)

x ≡ 12(mod13) ———(2)

Solving (2) using CRT,

M1 = 13 , M2 = 11 , m = 143

13M ′
1 ≡ 1(mod11) =⇒ M ′

1 = 6

11M ′
2 ≡ 1(mod13) =⇒ M ′

2 = 6

∴ x ≡ 1572(mod143)

x ≡ 142(mod143)

To generate the required message we compute:

x − 142 = 143i (i = 1, 2, 3, ....); yielding x = 285, 428, 571, 714, 857, 1000,...

2.2.3 CRT in arrangement of things

CRT can also be applied to certain problems in real life which involves ar-



20

rangement of things in given number of ways. The problem stated below is an

example of the same.

Problem: If a group of academic scholars in a conference can be fitted to

3 rows leaving 2 left, in 5 rows leaving 4 left and 7 rows leaving 6 left then find

the total number of scholars who attended the conference.

Solution: We can translate this problem into the following system of congru-

ences:

x ≡ 2(mod3)

x ≡ 4(mod5)

x ≡ 6(mod7)

Next, m = m1 x m2 x m3 = 3 x 5 x 7 = 105

M1 = 105
3 = 35 , M2 = 105

5 = 21 , M3 = 105
7 = 15

35M ′
1 ≡ 1(mod3)

=⇒ M ′
1 ≡ 2(mod3)

21M ′
2 ≡ 1(mod5)

=⇒ M ′
2 ≡ 1(mod5)

15M ′
3 ≡ 1(mod7)

=⇒ M ′
3 ≡ 1(mod7)

Then by CRT-1 we get,

x ≡ 314(mod105)

x ≡ 104(mod105)

Therefore, there were 104 scholars at the conference.





Chapter 3

FORMULATIONS OF CHINESE

REMAINDER THEOREM

In this chapter we will see the forms of Chinese Remainder theorem such as in

Polynomial form, Group theory form and Ring theory form. Also we will see

some applications of each one of them so as to understand the theorems in a

better way.

3.1 Polynomial form

In this section we will extend the notion of relatively prime integers to coprime

polynomials. This will allow us to extend the Chinese Remainder theorem to

Polynomials. Before that let’s take a look at what are coprime polynomials.

Definition 3.1(a): Mutually prime polynomials

Two polynomials f1(x) and f2(x) are said to be mutually prime if there exists

uj(x) and vj(x) such that f1(x)uj(x) + f2(x)vj(x)=1.

22
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3.1.1 CRT in Polynomial form

If {fi(x) : i = 1, 2, ..., n} are pairwise coprime polynomials and a1(x), a2(x), ..., an(x)

are n polynomials, then there is a polynomial g(x) , qi(x) (i = 1, 2, ..., n) such

that g(x) = fi(x)qi(x) + ai(x) for each i

Proof: Firstly we will try to prove there exist polynomial gi(x) such that

for arbitrary i

gi(x) = fi(x)qi(x) + 1 ; fj(x)|gi(x) , (i ̸= j)

This can be rewritten as gi(x) − 1 = fi(x)qi(x)

Then by the definition of congruence we have, gi(x) ≡ 1 (mod fi(x))

Now since f1(x) and fj(x) (j ̸= 1) are mutually prime ∃ uj(x) and vj(x) such

that f1(x)uj(x) + fj(x)vj(x) = 1

Let g1(x) = f2(x)v2(x)...fn(x)vn(x)

= (1 − f1(x)u2(x))...(1 − f1(x)un(x))

So g1(x) fulfills the requirement.

In the same way gi(x) can be constructed.

Example: f(x) is a polynomial with integer coefficients, for each positive in-

teger m, write Nm={x ∈ Z|f(x) ≡ 0(modm)}.

Prove that when m1, m2, ....., ms are mutually prime,

Nm1m2.....ms
=Nm1Nm2...Nms

Solution: We only need to prove for s = 2.

Note m = m1m2

P = {0 ≤ x < m|f(x) ≡ 0(modm)} and

Pi = {0 ≤ x < mi|f(x) ≡ 0(modmi)} i=1,2

The above defined set P and Pi proves that there is a natural one-to-one cor-
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respondence between P and P1XP2.

Take any x ∈ P , that is 0 ≤ x < m and m|f(x).

Note x = qimi + xi where 0 ≤ xi < mi, qi is an integer, mi|x − xi.

Notice that x − xi|f(x)−f(xi) then mi|f(xi)

ie. xi ∈ Pi.

Hence (x1, x2) ∈ (P1XP2)

In turn, take any (y1, y2) ∈ (P1XP2)

ie. m1|f(y1) , m2|f(y2).

Using the CRT ∃! integer y, 0 ≤ y < m1m2 = m and satisfies

y ≡ y1(modm1)

y ≡ y2(modm2)

Since mi|y−yi
and y − yi|f(y)−f(yi)

Hence mi|f(y) ie. m1m2|f(y)

ie. m|f(y) =⇒ y ∈ P

This proves Nm1m2 = |P | = |P1XP2| = Nm1Nm2

Similarly the solution follows for s > 2.

3.2 Group theory form

This section deals with the details of Group theory followed by the CRT in

group theory form. Let us take a look at some of the definitions and results we

require to understand the theorem statement and proof.

Definition 3.2(a) : Group

A group ⟨G, ∗⟩ is a set G, closed under the binary operation ∗, such that the
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following axioms are satisfied:

G1: For all a, b, c ∈ G, we have

(a ∗ b) ∗ c = a ∗ (b ∗ c). Associativity of ∗

G2: There is an element e ∈ G such that for all x ∈ G,

e ∗ x = x ∗ e = x. Identity element e of ∗

G3: Corresponding to each a ∈ G, there is an element a′ ∈ G such that

a∗a′=a′∗a = e. Inverse of a′ of a

Definition 3.2(b): Subgroup

If a subset of H of a group G is closed under binary operation of G and if H

with the induced operation from G is itself a group, then H is a subgroup of G.

Definition 3.2(c) : Coset

Let H be a subgroup of a finite group G. The partition of G into r cells, all

having the same size as H. Then we have, r(order of H)=(order of G).

The cells in the partition will be called cosets of H.

Definition 3.2(d) : Left and Right Cosets

Let H be a subgroup of a group G. The subset aH={ah : h ∈ H} of G is the

left coset of H containing a, while the subset Ha={ha : h ∈ H} is the right

coset of H containing a.

Definition 3.2(e) : Normal subgroup

A subgroup H of a group G is normal if its left and right cosets coincide, ie. if

gH = Hg, ∀ g ∈ G. Equivalently, H = gHg−1
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Definition 3.2(f) : Quotient Group or Factor Group

When the subgroup H of G is normal, then the set of left (or right) cosets of H

in G is itself a group called the factor group of G by H (or the quotient group

of G by H).

It is denoted by G/H ={aH|a∈G}.

Definition 3.2(g) : External Direct Product

Let G1, G2, ..., Gn be a finite collection of groups. The external direct product

of G1, G2, ..., Gn, written as G1⊕G2⊕...⊕Gn, is the set of all n-tuples for which

the ith component is an element of Gi and the operation is component-wise.

In symbols, G1⊕G2⊕...⊕Gn = {(g1, g2, ..., gn) : gi∈Gi}

where (g1, g2, ..., gn)(g′
1, g′

2, ..., g′
n) is defined to be (g1g

′
1, g2g

′
2, ..., gng′

n).

It is understood that each product gig
′
i is performed with the operation of Gi.

Definition 3.2(h) : Isomorphism

An isomorphism ϕ from a group G to a group
−
G is a one-to-one mapping (or

function) from G onto
−
G that preserves the group operation.

That is, ϕ(ab) = ϕ(a) ϕ(b) ∀a, b ∈ G

3.2.1 First isomorphism theorem

Let ϕ be a group homomorphism from G to
−
G. Then the mapping from

G/Ker(ϕ) to ϕ(G), given by gKer(ϕ) → ϕ(g) , is an isomorphism.

In symbols, G/Ker(ϕ) ∼= ϕ(G).
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3.2.2 Proposition:

For each n ∈ N , Z/nZ is isomorphic to Zn

Proof: Let Zn = <x> where xn = 1

Let ϕ : Z → Zn be defined ∀ x ∈ Z by

ϕ(m) = xm(modn)

Observe that ϕ is indeed a homomorphism from Z since

∀ m1, m2 ∈ Z we have

ϕ(m1 + m2) = xm1+m2(modn) = xm1(modn)xm2(modn)

ie. ϕ(m1 + m2) = ϕ(m1)ϕ(m2)

Now observe that

ker(ϕ) = {m ∈ Z : xm(modn) = 1} = {m ∈ Z : n|m} = nZ

So by the first isomorphism theorem we have that

Z/nZ = Z/ker(ϕ) ∼= ϕ(G)

But ϕ is surjective , since ∀ xt ∈ Z =< x > , 1 ≤ t ≤ n , we have that ϕ(t) = xt

So ϕ(Z) = Zn and thus from above Z/nZ ∼= Zn □

3.2.3 Theorem:

The group Zm ⊕ Zn is isomorphic to Zmn iff m and n are relatively prime.

Proof: Suppose Zm ⊕ Zn
∼= Zmn and Zm ⊕ Zn is cyclic.

Let (a, b) be a generator o Zm ⊕ Zn.

Then order((a, b)) = mn

Let oa = order of (a) and ob = order of (b)

oa/m ∧ ob/n

=⇒ oa.ob/lcm (m, n)

=⇒ lcm (m, n) is a common multiple of oa ob
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=⇒ lcm(oa, ob) ≤ lcm (m, n)

order((a, b)) = lcm (oa, ob)

lcm (m, n) = mn/(m, n)

∴ gcd(m, n) = 1

Conversely, suppose gcd(m, n) = 1

Let a and b be generator of Zm and Zn respectively.

oa = m and ob = n

order((a, b)) = lcm(oa, ob) = lcm(m, n) = mn

gcd(m, n) = mn

=⇒ Zm ⊕ Zn = ⟨(a, b)⟩ ∧ |Zm ⊕ Zn| = mn

=⇒ Zm ⊕ Zn
∼= Zmn □

3.2.4 Corollary:

The group Zm1 ⊕Zm2 ⊕ ... ⊕Zmn
is cyclic and is isomorphic to Zm1m2...mn

iff mi,

i = 1, 2, ..., n are such that gcd of any two of them is 1.

Proof: We will prove this by induction.

For k=2 already proved in previous theorem (3.2.3).

Assume for k=n-1.

ie. Zm1 ⊕ Zm2 ⊕ ... ⊕ Zmn−1
∼= Zm1m2...mn−1

To prove for k=n,

Now, Zm1 ⊕ Zm2 ⊕ ... ⊕ Zmn−1 ⊕ Zmn
= Zm1m2...mn−1 ⊕ Zmn

Since m1m2...mn−1 and mn are coprime, then using theorem(3.2.3) we get;

Zm1m2...mn−1 ⊕ Zmn
∼= Zm1m2...mn−1mn

ie. we get,

Zm1 ⊕ Zm2 ⊕ ... ⊕ Zmn
∼= Zm1m2...mn

. □



29

3.2.5 Theorem: CRT in Group theory:

Suppose m = m1m2...ms and m1, m2, ..., ms are pairwise prime positive inte-

gers. Then Z/mZ ∼= Z/m1Z ⊕ ... ⊕ Z/msZ

Proof : We know Z/nZ is isomorphic to Zn for each n ∈ N

So here we only need to prove that

(i) Z/mZ ∼= Zm where m= m1.m2....ms and mi ∈ Z for i=1,2,3,...,s

(ii) Zm1m2...ms
∼= Zm1 ⊕ Zm2 ⊕ ... ⊕ Zms

To prove (i):

Since m= m1.m2....ms are positive integers, thus by Proposition 3.2.2

Z/(m1.m2....ms)Z ∼= Zm1m2...ms

To prove (ii)

Since mi are pairwise prime for i=1,2,...,s from Theorem 3.2.3 and Corollary

3.2.4 we are done. □

Now let us see one example based on theorem (3.2.5):

Example: Find the solution of the congruence equation

x ≡ 2(mod3)

x ≡ 3(mod5)

x ≡ 2(mod7)
Solution: Note that 3,5,7 are pairwise prime positive integers and m=3×5×7=105.

This problem corresponds to the decomposition

Z/105Z = Z/3Z ⊕ Z/5Z ⊕ Z/7Z.
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3.3 Ring theory form

In this section of the chapter we will see the Chinese Remainder theorem ex-

tended to the coprime monoid rings.

3.3(a) Definition: Ring

A ring < R, +, . > is a set R together with two binary operations + and . ,

which we call addition and multiplication, defined on R such that the following

axioms are satisfied:

R1: < R, + > is an abelian group.

R2: Multiplication is associative.

R3: For all a,b,c ∈ R, the left distributive law a.(b+c) = (a.b)+(a.c) and

the right distributive law (a+b).c = (a.c)+(b.c) hold.

3.3(b) Definition: Homomorphism

For rings R and R′, a map ϕ : R → R′ is a homomorphism if the following two

conditions are satisfied for all a,b ∈ R :

(i) ϕ(a+b) = ϕ(a)+ϕ(b)

(ii) ϕ(ab) = ϕ(a) ϕ(b)

3.3(c) Definition: Isomorphism

An isomorphism ϕ : R → R′ from a ring R to a ring R′ is a homomorphism

that is one to one and onto R′. The rings R and R′ are then isomorphic.
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3.3(d) Definition:

A ring in which the multiplication is commutative is a commutative ring.

A ring with a multiplicative identity element is a ring with unity; the multi-

plicative identity element 1 is called unity.

3.3(e) Definition: Ideal

An additive subgroup N of a ring R satisfying the properties aN ⊆ N and Nb

⊆ N ∀ a,b ∈ R is an ideal.

3.3(f) Definition:

Ideals A, B are coprime if A+B=(1)=R.

3.3(g) Definition: Monoid

A monoid is a semigroup that has an identity element for the binary operation.

3.3(h) Definition: A Monoid Ring

Let R be a ring and let G be a monoid. The monoid ring or monoid alge-

bra of G over R, denoted by R[G] or RG, is the set of formal sums ∑
g∈G rgg

where rg ∈ R for each g ∈ G and rg = 0 for all but finitely many g, equipped

with coefficient-wise addition, and the multiplication in which the elements of

R commute with the elements of G.

3.3(i) Definition: Unitary ring

A ring in which there is an identity element for multiplication is called unital

ring, unitary ring or simply ring with identity. The identity element is generally
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denoted by 1.

3.3.1 Lemma:

Suppose R is a unitary ring and I and J are ideals that are mutually prime to

R, then IJ + JI = I∩J .

In particular when R is unitary IJ = I∩J .

Proof: First to prove that IJ ⊆ I ∩ J ie. to prove that ab ∈ I ∩ J ∀a ∈ I and

∀b ∈ J

Now b ∈ J ⊆ R; since I is an ideal, ab ∈ I.

Also, ba ∈ I ⊆ R; since J is an ideal, ab ∈ J .

Thus ab ∈ I ∩ J

ie. IJ ⊆ I ∩ J = J ∩ I

Since I ∩ J is closed for addition, IJ + JI is a subset of I ∩ J .

Since I and J are prime, ∃ i ∈ I and j ∈ J such that i + j = 1.

For arbitrary k ∈ I ∩ J ; k = 1k = (i + j)k = ik + jk ∈ IJ + JI.

Hence I ∩ J is a subset of IJ + JI.

Hence IJ + JI = I ∩ J

When R is unitary ring IJ = JI, hence IJ + JI = IJ . □

3.3.2 Lemma:

Suppose R is a commutative ring, and A1, ..., An (n > 1) are pairwise prime

ideals. Then A1, ..., An−1 and An are mutually prime and A1...An = A1∩...∩An

Proof: For n=2, A1, A2 are prime ideals then by lemma(3.3.1), A1.A1 = A1 ∩A2

For n > 3, A1 ∩ A2 = A1A2 and A3 are prime.

Hence A1 ∩ A2 ∩ A3 = A1A2 ∩ A3 = A1A2A3
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Continuing in the same way we get,

A1,A2,...,An−1 and An are mutually prime and

A1.A2....An = A1 ∩ A2 ∩ ... ∩ An. □

Now let us see the Ring theory form of CRT for coprime ideals.

3.2.3 Theorem : CRT in Ring theory form

Suppose A1, A2, ..., An are the ideals of pairwise coprime on a monoid R.

Then for arbitrary a1, a2, ..., an∈R the set {x∈R :∀i = 1, 2, ..., n, x≡ai(modAi)}

is not empty, and is the residual class module ⋂n
i=1 Ai.

Besides R/(A1∩...∩An)∼=R/A1⊕...⊕R/An.

Proof: If n=2, A1 + A2 = R, so there exist ai∈Ai such that a1 + a2 = 1

Let y1 = a2 and y2 = a1

Then yi≡1(modAi) and yi≡0(modAi) , for i ̸=j

Let x = x1y1 + x2y2

Then x≡x1(moA1) and x≡x2(moA2)

Thus for n=2 we have proved.

Now suppose n > 2

Then ∀j≥2 , A1 + Aj = R, so a
(j)
1 +aj = 1 for some a

(j)
1 ∈A1 and aj∈Aj

Then 1 =∏n
j=2(a

(j)
1 +aj) ∈ A1+

∏n
j=2Aj

By the case for two ideals , there exist y1∈R such that y1≡1(modA1) and

y1≡0(mod
∏n

j=2Aj)

This implies y1∈
∏n

j=2Aj, and thus y1≡0(modAj) for all j≥2

Repeat this process to obtain y2, ..., yn.

Let x =∑n
i=1xiyi.

Then x≡xi(modAi)
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Next to prove R/(A1∩...∩An)∼=R/A1⊕...⊕R/An.

Define a map:x→(x + A1, ..., x + An).

This is a surjective map by CRT and the kernel is ⋂n
i=1 Ai

Then using isomorphism theorem we get,

R/(A1∩...∩An)∼=R/A1⊕...⊕R/An □

Now let us see on example on theorem(3.2.3).

Example: In Z91, find the square root of
−
1

Solution: We know Z91 = Z/(91).

Since 91=7×13 and 7 and 13 are prime.

(91) = (7)(13) = (7) ∩ (13).

Hence Z/(91) ∼= Z/(7) ⊕ Z/(13), where the isomorphic mapping is

ϕ : a + (91) → (a + (7), a + (13)).

Hence (a + (91))2 = 1 + (91)

⇐⇒ (a + (7), a + (13))2 = (1 + (7), 1 + (13))

⇐⇒ (a + (7))2 = 1 + (7) and (a + (13))2 = 1 + (13).

Since Z/(7),Z/(13) are fields, and in the unary polynomial ring F[x] on any

field F, the n-degree polynomial f(x) has at most n roots on F, so x2 − 1 has at

least 2 roots in Z/(7) and Z/(13).

Obviously, 1+(7) and -1+(7) are two different square roots of 1+(7); 1+(13)

and -1+(13) are two different square roots of 1+(13).

Hence (a + (91))2 = 1 + (91)

⇐⇒ a + (7) = ±1 + (7) and a + (13) = ±1 + (13)
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⇐⇒


a ≡ 1(mod7)

a ≡ 1(mod13)
or


a ≡ 1(mod7)

a ≡ −1(mod13)
or


a ≡ −1(mod7)

a ≡ 1(mod13)
or


a ≡ −1(mod7)

a ≡ −1(mod13)
Now solving the two congruence equations:

x ≡ 1(mod7)

x ≡ 0(mod13)
=⇒ x = 78 + 91k, k ∈ Z;


x ≡ 0(mod7)

x ≡ 1(mod13)
=⇒ x = 14 + 91k, k ∈ Z.

According to the theorem it can be concluded that the solution of
a ≡ 1(mod7)

a ≡ 1(mod13)
is a = 1 × 78 + 1 × 14 + 91k = 1 + 91l, l ∈ Z.

Similarly, it can be concluded that the solutions of the remaining three congru-

ence equations are:

a = 1 × 78 + (−1) × 14 + 91k = 64 + 91k, k ∈ Z;

a = (−1) × 78 + 1 × 14 + 91k = 27 + 91l, l ∈ Z;

a = (−1) × 78 + (−1) × 14 + 91k = −1 + 91l, l ∈ Z.

Hence in Z91, the square roots of
−
1 are

−
1,

−
64,

−
27,

−
−1.





Chapter 4

CHINESE REMAINDER THEOREM

AND MODULI SETS

In this chapter we will study the new form of CRT which will help in converting

RNS moduli set to binary system.

4.1 RNS and Moduli sets

RNS has applications in digital signal processing and digital image processing.

For such applications of RNS we need to first convert it into binary system

using a reverse converter set. In this section we will study the new CRT form

which will help us in finding the reverse converter set for RNS. First let us see

what is RNS in detail and then we will see what is the theorem which we can

use for finding reverse converter set.

4.1(a) Definition: Moduli sets

Moduli sets are general set of relatively prime numbers.

37
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4.1(b) Definition: Residue Number System (RNS)

The Residue Number System is a non-weighted number system representing in-

tegers by their values modulo several pairwise relatively coprime integers called

the moduli.

4.1.1 Proposition:

If a ≡ 1(modm1m2...mn) then

a ≡ 1(modm1) , a ≡ 1(modm2) , ... , a ≡ 1(modmn)

Proof: We will prove this by induction on n.

To prove for i = 2,

we have a ≡ 1(modm1m2) =⇒ m1m2|(a − 1)

=⇒ a − 1 = (m1m2)k ; k ∈ Z

ie. a − 1 = m1(m2k) =⇒ a ≡ 1(modm1)

Also a − 1 = m2(m1k) =⇒ a ≡ 1(modm2)

Assume it holds for i = n − 1.

ie. if a ≡ 1(modm1m2...mn−1) then

a ≡ 1(modm1) , a ≡ 1(modm2) , ... , a ≡ 1(modmn−1)

To prove for i = n.

a ≡ 1(modm1m2...mn−1mn)

=⇒ a − 1 = (m1m2...mn−1mn)k ; k ∈ Z

a − 1 = (m1m2...mn−1)mnk

By using the case for i = 2 and by induction assumption we get,

a ≡ 1(modm1) , a ≡ 1(modm2) , ... , a ≡ 1(modmn−1), a ≡ 1(modmn) □
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4.1.2 Proposition:

If (m1, m2) = 1 then there is a k ∈ Z such that m1k ≡ 1(modm2)

Proof: Given (m1, m2) = 1 then by theorem(2.1.1) we get,

m1k1 + m2k2 = 1 ; k1, k2 ∈ Z

ie. m1k1 − 1 = m2k2

=⇒ m1k1 ≡ 1(modm2). □

4.1.3 Proposition:

If (m1, m2) = 1 and (m1, m3) = 1 then (m1, m2m3) = 1

Proof: (m1, m2) = 1 =⇒ 1|m1 , 1|m2

(m1, m3) = 1 =⇒ 1|m1 , 1|m3

Now 1|m2 and 1|m3

=⇒ 1|m2m3

Similarly, 1|m1 and 1|m2m3

=⇒ (m1, m2m3) = 1. □

4.1.4 Theorem: New CRT for RNS conversion

Let m1, m2, ..., mn be positive integers such that (mi, mj) = 1 for i ̸= j.

Then the system of linear congruence



x ≡ x1(modm1)

x ≡ x2(modm2)

...

x ≡ xn(modmn)

(4.1)
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has a unique solution modulo m1m2...mn. The solution is

−
x= [x1 + k1m1(x2 − x1) + .... + kn−1m1m2...mn−1(xn − xn−1)](modm1m2...mn)

(4.2)

where k1, k2, ..., kn−1 satisfy



m1k1 ≡ 1(modm2...mn)

m1m2k2 ≡ 1(modm3...mn)

...

m1m2...mn−1kn−1 ≡ 1(modmn)

(4.3)

Proof: Since (mi, mj) = 1 for i ̸= j by proposition(4.1.2) and proposition(4.1.3)

∃ ki’s satisfying system(4.3).

We only need to prove that −
x in (4.2) satisfies every congruence in (4.1).

Clearly, −
x ≡ x1(modm1)

Next,
−
x ≡ [x1 + k1m1(x2 − x1)](modm2)
−
x ≡ x1(modm1) + k1m1(x2 − x1)(modm2)

Since m1k1 ≡ 1(modm2...mn) —–from Proposition(4.1.2).

m1k1 ≡ 1(modm2) —–from Proposition(4.1.1).

∴
−
x ≡ x1(modm2) + (x2 − x1)(modm2)
−
x ≡ x2(modm2)

Similarly,
−
x ≡ [x1 + k1m1(x2 − x1) + k2m1m2(x3 − x2)](modm3)
−
x ≡ x1(modm3) + k1m1(x2 − x1)(modm3) + k2m1m2(x3 − x2)(modm3)
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Again by proposition(4.1.1); k1m1 ≡ 1(modm3) and

k2m1m2 ≡ 1(modm3)

∴
−
x ≡ x1(modm3) + (x2 − x1)(modm3) + (x3 − x2)(modm3)

≡ x3(modm3)

Extending the above to the larger dimensions we get,
−
x≡ [x1 + k1m1(x2 − x1) + ... + kn−1m1m2...mn−1(xn − xn−1)](modmn)
−
x ≡ x1(modmn)+k1m1(x2−x1)(modmn)+...+kn−1m1...mn−1(xn−xn−1)(modmn)
−
x ≡ x1(modmn) + (x2 − x1)(modmn) + ... + (xn − xn−1)(modmn)
−
x ≡ xn(modmn)

To prove uniqueness of solution.

Suppose −
x′ is any other integer that satisfies the congruence in (4.1). Then,

−
x ≡ −

x′ (modmi) ; i = 1, 2, ..., n

=⇒ mi|−
x−−

x
′ ; i = 1, 2, ..., n

Now, (mi, mj) = 1 for i ̸= j.

We know that if a|c , b|c and (a,b)=1 then ab|c.

∴ m1m2...mn | −
x − −

x
′

ie. m|−x − −
x

′

=⇒ −
x≡−

x
′
(modm)

Thus we have proved the uniqueness part. □

4.2 RNS to Binary Conversion

We now propose the moduli set S1 = {3n, 3n + 1, 3n + 2} for n ≥ 1 and check

that it is relatively prime. Also we will find its reverse converter set (inverse
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set) using CRT-1 from chapter 2 and then find its reverse converter set (inverse

set) using New CRT for RNS conversion ie. theorem (4.1.4).

4.2.1 Theorem:

The set S1 = {3n, 3n + 1, 3n + 2} is a relatively prime set.

Proof : We need to prove that

(i) (3n, 3n + 1) = 1

(ii) (3n + 1, 3n + 2) = 1

(iii) (3n, 3n + 2) = 1

Check that (i) is trivial since 3n is odd number.

Also (ii) is trivial since 3n + 1 will be even and it follows.

To prove (iii)

Suppose p|3n and p|3n+2 where p is any prime.

Then by the properties of divisibility p divides (3n + 2) − (3n).

ie.p|(3n+2)−(3n)

ie. p|2

But 3n is always odd and p|3n implies p is an odd number.

Hence p = 1 which proves (iii).

4.2.2 Theorem:

For the set S1 , the multiplicative inverse set based on the CRT-1 is

I1 = {1
23n + 1, 3n, 1

2(3n + 3)}

Proof: Let m = (3n)(3n + 1)(3n + 2)

M1 = (3n + 1)(3n + 2) , M2 = 3n(3n + 2) , M3 = 3n(3n + 1)
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Let 

x ≡ x1(mod3n)

x ≡ x2(mod3n + 1)

...

x ≡ x3(mod3n + 2)

(4.4)

By the CRT-1 we shall show that the congruences in (4.4) has unique solution

modulo m = (3n)(3n + 1)(3n + 2)

ie. x ≡ [M1k1x1 + M2k2x2 + M3k3x3](modm)

for k1 = 1
23n + 1 , k2 = 3n , k3 = 1

23n + 3

Claim(i): M1k1 ≡ 1(mod3n)

We have M1k1 = (3n + 1)(3n + 2)(1
23n + 1)

= 1
2(33n + 32n + 2.32n + 2.3n + 32n + 3n + 2.3n + 2)

M1k1 = 1
2 [33n + 4.32n + 5.3n + 2]

M1k1 − 1 = 3n(32n

2 + 2.3n + 5
2)

Claim(ii): M2k2 ≡ 1(mod3n + 1)

We have M2k2 = (3n)(3n + 2)(3n)

= (32n + 2.3n)3n

M2k2 − 1 = (3n + 1)(32n + 3n − 1)

Claim(iii): M3k3 ≡ 1(mod3n + 2)

We have M3k3 = (3n)(3n + 1)(1
2)(3n + 3)

= (1
2)(33n + 4.32n + 3.3n)

M3k3 = (3n + 2)(32n

2 + 3n + 3
2)

M3k3 − 1 = (3n + 2)(32n

2 + 3n − 1
2)
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4.2.3 Theorem:

For the set S1 , the multiplicative inverse set based on the New CRT for RNS

conversion is I2 = {3n + 1, 1
2(3n + 1)}.

Proof: Let M1 = (3n + 1) , M2 = (3n + 2) , M3 = 3n

Let x ≡ x1(mod3n)

x ≡ x2(mod3n + 1)

x ≡ x3(mod3n + 2)

By the New CRT (theorem 4.1.4) we need to show that

x ≡ [x1 + k1M1(x2 − x1) + k2M1M2(x3 − x2)](modM1M2M3)

for k1 = 3n + 1 , k2 = 1
23n + 1

Claim(i): M1k1 ≡ 1(modM2M3)

We have M1k1 = (3n + 1)(3n + 1)

= 32n + 2.3n + 1

M1k1 − 1 = 3n(3n + 2)

Claim(ii): M1M2k2 ≡ 1(modM3)

We have M1M2k2 = (3n + 1)(3n + 2)(1
2)(3n + 1)

= 33n

2 + 2.32n + (5
2)3n + 1

M1M2k2 − 1 = 3n(32n

2 + 2.3n + 5
2)

Example: Consider a weighted number x=256 and the moduli set 3,4,5,7.

Then

x ≡ 1 (mod 3)

x ≡ 0 (mod 4)

x ≡ 1 (mod 5)

x ≡ 4 (mod 7)
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Solution: We have to first find k1,k2,k3 satisfying

3k1 ≡ 1 (mod 4.5.7) =⇒ 3k1 ≡ 1 (mod 140)

3.4k2 ≡ 1 (mod 5.7) =⇒ 12k2 ≡ 1 (mod 35)

3.4.5k3 ≡ 1 (mod 7) =⇒ 60k3 ≡ 1 (mod 7)

Thus we obtain k1=47 , k2=3 , k3=2 satisfying above congruences.

∴ By new CRT for RNS we get;

x ≡ x1+k1m1(x2−x1)+k2m1m2(x3−x2)+k3m1m2m3(x4−x3) (modm1m2m3m4)

x ≡ 1+(-141)+36+360 (mod 420)

x ≡ 256 (mod 420) is the required solution.





Chapter 5

FAST ALGORITHM OF CHINESE

REMAINDER THEOREM AND

FIBONACCI NUMBERS

This chapter deals with a fast algorithm of CRT which will be later applied to

Fibonacci numbers in section[5.2].

5.1 Fast Algorithm of Chinese Remainder theorem

In this section we will see the Fast Algorithm of CRT in detail. Before that let

us first study the lemma required to prove the theorem.

5.1.1 Lemma: The system of congruence



x ≡ a1(modm1)

x ≡ a2(modm2)

...

x ≡ ak(modmk)

(5.1)

47
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is equivalent to the following system of congruence:



M1x ≡ a1M1(modM)

M2x ≡ a2M2(modM)

...

Mk−1x ≡ ak−1Mk−1(modM)

(∑k
i=1 biMi)x ≡ ∑k

i=1 aibiMi(modM)

(5.2)

where bi is relatively prime to mi for i=1,2,...,k

Proof: We show the necessity part.

Suppose x is a solution of system (5.1) then for i = 1, 2, ..., k,

x − ai = cimi ; where ci is an integer.

Multiplying the above equation with Mi for each i we get

Mix − Miai = cimiMi = ciM for i = 1, 2, ..., k

which is rewritten as the congruence

Mix ≡ Miai(modM) for i = 1, 2, ..., k ——-(i)

The first k − 1 congruences in system (5.2) are identical with those of equa-

tion(i) for i = 1, 2, ..., k − 1

The last congruence of system(5.2) can be obtained as a linear combination of

equation(i).

Conversely, we assume that x is a solution of the system of congruence (5.2).

Since Mi and mi are coprime, equation(i) can be reduced to

x ≡ ai(modmi) for i = 1, 2, ..., k − 1

Now subtracting the linear combination of the first k − 1 congrunces in (5.2),

we have bkMkx ≡ akbkMk(modM)
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Since Mk and bk are relatively prime to mk, we conclude that

x ≡ ak(modmk). □

5.1.2 Lemma:

Under the same assumptions as in basic CRT and lemma [1], M is relatively

prime to ∑k
i=1 biMi

Proof: Let d be the gcd (∑k
i=1 biMi, M) and let p be a prime factor of d.

Then p divides ∑k
i=1 biMi and M = ∏k

i=1 mi

The divisibility of M by p implies that p divides only one of mi ; say mj,

since (mi, mj) = 1 for i ̸= j

Then p divides all Mi but Mj = M
mj

Together with the divisibility of ∑k
i=1 biMi by p, we derive that p divides bjMj

and consequently divides bj.

Hence p divides the gcd(mj, bj) which is equal to 1.

Next let us see what is the fast algorithm of CRT.

5.1.3 A Fast Algorithm of CRT

let m1, m2, ..., mk be pairwise relatively prime positive integers. Then there ex-

ists unique integer x(modM) satisfying the system of congruence



x ≡ a1(modm1)

x ≡ a2(modm2)

...

x ≡ ak(modmk)

(5.3)
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where M=m1 m2 ... mk

The system (5.3) is equivalent to the following single linear congruence

(∑k
i=1 biMi)x ≡ ∑k

i=1 aibiMi(modM)

where bi’s are arbitrary integers coprime to mi’s respectively and Mi = M
mi

,

i = 1, 2, ..., k.

Proof: By lemma(5.1.1) we know that the congruence system(5.3) is equivalent

to system(5.2).

From lemma(5.1.2), the last congruence has a unique solution, say x0(modM).

Thus the system(5.2) has a unique solution x0 which implies that x0 is the

unique solution of the congruence system(5.3) since basic CRT assures the ex-

istence of unique solution of the system(5.3) modulo M.

Hence proved.

5.2 Fibonacci Numbers

In this section of the chapter 5 we will see how the theorem (5.1.3) is applied to

Fibonacci numbers in the form of a corollary. Before the application we need

to look at the definitions and results which will be used in the proof of the

corollary. Let us see what are these results.

5.2(a) Definition: Fibonacci Sequence

Fibonacci sequence is a sequence in which each number is the sum of the two

preceding ones. Numbers that are part of the Fibonacci sequence are known

as Fibonacci numbers. ie.1,1,2,3,5,8,12,21,34,55,89,144,233,377,... is called the

Fibonacci sequence and its terms are the Fibonacci numbers.
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5.2.1 Theorem:

For the Fibonacci sequence, (un, un+1) = 1 for every n ≥ 1.

Proof: Suppose that integer d > 1 divides both un and un+1.

ie. d|un − un+1

ie. d|un−1

Now d divides un and un−1 =⇒ d|un − un−1 ie. d|un−2

Working in this way, at the end we will get d|u1 and u1 = 1 which is certainly

not divisible by d > 1.

5.2.2 Theorem:

For m ≥ 1, n ≥ 1, umn is divisible by um.

Proof: We prove this by induction on n.

The result is certainly true for n = 1.

For the induction hypothesis, let us assume that umn is divisible by um for

n = 1, 2, ..., k.

Now to prove for n = k + 1.

um(k+1) = umk+k

Now by using um+n = um−1un + umun+1 we get,

um(k+1) = umk−1um + umkum+1

Since um divides umk, thus RHS (and hence the LHS) of this expression must

be divisible by um .

Similarly, um divides um(k+1).

Thus we have proved.
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5.2.3 Lemma:

If m = qn + r, then (um, un) = (ur, un).

Proof: We know um(k+1) = umk−1um + umkum+1.

Now, (um, un) = (uqn+r, un) = (uqn−1ur + uqnur+1, un)

From theorem (5.2.2) and from the fact that (a + c, b) = (a, b), whenever b|c,

gives (uqn−1ur + uqnur+1, un) = (uqn−1ur, un)

We claim that (uqn−1, un) = 1

Let (uqn−1, un) = d.

Then d|un and un|uqn imply that d|uqn and thus d is a common divisor of the

successive Fibonacci numbers uqn−1 and uqn.

Now since successive Fibonacci numbers are relatively prime thus we get d = 1.

Now we know that if (a,c)=1 then (a,bc)=(a,b), using this we get;

(um, un) = (uqn−1ur, un) = (ur, un).

5.2.4 Theorem:

The greatest common divisor of two Fibonacci numbers is again a Fibonacci

number; specifically, gcd(um, un) = ud where d = gcd(m, n).

Proof: Assume that m ≥ n.

Applying the Euclidean Algorithm to m and n, we get the following system of

equations:

m = q1n + r1 0 < r1 < n

n = q2r1 + r2 0 < r2 < r1

r1 = q3r2 + r3 0 < r3 < r2

.

.
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.

rn−2 = qnrn−1 + rn 0 < rn < rn−1

rn−1 = qn+1rn + 0

In accordance with the previous lemma 5.2.3,

(um, un) = (ur1, un) = (ur1, ur2) = ůůů = (urn−1, urn
)

Because rn|rn−1, theorem 5.2.2 tells us that urn
|urn−1 , where (urn−1, urn

) = urn
.

But rn, being the last non-zero remainder in the Euclidean Algorithm for m

and n, is equal to (m, n).

Thus we get, (um, un) = u(m,n).

Now let us see how the fast algorithm is applied to Fibonacci numbers which

is stated below in the form of a corollary.

5.2.5 Corollary: (Application of Fast Algorithm)

Let un−1, un, un+1 be three successive terms of the Fibonacci sequence. Then

the system of congruence,

x ≡ a(modun−1)

x ≡ b(modun)

x ≡ c(modun+1)
has a unique solution,

x ≡ (−1)n+1[aunun+1 − (bun−1un+1 + cun−1un)](modun−1unun+1).

Proof: It is known that (um, un) = u(m,n)

Thus we have (un−1, un) = (un, un+1) = u1 = 1 and (un−1, un+1) = u1 or u2 = 1

Now,

unun+1x ≡ aunun+1(modun−1unun+1)

un−1un+1x ≡ bun−1un+1(modun−1unun+1)
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un−1unx ≡ cun−1un(modun−1unun+1)

Then by theorem (5.1.3),

[unun+1−un−1(un+1+un)]x ≡ aunun+1−(bun−1un+1+cun−1un)(modun−1unun+1)

=⇒ (unun+1 −un−1un+2)x ≡ aunun+1 −(bun−1un+1 +cun−1un)(modun−1unun+1)

Now since unun+1 − un−1un+2 = (−1)n−1

Thus we get

(−1)n−1x ≡ aunun+1 − (bun−1un+1 + cun−1un)(modun−1unun+1)

Hence x ≡ (−1)n+1[aunun+1 − (bun−1un+1 + cun−1un)](modun−1unun+1).





ANALYSIS AND CONCLUSIONS

In this project we have shown expansion of Chinese Remainder theorem in other

areas of mathematics ie. to coprime polynomials, monoid Rings and Groups.

We have also shown some other forms of Chinese Remainder theorem namely,

the CRT for finding reverse converter set for Converting RNS to Binary system

and the Fast Algorithm that we have applied to Fibonacci numbers. Here

we have shown their applications not only restricted to mathematics but also

to some real life problems. Chinese Remainder theorem not only has these

applications but it is also used in computer coding and digital signal processing

through RNS and also in cryptography.

Chinese Remainder theorem might look like a small topic to study but if you

start exploring its various applications its really an interesting topic to study

and will surely help in future in coding and many other areas too.
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