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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-

ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: " A Non-linear Extension of Gener-

alised Fibonacci Sequence." This survey is divided into seven chapters. Each chapter

has its own relevance and importance. The chapters are divided and defined in a logical,

systematic and scientific manner to cover every nook and corner of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of the Fibonacci

sequence and the history of Number theory.

SECOND CHAPTER:

This chapter deals with extension of Fibonacci sequence Pn. In this topic we have studied

identities, divisibility properties. We have also determined congruence properties of

extended sequence Pn.

THIRD CHAPTER:

This chapter deals with extension of Lucas sequence Tn. In this topic we have obtained

various divisibility and gcd properties. We have also determined cycles of Tn mod m

and a pisano period table of Ln mod m. Also obtained some properties related to pisano

period and worked on some generalised formula. Besides this obtained some relations

between Pn and Tn.
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FOURTH CHAPTER:

This chapter deals with extension of pell sequence Dn. In this topic we have obtained a

non-linear second order recurrence relation. Also worked on recurrence relation and gcd

properties of some other generalisation of Fibonacci.

FIFTH CHAPTER.

This chapter deals with difference relation to the sequences of k-Fibonacci numbers. In

this chapter we learn various properties related to k-Fibonacci difference sequence. We

also find formulas for the sum of the elements of these new sequences as well as their

generating functions. Finally, we study the k–Fibonacci Newton polynomial interpola-

tion.

SIXTH CHAPTER.

In this chapter we learn Binet formula and identities of k-Fibonacci numbers.
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ABSTRACT

Fibonacci numbers or Fibonacci sequence is among the most popular numbers or

sequence in mathematics. One of the important features arising from the Fibonacci

sequence is the Golden Ratio. It is the ratio of the consecutive numbers in the Fibonacci

sequence which converges to 1.61803398875. In this paper, a new extension of Fibonacci

sequence which yields a non-linear second order recurrence relation is defined. Some

identities, divisibility and congruence properties for the new sequence is obtained. We

obtain general formulas to find any term of the ith k–Fibonacci difference sequence from

the initial k–Fibonacci numbers.

The main aim of this article is, in general to prove some basic results related to gener-

alised Fibonacci sequence and to generalise some identities and properties of the same.

Besides this we do find out properties related to pisano periods of sequences discussed in

the paper.

Keywords: Fibonacci sequence; lucas sequence; pell sequence; generalised fibonacci

sequence; non-linear recurrence relation; Congruence and gcd properties; Pisano period
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Chapter 1

INTRODUCTION

Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure

mathematics devoted primarily to the study of the integers and arithmetic functions. Ger-

man mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen

of the sciences—and number theory is the queen of mathematics." Number theorists

study prime numbers as well as the properties of mathematical objects constructed from

integers (for example, rational numbers), or defined as generalizations of the integers

(for example, algebraic integers).

The main goal of number theory is to discover interesting and unexpected relationships

between different sorts of numbers and to prove that these relationships are true.

In mathematics, the Fibonacci sequence is a sequence in which each number is the sum

of the two preceding ones. The sequence commonly starts from 0 and 1. Applications

of Fibonacci numbers include computer algorithms such as the Fibonacci search tech-

nique and the Fibonacci heap data structure, and graphs called Fibonacci cubes used for

interconnecting parallel and distributed systems. They also appear in biological settings,

such as branching in trees, the arrangement of leaves on a stem, the fruit sprouts of a

pineapple, the flowering of an artichoke, and the arrangement of a pine cone’s bracts,

1



2 INTRODUCTION

though they do not occur in all species.

Fibonacci numbers are also strongly related to the golden ratio: Binet’s formula expresses

the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio

of two consecutive Fibonacci numbers tends to the golden ratio as n increases.

The different generalisation of Fibonacci sequence is a Lucas sequence which is an integer

sequence named after the mathematician François Édouard Anatole Lucas (1842–1891),

Lucas numbers and Fibonacci numbers form complementary instances of Lucas se-

quences.This sequence also has a variety of relationships with the Fibonacci numbers,

like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci

sequence results in the Lucas number in between.

Similarly, we have Pell numbers which may be calculated by means of a recurrence

relation similar to that for the Fibonacci numbers, and sequence of numbers grow expo-

nentially, proportionally to powers of the silver ratio 1+
√

2. As well as being used to

approximate the square root of two, Pell numbers can be used to find square triangular

numbers, to construct integer approximations to the right isosceles triangle, and to solve

certain combinatorial enumeration problems.



Chapter 2

FIBOSENNE SEQUENCE Pn

2.1 Basic definitions

The well known Fibonacci sequence Fn is defined by

F0 = 0,F1 = 1, Fn+2 = Fn+1 +Fn for n ≥ 0

In this note, we present yet another extension of Fn and call it Fibosenne sequence {Pn}

(see [5]) defined by

Pn = 2Fn −1, n ≥ 0

where Fn is nth Fibonacci number. We call Pn the nth Fibosenne number in view of its

form like Mersenne number Mn. It is clear that Pn = MFn.We shall establish various

relations for Pn in line with those of Fn. We shall also study some congruence properties

of Pn.

3
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2.2 Identities, divisibility and gcd properties of {Pn}

Proposition 2.2.0.1. (see [5])

1. For n ≥ 2, log2(1+Pn) =
1√
5
(αn −β n),

Where α,β are the roots of the equation x2 = x+1

Proof. First we prove the Binet’s formula for Fn :

Fn =
1√
5

[(
1+

√
5

2

)n
−
(

1−
√

5
2

)n]
To derive a general formula for the Fibonacci numbers we can look at the interesting

quadratic x2 − x−1 = 0

Roots of the above equation are given by x = 1±
√

5
2

The quadratic equation is also written as x2 = x+1

x1 = x+0 = F1x+F0

x2 = x+1 = F2x+F1

x3 = xx2 = x(x+1) = x2 + x = x+1+ x

∴ x3 = 2x+1 = F3x+F2

x4 = xx3 = x(2x+1) = 2x2 + x = 2(x+1)+ x

∴ x4 = 3x+2 = F4x+F3

x5 = xx4 = x(3x+2) = 3x2 +2x = 3x+3+2x

∴ x5 = 5x+3 = F5x+F4

x6 = xx5 = x(5x+3) = 5x2 +3x = 5(x+1)+3x

∴ x6 = 8x+5 = F6x+F5
...

Continuing in the same manner, we get

xn = Fnx+Fn−1

Let σ = 1+
√

5
2 & τ = 1−

√
5

2

since σ & τ both satisfy roots of quadratic equation x2 = x+1,

they both must satisfy xn = Fnx+Fn−1
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i.e. σn = Fnσ +Fn−1 and τn = Fnτ +Fn−1

by using above equations we get,

σ
n − τ

n = Fn(σ − τ)

= Fn

{(
1+

√
5

2

)
−

(
1−

√
5

2

)}

⇒ Fn =
1√
5
(σn − τ

n) =
1√
5

{(
1+

√
5

2

)n

−

(
1−

√
5

2

)n}
Next,

log2(1+Pn) = log2(2
Fn) = Fn

=
1√
5

{(
1+

√
5

2

)n

−

(
1−

√
5

2

)n}
=

1√
5
(αn −β

n)

where α & β are the roots of the equation x2 = x+1

2. For n ≥ 0, Pn satisfies the non linear second order recurrence relation Pn+2 =

Pn+1 +Pn +Pn+1Pn with initial conditions P0 = 0 & P1 = 1

Proof.

Pn+2 = 2Fn+2 −1 = 2Fn+1+Fn −1

= 2Fn+1+Fn −2Fn+1 +2Fn+1 −1

= 2Fn+1(2Fn −1)− (2Fn −1)+(2Fn −1)+(2Fn+1 −1)

= (2Fn+1 −1)(2Fn −1)+(2Fn −1)+(2Fn+1 −1)

= Pn+1 +Pn +Pn+1Pn
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3. For n ≥ 1,

P−n =

 Pn if n is odd
−Pn
1+Pn

if n is even

Proof. We have F−n = (−1)n+1Fn

Now, P−n = 2F−n −1 = 2(−1)n+1Fn −1

If n is odd, P−n = 2Fn −1 = Pn

If n is even, P−n = 2−Fn −1 = 1
2Fn −1 = 1−2Fn

2Fn = −Pn
1+Pn

Proposition 2.2.0.2.

1. for n ≥ 2,

1+Pn+2 =
(1+Pn)

3

(1+Pn−2)
(see [5])

Proof. We have, Fn+2 +Fn−2 = 3Fn

Now,

(1+Pn+2)(1+Pn−2)(1+Pn) = 2Fn+22Fn−22Fn

= 2Fn+2+Fn−2+Fn = 24Fn

= (1+Pn)
4

⇒ 1+Pn+2 =
(1+Pn)

3

(1+Pn−2)

2. ∀ n ≥ 2, 1+Pn+1 =
(1+Pn)

2

(1+Pn−2)
(see [5])

Proof. We have 1+Pn+2 = (1+Pn)(1+Pn+1) (i)

Also by Proposition 2.2.0.2 (1) , 1+Pn+2 =
(1+Pn)

3

(1+Pn−2)
(ii)
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Hence using (i) & (ii) we get, (1+Pn)(1+Pn+1) =
(1+Pn)

3

1+Pn−2

⇒ (1+Pn+1) =
(1+Pn)

2

1+Pn−2

3. For m,n ≥ 1, Pm+n =
{
(1+Pm)

Fn+1 (1+Pn)
Fm−1

}
−1 (see [5])

Proof. First we prove that Fm+n = FmFn+1 +FnFm−1

For n = 0, Fm+0 = Fm = FmF0+1 +F0Fm−1

Assume that the result holds for all n ∋ 1 ≤ n ≤ k

Next for n = k+1,
Fm+n = Fm+(k+1) = Fm+k +Fm+k−1

= FmFk+1 +Fm−1Fk +FmFk +Fm−1Fk−1 (by induction hypothesis)

= Fm(Fk+1 +Fk)+Fm−1(Fk +Fk−1)

= FmFk+2 +Fm−1Fk+1

Hence the result true ∀ n ≥ 0

So next, 1+Pm+n = 2Fm+n = 2FmFn+1+Fm−1Fn =
(
2Fm
)Fn+1

(
2Fn
)Fm−1

⇒ Pm+n =
{
(1+Pm)

Fn+1 (1+Pn)
Fm−1

}
−1

4. For m,n ≥ 1, (see [5])

Pmn =



{ mn
2

∏
k=1

(1+P2k−1)

}
−1 if mn is even, mn ≥ 2(1+P1)

mn−1
2

∏
k=0

(1+P2k)

−1 if mn is odd

Proof. We have identity for Fn,

Fmn =



mn
2

∑
k=1

F2k−1 if mn is even, mn ≥ 2

1+

mn−1
2

∑
k=0

F2k if mn is odd
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Using above identity we get the desired result.

5. For n ≥ 0, (1+Pn+1)
Fn =

n

∏
k=1

(1+Pk)
Fk

Proof. First we prove that FnFn+1 =
n

∑
k=1

F2
k (see [6])

FnFn+1 = Fn(Fn +Fn−1) = F2
n +FnFn−1

= F2
n +(Fn−1 +Fn−2)Fn−1 = F2

n +F2
n−1 +Fn−2Fn−1

...

FnFn+1 =
n

∑
k=1

F2
k

(1+Pn+1)
Fn = (2Fn+1)Fn = 2Fn+1Fn = 2

n

∑
k=1

F2
k
=

n

∏
k=1

(2Fk)Fk

=
n

∏
k=1

(1+Pk)
Fk

6. For n ≥ 1,
n

∏
k=1

(1+Pk)
k =

(1+Pn+2)
n(1+P3)

(1+Pn+3)

Proof. We have
n

∑
k=1

kFk = nFn+2 −Fn+3 +F3 (see [6])

n

∏
k=1

(1+Pk)
k =

n

∏
k=1

(2Fk)k =
n

∏
k=1

2kFk

= 2

n

∑
k=1

kFk
= 2nFn+2−Fn+3+F3 =

(2Fn+2)n2F3

2Fn+3

=
(1+Pn+2)

n(1+P3)

(1+Pn+3)

Proposition 2.2.0.3.

1. For n ≥ 0, (Pn,Pn+1) = 1 (see [5])
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Proof. Let d = (Pn,Pn+1) then d|Pn and d|Pn+1 (i)

but Pn+1 = Pn +Pn−1 +PnPn−1 (ii)

⇒ d|Pn−1 by (i) & (ii), Next d|Pn and d|Pn−1 ⇒ d|Pn−2

Continuing in the same manner we get

d|P1 ⇒ d|1, ∴ d = 1

hence (Pn,Pn+1) = 1

2. For m,n ∈ N, If n|Fn then Mn|Pm (see [5])

Proof. First we prove that n|r ⇒ Mn|Mr

Since n|r ⇒∃ k ∈ Z ∋ r = kn
Mr = 2r −1 = 2kn −1 = (2n)k −1

= (2n −1)(2n(k−1)+2n(k−2)+ · · ·+1)

= Mn(2n(k−1)+2n(k−2)+ · · ·+1)

⇒ Mn|Mr

Now n|Fm ⇒ Mn|MFm ⇒ Mn|Pm

3. For m,n ∈ N, If n|m then Pn|Pm (see [5])

Proof. To prove that Fn|Frn ∀ r ∈ N

for r = 1, Fn|Fn and for r = 2, F2n = Fn+n = Fn−1Fn +FnFn+1 ⇒ Fn|F2n

Assume that Fn|F(s−1)n where s > 2

Fsn = Fsn−n+n = F(s−1)n+n = F(s−1)n−1Fn +F(s−1)nFn+1

Since Fn|Fn and Fn|F(s−1)n by induction hypothesis

hence Fn|Fsn ∴ Fn|Frn ∀ n ∈ N

Since n|m ∃ k ∈ Z ∋ m = nk then Fn|Fnk = Fm

Now, n|m ⇒ Fn|Fm ⇒ MFn|MFm ⇒ Pn|Pm
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4. For m ∈ N, If p > 2 is a prime ∋ (p−1)|Fm then p|Pm (see [5])

Proof. Now Since p > 2,⇒ (p,2) = 1

⇒ 2p−1 ≡ 1(mod p) by Euler’s identity (i)

Since (p−1)|Fm ∃ r ∈ Z ∋ Fm = (p−1)r

Pm = 2Fm −1 = (2p−1)r −1 ≡ 0(mod p) by (i) ⇒ p|Pm

5. For m,n ≥ 0, P(m,n) = (Pm,Pn)

Proof. First we prove that F(m,n) = (Fm,Fn) f or m,n ≥ 0 (see [6])

Let d = (m,n)⇒ d|m and d|n ⇒ m = m1d and n = n1d where m1,n1 ∈ Z

∵ d = (m,n)⇒ d = mx+ny for some x,y ∈ Z

Now, Fd|Fm1d = Fm & Fd|Fn1d = Fn

Suppose t|Fm & t|Fn

Fd = Fmx+ny = Fmx−1Fny +FmxFny+1

since t|Fn and Fn|Fny ⇒ t|Fmx−1Fny also t|Fm and Fm|Fmx ⇒ t|FmxFny+1

∴ t|Fd i.e. t|F(m,n)

hence (Fm,Fn) = F(m,n)

P(m,n) = 2F(m,n) −1 = 2(Fm,Fn)−1

= (2Fm −1,2Fn −1) = (Pm,Pn)

2.3 Some Congruence properties of {Pn}

In this section, we present some congruence properties of Fibosenne sequence. The

following table gives Fibosenne numbers 0 ≤ n ≤ 12. (see [5])

A look at the table 1 reveals that the last digit of Pn follow the pattern 0113715,113715, ...
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Given m ≥ 2, we have P0 ≡ 0(mod m) and P1 ≡ 1(mod m). For n ≥ 2, the congruence

properties of Pn can be found by using the recurrence relation obtained in Proposition

2.2.0.1 (2). For 2 ≤ m ≤ 10 we show the cycles of Pn(mod m) in Table 2. (see [5])

Table 1: Pn, 0 ≤ n ≤ 12 (see [5])

n Pn
0 0
1 1
2 1
3 3
4 7
5 31
6 255
7 8191
8 2097151
9 17179869183

10 36028797018963967
11 618970019642690137449562111
12 22300745198530623141535718272648361505980415

Table 2: Cycles of Pn(mod m),b(m), t(m),2 ≤ m ≤ 10 (see [5])

m Pn(mod m)
Base length

b(m)
Tail period

t(m)
2 0, 1,1,1,1,1,... 1 1
3 0,1,1, 0,1,1, 0,1,1,... 0 3
4 0,1,1, 3,3,3,3,3,... 3 1
5 0,1,1,3,2,1, 0,1,1,3,2,1,... 0 6
6 0, 1,1,3, 1,1,3, 1,1,3,... 1 3
7 0,1,1,3,0,3,3,1, 0,1,1,3,0,3,3,1,... 0 8
8 0,1,1,3, 7,7,7,7,7,7,... 4 1
9 0,1,1,3,7,4,3,1,7,6,1,4,0,4,4,6,7,1,6,4,7,3,4,1,... 0 24

10 0, 1,1,3,7,1,5, 1,1,3,7,1,5,... 1 6
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Here we observe that Pn modulo m show some pattern. After initial terms which we call

“Base” there is periodic repetition of terms. We call it “Tail”. This suggests that there is

a pattern for congruence residues, which is different from that of Fibonacci sequence.

For all sequences, which show such a pattern for congruence modulo m, we define the

Base length as the number of terms in the base and denote it by b(m), the base length of

the sequence modulo m. Similarly, we define the Tail Period as the minimum number of

terms repeating in the tail of the sequence modulo m and denote it by t(m). For example

when m = 4, the sequence is 0,1,1,3,3, ... Here 0,1,1 is the base and 3,3,3, ... the tail.

There are three terms in the base and hence b(4) = 3 . In the tail number 3 repeats and

so t(4) = 1. In the second column of Table 2, base is shown bold text. If there are no

initial terms forming base, then b(m) = 0. It is noteworthy that for m = 11, b(11) = 46

and t(11) = 12.

From Table 2, for m = 10 the following result follows immediately.

Proposition 2.3.0.1. (see [5])
1. For u ≥ 0,

P6u+r ≡



1(mod 10) i f r = 1,2,5

3(mod 10) i f r = 3

5(mod 10) i f r = 6

7(mod 10) i f r = 4


2. For 1 ≤ r ≤ 4 and u ≥ 0, P6u+r ≡ Pr(mod 5)

3. For 1 ≤ r ≤ 3 and u ≥ 0, P3u+r ≡ Pr(mod 6)

Definition 2.3.0.2. For n ≥ 1, let [n]F be the largest in N ∋ F[n]F ≤ n. (see [5])

For example, [1]F = 2, [2]F = 3, [5]F = 5

Proposition 2.3.0.3. For n ≥ 1, Pk ≡ 2n −1(mod 2n), for k ≥ [n]F . In this case b(2n) =

[n]F and t(2n) = 1. (see [5])
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Proof. For k ≥ [n]F .

Pk = 2Fk −1 = 2n(2Fk−n)−1, as Fk −n ≥ 0

≡−1(mod 2n)

≡ 2n −1(mod 2n)

Given m ≥ 2, considering the Fibonacci numbers Fn and the smallest residues Rn(m)

of the terms modulo m. It was observed that the sequence Rn(m) repeats after π(m) terms

as shown in below table:

Table 3: Values of π(m) for 2 ≤ m ≤ 30 (see [5])

m 2 3 4 5 6 7 8 9 10
π(m) 3 8 6 20 24 16 12 24 60

m 11 12 13 14 15 16 17 18 19 20
π(m) 10 24 28 48 40 24 36 24 18 60

m 21 22 23 24 25 26 27 28 29 30
π(m) 16 30 48 24 100 84 72 48 14 120

π(m) is called pisano period of Fn mod m. From the definition of π(m) we obtained a

lemma given below:

Lemma 2.3.0.4. For m ≥ 2 and u ≥ 0, Fπ(m)u+r ≡ Fr(mod m)

where 0 ≤ r < π(m) (see [5])

Using this lemma we prove the following:

Proposition 2.3.0.5. For m ≥ 2 and u ≥ 0, we have Fπ(m)u+r ≡ Fr(mod m), where

0 ≤ r < π(m) and 2m ≡ 1(mod k) for some k > 1, then

Pπ(m)u+r ≡ Pr(mod k) (see [5])
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Proof. We have

Pπ(m)u+r = 2Fπ(m)u+r −1

= 2m j+Fr −1, for some j ≥ 0

= (2m) j2Fr −1

≡ 2Fr −1(mod k)≡ Pr(mod k)

Notice that in Proposition 2.3.0.5, 2m ≡ 1(mod k) suggests that k is odd. The case

when k is a power of 2 is dealt in Proposition 2.3.0.3, when k is a even but not a power of

2, we have the following:

Proposition 2.3.0.6. For m ≥ 2 and u ≥ 0, if Fπ(m)u+r ≡ F(r)(mod m), where 0 ≤ r <

π(m) and 2m ≡ 1(mod k) for some k > 1, then for s ≥ 1, Pπ(m)u+r ≡ Nr(mod 2sk), where

Nr is independent of u. (see [5])

Proof. We see for Fπ(m)u+r − s ≥ 0 that

Pπ(m)u+r = 2Fπ(m)u+r −1

= 2m j+Fr −1, for some j ≥ 0

= 2s(2m j+Fr−s)−1

= 2s(kq+ r1)−1,where r1 is the remainder when 2m j+Fr−s is divisible by k

= 2skq+2sr1 −1

≡ 2sr1 −1(mod 2sk)

We have the following corollaries:
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Corollary 2.3.0.7. For n ≥ 0, we have (see [5])

P3n+r ≡

 0(mod 3) i f r = 0

1(mod 3) i f r = 1,2


Proof. Take π(2) = 3 and k = 3 in Proposition 2.3.0.5

Corollary 2.3.0.8. For n ≥ 0, (see [5])

P6n+r ≡



0(mod 15) i f r = 0

1(mod 15) i f r = 1,2,5

3(mod 15) i f r = 3

7(mod 15) i f r = 4


Proof. As π(4) = 6, F6u+r ≡ (mod 4) so taking k = 15 and making use of Proposition

2.3.0.5 we get desired result.

Corollary 2.3.0.9. For n ≥ 0, (see [5])

P20n+r ≡



0(mod 31) i f r = 0,5,10,15

1(mod 31) i f r = 1,2,8,19

3(mod 31) i f r = 3,14,16,17

7(mod 31) i f r = 4,6,7,13

15(mod 31) i f r = 9,11,12,18


Proof. As π(5) = 20, taking k = 31 and making use of Proposition 2.3.0.5 we get desired

result.

We have the following results on t(m), the tail period.

Proposition 2.3.0.10. (see [5])
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1. If m > 2 is an odd integer then b(m) = 0 and t(m)|π(φ(m)) where φ is Eulers

function. In particular, if p > 2 is a prime then t(p)|π(p−1).

Proof. Now, m > 2 and m is odd then φ(m)≥ 2

by using Lemma 2.3.0.4, Fπ(φ(m))u+r ≡ Fr(mod φ(m)) where 0 ≤ r < π(φ(m))

⇒ φ(m)|
(
Fπ(φ(m))u+r −Fr

)
⇒ Fπ(φ(m))u+r −Fr = φ(m)k,where k ∈ Z

Pπ(φ(m))u+r = 2Fπ(φ(m))u+r −1 = 2φ(m)k+Fr −1

≡ 2Fr −1(mod m)≡ Pr(mod m)

Thus the pattern in Pn(mod m) repeats after π(φ(m)) terms. So π(φ(m)) must be a

multiple of t(m). hence t(m)|π(φ(m))

since the cycle repeats right from the begining, b(m) = 0

2. For m ≥ 1, t(2m) = 1

Proof. This result follows from Proposition 2.3.0.3

3. Let m ≥ 2 be an integer ∋ 2m ≡ 1(mod k) then t(k)|π(m)

Proof. We use Lemma 2.3.0.4 so that

Fπ(m)u+r −Fr = mz,where z ∈ Z

Pπ(m)u+r = 2Fπ(m)u+r −1

= 2mz+Fr −1

≡ 2Fr −1(mod k)≡ Pr(mod k)

Thus the pattern in Pn(mod k) repeats after π(m) terms. So π(m) must be a multiple

of t(k). hence t(k)|π(m)
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Using Proposition 2.3.0.10 (3) we have the following properties:

Proposition 2.3.0.11. (see [5])

1. For u ≥ 1, if m|M2u then t(m)|3(2u−1)

Proof. ∵ m|M2u ⇒ 22u ≡ 1(mod m) then by Proposition 2.3.0.10 (3), t(m)|π(2u)

but by result in [6], F3(2u−1) ≡ 0(mod 2u) and F3(2u−1)+1 ≡ 1(mod 2u)

∴ π(2u)|3(2u−1)

hence t(m)|3(2u−1)

2. For u ≥ 1, if m|M5u then t(m)|4(5u)

Proof. ∵ m|M5u ⇒ 25u ≡ 1(mod m) then by Proposition 2.3.0.10 (3), t(m)|π(5u)

but by result in [6], F4(5u) ≡ 0(mod 5u) and F4(5u)+1 ≡ 1(mod 5u)

∴ π(5u)|4(5u)

hence t(m)|4(5u)

3. For u ≥ 1, if r is the largest integer ∋ π(pr) = π(p) and m|Mpu for some prime p

then t(m)|pu−rπ(p) ∀ u > r

Proof. ∵ m|Mpu ⇒ 2pu ≡ 1(mod m) then by Proposition 2.3.0.10 (3), t(m)|π(pu)

but by result in [6], If q is the largest ∋ π(pq) = π(p) then π(ps) = ps−qπ(p) ∀ s > q

hence π(pu) = pu−rπ(p) ∀ u > r

∴ t(m)|pu−rπ(p) ∀ u > r

4. If p ̸= 5 is a prime and m|Mp then t(m)|p2 −1
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Proof. ∵ m|Mp ⇒ 2p ≡ 1(mod m) then by Proposition 2.3.0.10 (3), t(m)|π(p)

but by result in [6], if p ̸= 5 is a prime then π(p)|p2 −1

∴ t(m)|p2 −1

5. If p is a prime of the form 10k±1 and m|Mp then t(m)|p−1

Proof. ∵ m|Mp ⇒ 2p ≡ 1(mod m) then by Proposition 2.3.0.10 (3), t(m)|π(p)

but by result in [6], if p is a prime of the form 10k±1 then

Fp−1 ≡ 0(mod p) and Fp ≡ 1(mod p)

⇒ π(p)|p−1

∴ t(m)|p−1

6. If p is a prime of the form 10k±3 and m|Mp then t(m)|2p+2

Proof. ∵ m|Mp ⇒ 2p ≡ 1(mod m) then by Proposition 2.3.0.10 (3), t(m)|π(p)

but by result in [6], if p is a prime of the form 10k±3 then

Fp+1 ≡ 0(mod p) and Fp ≡−1(mod p)

F2p+2 = F2(p+1) = Fp+1Lp+1 and Fp+1 ≡ 0(mod p) ⇒ F2p+2 ≡ 0(mod p)

F2p+3 = F2p+2 +F2p+1 ≡ F2p+1(mod p) = Fp+(p+1)(mod p)

= (Fp−1Fp+1 +FpFp+2)(mod p)≡ FpFp+2(mod p)

= Fp(Fp+1 +Fp)(mod p) = (FpFp+1 +F2
p )(mod p)

≡ (−1)2(mod p)≡ 1(mod p)

hence π(p)|2p+2, ∴ t(m)|2p+2



Chapter 3

LUCASENNE SEQUENCE Tn

3.1 Basic definitions

The well known Lucas sequence Ln is defined by

L0 = 2,L1 = 1, Ln+2 = Ln+1 +Ln for n ≥ 0

In this note, we present yet another extension of Ln and call it Lucasenne sequence {Tn}

defined by

Tn = 2Ln −1, n ≥ 0

where Ln is nth Lucas number. We call Tn the nth Lucasenne number in view of its form

like Mersenne number Mn. It is clear that Tn = MLn.We shall establish various relations

for Tn in line with those of Ln. We shall also study some congruence properties of Tn

19



20 LUCASENNE SEQUENCE Tn

3.2 Identities, divisibility and gcd properties of Tn

Proposition 3.2.0.1.

1. For n ≥ 0, log2(1+Tn) = αn +β n where α,β are roots of equation x2 = x+1

Proof. First we prove the binet’s formula for Lucas numbers (see [6])

Ln = α
n +β

n where α,β are roots of equation x2 = x+1

For n = 0, L0 = α0 +β 0 = 1+1 = 2

For n = 1, L1 = α1 +β 1 =
(

1−
√

5
2

)
+
(

1+
√

5
2

)
= 1

Assume that the result holds for all k < n+1 where k > 1

i.e.Lk = αk +β k =
(

1−
√

5
2

)k
+
(

1+
√

5
2

)k

Next, T.P.T. Ln+1 = αn+1 +β n+1

Ln+1 = Ln +Ln−1

= α
n +β

n +α
n−1 +β

n−1, by induction hypothesis

= α
n−1(α +1)+β

n−1(β +1)

= α
n−1

α
2 +β

n−1
β

2, since α
2 = α +1 and β

2 = β +1

= α
n+1 +β

n+1

hence Ln = αn +β n ∀ n ≥ 0

Finally, log2(1+Tn) =log2(2Ln) = Ln = αn +β n

2. For n ≥ 0, Tn satisfies the non linear second order recurrence relation

Tn+2 = Tn+1 +Tn +Tn+1Tn with initial conditions T0 = 3 & T1 = 1
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Proof.

Tn+2 = 2Ln+2 −1 = 2Ln+1+Ln −1 = 2Ln+1+Ln −2Ln+1 +2Ln+1 −1

= 2Ln+1(2Ln −1)− (2Ln −1)+(2Ln −1)+(2Ln+1 −1)

= (2Ln+1 −1)(2Ln −1)+(2Ln −1)+(2Ln+1 −1)

= Tn+1 +Tn +Tn+1Tn

3. For n ≥ 1,

T−n =

 Tn if n is even
−Tn

1+Tn
if n is odd

Proof. We prove that L−n = (−1)nLn (see [6])

L−n = α
−n +β

−n =
αn +β n

(αβ )n = (−1)nLn where α,β are roots of eqn x2 = x+1

Now, T−n = 2L−n −1 = 2(−1)nLn −1

If n is even, T−n = 2Ln −1 = Tn

If n is odd, T−n = 2−Ln −1 = 1
2Ln −1 = 1−2Ln

2Ln = −Tn
1+Tn

4. For n ≥ 1,
n

∏
k=1

(1+Tk)
Lk =

(1+Tn+1)
Ln

(1+T0)

Proof. We have
n

∑
k=1

L2
k = LnLn+1 −L0 (see [6])

n

∏
k=1

(1+Tk)
Lk =

n

∏
k=1

(2Lk)Lk =
n

∏
k=1

2L2
k
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= 2

n

∑
k=1

L2
k
= 2LnLn+1−L0

=
(2Ln+1)Ln

2L0
=

(1+Tn+1)
Ln

1+T0

5. For n ≥ m ≥ 1,

(1+Tm)
Ln =

 (1+Tn+m)(1+Tn−m) if n is even
(1+Tn+m)
(1+Tn−m)

if n is odd

Proof. The above result follows by identity, LmLn = Ln+m +(−1)nLn−m (see [6])

Proposition 3.2.0.2.

1. ∀ n ≥ 0, (Tn,Tn+1) = 1

Proof. Suppose (Tn,Tn+1)> 1

Then by Fundamental theorem of arithmetic, ∃ a prime p ∋ p|(Tn,Tn+1)

⇒ p|Tn and p|Tn+1

⇒ p|Tn−1 since Tn+1 = Tn−1 +Tn +Tn−1Tn

∵ p|Tn−1 and p|Tn ⇒ p|Tn−2

Continuing in the same manner we get,

p|T1 i.e. p|1 which is ⇒⇐

hence (Tn,Tn+1) = 1

2. Let n be an odd positive integer. If φ(n)|Lm ⇒ n|Tm

Proof. Since n is an odd positive integer ⇒ (n,2) = 1

By Euler’s identity, 2φ(n) ≡ 1(mod n)



3.2 Identities, divisibility and gcd properties of Tn 23

Since φ(n)|Lm ∃ z ∈ Z ∋ Lm = φ(n)z

Tm = 2Lm −1 = 2φ(n)z −1

= (2φ(n))z −1 ≡ 0(mod n)

3. Let m,n ∈ N. If n|m and m
n is odd then Tn|Tm

Proof. We have
(

Fn+1 Fn
Fn Fn−1

)
= Qn for n ∈ N where Q =

(
1 1
1 0
)

and
(

Ln+1 Ln
Ln Ln−1

)
= AQn where A =

(
1 2
2 −1

)
(⋆)

Also A = 2Q− I (∴ A & Q commutes) and A2 = 5I

Using eqn (⋆), we get Cassinis identity: Ln+1Ln−1 −L2
n = 5(−1)n+1 (see [6])

To prove that 5 ∤ Ln ∀ n ≥ 0

Clearly 5 ∤ L0 = 2.

Suppose 5|Ln for some n ∈ N

⇒ 5|L2
n and 5|5(−1)n+1 ⇒ 5|L2

n +5(−1)n+1 = Ln+1Ln−1 by Cassinis identity

⇒ 5|Ln+1Ln−1 ⇒ 5|Ln+1 or 5|Ln−1

If 5|Ln+1 and 5|Ln ⇒ 5|(Ln+1,Ln) = 1 which is ⇒⇐

If 5|Ln−1 and 5|Ln ⇒ 5|(Ln−1,Ln) = 1 which is ⇒⇐

hence 5 ̸ |Ln ∀ n ≥ 0, ⇒ (5,Ln) = 1

Let m
n = k and k is odd so k = 2r+1,r ≥ 0

Notice that
(

Ln+1 Ln
Ln Ln−1

)
= AQn is diaogonal matrix mod Ln

(
5rLnk+1 5rLnk
5rLnk 5rLnk−1

)
= 5rAQnk = (5I)rAQnk

= (A2)rAQnk = A2r+1Qnk

= AkQnk = (AQn)k
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∵ AQn is diagonal matrix mod Ln ⇒ (AQn)k is diagonal matrix mod Ln

⇒ 5rLnk ≡ 0(mod Ln) ⇒ Ln|5rLnk

but (5,Ln) = 1 ⇒ (5r,Ln) = 1 and Ln|5rLnk

hence Ln|Lnk = Lm by Euclid’s lemma

Now, n|m ⇒ Ln|Lm ⇒ MLn|MLm ⇒ Tn|Tm

4. Let m,n ∈ N. If n|m and m
n is even then Tn|Pm

Proof. We have F2n = LnFn (see [6]) and
(

Fn+1 Fn
Fn Fn−1

)
= Qn where Q =

(
1 1
1 0
)

Q2n =
(

F2n+1 F2n
F2n F2n−1

)
=
(

F2n+1 FnLn
FnLn F2n−1

)
⇒ Q2n is diagonal matrix mod Ln

Let k = m
n , since k is even, k = 2r(

Fnk+1 Fnk
Fnk Fnk−1

)
= Qnk = Q2nr = (Q2n)r which is diagonal matrix mod Ln

⇒ Fm = Fnk ≡ 0 mod Ln, hence Ln|Fm

Now, n|m ⇒ Ln|Fm ⇒ MLn|MFm ⇒ Tn|Pm

5. Let m,n ∈ N and d = (m,n). If m
d and n

d both are odd

then T(m,n) = (Tm,Tn)

Proof. By using the proof of Proposition 3.2.0.2 (3), we get

Ld|L(m
d )d

= Lm as m
d is odd and Ld|L( n

d )d
= Ln as n

d is odd

⇒ Ld|(Lm,Ln)⇒ L(m,n)|(Lm,Ln)

Next, To show that (Lm,Ln)|L(m,n)

If (Lm,Ln) = 1 then we are done

If (Lm,Ln)> 1

since 5 ̸ |Ln, n ≥ 0 ⇒ (5,Ln) = 1 ⇒ (5k,Ln) = 1 for k ≥ 1

since d = (m,n)⇒ (m
d ,

n
d ) = 1 ⇒∃ a,b ∈ Z ∋ (m

d )a+( n
d )b = 1

⇒ am+bn = d, here one of a,b must be odd and other must be even

∴ a+b = 2k+1,k ≥ 0
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(
Lm+1 Lm
Lm Lm−1

)
= AQm is diaogonal matrix mod (Lm,Ln)(

Ln+1 Ln
Ln Ln−1

)
= AQn is diaogonal matrix mod (Lm,Ln)

⇒ (AQm)a(AQn)b is diagonal matrix mod (Lm,Ln)

Note that

(AQm)a(AQn)b = Aa+bQam+bn = A2k+1Qd

= (A2)kAQd = (5I)kAQd

= 5kAQd which is diagonal matrix mod (Lm,Ln)

⇒ 5kLd ≡ 0 mod (Lm,Ln) ⇒ Ld ≡ 0 mod (Lm,Ln)
(5k,(Lm,Ln))

but (5k,(Lm,Ln)) = ((5k,Lm),Ln) = (1,Ln) = 1

⇒ Ld ≡ 0 mod (Lm,Ln) ⇒ L(m,n) ≡ 0 mod (Lm,Ln)

⇒ (Lm,Ln)|L(m,n), hence (Lm,Ln) = L(m,n)

Now, T(m,n) = 2L(m,n) −1 = 2(Lm,Ln)−1 = (2Lm −1,2Ln −1) = (Tm,Tn)

3.3 Some Congruence properties of Lucasenne sequence

{Tn}

In this section, we present some congruence properties of Lucasenne sequence. The

following table gives Lucasenne numbers 0 ≤ n ≤ 11.

A look at the table 1 reveals that the last digit of Tn follow the pattern 317577,317577, ...

Given m ≥ 4, we have T0 ≡ 3(mod m) and T1 ≡ 1(mod m). For n ≥ 2, the congruence

properties of Tn can be found by using the recurrence relation obtained in Proposition

3.2.0.1 (2). For 2 ≤ m ≤ 10 we show the cycles of Tn(mod m) in Table 2.
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Table 1: Tn, 0 ≤ n ≤ 11

n Tn
0 3
1 1
2 7
3 15
4 127
5 2047
6 262143
7 536870911
8 140737488355327
9 75557863725914323419135
10 10633823966279326983230456482242756607
11 803469022129495137770981046170581301261101496891396417650687

Table 2: Cycles of Tn(mod m), b(m), t(m)

m Tn(mod m)
Base length

b(m)
Tail period

t(m)
2 1,1,1,1,1,... 0 1
3 0,1,1, 0,1,1, 0,1,1,... 0 3
4 3,1, 3,3,3,3,... 2 1
5 3,1,2,0,2,2, 3,1,2,0,2,2,... 0 6
6 3,1,1, 3,1,1, 3,1,1,... 0 3
7 3,1,0,1,1,3,0,3, 3,1,0,1,1,3,0,3,... 0 8
8 3,1, 7,7,7,7,... 2 1
9 3,1,7,6,1,4,0,4,4,6,7,1,6,4,7,3,4,1,0,1,1,3,7,4, 3,1,... 0 24

10 3,1,7,5,7,7, 3,1,7,5,7,7,... 0 6

From Table 2, for m = 10 the following result follows immediately.

Proposition 3.3.0.1.
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1. For u ≥ 0,

T6u+r ≡



1(mod 10) i f r = 1

3(mod 10) i f r = 0

5(mod 10) i f r = 3

7(mod 10) i f r = 2,4,5


2. For 0 ≤ r ≤ 4 and u ≥ 0, T6u+r ≡ Tr(mod 5)

3. For 0 ≤ r ≤ 2 and u ≥ 0, T3u+r ≡ Tr(mod 6)

Definition 3.3.0.2. For n ≥ 1, let [n]L be the largest in N ∋ L[n]L ≤ n.

For example, [1]L = 1, [2]L = 1, [4]L = 3

Proposition 3.3.0.3. For n ≥ 1, Tk ≡ 2n − 1(mod 2n), for all k ≥ b(2n). In this case

t(2n) = 1.

Proof. For k ≥ b(2n).

Tk = 2Lk −1 = 2n(2Lk−n)−1, since Lk −n ≥ 0 as k ≥ b(2n)≥ [n]L

≡−1(mod 2n)

≡ 2n −1(mod 2n)

Given m ≥ 2, considering the Lucas numbers Ln and the smallest residues R
′
n(m) of

the terms modulo m. It was observed that the sequence R
′
n(m) repeats after η(m) terms

as shown in below table:



28 LUCASENNE SEQUENCE Tn

Table 3: Values of η(m) for 2 ≤ m ≤ 30 (see [6])

m 2 3 4 5 6 7 8 9 10
η(m) 3 8 6 4 24 16 12 24 12

m 11 12 13 14 15 16 17 18 19 20
η(m) 10 24 28 48 8 24 36 24 18 12

m 21 22 23 24 25 26 27 28 29 30
η(m) 16 30 48 24 20 84 72 48 14 24

η(m) is called pisano period of Ln mod m. From the definition of η(m) we obtained a

lemma given below:

Lemma 3.3.0.4. For m ≥ 2 and u ≥ 0, Lη(m)u+r ≡ Lr(mod m)

where 0 ≤ r < η(m)

Using this lemma we prove the following:

Proposition 3.3.0.5. For m ≥ 2 and u ≥ 0, we have Lη(m)u+r ≡ Lr(mod m), where

0 ≤ r < η(m) and 2m ≡ 1(mod k) for some k > 1, then

Tη(m)u+r ≡ Tr(mod k)

Proof. We have

Tη(m)u+r = 2Lη(m)u+r −1

= 2m j+Lr −1, for some j ≥ 0

= (2m) j2Lr −1

≡ 2Lr −1(mod k)≡ Tr(mod k)
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Notice that in Proposition 3.3.0.5, 2m ≡ 1(mod k) suggests that k is odd. The case

when k is a power of 2 is dealt in Proposition 3.3.0.3, when k is a even but not a power of

2, we have the following:

Proposition 3.3.0.6. For m≥ 2 and u≥ 0, if Lη(m)u+r ≡ Lr(mod m), where 0≤ r < η(m)

and 2m ≡ 1(mod k) for some k > 1, then for s ≥ 1, Tη(m)u+r ≡ Nr(mod 2sk), where Nr

is independent of u.

Proof. We see for Lη(m)u+r − s ≥ 0 that

Tη(m)u+r = 2Lη(m)u+r −1

= 2m j+Lr −1, for some j ≥ 0

= 2s(2m j+Lr−s)−1

= 2s(kq+ r1)−1,where r1 is the remainder when 2m j+Lr−s is divisible by k

= 2skq+2sr1 −1

≡ 2sr1 −1(mod 2sk)

We have the following corollaries:

Corollary 3.3.0.7. For u ≥ 0,

T8u+r ≡


0(mod 7) i f r = 2,6

1(mod 7) i f r = 1,3,4

3(mod 7) i f r = 0,5,7


Proof. Note that η(3) = 8 and 23 ≡ 1(mod 7)

Also L8u+r ≡ Lr(mod 3) where 0 ≤ r < η(3) and use Proposition 3.3.0.5
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Corollary 3.3.0.8. For n ≥ 0,

T6n+r ≡



0(mod 15) i f r = 3

1(mod 15) i f r = 1

3(mod 15) i f r = 0

7(mod 15) i f r = 2,4,5


Proof. Note that η(4) = 6 and 24 ≡ 1(mod 15)

Also L6u+r ≡ Lr(mod 4) where 0 ≤ r < η(4) and use Proposition 3.3.0.5

Proposition 3.3.0.9.

1. If m > 2 is an odd integer then b(m) = 0 and t(m)|η(φ(m)) where φ is Eulers

function. In particular, if p > 2 is a prime then t(p)|η(p−1).

Proof. Now, m > 2 and m is odd then φ(m)≥ 2

by using Lemma 3.3.0.4, Lη(φ(m))u+r ≡ Lr(mod φ(m)) where 0 ≤ r < η(φ(m))

⇒ φ(m)|
(
Lη(φ(m))u+r −Lr

)
⇒ Lη(φ(m))u+r −Lr = φ(m)k,where k ∈ Z

Tη(φ(m))u+r = 2Lη(φ(m))u+r −1 = 2φ(m)k+Lr −1

≡ 2Lr −1(mod m)≡ Tr(mod m)

Thus the pattern in Tn(mod m) repeats after η(φ(m)) terms. So η(φ(m)) must be a

multiple of t(m). hence t(m)|η(φ(m))

since the cycle repeats right from the begining, b(m) = 0

2. For m ≥ 1, t(2m) = 1

Proof. This result follows from Proposition 3.3.0.3
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3. Let m ≥ 2 be an integer ∋ 2m ≡ 1(mod k) then t(k)|η(m)

Proof. We use Lemma 3.3.0.4, so that

Lη(m)u+r −Lr = mz,where z ∈ Z

Tη(m)u+r = 2Lη(m)u+r −1

= 2mz+Lr −1

≡ 2Lr −1(mod k)≡ Tr(mod k)

Thus the pattern in Tn(mod k) repeats after η(m) terms. So η(m) must be a multiple

of t(k). hence t(k)|η(m)

Using Proposition 3.3.0.9 (3) we have the following properties:

Properties:

1. If u ≥ 1 and m|M2u then t(m)|3(2u−1)

Proof. ∵ m|M2u ⇒ 22u ≡ 1(mod m) then by Proposition 3.3.0.9 (3), t(m)|η(2u)

but by result in [6], F3(2u−1) ≡ 0(mod 2u) and F3(2u−1)+1 ≡ 1(mod 2u)

⇒ F3(2u−1)−1 = F3(2u−1)+1 −F3(2u−1) ≡ 1(mod 2u)

Now, L3(2u−1) = F3(2u−1)+1 +F3(2u−1)−1 ≡ 2(mod 2u)

and L3(2u−1)+1 = F3(2u−1)+2 +F3(2u−1) = F3(2u−1)+1 +2F3(2u−1) ≡ 1(mod 2u)

∴ η(2u)|3(2u−1) hence t(m)|3(2u−1)

2. If u ≥ 1 and m|M5u then t(m)|4(5u−1)



32 LUCASENNE SEQUENCE Tn

Proof. ∵ m|M5u ⇒ 25u ≡ 1(mod m) then by Proposition 3.3.0.9 (3), t(m)|η(5u)

but by result in [6], Let Gn be any generalised Fibonacci sequence, then

π(5u) =

 p(5u,Gn) if G2
1 −G0G2 is not divisible by 5

5×p(5u,Gn) if G2
1 −G0G2 is divisible by 5

where p(m,Gn) is pisano period of Gn mod m

⇒ π(5u) = 5×η(5u) since L2
1 −L0L2 =−5 which is divisible by 5

since π(5u)|4(5u) ⇒ 5×η(5u)|4(5u)

⇒ η(5u)|4(5u−1) hence t(m)|4(5u−1)

3. If p is a prime of the form 10k±1 and m|Mp then t(m)|p−1

Proof. ∵ m|Mp ⇒ 2p ≡ 1(mod m) then by Proposition 3.3.0.9 (3), t(m)|η(p)

but by result in [6], if p is a prime of the form 10k±1 then

Lp−1 ≡ 2(mod p) and Lp ≡ 1(mod p)

⇒ η(p)|p−1 ∴ t(m)|p−1
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3.4 Relations between Pn and Tn

Proposition 3.4.0.1. For n ≥ 1, Tn = Pn+1Pn−1 +Pn+1 +Pn−1

Proof. We have Ln = Fn+1 +Fn−1 ∀ n ≥ 1 (see [6])

Tn = 2Ln −1 = 2Fn+1+Fn−1 −1 = 2Fn+1+Fn−1 −2Fn+1 +2Fn+1 −1

= 2Fn+1(2Fn −1)− (2Fn−1 −1)+(2Fn−1 −1)+(2Fn+1 −1)

= (2Fn+1 −1)(2Fn−1 −1)+(2Fn−1 −1)+(2Fn+1 −1)

= Pn+1Pn−1 +Pn+1 +Pn−1

Proposition 3.4.0.2. For n ≥ 2, Tn =
Pn+2−Pn−2

1+Pn−2

Proof. We have Ln = Fn+2 −Fn−2 ∀ n ≥ 2 (see [6])

Tn = 2Ln −1 = 2Fn+2−Fn−2 −1

=
2Fn+2 −2Fn−2

2Fn−2
=

(2Fn+2 −1)− (2Fn−2 −1)
2Fn−2

=
Pn+2 −Pn−2

1+Pn−2

Proposition 3.4.0.3. For n ≥ 1, (1+Pn)
5 = Tn+1Tn−1 +Tn+1 +Tn−1 +1

Proof. We have 5Fn = Ln+1 +Ln−1 ∀ n ≥ 1 (see [6])

(1+Pn)
5 = 25Fn = 2Ln+1+Ln−1 = 2Ln+1+Ln−1 +2Ln+1 −2Ln−1

= 2Ln+1(2Ln−1 −1)− (2Ln−1 −1)+(2Ln−1 −1)+2Ln+1
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= (2Ln+1 −1)(2Ln−1 −1)+(2Ln−1 −1)+2Ln+1

= Tn+1Tn−1 +Tn−1 +Tn+1 +1

Proposition 3.4.0.4. For n ≥ 0,

(1+Tn) =
(1+Pn+1)

2

(1+Pn)

Proof. We have Ln +Fn = 2Fn+1 ∀ n ≥ 0 (see [6])

(1+Pn)(1+Tn) = 2Fn+Ln = 22Fn+1 = (2Fn+1)2 = (1+Pn+1)
2

Proposition 3.4.0.5. For n ≥ 1, (1+Tn)
Ln = 2(−1)nF3(1+P2n+1)(1+P2n−1)

Proof. We have L2
n = L2n +2(−1)n ∀ n ≥ 0 (see [6])

(1+Tn)
Ln = 2L2

n = 22(−1)n+L2n = 2(−1)nF3+F2n+1+F2n−1

= 2(−1)nF3(1+P2n+1)(1+P2n−1)

Proposition 3.4.0.6. For n ≥ 0,

(1+Pn)
5Fn =

(1+T2n)
2

(1+Tn)Ln

Proof. We have 2L2n = L2
n +5F2

n ∀ n ≥ 0 (see [6])

(1+T2n)
2 = 22L2n = 2L2

n+5F2
n = (2Ln)Ln(2Fn)5Fn

= (1+Tn)
Ln(1+Pn)

5Fn
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3.5 Generalised Fibonacci

Definition 3.5.0.1. For a,b ∈ N∪{0},

Define X0 = a, X1 = b and Xn = Xn−1 +Xn−2 ∀ n ≥ 2

Definition 3.5.0.2. We present another extension of generalised Fibonacci sequence

{Yn} defined by the relation

Yn = 2Xn −1 ∀ n ≥ 0

Proposition 3.5.0.3. For n ≥ 0, Yn satisfies the non linear second order recurrence

relation Yn+2 = Yn+1 +Yn +Yn+1Yn with initial conditions Y0 = 2a −1 & Y1 = 2b −1

Proof.

Yn+2 = 2Xn+2 −1 = 2Xn+1+Xn −1

= 2Xn+1+Xn −2Xn+1 +2Xn+1 −1

= 2Xn+1(2Xn −1)− (2Xn −1)+(2Xn −1)+(2Xn+1 −1)

= (2Xn+1 −1)(2Xn −1)+(2Xn −1)+(2Xn+1 −1)

= Yn+1 +Yn +Yn+1Yn

Proposition 3.5.0.4. For a,b,n ≥ 0, the following are equivalent:

(1) (a,b) = 1

(2) (Xn,Xn+1) = 1

(3) (Yn,Yn+1) = 1

Proof. Suppose (a,b) = 1

∵ (X0,X1) = 1 ⇒ (X0 +X1,X1) = 1 ⇒ (X2,X1) = 1

∵ (X2,X1) = 1 ⇒ (X2,X2 +X1) = 1 ⇒ (X2,X3) = 1
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...

∵ (Xn,Xn−1) = 1 ⇒ (Xn,Xn−1 +Xn) = 1 ⇒ (Xn,Xn+1) = 1

hence (1) ⇒ (2)

Suppose (Xn,Xn+1) = 1

then (Yn,Yn+1) = (2Xn −1,2Xn+1 −1) = 2(Xn,Xn+1)−1 = 2−1 = 1

hence (2) ⇒ (3)

Suppose (Yn,Yn+1) = 1

In particular (Y0,Y1) = 1 ⇒ (2X0 −1,2X1 −1) = 1 ⇒ (2a −1,2b −1) = 1

⇒ 2(a,b)−1 = 1 ⇒ 2(a,b) = 2 ⇒ (a,b) = 1

hence (3) ⇒ (1)



Chapter 4

PELLENE SEQUENCE Dn

4.1 Basic definitions

The well known Pell sequence Cn is defined by

C0 = 0,C1 = 1, Cn+2 = 2Cn+1 +Cn for n ≥ 0

In this note, we present yet another extension of Cn and call it pellenne sequence {Dn}

defined by

Dn = 2Cn −1, n ≥ 0

where Cn is nth pell number. We call Dn the nth pellenne number in view of its form like

Mersenne number Mn. It is clear that Dn = MCn.We shall establish various relations for

Dn in line with those of Cn. We shall also study some congruence properties of Dn

37
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4.2 Identities, divisibility and gcd properties of Dn

Proposition 4.2.0.1.

1. For n ≥ 0,

log2(1+Dn) =
αn −β n

α −β
where α,β are roots of equation x2 = 2x+1

Proof. First we prove the binet’s formula for Pell numbers (refer [2])

Cn =
αn −β n

α −β
for n ≥ 0 where α,β are roots of equation x2 = 2x+1

For n = 0, C0 =
α0−β 0

α−β
= 0

For n = 1, C1 =
α1−β 1

α−β
= 1

Assume that the result holds for all k < n+1 where k > 1

i.e. Ck =
αk−β k

α−β

Next, T.P.T. Cn+1 =
αn+1−β n+1

α−β

Cn+1 = 2Cn +Cn−1

=
2αn −2β n

α −β
+

αn−1 −β n−1

α −β
, by induction hypothesis

=
αn−1(2α +1)−β n−1(2β +1)

α −β

=
αn−1α2 −β n−1β 2

α −β
, since α

2 = 2α +1 and β
2 = 2β +1

=
αn+1 −β n+1

α −β

Finally, log2(1+Dn) =log2(2Cn) =Cn =
αn−β n

α−β
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2. For n ≥ 0, Dn satisfies the non linear second order recurrence relation

Dn+2 = Dn+1(Dn +1)(Dn+1 +2)+Dn with initial conditions D0 = 0 & D1 = 1

Proof.

Dn+2 = 2Cn+2 −1 = 22Cn+1+Cn −1 = 22Cn+1+Cn −2Cn +2Cn −1

= (22Cn+1 −1)2Cn +2Cn −1

= (2Cn+1 −1)(2Cn+1 +1)2Cn +2Cn −1

= Dn+1(Dn +1)(Dn+1 +2)+Dn

3. For n ≥ 1,

D−n =

 Dn if n is odd
−Dn

1+Dn
if n is even

Proof. We prove that C−n = (−1)n+1Cn

C−n =
α−n −β−n

α −β
=

β n −αn

(αβ )n(α −β )
= (−1)n+1Cn where α,β are roots of eqn x2 = 2x+1

Now, D−n = 2C−n −1 = 2(−1)n+1Cn −1

If n is odd, D−n = 2Cn −1 = Dn

If n is even, D−n = 2−Cn −1 = 1
2Cn −1 = 1−2Cn

2Cn = −Dn
1+Dn

Proposition 4.2.0.2.

1. ∀ n ≥ 0, (Dn,Dn+1) = 1

Proof. Let d = (Dn,Dn+1)

⇒ d|Dn and d|Dn+1 but Dn+1 = Dn(Dn +2)(Dn−1 +1)+Dn−1 ⇒ d|Dn−1

Also d|Dn and d|Dn−1 ⇒ d|Dn−2
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...

Continuing in the same manner we get, d|D1 ⇒ d|1 ⇒ d = 1

Hence (Dn,Dn+1) = 1

2. Let n be an odd positive integer. If φ(n)|Cm ⇒ n|Dm

Proof. Since n is an odd positive integer ⇒ (n,2) = 1

By Euler’s identity, 2φ(n) ≡ 1(mod n)

Since φ(n)|Cm ∃ z ∈ Z ∋ Cm = φ(n)z

Dm = 2Cm −1 = 2φ(n)z −1

= (2φ(n))z −1 ≡ 0(mod n)

3. For m,n ∈ N, If n|m then Dn|Dm

Proof. We have
(

Cn+1 Cn
Cn Cn−1

)
= Jn for n ∈ N where J =

(
2 1
1 0
)

Clearly, Jn is diagonal matrix mod Cn

Since n|m ∃ r ∈ Z ∋ m = rn so that
(

Crn+1 Crn
Crn Crn−1

)
= Jrn

⇒ Jrn = (Jn)r is diagonal matrix mod Cn ⇒Crn ≡ 0(mod Cn)

Hence Cn|Crn i.e. Cn|Cm

Finally, n|m ⇒Cn|Cm ⇒ MCn|MCm ⇒ Dn|Dm

4. For m,n ∈ N, (Dm,Dn) = D(m,n)

Proof. Since (m,n)|m and (m,n)|n ⇒C(m,n)|Cm and C(m,n)|Cn ⇒C(m,n)|(Cm,Cn)

Next, To prove that (Cm,Cn)|C(m,n)
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Let d = (m,n) then ∃ x,y ∈ Z ∋ d = mx+ny(
Cd+1 Cd
Cd Cd−1

)
= Jd = Jmx+ny = (Jm)x(Jn)y(

Cm+1 Cm
Cm Cm−1

)
= Jm is diagonal matrix mod (Cm,Cn)

and
(

Cn+1 Cn
Cn Cn−1

)
= Jn is diagonal matrix mod (Cm,Cn)

⇒ Jd = (Jm)x(Jn)y is diagonal matrix mod (Cm,Cn)

⇒C(m,n) =Cd ≡ 0(mod (Cm,Cn)) ⇒ (Cm,Cn)|C(m,n) ⇒C(m,n) = (Cm,Cn)

Finally, (Dm,Dn) = (2Cm −1,2Cn −1) = 2(Cm,Cn)−1 = 2C(m,n) −1 = D(m,n)

4.3 Some Congruence properties of Pellene sequence

{Dn}

In this section, we present some congruence properties of Pellene sequence. The fol-

lowing table gives pellene numbers 0 ≤ n ≤ 7. A look at the table 1 reveals that the

last digit of Dn follow the pattern 01315,1315, ... Given m ≥ 2, we have D0 ≡ 0(mod m)

and D1 ≡ 1(mod m). For n ≥ 2, the congruence properties of Dn can be found by using

the recurrence relation obtained in Proposition 4.2.0.1(2). For 2 ≤ m ≤ 10 we show the

cycles of Dn(mod m) in Table 2.

Table 1: Dn,0 ≤ n ≤ 7

n Dn
0 0
1 1
2 3
3 31
4 4095
5 536870911
6 1180591620717411303423
7 748288838313422294120286634350736906063837462003711
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Table 2: Cycles of Dn(mod m), b(m), t(m)

m Dn(mod m)
Base length

b(m)
Tail period

t(m)
2 0, 1,1,1,1,1,... 1 1
3 0,1, 0,1, 0,1,... 0 2
4 0,1, 3,3,3,3,... 2 1
5 0,1,3,1, 0,1,3,1,... 0 4
6 0, 1,3 1,3, 1,3,... 1 2
7 0,1,3,3,0,3,1,1, 0,1,3,3,0,3,1,1,... 0 8
8 0,1,3, 7,7,7,7,... 3 1
9 0,1,3,4,0,4,6,1, 0,1,3,4,0,4,6,1,... 0 8

10 0, 1,3,1,5, 1,3,1,5,... 1 4

From Table 2, for m = 10 the following result follows immediately.

Proposition 4.3.0.1.

1. For u ≥ 0,

D4u+r ≡


1(mod 10) i f r = 1,3

3(mod 10) i f r = 2

5(mod 10) i f r = 4


2. For 0 ≤ r ≤ 3 and u ≥ 0, D4u+r ≡ Dr(mod 5)

Definition 4.3.0.2. For n ≥ 1, let [n]C be the largest in N ∋C[n]C ≤ n.

For example, [1]C = 1, [2]C = 2, [5]C = 3

Proposition 4.3.0.3. For n ≥ 1, Dk ≡ 2n − 1(mod 2n), for all k ≥ b(2n). In this case

t(2n) = 1.
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Proof. For k ≥ b(2n).

Dk = 2Ck −1 = 2n(2Ck−n)−1, since Ck −n ≥ 0 as k ≥ b(2n)≥ [n]C

≡−1(mod 2n)

≡ 2n −1(mod 2n)

Given m ≥ 2, considering the pell numbers Cn and the smallest residues R
′′
n(m) of the

terms modulo m. It was observed that the sequence R
′′
n(m) repeats after ν(m) terms as

shown in below table:

Table 3: Values of ν(m) for 2 ≤ m ≤ 30

m 2 3 4 5 6 7 8 9 10
ν(m) 2 8 4 12 8 6 8 24 12

m 11 12 13 14 15 16 17 18 19 20
ν(m) 24 8 28 6 24 16 16 24 40 12

m 21 22 23 24 25 26 27 28 29 30
ν(m) 24 24 22 8 60 28 72 12 20 24

ν(m) is called pisano period of Cn mod m. From the definition of ν(m) we obtained a

lemma given below:

Lemma 4.3.0.4. For m ≥ 2 and u ≥ 0, Cν(m)u+r ≡Cr(mod m)

where 0 ≤ r < ν(m)

Using this lemma we prove the following:

Proposition 4.3.0.5. For m ≥ 2 and u ≥ 0, we have Cν(m)u+r ≡ Cr(mod m), where

0 ≤ r < ν(m) and 2m ≡ 1(mod k) for some k > 1, then

Dν(m)u+r ≡ Dr(mod k)
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Proof. We have

Dν(m)u+r = 2Cν(m)u+r −1 = 2m j+Cr −1, for some j ≥ 0

= (2m) j2Cr −1

≡ 2Cr −1(mod k)≡ Dr(mod k)

Notice that in Proposition 4.3.0.5, 2m ≡ 1(mod k) suggests that k is odd. The case

when k is a power of 2 is dealt in Proposition 4.3.0.3, when k is a even but not a power of

2, we have the following:

Proposition 4.3.0.6. For m≥ 2 and u≥ 0, if Cν(m)u+r ≡Cr(mod m), where 0≤ r < ν(m)

and 2m ≡ 1(mod k) for some k > 1, then for s ≥ 1, Dν(m)u+r ≡ Nr(mod 2sk), where Nr

is independent of u.

Proof. We see for Cν(m)u+r − s ≥ 0 that

Dν(m)u+r = 2Cν(m)u+r −1 = 2m j+Cr −1, for some j ≥ 0

= 2s(2m j+Cr−s)−1

= 2s(kq+ r1)−1,where r1 is the remainder when 2m j+Cr−s is divisible by k

= 2skq+2sr1 −1

≡ 2sr1 −1(mod 2sk)

We have the following corollaries:
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Corollary 4.3.0.7. For u ≥ 0,

D8u+r ≡


0(mod 7) i f r = 0,4

1(mod 7) i f r = 1,6,7

3(mod 7) i f r = 2,3,5


Proof. Note that ν(3) = 8 and 23 ≡ 1(mod 7)

Also Cν(3)u+r ≡Cr(mod 3) where 0 ≤ r < ν(3) and use Proposition 4.3.0.5

Corollary 4.3.0.8. For n ≥ 0,

D12n+r ≡



0(mod 31) i f r = 0,6,9

1(mod 31) i f r = 1,3,11

3(mod 31) i f r = 2,4

7(mod 31) i f r = 8,10

15(mod 31) i f r = 5,7


Proof. Note that ν(5) = 12 and 25 ≡ 1(mod 31)

Also Cν(5)u+r ≡Cr(mod 5) where 0 ≤ r < ν(5) and use Proposition 4.3.0.5

Proposition 4.3.0.9.

1. If m > 2 is an odd integer then b(m) = 0 and t(m)|ν(φ(m)) where φ is Eulers

function. In particular, if p > 2 is a prime then t(p)|ν(p−1).

Proof. Now, m > 2 and m is odd then φ(m)≥ 2

by using Lemma 4.3.0.4, Cν(φ(m))u+r ≡Cr(mod φ(m)) where 0 ≤ r < ν(φ(m))

⇒ φ(m)|
(
Cν(φ(m))u+r −Cr

)
⇒ Cν(φ(m))u+r −Cr = φ(m)k,where k ∈ Z

Dν(φ(m))u+r = 2Cν(φ(m))u+r −1 = 2φ(m)k+Cr −1

≡ 2Cr −1(mod m)≡ Dr(mod m)



46 PELLENE SEQUENCE Dn

Thus the pattern in Dn(mod m) repeats after ν(φ(m)) terms. So ν(φ(m)) must be a

multiple of t(m). hence t(m)|ν(φ(m))

since the cycle repeats right from the begining, b(m) = 0

2. For m ≥ 1, t(2m) = 1

Proof. This result follows from Proposition 4.3.0.3

3. Let m ≥ 2 be an integer ∋ 2m ≡ 1(mod k) then t(k)|ν(m)

Proof. We have lemma: For m ≥ 2 and u ≥ 0, Cν(m)u+r ≡Cr(mod m)

where 0 ≤ r < ν(m)

Cν(m)u+r −Cr = mz,where z ∈ Z

Dν(m)u+r = 2Cν(m)u+r −1

= 2mz+Cr −1

≡ 2Cr −1(mod k)≡ Dr(mod k)

Thus the pattern in Dn(mod k) repeats after ν(m) terms. So ν(m) must be a multiple

of t(k). hence t(k)|ν(m)

Using Proposition 4.3.0.9 (3) we have the following properties:

Properties:

1. For u ≥ 1, If m|M2u then t(m)|2u

Proof. ∵ m|M2u ⇒ 22u ≡ 1(mod m) then by Proposition 4.3.0.9 (3), t(m)|ν(2u)

but ν(2u)|2u hence t(m)|2u
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2. For u ≥ 1, If m|M3u then t(m)|8(3u−1)

Proof. ∵ m|M3u ⇒ 23u ≡ 1(mod m) then by Proposition 4.3.0.9 (3), t(m)|ν(3u)

but ν(3u)|8(3u−1) hence t(m)|8(3u−1)

3. If p is a prime of the form 10k±1 and m|Mp then t(m)|2p+2

Proof. ∵ m|Mp ⇒ 2p ≡ 1(mod m) then by Proposition 4.3.0.9 (3), t(m)|ν(p)

but if p is a prime of the form 10k±1 then ν(p)|2p+2

∴ t(m)|2p+2

Conjucture: The above properties are not proved mathematically but it can be observed

from pisano period table of Cn(mod m)

Definition 4.3.0.10. For a positive integer c, the sequence, say Gn is defined recurrently

by Gn = cGn−1 +Gn−2 for n ≥ 2 with initial conditions G0 = 0 and G1 = 1.(
Gn+1 Gn
Gn Gn−1

)
= Zn for n ∈ N where Z =

(
c 1
1 0

)
,

Define Wn = 2Gn −1 ∀ n ≥ 0

Proposition 4.3.0.11. For n,m ∈ N∪{0}, If n|m ⇒Wn|Wm

Proposition 4.3.0.12. For n,m ∈ N∪{0}, W(n,m) = (Wn,Wm)

Proof. A proof is similar to that of Proposition 4.2.0.2 (3),(4), so it is left to the reader.
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4.4 Some other Generalisation of Fibonacci

Definition 4.4.0.1. Define A0 = 0, A1 = 1 and An = 2An−1 +3An−2 ∀ n ≥ 2

Some initial few terms of sequence are: 0,1,2,7,20,61, ...

Definition 4.4.0.2. We present another extension of generalised Fibonacci sequence

{Bn} defined by the relation

Bn = 2An −1 ∀ n ≥ 0

Some initial few terms of sequence are: 0,1,3,127, ...

Proposition 4.4.0.3. For n ≥ 0, Bn satisfies the non linear second order recurrence

relation

Bn+2 =Bn+1Bn(Bn+1+2) [(Bn +2)(Bn +1)+1]+Bn+1(Bn+1+2)+Bn [(Bn +2)(Bn +1)+1]

with initial conditions B0 = 0 & B1 = 1

Proof.

Bn+2 = 2An+2 −1 = 22An+1+3An −1 = 22An+1+3An −22An+1 +22An+1 −1

= 22An+1(23An −1)− (23An −1)+(23An −1)+22An+1 −1

= (22An+1 −1)(23An −1)+(23An −1)+22An+1 −1

= (2An+1 −1)(2An+1 +1)(2An −1)(22An +2An +1)

+(2An −1)(22An +2An +1)+(2An+1 −1)(2An+1 +1)

= Bn+1Bn(Bn+1 +2)[Bn(Bn +2)+3+Bn]

+Bn+1(Bn+1 +2)+Bn[Bn(Bn +2)+Bn +3]

= Bn+1Bn(Bn+1 +2) [(Bn +2)(Bn +1)+1]+Bn+1(Bn+1 +2)

+Bn [(Bn +2)(Bn +1)+1]
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Proposition 4.4.0.4. For n ≥ 0, we have (An,An+1) = 1 or 3

Proof. For n = 0, (A0,A1) = (0,1) = 1

For n = 1, (A1,A2) = (1,2) = 1

Assume (Ak,Ak+1) = 1 where k ≥ 2

Next, let d = (Ak+1,Ak+2)

then d|Ak+1 and d|Ak+2 ⇒ d|Ak+1 and d|(2Ak+1 +3Ak)

⇒ d|2Ak+1 and d|(2Ak+1 +3Ak) ⇒ d|3Ak

Now, d|3Ak and d|3Ak+1 ⇒ d|(3Ak,3Ak+1)

⇒ d|3(Ak,Ak+1) ⇒ d|3 ⇒ d = 1 or 3

hence (An,An+1) = 1 or 3

Conjucture: It is observed that (An,An+1) = 1

Proposition 4.4.0.5. For n ≥ 0, we have (Bn,Bn+1) = 1 or 7

Proof. Now,

(Bn,Bn+1) = (2An −1,2An+1 −1) = 2(An,An+1)−1

⇒ (Bn,Bn+1) = 1 or 7 by Proposition 4.4.0.4

Conjucture: It is observed that (Bn,Bn+1) = 1



Chapter 5

k-FIBONACCI DIFFERENCE SEQUENCE

5.1 Introduction

The content of this topic is taken from the reference [1]. In this section we study

k–Fibonacci numbers with some of their properties and the difference sequences.

Definition 5.1.0.1. For a positive integer k, the k-Fibonacci sequence, say {Fk,n}n∈N is

defined recurrently by

Fk,n+1 = kFk,n +Fk,n−1 for n ≥ 1 (5.1)

with initial conditions Fk,0 = 0 and Fk,1 = 1.

For k = 1, the clasical Fibonacci sequence F = {0,1,1,2,3,5,8, ..} is obtained and

for k = 2 the pell sequence P = {0,1,2,5,12,29, ...} appears.

Hence, the k-Fibonacci sequence is Fk = {0,1,k,k2 +1,k3 +2k,k4 +3k2 +1, ...}

Moreover, we define Fk,−n = (−1)n+1Fk,n

The well known Binet formula fin the Fibonacci numbers theory allows us to express the

50
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k-Fibonacci numbers in function of the roots σ1 and σ2 of the characteristic equation,

associated to the recurrence relation r2 = kr+1 :

Fk,n =
σn

1 −σn
2

σ1 −σ2
with σ1,2 =

k±
√

k2 +4
2

(5.2)

It is verified the limit of the quotient of two terms is

lim
n→∞

Fk,n+r

Fk,n
= σ

r
k,1 (5.3)

In particular, σ1,1 is the Golden Ratio, φ = 1+
√

5
2 ; σ2,1 is the Silver Ratio, σ3,1 the Bronze

ratio and σ4,1 the copper ratio.

Moreover, from the characteristic equation we deduce the following formula:

σ
2 = kσ +1 (5.4)

Finally, we define Fk,−n = (−1)n−1Fk,n

Difference sequences: Given the numerical ordered sequence {a0,a1,a2, . . .}, the first

difference ∆(an) is defined as ∆(an) = an+1 −an, n ≥ 0

The ith difference of the sequence an is written as ∆i(an) and is defined recursively as

∆
i(an) = ∆

i−1(an+1)−∆
i−1(an) =

i

∑
j=0

(−1) j
(

i
j

)
ai+n− j

5.2 Finite difference on the k-Fibonacci numbers

In this section we apply the concept of the finite difference to the k–Fibonacci numbers

and we will call the k–Fibonacci difference sequence to the sequence obtained.
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5.2.1 The k-Fibonacci difference sequences

If we apply the relation of the finite difference to the k-Fibonacci sequence Fk =

{Fk,n}, then ∆(Fk,n) = Fk,n+1−Fk,n, ∆2(Fk,n) = ∆(∆(Fk,n)) = ∆(Fk,n+1−Fk,n) = Fk,n+2−

Fk,n+1 −Fk,n+1 +Fk,n = Fk,n+2 −2Fk,n+1 +Fk,n, etc. We will write

∆
(i)(Fk) = F(i)

k = {∆
(i)(Fk,n)}= {F(i)

k,n}= {F(i−1)
k,n+1 −F(i−1)

k,n } indistinctly. (5.5)

If i = 0, then F(0)
k,n = Fk,n and if i = 1, it is ∆(1) = ∆.

From the definition of difference relation, it is

∆(Fk) = {1,k−1,k2 − k+1,k3 − k2 +2k−1,k4 − k3 +3k2 −2k+1, . . .}

∆2(Fk) = {k−2,k2 −2k+2,k3 −2k2 +3k−2,k4 −2k3 +4k2 −4k+2, . . .} etc. and as

general form,

F(i)
k,n =

i

∑
j=0

(−1) j
(

i
j

)
Fk,i+n− j (5.6)

For instance, The 3-Fibonacci sequence is {0,1,3,10,33,109, . . .}. The first five 3-

Fibonacci difference sequences are:

1. F(1)
3 = {1,2,7,23,76,251,829,2738,9043, . . .}

2. F(2)
3 = {1,5,16,53,175,578,1909,6305,20824, . . .}

3. F(3)
3 = {4,11,37,122,403,1331,4396,14519,47953, . . .}

4. F(4)
3 = {7,26,85,281,928,3065,10123,33434,110425, . . .}

5. F(5)
3 = {19,59,196,647,2137,7058,23311,76991,254284, . . .}

For i ≥ 3, the 3-Fibonacci difference sequences ∆i(F3), are not cited in OEIS.

Next we will prove the k-Fibonacci difference sequences verify also the initial relation

(5.1).

Lemma 5.2.1.1. The k-Fibonacci difference numbers verify the recurrence relation of

the k-Fibonacci numbers:

F(i)
k,n+1 = kF(i)

k,n +F(i)
k,n−1 (5.7)
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Proof. By induction. For i = 1,

F(1)
k,n+1 = Fk,n+2 −Fk,n+1 = (kFk,n+1 +Fk,n)− (kFk,n +Fk,n−1)

= k(Fk,n+1 −Fk,n)+(Fk,n −Fk,n−1) = kF(1)
k,n +F(1)

k,n−1

Let us suppose this formula is true for i : F(i)
k,n+1 = kF(i)

k,n +F(i)
k,n−1.

then:

F(i+1)
k,n+1 = F(i)

k,n+2 −F(i)
k,n+1 = kF(i)

k,n+1 +F(i)
k,n − kF(i)

k,n −F(i)
k,n−1

= k(F(i)
k,n+1 −F(i)

k,n)+(F(i)
k,n −F(i)

k,n−1) = kF(i+1)
k,n +F(i+1)

k,n−1

From this relation we will be able to find the general term of the difference sequence

F(i)
k = {F(i)

k,n} in relation to the first initial terms F(i)
k,0 and F(i)

k,1 . However {F(i)
k,n} is not a

k-Fibonacci sequence because the initial values are not necessarily 0 and 1, respectively.

5.2.2 The Binet identity for F(i)
k,n

From the relation (5.7) we can deduce F(i)
k,n = c1σn

1 + c2σn
2 , where σ1,2 = k±

√
k2+4
2 ,

respectively. Then, for n = 0 ⇒ c1 + c2 = F(i)
k,0 and for n = 1 ⇒ c1σ1 + c2σ2 = F(i)

k,1 . The

solution of this system is the Binet identity F(i)
k,n = c1σn

1 + c2σn
2 where

c1 =
F(i)

k,1 −σ2F(i)
k,0

σ1 −σ2
, c2 =

−F(i)
k,1 −σ1F(i)

k,0

σ1 −σ2

We must take into account F(i)
k,0 and F(i)

k,1 change in every k-Fibonacci difference sequence.

The Binet identity can be reduced taking into account the formula (5.2) and σ1σ2 =−1,
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in the following form:

F(i)
k,n = c1σ

n
1 + c2σ

n
2 =

F(i)
k,1 −σ2F(i)

k,0

σ1 −σ2
σ

n
1 +

−F(i)
k,1 −σ1F(i)

k,0

σ1 −σ2
σ

n
2

= F(i)
k,1

σn
1 −σn

2
σ1 −σ2

+F(i)
k,0

σ
n−1
1 −σ

n−1
2

σ1 −σ2
= Fk,nF(i)

k,1 +Fk,n−1F(i)
k,0

From this formula and taking into account the formula (5.3), we deduce

lim
n→∞

F(i)
k,n+r

F(i)
k,n

= σ
r
1

In the next theorem, we give a new relationship between the terms of the sequence ∆i(Fk)

and the terms of the preceding sequence ∆i−1(Fk).

Theorem 5.2.2.1. (Second relationship). For i,n ≥ 1,

F(i)
k,n = (k−1)F(i−1)

k,n +F(i−1)
k,n−1 , being F(i)

k,0 = F(i−1)
k,1 −F(i−1)

k,0 (5.8)

Proof. From the definition of the k-Fibonacci difference numbers,

F(i−1)
k,n−1 =

i−1

∑
j=0

(−1) j
(

i−1
j

)
Fk,i−2+n− j and F(i−1)

k,n =
i−1

∑
j=0

(−1) j
(

i−1
j

)
Fk,i−1+n− j

then

(k−1)F(i−1)
k,n +F(i−1)

k,n−1 = k
i−1

∑
j=0

(−1) j
(

i−1
j

)
Fk,i−1+n− j −

i−1

∑
j=0

(−1) j
(

i−1
j

)
Fk,i−1+n− j

+
i−1

∑
j=0

(−1) j
(

i−1
j

)
Fk,i−2+n− j

=
i−1

∑
j=0

(−1) j
(

i−1
j

)
(kFk,i−1+n− j +Fk,i−2+n− j)
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−
i−1

∑
j=0

(−1) j
(

i−1
j

)
Fk,i−1+n− j

=
i−1

∑
j=0

(−1) j
(

i−1
j

)
Fk,i+n− j −

i−1

∑
j=0

(−1) j
(

i−1
j

)
Fk,i−1+n− j

= Fk,i+n +
i−1

∑
j=1

(−1) j
(

i−1
j

)
Fk,i+n− j −

i−1

∑
j=0

(−1) j
(

i−1
j

)
Fk,i−1+n− j

= Fk,i+n +
i−1

∑
j=1

(−1) j
[(

i−1
j

)
+

(
i−1
j−1

)]
Fk,i+n− j − (−1)i−1Fk,n

= Fk,i+n +
i−1

∑
j=1

(−1) j
(

i
j

)
Fk,i+n− j +(−1)iFk,n

=
i

∑
j=0

(−1) j
(

i
j

)
Fk,i+n− j = F(i)

k,n

Curiously, for the classical Fibonacci sequence (k = 1), it is F(i)
k,n = F(i−1)

k,n−1

If we apply iterately the formula (5.8), then we will get the following formula. For r ≤ i

and k > 1,

F(i)
k,n =

r

∑
j=0

(
r
j

)
(k−1)r− jF(i−r)

k,n− j (5.9)

If we represent the sum
n

∑
j=0

(
n
j

)
pn− jFk,q− j in symbolic form as [p+Fk,q]

(n), this last

formula can be expressed like

F(i)
k,n =

[
(k−1)+F(i−r)

k,n

](r)
= F(i)

k,n =
r

∑
j=0

(
r
j

)
(k−1)r− jF(i−r)

k,n− j

For r = i we can indicate the k-Fibonacci difference numbers depending on the k-

Fibonacci numbers in the manner indicated in the following corollary.
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Corollary 5.2.2.2. If r = i,

F(i)
k,n =

i

∑
j=0

(
i
j

)
(k−1)i− jFk,n− j (5.10)

For the classical Fibonacci sequence (k = 1), we cannot apply this formula and must

apply the formula (5.6) of the definition.

In the next theorem we give the formula for calculating the sum of the k-Fibonacci

difference numbers.

Theorem 5.2.2.3.
n

∑
j=0

F(i)
k, j = F(i−1)

k,n+1 −F(i−1)
k,0 (5.11)

Proof. Apllying the formula (5.7) and later the (5.5), we obtain

n

∑
j=0

F(i)
k, j = F(i)

k,0 +
n

∑
j=1

F(i)
k, j

= F(i)
k,0 +

1
k

n

∑
j=0

(
F(i)

k, j+1F(i)
k, j−1

)
= F(i)

k,0 +
1
k

(
F(i)

k,n+1 +F(i)
k,n −F(i)

k,1 −F(i)
k,0

)
= F(i)

k,0 +
1
k

(
F(i−1)

k,n+2 −F(i−1)
k,n+1 +F(i−1)

k,n+1 −F(i−1)
k,n −F(i−1)

k,2 +F(i−1)
k,1 −F(i−1)

k,1 +F(i−1)
k,0

)

= F(i−1)
k,1 −F(i−1)

k,0 +
1
k

(
F(i−1)

k,n+2 −F(i−1)
k,n − (F(i−1)

k,2 −F(i−1)
k,0 )

)
= F(i−1)

k,1 −F(i−1)
k,0 +F(i−1)

k,n+1 −F(i−1)
k,1

= F(i−1)
k,n+1 −F(i−1)

k,0

If we substitute the formula (5.10) in (5.11), we can find out a formula for this last

sum in function of the k-Fibonacci numbers
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Theorem 5.2.2.4. The sum of the n+1 first terms of the k-Fibonacci difference sequence

is given by

n

∑
j=0

F(i)
k, j =

i−1

∑
j=0

(
i−1

j

)
(k−1)i−1− j(Fk,n+1− j +(−1) jFk, j)

Proof.
n

∑
j=0

F(i)
k, j = F(i−1)

k,n+1 −F(i−1)
k,0

=
i−1

∑
j=0

(
i−1

j

)
(k−1)i−1− jFk,n+1− j

−
i−1

∑
j=0

(
i−1

j

)
(k−1)i−1− jFk,− j

=
i−1

∑
j=0

(
i−1

j

)
(k−1)i−1− j(Fk,n+1− j +(−1) jFk, j)

taking into account Fk,− j = (−1) j+1Fk, j.

We can give a formula for the sum about the terms of this same sequence. Let S(i)n be

this sum. Then

S(i)k,n = F(i)
k,0 +F(i)

k,1 +F(i)
k,2 + · · ·+F(i)

k,n−1 +F(i)
k,n

kS(i)k,n = kF(i)
k,0 + kF(i)

k,1 + kF(i)
k,2 + · · ·+ kF(i)

k,n

kS(i)k,n +S(i)k,n = kF(i)
k,0 +F(i)

k,2 +F(i)
k,3 + · · ·+F(i)

k,n+1 +F(i)
k,n

= kF(i)
k,0 +S(i)k,n −F(i)

k,0 −F(i)
k,1 +F(i)

k,n +F(i)
k,n+1

⇒ S(i)k,n =
1
k

(
(k−1)F(i)

k,0 −F(i)
k,1 +F(i)

k,n +F(i)
k,n+1

)
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5.2.3 Generating function of the k-Fibonacci difference sequences

Let f (i)(x) be the generating function of the k-Fibonacci difference sequence F(i)
k , that is

f (i)(x) = F(i)
k,0 +F(i)

k,1x+F(i)
k,2x2 + · · ·

Then we will prove the following formula for the generating function.

f (i)(x) =
F(i)

k,0 +(F(i)
k,1 − kF(i)

k,0)x

1− kx− x2 (5.12)

Proof.

f (i)(x) = F(i)
k,0 +F(i)

k,1x+F(i)
k,2x2 +F(i)

k,3x3 +F(i)
k,4x4 + · · ·

kx f (i)(x) = kF(i)
k,0x+ kF(i)

k,1x2 + kF(i)
k,2x3 + kF(i)

k,3x4 + · · ·

x2 f (i)(x) = F(i)
k,0x2 +F(i)

k,1x3 +F(i)
k,2x4 + · · ·

f (i)(x)(1− kx− x2) = F(i)
k,0 +(F(i)

k,1 − kF(i)
k,0)x

⇒ f (i)(x) =
F(i)

k,0 +(F(i)
k,1 − kF(i)

k,0)x

1− kx− x2

because the recurrence formula (5.7). From the formula (5.10), it is

F(i)
k,0 =∑

i
j=0
( i

j

)
(k−1)i− jFk,− j and F(i)

k,1 =∑
i
j=0
( i

j

)
(k−1)i− jFk,1− j, with Fk,−n =(−1)n−1Fk,n.

As an example, we indicate the generating functions of the first five k-Fibonacci

differences sequences:

f (1)(x) =
1− x

1− kx− x2

f (2)(x) =
(k−2)+2x
1− kx− x2
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f (3)(x) =
(k2 −3k+4)+(k−4)x

1− kx− x2

f (4)(x) =
(k3 −4k2 +8k−8)+(k2 −4k+8)x

1− kx− x2

f (5)(x) =
(k4 −5k3 +13k2 −20k+16)+(k3 −5k2 +12k−16)x

1− kx− x2

5.3 On the sequence of initial values {F (n)
k,0 }n∈N

In this section we will study the sequence {F(n)
k,0 }n∈N,k ≥ 2 and then apply to the problem

of the polynomial interpolation.

From the formula of the negative k-Fibonacci numbers, we can obtain the following

corollary of the formula (5.10).

Corollary 5.3.0.1. If n = 0, i = n and k > 1

F(n)
k,0 =

n

∑
j=0

(
n
j

)
(k−1)n− j(−1) j+1Fk, j (5.13)

Theorem 5.3.0.2. {F(n)
k,0 }n∈N is a generated k-Fibonacci sequence that verifies the

recurrence relation

F(n+1)
k,0 = (k−2)F(n)

k,0 + kF(n−1)
k,0 (5.14)

with initial conditionsF(0)
k,0 = 0 and F(1)

k,0 = 1

Proof. For the proof we will apply the Binet identity (5.2).

(k−2)F(n)
k,0 + kF(n−1)

k,0 = (k−2)
n

∑
j=0

(
n
j

)
(k−1)n− j(−1) j+1Fk, j

+ k
n−1

∑
j=0

(
n−1

j

)
(k−1)n−1− j(−1) j+1Fk, j
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= (k−2)
n

∑
j=0

(
n
j

)
(k−1)n− j(−1) j+1

(
σ

j
1 −σ

j
2

σ1 −σ2

)

+ k
n−1

∑
j=0

(
n−1

j

)
(k−1)n−1− j(−1) j+1

(
σ

j
1 −σ

j
2

σ1 −σ2

)

=
(k−2)
σ1 −σ2

[
−

n

∑
j=0

(
n
j

)
(k−1)n− j(−1) j

σ
j

1 +
n

∑
j=0

(
n
j

)
(k−1)n− j(−1) j

σ
j

2

]

+
k

σ1 −σ2

[
−

n−1

∑
j=0

(
n−1

j

)
(k−1)n−1− j(−1) j

σ
j

1

+
n−1

∑
j=0

(
n−1

j

)
(k−1)n−1− j(−1) j

σ
j

2

]

=
(k−2)
σ1 −σ2

{−(k−1−σ1)
n +(k−1−σ2)

n}

+
k

σ1 −σ2

{
−(k−1−σ1)

n−1 +(k−1−σ2)
n−1}

=
1

σ1 −σ2

{
−(k−1−σ1)

n−1[(k−2)(k−1−σ1)+ k]

−(k−1−σ2)
n−1[(k−2)(k−1−σ2)+ k]

}
=

1
σ1 −σ2

{
−(k−1−σ1)

n−1[k2 −2k−σ1k+2σ1 +2]

−(k−1−σ2)
n−1[k2 −2k−σ2k+2σ2 +2]

}
but k2 −2k−σrk+2σr +2 = (k−1−σr)

2 for r = 1,2

=
1

σ1 −σ2

{
−(k−1−σ1)

n+1 +(k−1−σ2)
n+1}

=
1

σ1 −σ2

{
−

n+1

∑
j=0

(
n+1

j

)
(k−1)n+1− j(−1) j

σ
j

1 +
n+1

∑
j=0

(
n+1

j

)
(k−1)n+1− j(−1) j

σ
j

2

}

=
1

σ1 −σ2

{
n+1

∑
j=0

(
n+1

j

)
(k−1)n+1− j(−1) j+1(σ

j
1 −σ

j
2)

}

=
n+1

∑
j=0

(
n+1

j

)
(k−1)n+1− j(−1) j+1Fk, j

= F(n+1)
k,0
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The first terms of the sequence {F(n)
k,0 } are:

{0,1,k−2,k2 −3k+4,k3 −4k2 +8k−8,k4 −5k3 +13k2 −20k+16, . . .} (5.15)

For k = 2,3, . . . ,11 all these sequences are cited in OEIS. If k = 3, the coefficients are

{0,1,1,4,7, . . .} that we use later, in an example of polynomial interpolation.

5.3.1 Binet identity

It is trivial to prove that F(n)
k,0 = (σ1−1)n−(σ2−1)n

σ1−σ2
with σ1,2 =

k±
√

k2+4
2 .

Developing this formula and taking into account the formula (5.2)

F(n)
k,0 =

(σ1 −1)n − (σ2 −1)n

σ1 −σ2
=

1
σ1 −σ2

n

∑
j=0

(−1)n− j
(

n
j

)
(σ

j
1 −σ

j
2)

=
n

∑
j=0

(−1)n− j
(

n
j

)
Fk, j

This form of the identity F(n)
k,0 =

n

∑
j=0

(−1)n− j
(

n
j

)
Fk, j is simpler than the (5.13). In

symbolic form, F(n)
k,0 = [1−Fk,0]

(n).

5.3.2 Generating function of the sequence {F(n)
k,0 }

Let f0(x) be the generating function of the sequence {F(n)
k,0 }. Then,

f0(x) = F(0)
k,0 +F(1)

k,0 x+F(2)
k,0 x2 +F(3)

k,0 x3 + · · ·

(k−2)x f0(x) = (k−2)F(0)
k,0 x+(k−2)F(1)

k,0 x2 +(k−2)F(2)
k,0 x3 + · · ·

kx2 f0(x) = kF(0)
k,0 x2 + kF(1)

k,0 x3 + · · ·
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and taking into account F(0)
k,0 = 0, F(1)

k,0 = 1 and the recurrence relation (5.14), f0(x)(1−

(k−2)x− kx2) = F(0)
k,0 +(F(1)

k,0 − (k−2)F(0)
k,0 )x = x

⇒ f0(x) =
x

1− (k−2)x− kx2

5.3.3 k-Fibonacci Newton interpolation

Let us consider the n+1 points (x j,Fk, j), j = 0,1,2, . . . ,n with x j < x j+1 and let suppose

we wish to find a polynomial Pn(k,x) that takes the value Fk, j for x = x j. It is the same

thing that to say that we must find a polynomial that passes through for the points

(x j,Fk, j) for j = 0,1,2, . . . ,n. Let h j = x j+1 − x j, The k-Fibonacci Newton polynomial

interpolation is

Pn(k,x) = Fk,0 +
F(1)

k,0

1!
x− x0

h0
+

F(2)
k,0

2!
x− x0

h0

x− x1

h1
+ · · ·

or in reduced form,

Pn(k,x) = Fk,0 +
n

∑
i=1

F(i)
k,0

i!

i−1

∏
j=0

x− x j

h j
,

Where F(i)
k,0 is given by the formula (5.13). This formula can be simplified by if x j = j

and takes the more practical form

Pn(k,x) = Fk,0 +
n

∑
i=1

F(i)
k,0

i!

i−1

∏
j=0

(x− j) (5.16)

If x j+1 − x j = h ∀ j, the error is given by ε =
F(n+1)

k,0
(n+1)!

1
hn+1

n

∏
j=0

(x− x j). Thus, the maximum

error will occur at some point in the interval between two successive nodes.

If x ̸= 0,h ̸= 1, but x j −x j−1 = h, the change variable t j =
x j−x0

h transforms the sequence
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{x0,x1,x2, . . .} in {0,1,2, . . .}.

If F(0)
k,0 ̸= 0, we must apply the formula (5.6).

For example

P4(k,x) = Fk,0 +
1
1!

F(1)
k,0 (x− x0)+

1
2!

F(2)
k,0 (x− x0)(x− x1)

1
3!

F(3)
k,0 (x− x0)(x− x1)(x− x2)

1
4!

F(4)
k,0 (x− x0)(x− x1)(x− x2)(x− x3)

= x+
1
2
(k−2)x(x−1)+

1
6
(k2 −3k+4)x(x−1)(x−2)

+
1

24
(k3 −4k2 +8k−8)x(x−1)(x−2)(x−3)

If for instance k = 3, then P4(3,x) = 1
24(7x4 −26x3 +41x2 +2x). The error is bounded

by ε = 19
5! max|x(x−1)(x−2)(x−3)(x−4)|= 0.0562981 (using Mathematica 8.0).

If we apply directly the classical Newton interpolation, then

x j F3, j ∆(F3, j) ∆2(F3, j) ∆3(F3, j) ∆4(F3, j)

0 0
1

1 1 1
2 4

2 3 5 7
7 11

3 10 16
23

4 33

The number of the first diagonal line are the numerators of the coefficients of the

Newton polynomial:

P4(3,x) = 0+
1
1!

x+
1
2!

x(x−1)+
4
3!

x(x−1)(x−2)+
7
4!

x(x−1)(x−2)(x−3)

=
1

24
(7x4 −26x3 +41x2 +2x).



Chapter 6

k-FIBONACCI NUMBERS

6.1 Introduction

The content of this topic is taken from the reference [4]. Fibonacci numbers possess

wonderful and amazing properties; though some are simple and known, others find

broad scope in research work. Fibonacci and Lucas numbers cover a wide range of

interest in modern mathematics as they appear in the comprehensive works of Koshy and

Vajda. The Fibonacci numbers Fn are the terms of the sequence {0,1,1,2,3,5,8, . . .}

wherein each term is the sum of the two previous terms beginning with the initial values

F0 = 0 and F1 = 1. Also the ratio of two consecutive Fibonacci numbers converges to

the Golden mean, φ = 1+
√

5
2 . The Fibonacci numbers and Golden mean find numerous

applications in modern science and have been extensively used in number theory, applied

mathematics,physics, computer science, and biology.

The well known Fibonacci sequence is defined as F0 = 0,F1 = 1,

Fn = Fn−1 +Fn−2 ∀ n ≥ 2

64
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In a similar way, Lucas sequence is defined as L0 = 2,L1 = 1,

Ln = Ln−1 +Ln−2 ∀ n ≥ 2

The second order Fibonacci sequence has been generalized in several ways. Some authors

have preserved the recurrence relation and altered the first two terms of the sequence

while others have preserved the first two terms of the sequence and altered the recurrence

relation slightly. The k-Fibonacci sequence introduced by Falcon and Plaza depends only

on one integer parameter k and is defined as follows:

Fk,0 = 0, Fk,1 = 1,

Fk,n+1 = kFk,n +Fk,n−1, where n ≥ 1, k ≥ 1.

The first few terms of this sequence are {0,1,k,k2 +1, . . .}

The particular cases of the k-Fibonacci sequence are as follows.

If k = 1, the classical Fibonacci sequence is obtained: {Fn}n∈N = {0,1,1,2,3,5, . . .}

If k = 2, the Pell sequence is obtained: {Pn}n∈N = {0,1,2,5,12,29, . . .}

Motivated by the study of k-Fibonacci numbers, the k-Lucas numbers have been defined

in a similar fashion as:

Lk,0 = 2, Lk,1 = 1,

Lk,n+1 = kLk,n +Lk,n−1, where n ≥ 1, k ≥ 1.

The first few terms of this sequence are {2,1,k2 +2, . . .}

The particular cases of the k-Lucas sequence are as follows.

If k = 1, the classical k-Lucas sequence is obtained: {2,1,3,4,7, . . .}

If k = 2, the Pell-Lucas sequence is obtained: {2,2,6,14,34, . . .}

In the 19th century, the French mathematician Binet devised two remarkable analytical
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formulas for the Fibonacci and Lucas numbers. The same idea has been used to develop

Binet formulas for other recursive sequences as well.The wellknown Binet’s formulas

for k-Fibonacci numbers and k-Lucas numbers are given by

Fk,n =
rn

1 − rn
2

r1 − r2
, Lk,n = rn

1 + rn
2

where r1,r2 are roots of equation r2 − kr−1 = 0 which are given by

r1 =
k+

√
k2 +4
2

, r2 =
k−

√
k2 +4
2

We also note that r1 + r2 = k, r1r2 =−1, r1 − r2 =
√

k2 +4

There are a huge number of simple as well as generalized identities available in the

Fibonacci related literature in various forms. Some properties for common factors of

Fibonacci and Lucas numbers are studied by Thongmoon. The k-Fibonacci numbers

which are of recent origin were found by studying the recursive application of two

geometrical transformations used in the well-known four-triangle longest-edge partition,

serving as an example between geometry and numbers. Also authors established some

new properties of k-Fibonacci numbers and k-Lucas numbers in terms of binomial sums.

Falcon and Plaza studied 3-dimensional k-Fibonacci spirals considering geometric point

of view. Some identities for k-Lucas numbers may be found. In many properties of

k-Fibonacci numbers are obtained by easy arguments and related with so-called Pascal

triangle. The aim of the present paper is to establish connection formulas between

k-Fibonacci and k-Lucas numbers, thereby deriving some results out of them. In the

following section we investigate some products of k-Fibonacci numbers and k-Lucas

numbers. Though the results can be established by induction method as well, Binet’s

formula is mainly used to prove all of them.
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6.2 On the products of k-Fibonacci and k-Lucas numbers

Theorem 6.2.0.1. Fk,2nLk,2n = Fk,4n, where n ≥ 1

Proof.

Fk,2nLk,2n =

[
r2n

1 − r2n
2

r1 − r2

][
r2n

1 + r2n
2
]

=
1

r1 − r2

[
r4n

1 +(r1r2)
2n − (r1r2)

2n − r4n
2
]

=
1

r1 − r2

[
r4n

1 − r4n
2
]
= Fk,4n

Theorem 6.2.0.2. Fk,2nLk,2n+1 = Fk,4n+1 −1, where n ≥ 1

Proof.

Fk,2nLk,2n+1 =

[
r2n

1 − r2n
2

r1 − r2

][
r2n+1

1 + r2n+1
2

]
=

1
r1 − r2

[
r4n+1

1 +(r1r2)
2nr2 − (r1r2)

2nr1 − r4n+1
2

]
=

1
r1 − r2

[
r4n+1

1 − r4n+1
2

]
+

(r1r2)
2n

(r1 − r2)
(r2 − r1)

= Fk,4n+1 − (−1)2n = Fk,4n+1 −1

Theorem 6.2.0.3. Fk,2nLk,2n+2 = Fk,4n+2 − k, where n ≥ 1

Proof.

Fk,2nLk,2n+2 =

[
r2n

1 − r2n
2

r1 − r2

][
r2n+2

1 + r2n+2
2

]
=

1
r1 − r2

[
r4n+2

1 +(r1r2)
2nr2

2 − (r1r2)
2nr2

1 − r4n+2
2

]
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=
1

r1 − r2

[
r4n+2

1 − r4n+2
2

]
− (r1r2)

2n

(r1 − r2)
(r2

1 − r2
2)

= Fk,4n+2 − (−1)2nk = Fk,4n+2 − k

Theorem 6.2.0.4. Fk,2nLk,2n+3 = Fk,4n+3 − (k2 +1), where n ≥ 1

Proof.

Fk,2nLk,2n+3 =

[
r2n

1 − r2n
2

r1 − r2

][
r2n+3

1 + r2n+3
2

]
=

1
r1 − r2

[
r4n+3

1 +(r1r2)
2nr3

2 − (r1r2)
2nr3

1 − r4n+3
2

]
=

1
r1 − r2

[
r4n+3

1 − r4n+3
2

]
− (r1r2)

2n

(r1 − r2)
(r3

1 − r3
2)

= Fk,4n+3 − (−1)2n [r2
1 + r2

2 + r1r2
]

= Fk,4n+3 − (Lk,2 −1) = Fk,4n+3 − (k2 +1)

Theorem 6.2.0.5. Fk,2n−1Lk,2n+1 = Fk,4n +1, where n ≥ 1

Proof.

Fk,2n−1Lk,2n+1 =

[
r2n−1

1 − r2n+1
2

r1 − r2

][
r2n+1

1 + r2n+1
2

]
=

1
r1 − r2

[
r4n

1 + r2n−1
1 r2n+1

2 − r2n+1
1 r2n−1

2 − r4n
2
]

=
1

r1 − r2

[
r4n

1 − r4n
2
]
+

(r1r2)
2n

(r1 − r2)

[
r2

r1
− r1

r2

]
= Fk,4n − (r1r2)

2n−1 = Fk,4n +1

Theorem 6.2.0.6. Fk,2n+1Lk,2n = Fk,4n+1 +1, where n ≥ 1
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Proof.

Fk,2n+1Lk,2n =

[
r2n+1

1 − r2n+1
2

r1 − r2

][
r2n

1 + r2n
2
]

=
1

r1 − r2

[
r4n+1

1 +(r1r2)
2nr1 − (r1r2)

2nr2 − r4n+1
2

]
=

1
r1 − r2

[
r4n+1

1 − r4n+1
2

]
+

(r1r2)
2n

(r1 − r2)
(r1 − r2)

= Fk,4n+1 +(−1)2n = Fk,4n+1 +1

Theorem 6.2.0.7. Fk,2n+2Lk,2n = Fk,4n+2 + k, where n ≥ 1

Proof.

Fk,2n+2Lk,2n =

[
r2n+2

1 − r2n+2
2

r1 − r2

][
r2n

1 + r2n
2
]

=
1

r1 − r2

[
r4n+2

1 +(r1r2)
2nr2

1 − (r1r2)
2nr2

2 − r4n+2
2

]
=

1
r1 − r2

[
r4n+2

1 − r4n+2
2

]
+(−1)2n

[
r2

1 − r2
2

r1 − r2

]
= Fk,4n+2 +[r1 + r2] = Fk,4n+2 + k

Theorem 6.2.0.8. Fk,2n+2Lk,2n+1 = Fk,4n+3 −1, where n ≥ 1

Proof.

Fk,2n+2Lk,2n+1 =

[
r2n+2

1 − r2n+2
2

r1 − r2

][
r2n+1

1 + r2n+1
2

]
=

1
r1 − r2

[
r4n+3

1 +(r1r2)
2n+1r1 − (r1r2)

2n+1r2 − r4n+3
2

]
=

1
r1 − r2

[
r4n+3

1 − r4n+3
2

]
+(−1)2n+1

= Fk,4n+3 −1
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Theorem 6.2.0.9. Fk,mLk,n = Fk,m+n − (−1)mFk,n−m, for n ≥ m+1, m ≥ 0

Proof.

Fk,mLk,n =

[
rm

1 − rm
2

r1 − r2

]
[rn

1 + rn
2]

=
1

r1 − r2

[
rm+n

1 + rm
1 rn

2 − rn
1rm

2 − rm+n
2
]

=
1

r1 − r2

[
rm+n

1 − rm+n
2
]
+

1
r1 − r2

[rm
1 rn

2 − rn
1rm

2 ]

= Fk,m+n − (r1r2)
m
[

rn−m
1 − rn−m

2
r1 − r2

]
= Fk,m+n − (−1)mFk,n−m

For different value of m, we have different results:

If m = 0 then Fk,0Lk,n = Fk,n −Fk,n = 0, n ≥ 1

If m = 1 then Fk,1Lk,n = Fk,n+1 +Fk,n−1, n ≥ 2

or Lk,n = Fk,n+1 +Fk,n−1

If m = 2 then Fk,2Lk,n = Fk,n+2 −Fk,n−2, n ≥ 3

or Lk,n =
Fk,n+2 +Fk,n−2

k
and so on

Theorem 6.2.0.10. Fk,nLk,2n+m = Fk,3n+m − (−1)nFk,n+m, for n ≥ 1, m ≥ 0

Proof.

Fk,nLk,2n+m =

[
rn

1 − rn
2

r1 − r2

][
r2n+m

1 + r2n+m
2

]
=

1
r1 − r2

[
r3n+m

1 + rn
1r2n+m

2 − r2n+m
1 rn

2 − r3n+m
2

]
=

1
r1 − r2

[
r3n+m

1 − r3n+m
2

]
+(r1r2)

n
[

rn+m
2 − rn+m

1
r1 − r2

]
= Fk,3n+m − (−1)nFk,n+m
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For different values of m, we have various results:

If m = 0 then Fk,nLk,2n = Fk,3n − (−1)nFk,n, n ≥ 1

If m = 1 then Fk,nLk,2n+1 = Fk,3n+1 − (−1)nFk,n+1, n ≥ 1 and so on.

Similarly we have the following result.

Theorem 6.2.0.11. Fk,2n+mLk,n = Fk,3n+m +(−1)nFk,n+m, for n ≥ 1, m ≥ 0

Proof.

Fk,2n+mLk,n =

[
r2n+m

1 − r2n+m
2

r1 − r2

]
[rn

1 + rn
2]

=
1

r1 − r2

[
r3n+m

1 + rn
2r2n+m

1 − r2n+m
2 rn

1 − r3n+m
2

]
=

1
r1 − r2

[
r3n+m

1 − r3n+m
2

]
+(r1r2)

n
[

rn+m
1 − rn+m

2
r1 − r2

]
= Fk,3n+m +(−1)nFk,n+m

Theorem 6.2.0.12. Fk,2nLk,2n+m = Fk,4n+m −Fk,m, for n ≥ 1, m ≥ 0

Proof.

Fk,2nLk,2n+m =

[
r2n

1 − r2n
2

r1 − r2

][
r2n+m

1 + r2n+m
2

]
=

1
r1 − r2

[
r4n+m

1 + r2n
1 r2n+m

2 − r2n
2 r2n+m

1 − r4n+m
2

]
=

1
r1 − r2

[
r4n+m

1 − r4n+m
2

]
+(r1r2)

2n
[

rm
2 − rm

1
r1 − r2

]
= Fk,4n+m −Fk,m
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For different values of m, we have various results:

If m = 0 then Fk,2nLk,2n = Fk,4n, n ≥ 1

If m = 1 then Fk,2nLk,2n+1 = Fk,4n+1 −1, n ≥ 1 and so on.

Theorem 6.2.0.13. Fk,2n+mLk,2n = Fk,4n+m +Fk,m, for n ≥ 1, m ≥ 0

Proof.

Fk,2n+mLk,2n =

[
r2n+m

1 − r2n+m
2

r1 − r2

][
r2n

1 + r2n
2
]

=
1

r1 − r2

[
r4n+m

1 + r2n
2 r2n+m

1 − r2n
1 r2n+m

2 − r4n+m
2

]
=

1
r1 − r2

[
r4n+m

1 − r4n+m
2

]
+(r1r2)

2n
[

rm
1 − rm

2
r1 − r2

]
= Fk,4n+m +Fk,m

For different values of m we have various results:

If m = 0 then Fk,2nL2n = Fk,4n, n ≥ 1

If m = 1 then Fk,2n+1L2n = Fk,4n+1 +1, n ≥ 1

If m = 2 then Fk,2n+2L2n = Fk,4n+2, n ≥ 1 and so on.



Chapter 7

ANALYSIS AND CONCLUSIONS

In Chapter 2 the new sequence defined using non-linear second order recurrence relation

has most of the identities satisfied by Fibonacci sequence. However the congruence

properties of this sequence are different from those of Fibonacci sequence.

In Chapter 3 we have defined a new extension of Lucas sequence i.e. Tn. We see

that gcd of two lucasenne sequence is again a lucasenne sequence under some condition,

negative extension of Tn is totally opposite as Pn. Besides this, we have obtained Tn

divides Pn under some condition. Then we computed cycles of Tn mod m and observed

that the tail period t(m) of Tn & Pn are similar and we obtain pisano period of Ln mod

m. We observe that some properties related to pisano periods of Ln are same as that of

Fn. Also we obtained some relations between Pn and Tn. Moreover, we generalise the

non-linear second order recurrence relation and gcd property for the sequence of the type

X0 = 0,X1 = 1,Xn+2 = Xn+1 +Xn and Yn = 2Xn −1.

In Chapter 4 we have defined a new extension of pell sequence i.e. Dn. We see

that Dn divides Drn for r ∈ N and gcd of any two pellene sequence is again a pellene
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sequence. Along with this we see two consecutive pellene sequence are co-prime. We

obtained a non-linear second order recurrence relation for Dn which differs from that

of Pn,Tn. Also some congruence properties satisfied by Dn are same as that of Pn and

Tn. Observe that tail period t(m) of Dn mod m differs than Tn,Pn mod m. Moreover, we

obtained a non-linear second order recurrence relation for Bn = 2An −1 and it is observed

that (Bn,Bn+1) = 1. Also we have obtained some divisibility, gcd properties of extensions

of some generalised fibonacci sequence.

In Chapter 5 We have extended the concept of difference relation to the k–Fibonacci

numbers having found several formulas for these new numbers. Then we have studied

the sequence of the initial numbers of the successive k–Fibonacci difference sequences

and apply to the problem of the polynomial interpolation.

And In Chapter 6 we investigate some products of k-Fibonacci and k-Lucas num-

bers. We also present some generalized identities on the products of k-Fibonacci and

k-Lucas numbers to establish connection formulas between them with the help of Binet’s

formula.
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