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PREFACE

This Project Report has been prepared in partial fulfilment of the require-

ment for the Subject: MAT - 651 Discipline Specific Dissertation of the

programme M.Sc. in Mathematics in the academic year 2023-2024.

The Paper have three chapters to study, each chapter has its own rele-

vance and importance. The chapters are divided and defined in a logical,

systematic and scientific manner to cover every nook and corner of the topic.

FIRST CHAPTER:

The Introductory stage of this Project report is based on overview of the

perfect numbers, even perfect number and odd perfect number. Also the

required function needed in the paper have been discussed in this chapter.

With that the history of Perfect number from 300 have been mentioned.The

Reference Material of this chapter have been taken from [1]

SECOND CHAPTER:

This chapter is based on Arithmetical Relation of perfect numbers which

involve divisor function (σ) and Euler’s Totient function (φ). Different prop-

erties of even perfect have been taken, applying in (φ) results have been de-

rived. Also at end of the chapter some examples have been solved.Reference

Material of this chapter have been taken from [2].

THIRD CHAPTER:

Odd perfect number study have been very vast but no one have discov-

ered any odd perfect number yet. This paper consist Odd Perfect number,

Diophantine Equations, and Upper Bounds. Here the upper bound for odd

perfect number have been programmed in terms of minimum distinct number

of prime factor of Odd perfect number. Reference Material of this chapter

have been taken from [3] and also from [4].
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ABSTRACT

The Project Report has been made on Perfect numbers which have not been

introduced to us in any level of school or college, by studying the following

results will be able to find more relations between perfect number and Arith-

metical function,In this paper, we get some new formulas for generalized

perfect numbers and their relationship between arithmetical functions φ, σ

concerning Ore’s harmonic numbers and by using these formulas we present

some examples. We also obtain a new upper bound for odd multiperfect

numbers. If N is an odd perfect number with k distinct prime divisors and

P is its largest prime divisor, we find as a corollary that 1012P 2N << 24k .

Using this new bound, and extensive computations, we derive the inequality

k ≥ 10, also by finding upper bounds for odd perfect number will be useful

in higher research to examine (non)existence of odd perfect number.

Keywords: Perfect number, 2-hyperperfect number, Euler’s totient func-

tion, Ore harmonic number, Odd Perfect numbers, Mersenne prime, Dio-

phantine equations.
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Chapter 1

Perfect Number

1.1 Introduction

In number theory, a perfect number is a positive integer that is equal to the

sum of its positive divisors, excluding the number itself. For instance, 6 has

divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect

number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.

The sum of divisors of a number, excluding the number itself, is called

its aliquot sum, so a perfect number is one that is equal to its aliquot sum.

Equivalently, a perfect number is a number that is half the sum of all of

its positive divisors including itself; in symbols,σ1(n) = 2n where σ1 is the

sum-of-divisors function and n is N.

This definition is ancient, appearing as early as Euclid’s Elements (VII.22)

where it is called perfect, ideal, or complete number. Euclid also proved a

formation rule (IX.36) whereby q(q+1)/2 is an even perfect number whenever

q is a prime of the form 2p − 1 for positive integer p−what is now called a

Mersenne prime. Two millennia later, Leonhard Euler proved that all even

perfect numbers are of this form. This is known as the Euclid-Euler theorem.

It is not known whether there are any odd perfect numbers, nor whether

infinitely many perfect numbers exist. The first few perfect numbers are 6,

28, 496 and 8128.[1]
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1.2 History

The almost mystical regard for perfect numbers is as old as the mathemat-

ics concerning them. The Pythagoreans equated the perfect number 6 to

marriage, health, and beauty on account of the integrity and agreement of

its parts. Around 100 c.e., Nicomachus noted that perfect numbers strike a

harmony between the extremes of excess and deficiency (as when the sum of

a number’s divisors is too large or small), and fall in the “suitable” order:

6, 28, 496, and 8128 are the only perfect numbers in the intervals between

1, 10, 100, 1000, 10000, and they end alternately in 6 and 8. Near the

end of the twelfth century, Rabbi Josef b. Jehuda Ankin suggested that

the careful study of perfect numbers was an essential part of healing the

soul. Erycius Puteanus in 1640 quotes work assigning the perfect number 6

to Venus, formed from the triad (male, odd) and the dyad (female, even).

Hrotsvit, a Benedictine in the Abbey of Gandersheim of Saxony and perhaps

the earliest female German poet, listed the first four perfect numbers in her

play Sapientia as early as the tenth century.

We should not leave unmentioned the principal numbers... those which are

called “perfect numbers”. These have parts which are neither larger nor

smaller than the number itself, such as the number six, whose parts, three,

two, and one, add up to exactly the same sum as the number itself. For the

same reason twenty-eight, four hundred ninety-six, and eight thousand one

hundred twenty-eight are called perfect numbers.

Saint Augustine (among others, including the early Hebrews) considered 6

to be a truly perfect number-God fashioned the Earth in precisely this many

days (rather than at once) to signify the perfection of His work. Indeed,

as recorded by Alcuin of York (who lived from 732 to 804 c.e.), the second

origin was imperfect, as it arose from the deficient number 8 > 1 + 2 + 4,

this number counting the 8 souls in Noah’s ark (Noah, his three sons, and

their four wives, in Genesis, chapter 7) from which sprung the entire human

race. Philo Judeus, in the first century c.e., called 6 the most productive of

all numbers, being the smallest perfect number.

Throughout the centuries that followed, various mathematicians carefully

studied perfect numbers (the continued extensive history is given by Dickson
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and also by Picutti). Up to the time of Descartes and Fermat, a sizeable pool

of important results-as well as much misinformation-had been collected[1].

1.3 Even Perfect Number

Euclid proved that Perfect Number are of the form 2p−1(2p−1), where (2p−1)

is Mersenne primes and p is a prime.

For example, the first four perfect numbers are generated by this formula is

given by

p = 2: 21(22 − 1)=2x3=6

p = 3: 22(23 − 1)=4x7=28

p = 5: 24(25 − 1)=16x31=496

p = 7: 26(27 − 1)=64x127=8128

Prime numbers of the form

2p − 1 are known as Mersenne primes, after the seventeenth-century

monk Marin Mersenne, who studied number theory and perfect numbers.

For 2p − 1 to be prime, it is necessary that p itself be prime. However,

not all numbers of the form 2p − 1 with a prime p are prime; for example,

29 − 1 = 19682 = 2× 9841 is not a prime number. In fact, Mersenne primes

are very rare, as of 2023 only 51 have been Known.

While Nicomachus had stated (without proof) that all perfect numbers

were of the form 2n−1(2n − 1) where 2n − 1 is prime (though he stated this

somewhat differently), Ibn al-Haytham (Alhazen) circa AD 1000 was unwill-

ing to go that far, declaring instead (also without proof) that the formula

yielded only every even perfect number. It was not until the 18th century

that Leonhard Euler proved that the formula 2p−1(2p − 1) will yield all the

even perfect numbers. Thus, there is a one-to-one correspondence between

even perfect numbers and Mersenne primes; each Mersenne prime generates

one even perfect number, and vice versa. This result is often referred to as

the Euclid-Euler theorem. It states that an even number is perfect if and

only if it has the form 2p−1(2p − 1), where 2p − 1 is a prime number.

An exhaustive search by the GIMPS(Great Internet Mersenne Prime
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Search) distributed computing project has shown that the first 51 even

perfect numbers are 2p−1(2p − 1) for p = 2, 3, 5, 7, 13, 17, 19, 31, 61,

89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941,

11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839,

859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,

24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609,

57885161, 74207281, 77232917, and 82589933. As of December 2018, 51

Mersenne primes are known, and therefore only 51 even perfect are known

numbers the largest of which is 282589932 ∗ (282589933− 1) with 49,724,095 dig-

its. It is not known whether there are infinitely many perfect numbers, nor

whether there are infinitely many Mersenne primes.

Even perfect numbers (except 6) are of the form

T2p−1 = 1 + (2p−2)×(2p+1)
2

= 1 + 9× T(2p−2)/3

with each resulting triangular number T7 = 28, T31 = 496, T127 = 8128 (af-

ter subtracting 1 from the perfect number and dividing the result by 9) end-

ing in 3 or 5, the sequence starting with T2 = 3, T10 = 55, T42 = 903, T2730 =

3727815, ... It follows that by adding the digits of any even perfect number

(except 6), then adding the digits of the resulting number, and repeating

this process until a single digit (called the digital root) is obtained, always

produces the number 1. For example, the digital root of 8128 is 1, because 8

+ 1 + 2 + 8 = 19, 1 + 9 = 10, and 1 + 0 = 1. This works with all perfect

numbers. Every even perfect number is also a practical number[6].

1.4 Odd Perfect Number

It is unknown whether any odd perfect numbers exist, though various results

have been obtained. In 1496, Jacques Lefèvre stated that Euclid’s rule gives

all perfect numbers, thus implying that no odd perfect number exists. Euler

stated: “Whether ... there are any odd perfect numbers is a most difficult

question”. More recently, Carl Pomerance has presented a heuristic argu-

ment suggesting that indeed no odd perfect number should exist. All perfect

numbers are also harmonic divisor numbers, and it has been conjectured as

well that there are no odd harmonic divisor numbers other than 1. Many
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of the properties proved about odd perfect numbers also apply to Descartes

numbers, and Pace Nielsen has suggested that sufficient study of those num-

bers may lead to a proof that no odd perfect numbers exist[6].

Any odd perfect number N must satisfy the following conditions:

• N > 101500.

• N is not divisible by 105.

• N is of the form N ≡ 1(mod 12) or N ≡ 117(mod 468) or N ≡ 81(mod

324).

• An odd perfect number has more than 300 digits

• An odd perfect number has at least 75 prime factors

• An odd perfect number has at least 9 distinct prime factors

• An odd perfect number has the largest prime factor must have at least

20 digits

1.5 Hyper-perfect number

In number theory, a k−hyperperfect number/Multiperfect Number is a nat-

ural number n for which the equality n = k(σ(n)) holds, where σ(n) is the

divisor function (i.e., the sum of all positive divisors of n). A hyper-perfect

number is a k−hyperperfect number for some integer k. Hyper-perfect num-

bers generalize perfect numbers, which are 1-hyperperfect.

The first few numbers in the sequence of k-hyperperfect numbers are 6,

21, 28, 301, 325, 496, 697,, with the corresponding values of k being 1, 2, 1,

6, 3, 1, 12, .... The first few k-hyperperfect numbers that are not perfect are

21, 301, 325, 697, 1333, ...[6].
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1.6 The σ-function

Also called as Divisor function is, the sum-of-divisors function σ(n), an arith-

metic function If n = ab, where a and b have no common divisor, every di-

visor of n is the product of a divisor of a and a divisor of b. In other words

σ(ab) = σ(a)σ(b) .

A function satisfying this relation for all pairs (a, b) with no common divisor

is called a multiplicative function.

Using the multiplicativity property, we get now a formula for σ(n), where

n = pk11 p
k2
2 p

k3
3 .....p

kl
l [7].
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Chapter 2

On Perfect Numbers and their

Arithmetical Relations

2.1 Introduction

In the last chapter we have discussed about the definition of Perfect Number,

Even Perfect number, odd perfect number ect..The definitions and proper-

ties used in last chapter will be followed here as well. In this chapter we are

going to get some new formulas for generalized perfect numbers and their

relationship between arithmetical functions φ and σ concerning Ore’s har-

monic numbers and by using these formulas we present some examples.

2.1.1 Divisor function

In this chapter we are going to define perfect numbers as σ(N) = 2N, (N ∈
Z>0) where σ is a divisor function, the symbol Z>0 will stand for set of all

non negative integer or set of all Natural Numbers.

As we know if p is a prime number and k ≥ 1 than its only divisors are 1

and p. So, σ(p) = p+ 1 and σ(pk) = 1 + p+ p2 + ...+ pk = pk+1−1
p−1

Furthermore, if 2n+1 − 1 = p,N = 2np is perfect, then we have, σ(N) =

(2n+1 − 1)(p+ 1) = 2n+1p[7].
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2.1.2 Euler’s totient function

In number theory, Euler’s totient function counts the positive integers up

to a given integer n that are relatively prime to n. It is written using the

Greek letter phi as φ(n), and may also be called Euler’s phi function. In

other words, it is the number of integers k in the range 1 ≤ k ≤ n for which

the greatest common divisor gcd(n, k) is equal to 1. The integers k of this

form are sometimes referred to as totatives of n. For any prime p, we have

φ(p) = p − 1 where φ is Euler’s totient function defined as the number of

invertible elements in an complete residue system. Some properties of Euler’s

totient function which we will use to prove our results will be [7];

• If a and m are integers such that (a,m) = 1 then aφ(m) ≡ 1(mod m)

• If n ≥ 1 we have
∑
d/n

φ(d) = n

• Forn ≥ 1 we have φ(n) = n
∏
p/n

(1− 1

p
)

• if n is prime φ(n) = n− 1

• for n = p× q, and if p and q are primes then φ(n) = (p− 1)(q − 1).

• for n = p× q, and if p and q are composite φ(n) = n(1− 1
p
)(1− 1

q
)

• p is prime, a is integer φ(pa)= pa − pa−1.

2.1.3 Harmonic divisor number

In mathematics, a harmonic divisor number or Ore number is a positive in-

teger whose divisors have a harmonic mean that is an integer. The first few

harmonic divisor numbers are 1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200,

8128, 8190..

Harmonic divisor numbers were introduced by Oystein Ore, who showed

that every perfect number is a harmonic divisor number and conjectured

that there are no odd harmonic divisor numbers other than 1.
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H(n) = k
1
d1

+ 1
d2

+.....+ 1
dk

, d are divisors of n and k is an integer, where H(n)

is called harmonic mean.

For example, the harmonic mean of 1 and 2 is 2
1+ 1

2

= 4/3. Such an integer

is called Ore harmonic number or harmonic divisor number. According the

theorem of Ore; every perfect number is harmonic [7].

2.1.4 Superperfect number

n is called superperfect number if σ(σ(n)) = 2n and every even superperfect

number n must be a power of 2, that is, 2p−1 such that 2p−1 is a Mersenne

prime[6].

2.1.5 Unitary Perfect Number

A unitary perfect number is an integer which is the sum of its positive proper

unitary divisors, not including the number itself. (A divisor d of a number n

is unitary divisor if d and n
d

share no common factors). 9 and 165 are all of

the odd unitary superperfect numbers [2].

2.1.6 k−hyperperfect numbers

k−hyperperfect numbers which is defined n as; k−hyperfect number if n =

1+k[σ(n)−n−1] and so σ(n) = k+1
k
n+ k−1

k
. Also there is a conjecture which

states that all 2-hyperferfect numbers are of the form n = (3k − 1).(3k − 2)

where 3k − 2 is prime. Also all hyperperfect numbers less than 1011 [2].

2.1.7 Super-hyperperfect number

If σ(σ(n)) = 3
2
(n+ 1), then n is called super-hyperperfect number. In study

of generalized perfect numbers, there are some conjectures and numerical

results conjectured that, if n = 3p−1 where p and 3p−1
2

are primes, then n is

a super-hyperperfect number [2].
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2.1.8 multiplicatively e−perfect

n is called multiplicatively e−perfect if Te(n) = n2 where Te(n) denote the

product of exponential divisors of n [2].
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2.2 Main Results

Theorem 2.1 [2]: If k>1, 1+2+4+...+k = 2k-1 where (2k-1) is prime and

k(2k-1) is a perfect number, then

φ(k[2k − 1]) = k(k − 1) (2.1)

Moreover, if k[2k − 1] = 2n(2n+1 − 1) is an Euclid number, then

φ(2n[2n+ 1− 1]) = 2n(2n − 1) (2.2)

. Proof : Let k ≥ 1, 1 + 2 + 4 + ...+ k = 2k − 1 and 2k − 1 is prime.

Since φ(k[2k − 1]) is a multiplicative function and (k, 2k − 1) = 1,

we can write φ(k[2k − 1]) = φ(k).φ(2k − 1). From hypothesis k is even and

is of the form 2n(n ≥ 1). By using a property of Euler’s totient function, we

can write,

φ(k) = k.(1− 1

2
) =

k

2
(2.3)

Since 2k - 1 is prime,

φ(2k − 1) = 2k − 2 (2.4)

from 2.3 and 2.4, we obtain

φ(k[2k − 1]) = φ(k).φ(2k − 1) = k
2
(2k − 2)

φ(k[2k − 1]) = k(k − 1).

Any even perfect number is an Euclid number, that is, it is of the form

2n(2n+1 − 1) where 2n+1 − 1 is prime. So, if k = 2n and 2k − 1 = 2n+1 − 1 is

prime, then k[2k− 1] is an Euclid number. So, φ(2n[2n+1− 1]) = 2n(2n− 1).

Proposition 2.2[2]: If N > 6 is a perfect number, then φ(N) is even and

φ(N) is not a prime.

Proof: Let N is a perfect number. From the result of Euclid theorem and

theorem 2.1,

N = k.(2k − 1) and φ(k[2k − 1]) = k(k − 1).

Also, k=2n and 2|2n(2n − 1)

=⇒ 2|k.(k − 1)
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so φ(N) is an even number and φ(6) = 2 and from hypothesis N > 6 so

φ(N) > 2.

Moreover, k|φ(N) and (k − 1)|φ(N) so φ(N) is not a prime.

Corollary 2.3[2]:If N is a perfect number and N = k.(2k−1), then there

is at least a natural number n which satisfies n|φ(N) and (n+ 1)|φ(N).

Proof: Since

N = k(2k − 1)

∴ φ(k(2k − 1)) = k(k − 1)

let n=k-1

=⇒ n+ 1 = k

=⇒ φ(k(2k − 1)) = k(k − 1) = (n+ 1).n

=⇒ (n+ 1)|φ(k(2k − 1)) and n|φ(k(2k − 1))

Proposition 2.4[2]: If φ(N) = b and N is a perfect number, then
√

4b+ 1

is a Mersenne prime.

Proof: From the result of theorem 2.1, we can write φ(N) = k(k − 1) = b.

and let (2k − 1) is mercene prime

=⇒ b = k2 − k

b = (k − 1

2
)2 − 1

4

b+
1

4
= (k − 1

2
)2

±
√
b+

1

4
= k − 1

2

=⇒ k = ±
√

4b+ 1

4
+

1

2

k = (
1

2
.±
√

4b+ 1) +
1

2

k =
1

2
(1±

√
4b+ 1)
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2k = 1±
√

4b+ 1

=⇒ 2k − 1 = ±
√

4b+ 1

∵ (2k − 1) is a Mersenne prime. So, it is positive. Thus,
√

4b+ 1 is a

Mersenne prime.

Proposition 2.5[2]:If N = 2n(2n+1 − 1) is an Euclid number, then

φ(N2) = N.φ(N)

Proof:

φ(N2) = φ(22n(2n+1 − 1)2)

= (22n)(2n+1 − 1)(2n+1 − 1).
1

2
.(1− 1

2n+1 − 1
)

= (22n)(2n+1 − 1)(2n − 1)

= (2n)(2n+1 − 1)[2n(2n − 1)]

= Nφ(N)

Theorem 2.6[2]: Let p is a Mersenne prime and p = 2n+1 − 1. If

N = 2n(2n+1 − 1) is a perfect number, then

σ(N) =
4p

p− 1
φ(N)

or

σ(N) =
2n+2 − 2

2n − 1
φ(N)

Proof: From hypothesis and theorem 2.1, we can write

φ(N) = φ(2np) = 2n(2n − 1)

So, 2n = p+1
2

, then

2n(2n − 1) = (
p+ 1

2
)(
p− 1

2
)

15



φ(N) =
p2 − 1

4

σ(N) = σ(2np) = σ(2n).σ(p)

where σ(2n) =
2n+1 − 1

2− 1
and σ(p) = p+ 1,So

σ(N) = p.(p+ 1)

From φ(N) and σ(N) we obtain,

σ(N) =
4p

p− 1
.φ(N)

or p = 2n+1 − 1. So,

σ(N) =
2n+2 − 2

2n − 1
.φ(N)

Theorem 2.7[2]: Let N is a perfect number and σ(N) is harmonic. If

N is of the form 2n(2n+1 − 1) where 2n+1-1 is a Mersenne prime, then

H(σ(N)) =
(n+ 2)(2n+2 − 2)

2n+2 − 1

Proof: If N is a perfect number; this means σ(N) = 2N or

σ(2n(2n+1 − 1)) = 2n+1(2n+1 − 1).

H(σ(N)) = H(2n+1[2n+1 − 1])

= [
1

2n+ 4
(1+

1

2
+...+

1

2n+1
+

1

2n+1 − 1
+

1

2(2n+1 − 1)
+...+

1

2n+1(2n+1 − 1)
)]−1

= [
1

2(n+ 2)
.(

2n+2 − 1

2n+1
+

2n+2 − 1

2n+1(2n+1 − 1)
)]−1

= [
1

2(n+ 2)

(2n+2 − 1)2n+1

2n+1(2n+1 − 1)
]−1

=
(n+ 2)(2n+2 − 2)

2n+2 − 1

This completes the proof.

16



Corollary 2.8[2]: If N is a perfect number, then σ(N) is harmonic.

Proof: Ore’s harmonic number theorem tells us that every perfect number

is harmonic. From Ore’s theorem and theorem 2.7, N is harmonic. Also,

σ(N) = 2N . So, σ(N) is harmonic.

Theorem 2.9[2]: Let 3k − 2 is prime. If n is a 2-hyperperfect number, then

φ(n) = n− 32k−2.

Proof: From hypothesis, we can take n = 3k−1.(3k − 2). Also, φ(n) is a

multiplicative function, and (3k−1, 3k − 2) = 1. So,

φ(n) = φ(3k−1.(3k − 2))

= φ(3k−1.φ(3k − 2))

= (3k−1 − 3k−2).(3k − 3)

= 3k−1.[(3k − 2)− 3k−1]

= n− 32k−2

Theorem 2.10[2]: If n is a super-hyperperfect number, then φ(φ(n)) =
2

9
n.

Proof: From the definition of super-hyperperfect number we know that n =

3p−1 where p and 3p−1
2

are primes and (3p−1, 2) = 1. So,

φ(φ(3p−1)) = φ((3p−1)(1− 1

3
))

= φ(3p−2.2)

= φ(3p−2).φ(2)

= 3p−2(1− 1

3
)

=
2.3p−1

9

=
2

9
n

17



Theorem 2.11[2]:If n is an even superperfect number, then

φ(φ(n)) =
n

4

Proof: If n is an even superperfect number, then n is of the form 2p−1 where

2p − 1 is a Mersenne prime. So,

φ(n) = φ(2p−1)

= 2p−1(1− 1

2
)

= 2p−2

φ(φ(n)) = φ(2p−2)

= 2p−2.(1− 1

2
)

=
2p−1

4

φ(φ(n)) =
n

4

2.3 Example

In this section, we introduced some examples related to our theorems.

Example 1[2]: If N = p+1
4

(φ(p) + σ(p)) where p = 2n+1 − 1 is a Mersenne

prime, then N is a perfect number.

solution: Let p = 2n+1 − 1 is a Mersenne prime.

Also, by using properties σ(p) = p+ 1 and σ(p) = p− 1,

σ(p) + φ(p) = 2p.

Therefore,

N =
p(p+ 1)

2
= 2n(2n+1 − 1)
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So, according to theorem 2.1, N is a perfect number.

Example 2[2]: Let p is a Mersenne prime, b = φ(N) and N is a perfect

number. By using Proposition 2.4,If N
b

= 2p
p−1

, then find φ( 2N
p+1

).

solution: Since p =
√

4b+ 1 so, b = p2−1
4

. Then,

N(p− 1) = 2pb

N(p− 1) = 2p(
p2 − 1

4
)

4N(p− 1) = 2p(p2 − 1)

2N

p+ 1
= p

φ(
2N

p+ 1
) = p− 1

So, the result holds.

Example 3[2]: Every d = φ(N)
2

is a triangular number where N is an

even perfect number.

solution: This follows directly from theorem 2.1. If m = 2n then φ(N) =

m(m− 1).

where m(m−1)
2

, is a form of triangular number.

So, φ(N)
2

is a triangular number.

Example 4[2]: Let ε > 0, N is a perfect number, n ∈ N .Then there is a

perfect numbers which satisfies φ(N)
N

< 1
2
.

solution: Assume p = 2n+1 − 1 is a Mersenne prime, N = 2np is a perfect

number,

φ(N) = 2n(2n − 1)

=
p2 − 1

4

N =
p(p+ 1)

2

φ(N)

N
=
p− 1

2p

19



=
1

2
− 1

2p

Since ε = 1
2p

, so φ(N)
N

< 1
2

Example 5[2]:If N is an even perfect number then, φ(N) > N
4

and σ(N)
φ(N)

< 8.

solution: We can verify these inequalities in two ways, Firstly, we write

N = 2n.p, p = 2n+1 − 1. So,

φ(N) = N
∏
p|n

(1− 1

p
)

> N
∏
p|n

(1− 1

2
) = N

∏
p|n

1

2
= N.2−2 >

N

4

σ(N) = 2N

φ(N) >
N

4

σ(N)

φ(N)
<

2N
N
4

< 8

The second way is shorter. By using theorem 2.6

σ(N)

φ(N)
=

2n+2 − 2

2n − 1
< 8

The inequality is true because 3 < 2n+1.
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Chapter 3

Odd Perfect Numbers,

Diophantine Equation and

Upper Bounds

3.1 Introduction

In this chapter we are going to obtain a new upper bound for odd multiper-

fect numbers. If N is an odd perfect number with k distinct prime divisors

and P is its largest prime divisor, we find as a corollary that 1012P 2N < 24k .

Using this newbound, we show that if p and q are distinct primes and paqb||N,
then there are reasonably sized bounds on a and b in terms of k, it follows

that gcd(σ(pa), σ(qb)) has only moderately sized prime divisors. Taking ad-

vantage of the new information we derive the inequality k ≥ 10.

One of the oldest unsolved problems in mathematics is whether there ex-

ists an odd perfect number N . There are many roadblocks to the existence

of such a number. For instance, we now know that N > 101500 and N has at

least 108 prime factors (counting multiplicity). If k is the number of distinct

prime factors, then we have k ≥ 9 and N < 24k .

While working with odd perfect numbers has been mostly computational,

the bound N < 24k is a purely theoretical result. Due to its doubly expo-
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nential growth it has not been used seriously in calculations. In this paper

we find a way to make this upper bound an effective estimation tool. As an

application, we are able to prove that an odd perfect number must have at

least 10 distinct prime factors.

However, there are a great number of necessary conditions for their exis-

tence, which go through periodic improvements. The list of conditions given

below but with recent improvements included.

Let N be an odd perfect number (if such exists). Write N =
k∏
i=1

pi where

each pi is prime, p1 < p2 < ... < pk, and k = ω(N) is the number of distinct

prime factors. The factors paii are called the prime components of N . Then

N is of the form

N = qαp2e1
1 · · · p

2ek
k ,

where:

• q, p1, ..., pk are distinct odd primes (Euler).

• q ≡ α ≡ 1(mod 4) (Euler).

• The smallest prime factor of N is at most k−1
2

.

• At least one of the prime powers dividing n exceeds 1062.

• N < 2(4k+1−2k+1)

• α + 2e1 + 2e2 + 2e3 + · · ·+ 2ek ≥ 99k−224
37

• qp1p2p3 · · · pk < 2N
17
26

• 1
q

+ 1
p1

+ 1
p2

+ · · ·+ 1
pk
< ln 2

Furthermore, several minor results are known about the exponents

e1, ..., ek.

• Not all ei ≡ 1(mod 3).

• Not all ei ≡ 2(mod 5).

• If all ei ≡ 1(mod 3) or 2(mod 5), then the smallest prime factor of N

must lie between 108 and 101000.
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• More generally, if all 2ei + 1 have a prime factor in a given finite set S,

then the smallest prime factor of N must be smaller than an effectively

computable constant depending only on S.

• If (e1, ..., ek) = (1, ..., 1, 2, ..., 2) with t ones and u twos, then (t−1)/4 ≤
u ≤ 2t+

√
α

• (e1, ..., ek) 6= (1, ..., 1, 3),(1, ..., 1, 5), (1, ..., 1, 6).

• If e1 = ... = ek = e, then e cannot be 3, 5, 24, 6, 8, 11, 14 or 18,

k ≤ 2e2 + 8e+ 2 and N < 242e
2+8e+3

.

With such a number of conditions, it might seem that an odd perfect number

could not exist [7].

3.2 A better upper bound

Let N be a positive integer. N is said to be perfect when σ(N)/N = 2.

Multiperfect when σ(N)/N ∈ Z. n/d is perfect when σ(N)/N = n/d. we

will always assume n, d ∈ Z+. Note that n/d does not need to be in lowest

terms. N =
k∏
i=1

peii where p1 < ... < pk are prime devisors of N .

∴ the equation σ(N)/N = n/d can be written as,

d
k∏
i=1

(
ei∑
j=0

pji

)
= n

k∏
i=1

peii

This motivates us to look at the Diophantine equation

d
k∏
i=1

(
ei∑
j=0

xji

)
= n

k∏
i=1

xeii (3.1)

in k variables x1, ..., xk. It turns out that if we fix k and look for integer

solutions with the xi’s greater than 1 and odd, then there are finitely many

solutions. In fact, there is an explicit upper bound on
k∏
i=1

xeii in terms of n, d,

and k, but independent of the ei. As we will generalize and improve these
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results, and as some of the proofs are scattered in the literature, we include

all the needed pieces here [3].

Lemma 3.1[3]: Letx1, x2, w ∈ R>0, and assume w < 1. We have(
1− 1

x1

)(
1− 1

x2

)
≥
(

1− 1

wx1

)(
1− 1

w−1x2

)
(3.2)

if and only if w ≤ x2/x1 Furthermore, equality holds iff w = x2/x1. In

particular, if x1 ≤ x2, then strict inequality holds.

Proof: (
1− 1

x1

)(
1− 1

x2

)
≥
(

1− 1

x2/x1x1

)(
1− 1

(x2/x1)−1x2

)
This follows from basic algebraic manipulation. Note that we can character-

ize equality and strict inequality in (3.2) under the much weaker assumption

that x1, x2, and w are nonzero. However, there is no need for this generality.

Lemma 3.2[3]: Let 1 < x1 ≤ x2 ≤ ... ≤ xn and 1 < y1 ≤ y2 ≤ ... ≤ yn be

nondecreasing sequences of real numbers satisfying

m∏
i=1

xi ≤
m∏
i=1

yi (3.3)

for every m in the range 1 ≤ m ≤ n. Then we have

n∏
i=1

(
1− 1

xi

)
≤

n∏
i=1

(
1− 1

yi

)
(3.4)

where equality holds if and only if xi = yi for every i ≥ 1.

Proof: We wish to minimize

n∏
i=1

(
1− 1

yi

)
(3.5)

subject to the constraints that the yi form a nondecreasing sequence and

satisfy (3.3) for each m. If we set N =
n∏
i=1

xi, then lowering each yi which is

24



bigger than N down to N will only decrease. Thus, we see that any mini-

mizing solution belongs to the compact set inside the box [x1, N ]n subject to

the constraints given in (3.3) and the constraint that the yi are nondecreas-

ing. (The inequality y1 > 1 is an open condition, but the closed condition

y1 ≥ x1 implies it.) Thus we may fix the yi so that they in fact minimize (3.5).

Assume, by way of contradiction, that this minimizing solution does not

agree with the xi. We let r be the first index where xr 6= yr, and so from

(3.3) we have xr < yr. As the yi minimize (3.5), we see that r < n. We let t

be the largest index where yt = yr+1.

Define the new sequence

zi =


yi, if i 6= r, t

wyr, if i = r,

w−1yt, if i = t

for some real number w with 0 < w < 1 to be further specified shortly.

Consider what happens if we replace the yi’s with the zi’s. First, we choose

w so that it satisfies w > yr−1/yr (where yr − 1 = 1 in case r = 1), and

also w > yt/yt+1 (where this condition is vacuously satisfied if t = n). With

these assumptions on w, the new sequence zi satisfies 1 < z1 ≤ z2 ≤ ... ≤ zn.

Second, the quantity (3.5) decreases by Lemma 3.1. Third, (3.3) still holds

when m < r or m ≥ t, since in those cases
m∏
i=1

yi =
m∏
i=1

zi.

We can make (3.3) hold for an m in the interval r ≤ m < t, if we have

a strict inequality
m∏
i=1

xi <
m∏
i=1

yi (by assuming w >
m∏
i=1

xi/yi for each such

m). Notice that this strict inequality does hold when m = r. However, if

the strict inequality held for all m in the interval r < m < t, then this would

contradict our assumption that the yi’s were a minimizing choice.

Thus, we must have an equality

s∏
i=1

xi =
s∏
i=1

yi (3.6)
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for some s satisfying r < s < t. By the definition of r we also have the

equality
s∏
i=r

xi =
s∏
i=r

yi (3.7)

Recall that xr < yr and that yr+1 = yr+2 = ... = ys = ... = yt. Thus (3.7)

turns into
s∏

i=r+1

xi >
s∏

i=r+1

yi = ys−rs As the xi are a non decreasing sequence,

we have

xs+1 ≥ xs ≥
( s∏
i=r+1

xi

)1/(s−r)

> ys = ys+1,

where the last equality holds since r + 1 ≤ s < t (using the definition of t).

But then (3.6) implies
s+1∏
i=1

xi >
s+1∏
i=1

yi, contradicting (3.3) when m = s + 1.

As we reached a contradiction in every case, this proves that the only mini-

mizing solution is when xi = yi for every i ≥ 1.

Before putting the previous lemma to good use, we need one more straight-

forward result.

Lemma 3.3[3]: Let r ∈ Z>0 and define Fr : R≥1 → R≥0 by the rule

Fr(x) = x2r − x2r−1
. The function Fr is monotonically increasing.

Proof:

Fr(x) = x2r − x2r−1

F ′r(x) =
d

dx
(x2r − x2r−1

)

F ′r(x) = 2rx2r−1 − 2r−1x2r−1−1

= 2r−1x2r−1−1(2x2r−1 − 1)

the equation becomes positive when x ≥ 1

Lemma 3.4[3]: Let r, a, b ∈ Z>0 and let x1, ..., xr be integers with 1 < x1 ≤
... ≤ xr. If

r∏
i=1

(1− 1

xi
) ≤ a

b
<

r−1∏
i=1

(
1− 1

xi
) (3.8)

then a
r∏
i=1

xi ≤ (a+ 1)2r − (a+ 1)2r−1

Proof: Work by induction on r ≥ 1. Notice that a < b in any case. When
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r = 1 we have x1 ≤ b/(b − a) which is maximized when b = a + 1. Thus

ax1 ≤ a(a+ 1) = (a+ 1)21 − (a+ 1)20 .

Now assume that r ≥ 2 and also assume that the lemma holds for all

integers smaller than r (and for any choices for a and b). Treating a as a

fixed constant, we can assume that b has been chosen, along with integers

1 < x1 ≤ x2 ≤ ... ≤ xr, so that
r∏
i=1

xi is maximal and (3.8) holds. Next,

set ni = (a + 1)2i−1
+ 1 for i < r, and set nr = (a + 1)2r−1

. We have

1 < n1 < n2 < ... < nr and

r∏
i=1

(
1− 1

ni

)
=

a

a+ 1
<

r−1∏
i=1

(
1− 1

ni

)
Thus, from our maximality assumption,

r∏
i=1

ni ≤
r∏
i=1

xi (3.9)

If ax1 < an1 = (a+ 1)2 − 1, then after multiplying (3.8) by x1
x1−1

we have

r∏
i=2

(
1− 1

xi

)
≤ ax1

b(x1 − 1)
<

r−1∏
i=2

(
1− 1

xi

)

The induction hypothesis implies (ax1)
r∏
i=2

xi ≤ (ax1 +1)2r−1−(ax1 +1)2r−2
<

(a+ 1)2r − (a+ 1)2r−1
. Thus we may as well assume n1 ≤ x1.

If ax1x2 < an1n2 = (a + 1)4 − 1, then multiplying (3.8) by x1x2
(x1−1)(x2−1)

and

performing a similar computation yields the upper bound we seek. Thus we

may assume n1n2 ≤ x1x2. Repeating this argument, we have
m∏
i=1

ni ≤
m∏
i=1

xi

for 1 ≤ m < r. But this also holds when m = r by (3.9).

Lemma 3.2 now applies, so we have

r∏
i=1

(
1− 1

xi

)
≥

r∏
i=1

(
1− 1

ni

)
=

a

a+ 1
;
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but as (3.8) holds for some b we must have b = a + 1. Again, appealing to

Lemma 3.2, we have xi = ni for all i ≥ 1. In this case, we compute

a

r∏
i=1

ni = (a+ 1)2r − (a+ 1)2r−1

as required.

Remark: The bound given in the lemma is the best possible in case b = a+1.

To simplify notation, throughout the paper we let Fr be defined as in Lemma

3.3. Thus, (3.8) says

a

r∏
i=1

xi ≤ Fr(a+ 1)

We also define F0(x) := x− 1

Notation: Let X be a finite set of integers. We write Π(X) for
∏
x∈X

x, with

the empty product equaling 1. We will also write Π′(X) or
∏
x∈X

(x− 1).

Lemma 3.5[3] Let k, n, d ∈ Z>0. Suppose (3.1) holds for some choice of

positive integer exponents {e1, ..., ek}, and odd integers X = {x1, ..., xk} each

greater than 1. Let S be a (possibly empty) subset of X. There exist sets

S ′, S ′′ ⊆ X satisfying S ∩ S ′ = φ, φ 6= S ′′ ⊆ S ∪ S ′, and such that if we let

w = |S ′|, v = |S ′′|, T = (S ∪ S ′)\S ′′, δ = d
∏

xi∈S′′

ei∑
j=0

xji , and ν = n
∏

xi∈S′′
xeii

then:

(i) δ
∏

xi∈X|S′′
(
ei∑
j=0

xji )=ν
∏

xi∈X|S′′
xeii .

(ii) δΠ(T ) <
1

Π(S ′′)Π′(S ′′)
Fv+w(dΠ(S) + 1).

Proof: We are assuming that the elements in X are odd, and so the fraction

n/d, when written in lowest terms, has odd denominator. In particular,

∏
xi∈S

(
1− 1

xi

)
6= d

n
. (3.10)

Thus, we have two cases to consider.
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Case 1:
∏
xi∈S

(
1− 1

xi

)
> d

n

In this case, set d′ = dΠ(S) and n′ = nΠ′(S). From
∏

xi∈S

(
1− 1

xi

)
> d

n
we

see d′/n′ < 1. Further, we calculate

∏
xi∈S

(
1− 1

xi

)
<
∏
xi∈X

(
xi − 1

xi − 1
x
ei
i

)
=
∏
xi∈X

xeii
ei∑
j=0

xji

=
d

n

∴ ∏
xi /∈S

(
1− 1

xi

)
<
d′

n′
< 1. (3.11)

This implies that there is a subset S ′ ⊆ X|S such that if we write

S ′ = {y1, ..., yw} with y1 ≤ ... ≤ yw, then

w∏
i=1

(
1− 1

yi

)
≤ d′

n′
< .

w−1∏
i=1

(
1− 1

yi

)
and so by Lemma 3.4 we have d′Π(S ′) ≤ Fw(d′+ 1). Using the definition

of d′ we rewrite this as

dΠ(S)Π(S ′) ≤ Fw(dΠ(S) + 1). (3.12)

Notice that we also have

∏
xi∈S∪S′

(
1− 1

xi

)
<
d

n
(3.13)

This completes the construction of S ′ in Case 1.

Case 2:
∏
xi∈S

(
1− 1

xi

)
< d

n

We set S ′ = φ (so w = 0). We note that inequalities (3.12) and (3.13) still

hold in this case.

The construction of the set S ′′ is the same in both Case 1 and Case 2. We

only need to know that inequalities (3.12) and (3.13) hold in both cases,
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so we continue with the general construction. Put d′′ = dΠ(S)Π(S ′) and

n′′ = nΠ′(S)Π′(S ′). Inequality (3.13) is equivalent to n′′/d′′ < 1, which we

will use shortly. We calculate

∏
xi∈S∪S′

1− 1

x
ei+1
i

1− 1
xi

=
∏

xi∈S∪S′

ei∑
j=0

xji

xeii
≤
∏
xi∈X

ei∑
j=0

xji

xeii
=
n

d

and hence ∏
xi∈S∪S′

(
1− 1

xei+1
i

)
≤ n′′

d′′
< 1. (3.14)

We pick a subset S ′′ = {z1, ..., zv} ⊆ S ∪ S ′ such that z
e(z1)+1
1 ≤ ... ≤ z

e(zv)+1
v

and

v∏
i=1

(
1− 1

z
e(zi)+1
i

)
≤ n′′

d′′
<

v−1∏
i=1

(
1− 1

z
e(zi)+1
i

)
.

(By e(zi) we mean the exponent corresponding to zi.) By Lemma 3.4, and

the inequality n′′ < d′′, we have

n′′
∏
xi∈S′′

xei+1
i ≤ Fv(n

′′ + 1) ≤ Fv(d
′′) = Fv(dΠ(S)Π(S ′)) (3.15)

This completes the construction of S ′′. We now only need to verify properties

(i) and (ii). Property (i) is obvious,ccoming from equation (3.1). For property

(ii),we compute

δΠ(T ) = d
∏
xi∈S′′

(xei+1
i − 1

xi − 1

)Π(S)Π(S ′)

Π(S ′′)
, by the definition of δ and T

=
1

Π(S ′′)Π′(S ′′)
d′′
∏
xi∈S′′

(xei+1
i − 1) by the definition ofd′′

≤ 1

Π(S ′′)Π′(S ′′)
n′′
∏
xi∈S′′

xei+1
i by inequality (3.14)

≤ 1

Π(S ′′)Π′(S ′′)
Fv(dΠ(S)Π(S ′)) by inequality (3.15)
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≤ 1

Π(S ′′)Π′(S ′′)
Fv(Fw(dΠ(S) + 1)) by inequality (3.12)

≤ 1

Π(S ′′)Π′(S ′′)
Fv+w(dΠ(S) + 1)

Thus, we have established the needed inequality.

We are now ready to put all of these lemmas together to prove an improved

upper bound on odd multiperfect numbers. The improvement from previous

results is in the denominator term.

Theorem 3.6[3]: Let k, n, d ∈ Z>0. Suppose Equation (3.1) holds for

some choice of positive integer exponents {e1, ..., ek}, and odd integers X =

{x1, ..., xk} each greater than 1. in this case

k∏
i=1

xeii <
F2k(d+ 1)

nΠ(X)Π′(X)
<

(d+ 1)22k

nΠ(X)Π′(X)

proof: Let X0 = X, n0 = n, d0 = d, and S0 = φ. Using Lemma 3.5, we

can construct S ′0, S ′′0 , w0, v0, ν0, δ0, and T0 (using the same notation, just

with the extra subscript) satisfying properties (i) and (ii). Thus

δ0

∏
xi∈X0|S′′0

(
ei∑
j=0

xji

)
= ν0

∏
xi∈X0|S′′0

xeii . (3.16)

Putting X1 = X0|S ′′0 , S1 = T0, n1 = ν0 and d1 = δ0, we see from equation

(3.16) that we can again use Lemma 3.5. Hence, we can construct S ′′1 , S ′1,

T ′1, and so forth. We continue this process of repeatedly using Lemma 3.5,

increasing the indices at every step. Since S ′′i 6= φ, we see that X0 ) X1 )
..., and so this process must terminate (in at least k steps), say Xr+1 = φ.

Further, we see that
r∑
i=0

wi =
r∑
i=o

vi = k (since for each element x ∈ X there

are unique indices i ≤ j such that x is added into S ′i, and then put into S ′′j ).

Using property (ii), repeatedly, we have

dr+1Π(Sr+1) <
1

Π(S ′′r )Π′(S ′′r )
Fwr+vr(drΠ(Sr) + 1)
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≤ 1

Π(S ′′r )Π′(S ′′r )
Fwr+vr

(
1

Π(S ′′r−1)Π′(S ′′r−1)
Fwr−1+vr−1(dr−1Π(Sr−1) + 1) + 1

)

<
1

Π(S ′′r )Π′(S ′′r )
Fwr+vr

(
1

Π(S ′′r−1)Π′(S ′′r−1)
(dr−1Π(Sr−1) + 1)2wr−1+vr−1

+ 1

)
Note that wr ≥ 1, and vi ≥ 1 for each i. Also observe that (dr−1Π(Sr−1)+

1)2wr−1 ≥ Π(S ′′r−1) ,Ṫhus

Fwr+vr

(
1

Π(S ′′r−1)Π′(S ′′r−1)
(dr−1Π(Sr−1) + 1)2wr−1+vr−1

+ 1

)

≤ Fwr+vr

(
1

Π(S ′′r−1)
(dr−1Π(Sr−1) + 1)2wr−1+vr−1

)

≤ 1

Π(S ′′r−1)2
Fwr+vr

(
(dr−1Π(Sr−1) + 1)2wr−1+vr−1

)

=
1

Π(S ′′r−1)2
Fwr+vr+wr−1+vr−1(dr−1Π(Sr−1) + 1)

Continuing our inequality from before, and repeating the ideas used in

the computations above, we have

dr+1Π(Sr+1) <
1

Π(S ′′r )Π′(S ′′r )Π(S ′′r−1)2
Fwr−1+wr+vr−1+vr(dr−1Π(Sr−1) + 1)

<
1

Π(S ′′r ∪ S ′′r−1)Π′(S ′′r ∪ S ′′r−1)
Fwr−1+wr+vr−1+vr(dr−1Π(Sr−1) + 1)

< ..... <
1

Π(∪ri=0S
′′
i )Π′(∪ri=0S

′′
i )
F r∑
i=0

(wi+vi)
(d0Π(S0) + 1)

=
1

Π(X)Π′(X)
F2k(d0Π(S0) + 1)

now, d0 = d, S0 = Sr+1 = φ, and dr+1 = d
∏

xi∈X
xei+1
i − 1

xi − 1
= n

∏
xi∈X x

ei
i

plugging this values in above equation we obtain the theorem.

Remark: It is believed that there are an infinite number of even perfect
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numbers. Such numbers necessarily have exactly two distinct prime factors.

Thus, the previous theorem should (at least conjecturally) prove false if we

do not stipulate that the xi are odd, even if we force the xi to be prime. In

any case, we do have the infinite family of solutions to (3.1) when k = 2,

x1 = 2, x2 = 2m − 1, for n = 2, d = 1, e1 = m − 1, and e2 = 1, when

we remove the hypothesis that the xi are odd. There also exist more exotic

infinite families like x1 = 3, x2 = 3, x3 = 3m − 1, for n = 2, d = 1, e1 = 1,

e2 = m− 1, and e3 = 1.

Remark: The hypotheses in the previous theorem are weak enough to capture

the so-called “spoof” odd perfect number constructed by Descartes; N =

3272112132220211, where 22021 = 19261 is treated as a prime, there are no

other spoofs of this sort with k ≤ 7. On the other hand, our conditions

are not weak enough to capture spoofs involving negative integers, such as

N = 2332(−5)1(−13)1.

Corollary 3.7[3]: Using the assumptions and notations of Theorem 3.6,

and setting N =
k∏
i=1

xeii , the following chain of inequalities holds:

N < d
F2k(d+ 1)

Fk+1(d+ 1)
< d(d+ 1)(2k−1)2 . (3.17)

In particular, when N is an odd multiperfect number we achieve

N < 2(2k−1)2 (3.18)

Proof: By hypothesis, we have the equality

k∏
i=1

xei+1
i − 1

xeii (xi − 1)
=
n

d

which we can rewrite in the form

k∏
i=1

(
1− 1

xei+1
i

)
=
nΠ′(X)

dΠ(X)
.
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Applying Lemma 3.4 with a = nΠ′(X) and b = dΠ(X), we see that

nΠ′(X)
k∏
i=1

xei+1
i = nΠ′(X)Π(X)N ≤ Fk(nΠ′(X) + 1).

After dividing both sides by nΠ′(X)Π(X), and using the fact that dΠ(X) ≥
nΠ′(X) + 1, we arrive at the inequality

N ≤ d
(nΠ′(X) + 1)2k − (nΠ′(X) + 1)2k−1

(nΠ′(X) + 1)2 − (nΠ′(X) + 1)
(3.19)

If nΠ′(X) + 1 < (d + 1)2k , then as the quantity on the right-hand side of

(3.19) is a strictly increasing function in terms of nΠ′(X) + 1, we obtain the

first inequality in (3.17). On the other hand, nΠ′(X) + 1 ≥ (d + 1)2k , then

using the bound found in Theorem 3.6, we again achieve the first inequality

in (3.17).

Now, we prove the second inequality in (3.17). As (yab − 1)/(ya − 1) =

yab−a + yab−2a + ...+ ya + 1 < yab−a+1 (for y ≥ 2), we calculate

d
(d+ 1)22k − (d+ 1)22k−1

(d+ 1)2k+1 − (d+ 1)2k

= d(d+ 1)22k−1−2k (d+ 1)22k−1 − 1

(d+ 1)2k − 1

< d(d+ 1)22k−1−2k+22k−1−2k+1 = d(d+ 1)(2k−1)2

For the last statement, take d = 1.

Corollary 3.8[3]: Let N be an odd perfect number with k distinct prime

factors. If P is the largest prime factor of N , then 1012P 2N < 24k .

Proof: Since N is perfect we take n = 2 and d = 1. Clearly, 2(P −1) > P . It

is known, that the second largest prime factor of N is bigger than 104, and

the third largest prime factor is bigger than 102. The corollary now follows

by specializing the main result of Theorem 3.6 to this case.

In the past, these types of theoretical upper bounds on odd perfect numbers

were of little use in calculations due to their doubly exponential growth.
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However, in the next section we find a way to exploit the existence of very

large prime divisors of N (when they occur), which then makes the upper

bound a feasible computational tool.

3.3 Using the GCD algorithm

In [4] it was proved that if N is an odd perfect number with k distinct prime

factors, p is a Fermat prime, and pa||N with a large, then the special prime

factor of N is large. In particular, we can use this fact in conjunction with

Corollary 3.8 to obtain an upper bound on the size of the special prime, and

hence on the size of a. To do so, we first need to recall a few well-known

results.

Let Φn(x) be the nth cyclotomic polynomial (i.e. the minimal polynomial

over Q for a primitive nth root of unity), we have the partial factorization

pn − 1 =
∏
d|n

Φd(p)

and so

σ(pa) =
pa+1 − 1

p− 1
=

∏
d|(a+1),d>1

Φd(p) (3.20)

We are further interested in the factorization of Φd(p). If c and d are integers

with d > 1 and gcd(c, d) = 1 we write od(c) for the multiplicative order of

c modulo d. If p is prime, we write vp for the valuation associated to p. In

other words, for n ∈ Z+ we have pvp(n)||n.

Lemma 3.9[4]: Let m > 1 be an integer, and let q be prime. Write

m = qbn with gcd(q, n) = 1

If b = 0, then

Φm(x) ≡ 0(modq)

is solvable if and only if q ≡ 1(mod m). The solutions are those x with

oq(x) = m. Furthermore, vq(Φm(x)) = vq(x
m − 1) for such solutions.
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If b 6= 0, then

Φm(x) ≡ 0(modq)

is solvable if and only if q ≡ 1(mod n). The solutions are those x with

oq(x) = n. Furthermore, if m > 2, then vq(Φm(x)) = 1 for such solutions.

Lemma 3.10[4]: Let p and q be primes, q ≥ 3, and a ∈ Z+. Then

vq(σ(pa)) =


vq(p

oq(p) − 1) + vq(a+ 1), if oq(p)|(a+ 1)and oq(p) 6= 1,

vq(a+ 1) if oq(p) = 1,

0 otherwise.

In our work we will want a prime divisor q of Φd(p) with oq(p) = d.

Lemma 3.11[4]: Let N be an odd perfect number, pa||N with p prime,

and let q be a Fermat prime. Then:

vq(σ(pa)) =


vq(p+ 1) + vq(a+ 1), if π = p ≡ −1(modq),

vq(a+ 1) if p ≡ 1(modq),

0 otherwise.

The next three lemmas state some limitations on the exponent a. In par-

ticular, it cannot have too many prime divisors or be too large.

Lemma 3.12[3]: Let p be a prime and let N be an odd perfect number with

k distinct prime divisors. If pa||N with a ∈ Z>0, then σ0(a+ 1) ≤ k.

Lemma 3.13[3]: Let p be a Fermat prime, let N be an odd perfect number,

and let π be the special prime factor. Let a,m ∈ Z>0. If pm|(π+1) and pa||N
with a < 3m, then π - σ(pa).

Lemma 3.14[3] Let q be a Fermat prime, let N be an odd perfect number with

k distinct prime factors, let π be the special prime factor, and suppose qa|N
for some a ∈ Z>0. If a > (k − 1)(k − 2), then 2qa−(k−2)(k−3)−[(k−2)/2]|(π + 1).

Using above lemma’s and conjunction ie Let N be an odd perfect number

with k distinct prime factors. If P is the largest prime factor of N , then
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1012P 2N < 24k , we have.

Proposition 3.15[3]: Let p and q be odd, distinct primes less than 180,

and let T = {3, 5, 17}. Let N be an odd perfect number with k ≤ 9 dis-

tinct prime divisors. Suppose pa||N, qb||N , and 10100 < pa < qb for some

a, b ∈ Z>0.

(i) If p, q ∈ T , then a < 1
10

(49log(2)+147log(q)−12log(10)
log(p)

+ 147).

(ii) If p ∈ T, q /∈ T , then a < 1
6
(49log(2)+12log(q)−12log(10)

log(p)
+ 102).

(iii) If p /∈ T, q ∈ T , then a < 1
6
(49log(2)+102log(q)−12log(10)

log(p)
+ 12).

(iv) If p /∈ T, q /∈ T , then a < 1
4
(49log(2)+12log(q)−12log(10)

log(p)
+ 12).

Proof: A quick computer search, restricting to odd primes p and q less

than 180, demonstrates that if qp−1 ≡ 1(modpn), then n ≤ 3 except for the

pair (p, q) = (3, 163). For those pairs (p, q) 6= (3, 163), we have vp(σ(qb)) ≤
k + 3. This inequality also holds for the exceptional pair (p, q) = (3, 163)

since the multiplicative order of 163 modulo 3 is 1 and 163 cannot be the

special prime. Similarly, vq(σ(pa)) ≤ k + 3. (We also note that there is only

one pair with qp−1 ≡ 1(modp3) for which similar reasoning does not allow us

to use the slightly better bound k + 2, namely, (p, q) = (3, 53). But such an

improvement is not significant, and we will not pursue it here.)

By Corollary 3.8 we find

249 > 10122N ≥ 10122paqb

(
σ(paqb)

2pk+3qk+3

)
> 1012p

4a−12

q12

Note that the term inside the large parentheses consists of divisors of N

relatively prime to p and q (possibly with extra factors in the denominator),

which is how we obtain the second inequality. Solving for a yields the bound

in part (iv).

249 > 1012p
4a−12

q12
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log(249) > log(1012p
4a−12

q12
)

49log(2) > log(1012) + log(
p4a−12

q12
)

49log(2) > 12log(10) + log(p4a−12)− log(q12)

49log(2) > 12log(10) + (4a− 12)log(p)− 12log(q)

49log(2)− 12log(10) + 12log(q) > (4a− 12)log(p)

49log(2)− 12log(10) + 12log(q)

log(p)
> (4a− 12)

49log(2)− 12log(10) + 12log(q)

log(p)
+ 12 > 4a

1

4

(
49log(2)− 12log(10) + 12log(q)

log(p)
+ 12

)
> a

(note: Other Inequalities can be solved in similar way once the bound is

generated, which will be provided below).

Now suppose for a moment that p is a Fermat prime in T . Since k ≤ 9, we

have (k − 1)(k − 2) ≤ 56. But 1780 < 10100 so a > 80. Lemma 3.14 then

yields

2pa−45|2pa−(k−2)(k−3)−b(k−2)/2c|(π + 1)

From a > 80 we obtain 3(a − 45) > a, so by Lemma 3.13 we conclude that

π | σ(pa). If q is a Fermat prime in T , then by the same analysis we obtain

π - σ(qb) and 2qb−45|(π + 1). In either case, we see that neither p nor q can

be the special prime. In case (iii), when q is a Fermat prime in T (and p is

not), we compute

249 > 1012P 2N ≥ 1012π2paqb
σ(paqb)

2pk+3qk+3
> 1012q4b−102p2a−12 > 1012p6b−12p−102

When p is a Fermat prime in T (but q is not) we similarl find

249 > 1012P 2N ≥ 1012π2paqb
σ(paqb)

2pk+3qk+3
> 1012p6b−102p−12
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Finally, in case (i) we know 2pa−45qb−45|(π + 1). So we have

249 > 1012P 2N ≥ 1012π3paqb
σ(paqb)

2pk+3qk+3
> 1012p10b−147p−147

The extra π comes from N , since π - σ(paqb) in this case. Solving for a in

the above inequalities yields the stated bounds.

The numbers in this proposition are not chosen to be the strongest possible,

but rather to be convenient for the case k = 9. If some of the hypotheses

are strengthened then the proposition will work (with modified bounds) for

larger k and larger primes. The real strength of the proposition is in the

fraction out front. We can use, with little loss in computational speed, the

more uniform bound
1

ε

(
4klog(2)

log(p)
+ C(k, q)

)
,

where C(k, q) is some constant depending only on k and q, and where ε is 4,

6, or 10 depending on the number of Fermat primes among {p, q}. Similar

statements apply to the following proposition.

Proposition 3.16[3]: Let p and q be odd, distinct primes less than 180, and

let T = {3, 5, 17}. Let N be an odd perfect number with k ≤ 9 distinct prime

divisors. Suppose pa||N, qb||N , and 10100 < pa < qb for some a, b ∈ Z>0.

(i) If p, q ∈ T , then b < 1
5
(49log(2)−(5a−147)log(p)−12log(10)

log(q)
+ 147).

(ii) If p ∈ T, q /∈ T , then b < 1
2
(49log(2)−(4a−102)log(p)−12log(10)

log(q)
+ 12).

(iii) If p /∈ T, q ∈ T , then b < 1
5
(49log(2)−(a−12)log(p)−12log(10)

log(q)
+ 135).

(iv) If p, q /∈ T , then a < 1
2
(49log(2)−(2a−12)log(p)−12log(10)

log(q)
+ 12).

Proof : One does an analysis as in the previous proposition. The only dif-

ficulty is deciding to use the lower bound 1012P 2N ≥ 1012π2paqbσ(paqb)/(pk+3qk+3)

when p ∈ T and q is not, and to use 1012P 2N ≥ 1012π3paqbσ(qb)/pk+3 when
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q ∈ T and p is not. In case (i) we find

249 > 1012P 2N ≥ 1012π3paqb
σ(paqb)

2pk+3qk+3
> 1012p5a−147q5b−147

Solving for b gives the needed bound. The other cases are similar and are

left to the reader.

Remark. One also has the inequality b > a log(p)
log(q)

in all cases, as pa < qb.

When searching through candidate odd perfect numbers N , one often can

reduce to the case when N is divisible by a prime power pa||N with a large.

Using congruence conditions, when a is large enough one can show that there

exists a very big prime factor Q1 of N . Historically, it was considerations

that odd perfect numbers must have seven, and then eight, distinct prime

factors, later the insight which improved the number of distinct prime factors

to nine was that not only do congruence conditions yield a very large prime

factor Q1, but there must also be another large prime Q′1 > 1011 (which, in

practice, is not quite as large as Q1) that divides σ(pa). If one can show the

existence of a third large prime, further improvements can be made.

The propositions above are the key tool to finding a possible third large prime

divisor. First, reduce to the case where we have two different prime powers

pa||N and qb||N with a, b large. The sizes of a and b are bounded above.

We know that there should be a large prime divisor Q′1 of σ(pa) and a large

prime divisor Q′2 for σ(qb). Our aim is to show that Q′1 and Q′2 are not equal.

Thus, we compute gcd(σ(pa), σ(qb)) (for a, b limited to the ranges given in

the propositions above), and find that there are no common large primes.

This computation was run in Mathematica, on a single core, over the course

of a few months. We summarize the results of this computation as follows.

Theorem 3.17[3]: Let p and q be odd, distinct primes, less than 105. Let N

be an odd perfect number with k ≤ 9 distinct prime divisors. Suppose pa||N ,

qb||N , and 10100 < pa < qb for some a, b ∈ Z>0. Then the largest prime

which divides both σ(pa) and σ(qb) is smaller than 1011.

The number 1011 was chosen to be compatible with the bounds developed
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in [4], and it was fortunate that it was sufficiently large to preclude the

existence of counterexamples. While the existence of large common prime

divisors is very scarce, there are still some close calls, such as 27866489501

dividing gcd(σ(pa), σ(qb)) with p = 59, a = 2874, q = 7, and b = 15394.

Another close call occurred with the prime 17622719441, for inputs p = 103,

a = 3598, q = 61, and b = 11833. Even so, if we were to reduce 1011 to 1010

then we could still easily deal with those examples that arise. (The two just

mentioned are the only two larger than 1010).

The assumption in Theorem 3.17 that N is an odd perfect number is used

in two ways. First, we can use the bounds given in the previous proposi-

tions. Second, we may limit the exponents a and b even further (according

to whether or not p or q can be the special prime).

3.4 Improvements of the inequality k ≥ 10

Lemma 3.18[3]: Let p be an odd prime and let q ∈ {3, 5, 17}. If qp−1 ≡
1(mod p2), then either (q, p) = (3, 11), (q, p) = (17, 3), or qop(q) − 1 has a

prime divisor greater than 1014.

Proof: If p > 1014, then p is the needed prime divisor.

If p < 1014, then there are only twelve pairs (p, q) with qp−1 ≡ 1(modp2).

Two cases are exceptional, and they appear in the statement of this lemma.

For each of the other cases we compute all the prime divisors of qop(q) − 1

less than 1014, and see that the remaining cofactor is not 1. The cases are

mentioned in [4,lemma 9].

Proposition 3.19[3]: Let N be an odd perfect number with k, k1, and k2

having their usual meanings. Suppose q ∈ {3, 5, 17} is a known prime divisor

of N , qn||N, q 6= π, and π - σ(qn). Suppose p1, ..., pk1−1 are the other known

prime factors of N , besides q. For each i = 1, 2, ..., k1 − 1 define

εi =

0 ifO′pi(q) = 0,

max(s+ t− 1, 1) ifO′pi(q) 6= 0,
(3.21)
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where s = vpi(σ(qopi (q)−1)) and t ∈ Z>0 is minimal so that pti > 100

V =
k1−1∏
i=1

pεii Suppose π is among the k2 unknown prime factors. Finally,

assume that all unknown prime factors are greater than 100.

if

min(σ(qn)/V ), σ(q100/V ) > 1,

then k2 > 1. In that case, if

min

1014,

(
σ(qn)

V

) 1

k2 − 1
,

(
σ(q100)

V

) 1

k2 − 1

 > 1,

then σ(qn) has a prime divisor among the unknown primes at least as big

as this minimum.

Proof: We only do the case when q = 3, since the other cases are similar. First

suppose σ(qn) = (qn+1 − 1)/(q − 1) is at most divisible by peii for the known

primes, and square-free for the unknown primes. Then since π, q - σ(qn), the

largest unknown prime divisor of σ(qn) is at least

(
σ(qn)

V

) 1
k2−1

unless this quantity is ≤ 1 (in which case there might be no unknown fac-

tors). So we may assume there is some prime p|N , o′p(q) 6= 0, so that σ(qn)

is divisible by p2 if p is unknown, or pe+1 if p is known (and ε is the corre-

sponding εi), with p maximal among such primes. We may also assume that

if p2|(qn+1 − 1) and p is unknown, then p|(n+ 1). (This is where 1014 comes

into the minimum.) Thus, in either case, pt|(n + 1) where pt > 100 (taking

t = 1 if p is an unknown prime). Then we have

σ
(
qp

t−1
)
|σ(qn)

Thus it suffices to find a large divisor of (qp
t − 1)/(q − 1). The quantity

(qp
t − 1)/(q − 1) is only divisible by primes larger than p, or p itself to the
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first power. (In this case, q being Fermat means the quantity is not divisible

by p, and we could replace max(s + t − 1, 1) by s + t − 1 in the definition

of εi. But to keep similar notations later when we take q to be an arbitrary

prime, we do not use this fact.) But then, by the maximality condition on

p, (qp
t − 1)/(q − 1) is not divisible by more than peii for known primes and

the first power for all the unknown primes. So the analysis we used in the

first paragraph goes through by only changing n+ 1 to pt Finally, note that

pt > 100, so we have the appropriate bound.

The most useful case when we will use is when n is very large and k1 is

close to k. So, in practice, we will usually end up with 1013 as the lower

bound on a divisor of σ(qn).

Proposition 3.20[3]: Let N be an odd perfect number, and let q < 1000 be a

prime divisor of N with qn||N . Suppose b, k, k1, k2, l1, l2, k
′
1, and l′1have same

meaning as defined above. Let T be the set of known primes with unknown

component, different from q, and 6≡ (modq). Let

τ = n−b−
∑

p∈T,o′q(p)6=0

(
vq(p

oq(p) − 1) + b k
′
1 + k2

σ0(oq(p))
c
)
−(k′1−l′1+k2)(k′1+k2−1).

(3.22)

If τ > 0, then one of the unknown primes is not congruent to 1 (mod

q). Further, in this case, one of the unknown primes is at least as large as

min(qτ
′−2, 101000) where

τ ′ = mind

n− b− ∑
p∈T,o′q(p)6=0

(
vq(p

oq(p) − 1) + b
k′1+k2−m
σ0(oq(p))

c
)
− (k′1 − l

′
1 + k2 −m)(k′1 + k2 −m− 1)−mb

k′1+k2−m
2

c

 /me.

Lemma 3.21[3]: Let q be a prime with 7 ≤ q < 1000. Suppose aq−1 ≡
1(modqn) for some n ∈ Z>0 and some positive integer a with (q− 1)|a. Then

a ≥ min(qn−4, 101000).

(note: the above result is obtain by machine computation, more details are

available is [4]).
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Lemma 3.22[3]: Let p and q be primes with 102 < p < 1011 and 7 ≤ q <

180. If qp−1 ≡ 1(mod p2), then σ(qop(q)−1) is divisible by two primes greater

than 1011.

Proof: The paper [5] lists all 61 pairs (p, q) satisfying the conditions of the

lemma.

For 56 of those pairs, we have two explicit prime factors of A = σ(qop(q)−1),

each greater than 1011. For another 3 pairs, we have one such prime factor

P for which P 2 - A. Further, after computing all prime factors of A/P less

than 1011 we find that the cofactor is not 1, so there must exist some other

prime factor greater than 1011.

The remaining two pairs are (p, q) = (1025273, 41) and (q, p) = (122327, 157).

In the first case op(q) = 23.128159. Exhaustively removing all of the prime

factors of 41128159−1 less than 1011, we find a non-trivial cofactor. Similarly,

41128159 + 1 also has a prime divisor larger than 1011. Both of these primes

divide A. This deals with the first case. The second case is dealt with

similarly, as op(q) = 2.1973.

3.5 Abundance and deficiency

Let n ∈ Z+. Recall the multiplicative function σ−1(n) =
∑
d|n
d−1 we intro-

duced earlier. This function can alternatively be written using the formula

σ−1(n) = σ(n)/n, and so σ(n)/n = 2 if and only if σ−1(n) = 2. A number

n is called abundant when σ−1(n) > 2 and deficient when σ−1(n) < 2. We

can use abundance and deficiency computations to limit choices on possible

prime factors of an odd perfect number N . First, we extend the definition of

σ−1 by setting

σ−1(p∞) = lim
a→∞

σ−1(pa) =
p

p− 1

Lemma 3.23[4]: Let p and q be odd primes. If 1 ≤ a < b ≤ ∞, then

1 < σ−1(pa) < σ−1(pb). If a, b ∈ [1,∞] and p < q, then σ−1(qb) < σ−1(pa).
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Lemma 3.24[4]: Let N be an odd perfect number. Suppose p1, ..., pk1
are the known prime factors of N , paii |N , and k1 < k = ω(N). If Π =
k1∏
i=1

σ−1(paii ) < 2 then the smallest unknown prime is

pk1+1 ≥
Π

2− Π

Proof: We find

2 = σ−1(N) ≥

(
k1∏
i=1

σ−1(paii )

)
σ−1(pk1+1) = Π

pk1+1 + 1

pk1+1

where the inequality in the middle follows from above lemma. Noting Π ≥ 1,

we obtain 2
Π
≥ 1 + 1

pk1+1
. Therefore 2−Π

Π
≥ 1

pk1+1
and taking reciprocals gives

us the result, since 2− Π > 0.

Note that in the lemma if Π > 2, then
k1∏
i=1

paii is abundant, hence N is

abundant. If Π = 2, then
k1∏
i=1

paii is already an odd perfect number.

The following lemma is the true key to our search for odd perfect numbers, as

simple as the proof is (after wading through the hypotheses). This is because

we built up machinery in the last few sections to find bounds for large prime

divisors of N .

Lemma 3.25[4]: Let N be an odd perfect number. Let p1, ..., pk be the

prime divisors of N , and let ai be such that paii ||N . Fix the numbering

on the indices so that p1, ..., pl1 are the primes with known prime compo-

nent, pl1+1, ..., pk1 are the other known primes, and pk1+1 < ... < pk are

the unknown primes. Suppose among the unknown primes we have bounds

pk > P1 > 1, ..., pk−v+1 > Pv > 1, with v < k2. For each u = 0, 1, ..., v set

∆u =

(
l1∏
i=1

σ−1(paii )

)(
k1∏

i=l1+1

pi
pi − 1

)(
u∏

i=l1+1

Pi
Pi − 1

)

Finally, suppose k2 > 0.
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If ∆u < 2, then the smallest unknown prime is

pk1+1 ≤
∆u(k2 − u)

2−∆u

+ 1.

∴

pk1+1 ≤ minu∈[0,v],∆u<2
∆u(k2 − u)

2−∆u

+ 1.

Proof: We compute

2 = σ−1(N) =
k∏
i=1

σ−1(paii )

≤

(
l1∏
i=1

σ−1(paii )

)(
k−u∏
i=l1+1

σ−1(p∞i )

)(
k∏

i=k−u+1

σ−1(p∞k−i+1)

)

= ∆u

k−u∏
i=l1+1

σ−1(p∞i ) ≤
k−u−k1−1∏

i=0

σ−1((pk1+1 + i)∞)

= ∆u
pk1+1 + k − u− k1 − 1

pk1+1 − 1

= ∆u

(
1 +

k2 − u
pk1+1 − 1

)
Now, recall that u ≤ v < k2 which implies k2 − u ≥ 1. Also 0 < ∆u < 2, so

we solve the main inequality as we did in the previous lemma, finding

pk1+1 ≤
∆u(k2 − u)

2−∆u

+ 1

One major difference between this lemma and previous lemma is that if

∆u > 2, then that doesn’t necessarily imply N is abundant. (It is true that

if k1 = k and ∆0 < 2, then N is deficient, however.) This means that we

might end up with ∆0 > 2, and hence we have no upper bound on pk1+1.

Proposition 3.26[3]: Let N be an odd perfect number and let 7 ≤ q <

180 be a known prime divisor of N , with qn||N . Let τ, τ ′ be as seen in

above Proposition, suppose all the hypotheses of that proposition are met, and
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let p be the guaranteed unknown prime.Let p1, ..., pk1−1 be the known primes

different from q. Let εi be defined as before,and put V =
ki−1∏
i=1

pεii . Finally,

assume that all unknown prime factors are greater than 100.

If min(σ(qτ
′−4)/V ), σ(q96/V ) > 1,then k2 > 1. In that case, if

min

1011,

(
(q96)

(q−1)V

) 1

k2 − 1
,

(
(qτ
′−4)

(q−1)V

) 1

k2 − 1

 > 1,

then σ(qn) has a prime divisor, different from p, among the unknown primes,

at least as big as the above minimum.

Proof: We do the case q ∈ 7, 11, 13 to the range 7 ≤ q < 180, assume if

min

1011,

(
(q96)

(q−1)V

) 1

k2 − 1
,

(
(qτ
′−4)

(q−1)V

) 1

k2 − 1

 > 1,

First note that if d|(n+ 1), then σ(qd−1)|σ(qn) and so it suffices to show that

σ(qd−1) has a prime divisor larger than the above minimum, different from

p, for some d|(n+ 1).

by proposition [3.19] we may assume that at most εi copies of pi divide

σ(qd−1), for some d either greater than 100 or equal to n + 1. Furthermore,

because 1011 occurs in the above minimum, we may assume that the only

unknown prime greater than 1011 that may divide σ(qn) is p. Then by Lemma

[3.18] and the fact that the unknown primes are greater than 100, we may

assume σ(qn) is square-free for unknown primes, except possibly p.

From the proof for Proposition 3.20, we have pq−1 ≡ 1(modqτ
′
) and τ ≤ n.

Write qd− 1 = (q− 1)mpc with c ∈ N ,m ∈ Z+, and gcd(p,m) = 1. Powering

this equation to the (q − 1)st power, we have

((q − 1)m)q−1 ≡ ((q − 1)mpc)q−1 = (qd − 1)q−1 ≡ 1(modqmin(τ ′,100)).

By Lemma 3.5, (q − 1)m ≥ min(qτ
′−4, q96, 1050) = min(qτ

′−4, 1050).6

(noting q96 < 101000) Thus

m

V
≥ min

(
qτ
′−4

(q − 1)V
,

q96

(q − 1)V

)

Since m/V is at least as big as the part of σ(qd − 1) made up from the

unknown primes, different from p, “if min(σ(qτ
′−4)/V ), σ(q96/V ) > 1,then
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k2 > 1 root of the minimum we have the appropriate lower bound.

Note that “if min(σ(qτ
′−4)/V ), σ(q96/V ) > 1 holds but k2 = 1, then we reach

a contradiction.So we add this contradiction to the list found in Algorithm.

The final change in our implementation of the algorithm is that when ap-

plying above lemma to find upper bounds on the next unknown prime, we

use Theorem 3.17 above to contribute more large primes. However, Theorem

3.17 does not automatically prove the existence of a third large prime. In

practice, we have one prime Q1 coming from congruence conditions relative

to p, and another prime Q′1 > 1011 dividing σ(pa) with Q′1 6= Q1. Simi-

larly, we have one prime Q2 from congruence conditions relative to q, and

another prime Q′2 > 1011 dividing σ(qb) with Q′2 6= Q2. Theorem 3.17 asserts

Q′1 6= Q2, but it could still be the case that Q2 6= Q′1 and Q1 = Q′2.

When computing the bounds coming from above lemma we are thus lead to

consider two situations, which we describe now. Suppose our algorithm has

reached a point where we have a list qa11 , q
a2
2 , ..., q

an
n of infinite prime powers

in a suspected odd perfect number. Let Qi be the large prime coming from

qi from the congruence conditions in [4, Proposition 7] or Proposition 3.20

(according to whether qi ∈ 3, 5, 17, or not). Similarly, let Q′i be the second

large prime coming from qi, using Proposition 3.19 or 3.23. We drop from

our list any qi for which Q′i < 1011, so that Theorem 3.17 will apply.

There are now two main cases. We apply above lemma in both cases,

and then use the lesser of the two bounds achieved. One option is that

Q1 = Q2 = ... = Qn. In this case, as each Q′i 6= Qi = Q1 and Q′i 6= Q′j by

Theorem 3.17, we can apply above lemma with the bounds P1 = Q1, P2 =

1011, P3 = 1011, ..., Pn+1 = 1011. The second option is that the Qi are not

all equal. Let Q1 be the largest element in Q1, Q2, ..., Qn, and let Qn be the

smallest. The worst possible case would be that among the distinct primes

Q′1, Q
′
2, ..., Q

′
n the two largest primes are equal to Q1 and Qn, and the rest

are close to 1011. Thus, we apply above lemma with the list of bounds

P1 = Q1, P2 = Qn, P3 = 1011, ..., Pn = 1011.

With all of these changes in place, we rerun the algorithm described below

The computation takes just over one day on a single core, covering a little

over thirty million cases, and we achieve:
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Theorem 3.27[3] : There are no odd perfect numbers with less than 10 dis-

tinct prime factors.

Remark: There are a few problem cases requiring special treatment,

which we describe now. These cases also illustrate some of the benefits and

limitations in the changes we made above.

Initially, the plan had been to make the primes p = 101, 103 become infinite

when pa > 1050. However, with this choice the prime power 103∞ never satis-

fies the bounds in Proposition 3.20. This left cases such as 3∞5∞19∞103∞1399∞p∞

(where 13689227 ≤ p ≤ 13691033). Here we needed another large prime,

since the bounds on the next unknown prime were already bigger than 1011.

This problem was solved by expanding the factorization table for p = 101, 103

up to the level pa ≤ 10150.

This still leaves five problem cases:

• 3411∞5173∞2633∞1157609∞

• 3411∞5173∞2633∞1157621∞

• 3411∞5173∞2633∞1157627∞

• 3411∞5197∞263∞575513∞

• 3411∞51103∞227∞349667∞

We will only discuss the first case, as the other four are dealt with simi-

larly. In that case, the next unknown prime p is given inside an interval

249075961044 < p < 498151922091. This interval contains more than nine

billion primes, which is too many to check one at a time. The reason for the

extremely large interval is that the upper (and lower) bound on the interval

is larger than 1011, and thus falls outside the scope of the bounds in Propo-

sition 3.24. When this project was begun, the number 1011 was the bound

initially chosen when proving Lemma 3.22, and thus subsequently used in

many other lemmas and propositions.

There are at least two ways to deal with this case. First, one could redo the

computation of Theorem 3.17 to include the pairs

49



(p, q) ∈ (11, 2633), (73, 2633), (2633, 11), (2633, 73),

and then modify Lemma 3.22, and all subsequent results, to include the new

prime 2633. A second option is to again modify Lemma 3.22, and all subse-

quent results, but this time just for the primes 11 and 73, by replacing the

bound 1011 with 1012.

3.6 Algorithm

We start by needing a prime divisor of N . Later we develop machinery which

can yield a lower and upper bound on a prime divisor of N . In our case we

find 2 < p1 < k+2. So for example, if k = 4, then p = 3 or 5. By considering

the Eulerian form, we see that the cases

32||N, 34||N, 36||N, 38||N, ..., 51||N, 52||N, 54||N, 55||N, ..

are the only ones possible. There is a benefit and cost to considering each of

these cases individually. The cost is that there are an infinite number of cases,

and hence we simply cannot consider them all. The benefit is that in each

individual case we do not have to rely on the results of develop machinery

computation below to find bounds on p2. For example,in the case

32||N , since 13 = σ(32)|2N , we find that 13|N , and so we can take p2 = 13.

(Note that the subscript does not mean that 13 is the second smallest prime

divisor of N . Only that 13 is the second prime divisor we found for N in this

case.)

As a matter of terminology, we think of each of the cases

32||N, 34||N, 36||N, 38||N, ..., 51||N, 52||N, 54||N, 55||N, ...

as branches on a tree, with each branch providing new factors for our algo-

rithm and hence branching further. As the tree branches out, we eventually

arrive at cases which are contradictory in some way. However, we still have

to deal with the fact that there are an infinite number of branches. To

get around this problem, we combine all the branches with large powers of

primes into one composite branch. In other words, if p is a prime divisor of

N , we combine all the cases pn||N , for large n, together into one case.More
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precisely, we let B be a large integer (which will be around the size 1050)

which we fix at the beginning of the algorithm, and then we combine all the

branches pn together, for all n ≥ n0, where n0 is minimal so that pn0 > B.

On this combined branch we are not assuming pn||N for any specific n, but

rather we just assume pa|N for some a ≥ n0. In this way, we deal with all the

remaining cases at once. As a matter of notation we label this conglomerated

branch by p∞.

For example, if we take k = 4 and B = 50, then we have five initial branches

32, 3∞, 51, 52, 5∞.

The first case 32||N branches further into two sub-branches 131, 13∞, and

we can continue this branching process. When we are on a branch with p∞

we say p is an infinite prime (not to be confused with the infinite primes of

algebraic number theory). Notice that infinite primes do not provide more

factors for the factor chain, since we don’t have σ(pn)|2N for any specific n,

so we have to rely on the intervals of our machinery algorithm to find bounds

for the next prime. If we set B too low, then the primes on our branches

become infinite too quickly, and we may have the case that the intervals of

machinery are very large, or even that there is no upper bound for the next

prime! (This corresponds to the case when ∆0 > 2 in Lemma 3.25.) If we

make B large enough, the intervals will always have upper bounds, and the

algorithm will only have to consider a finite number of cases.

At each stage in the algorithm there will be prime divisors of N that

are known and some that are unknown, meaning that the prime divisors are

either specified by the algorithm or they are not, respectively. This set of

known primes will change at every stage of the algorithm as it runs through

different cases, and so the known and unknown primes are constantly chang-

ing. We let k1 be the number of known, distinct prime divisors of N (at any

given stage), and let k2 = k − k1 be the number of unknown, distinct prime

divisors. Among the known prime divisors of N , some of the prime compo-

nents are also known (again, known being a technical term meaning specified

by the algorithm). In other words, if p is a known prime divisor of N and if
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our algorithm yields some n ∈ Z+ so that pn||N , we say pn is a known prime

component. We let l1 be the number of known prime components of N , and

let l2 = k − l1 be the number of unknown prime components.

A word of warning: In some theorems we will assume p is a prime

with pn||N , but this doesn’t even mean that p is a known prime, let alone

that the prime component is known. This is because, while pn is, by hy-

pothesis, a component of N , the prime p and the number n might not have

been specified by the algorithm. Throughout, we will only use the phrases

“known prime” and “known component” to mean known to us through our

algorithm, rather than by hypothesis.

More formally, the known components are those prime components which

occur on the branch we are on, which are not infinite. The known primes are

the primes we have branched upon, along with the primes coming from σ of

the known components. For example, if we are on the branch 3∞54, then the

known primes are 3, 5, 11, 71 (the primes 11 and 71 come from σ(54)|2N),

and the only known component is 54. In this case we say that 3 and 5 are on

while 11 and 71 are off. In other words, the on primes are exactly the known

primes for which we have started the branching process. Note that k1 − l1
is exactly the number of (known) primes which are infinite or off. In this

example, since 11 is the smallest off prime we continue the branching process

first on this prime, rather than 71. When there are no off primes we use the

interval bounds of machinery to arrive at more primes, as explained earlier.

Whenever we reach a contradiction, we go to the next available branch. To

clarify the previous exposition, we do the case when k = 4, B = 50. The

following is the entire output, which is explained after the printout.

32 => 131

131 => 2171N : 9 < p3 < 11

13∞ : 3 < p3 < 9

51 => 2131 : 15 < p4 < 17F

52 => 311A

5∞ : 42 < p4 < 46, SF1 : 42 < p4 < 46
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72 => 31191D

7∞ : 10 < p4 < 12

11∞A

3∞ : 3 < p2 < 11

51 => 2131 : 8 < p3 < 13F

52 => 311, SF1 : 22 < p4 < 26

5∞ : 14 < p3 < 17N : 14 < p3 < 17

72 => 31191N : 11 < p3 < 13

7∞ : 7 < p3 < 16

11∞ : 22 < p4 < 27, SF1 : 22 < p4 < 27

131 => 2171 : 15 < p4 < 18

17∞F

13∞ : 16 < p4 < 20

171 => 2132F

17∞A

19∞No contradiction. The number B is too small

We start with the case 32||N . Since 13 = σ(32)|N , we go to the sub-

branch (represented by the indentation on the second line) with 13||N . On

this branch we could further branch off on the new prime 7 coming from

σ(13), but the letter N means that there are no primes in the interval given

by the bounds of Machinery, which is a contradiction. So, we backtrack to

the next possible branch, which is 3213∞. On this branch we have no off

primes, and so we again use the interval bounds, and find 3 < p3 < 9, hence

p3 = 5 or 7. The next four cases are all contradictory, as represented by the

different letters near the ends of the lines. All of the different contradictions

will be explained in Implementation part. The rest of the output is self-

explanatory except the very last branch 3∞7∞13∞19∞, which doesn’t yield

a contradiction. Thus the algorithm terminates unsuccessfully because the

bound B was chosen too small. One must increase B and rerun the program

to successfully complete this case [4].
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3.7 An implementation

First, we do not allow the bound B to increase within the algorithm. Al-

lowing the computer to vary B fully automates the algorithm at the expense

of unnecessary complexity. We fix the number B at the outset, and only

increase it manually if needed..

Second, the use of Lemma 3.25 allows for stronger upper bounds on intervals

for primes. In the terminology of that lemma, our implementation always

has v ∈ [0, 2], the exact number depending on if we find large prime divisors

for N from proved results.

Third, some of the contradictions are different. Here is a complete list of the

contradictions in our implementation:

• MT There are too many total factors.

• MS There are too many copies of a single prime with known component

• S There is an off prime smaller than an on prime coming from interval

computations.

• A The number is abundant.

• D There are k known primes, and ∆u < 2, hence N is deficient.

• F The special prime π belongs to a known component, but the hy-

potheses of Proposition [4, Proposition 7] hold showing π must be in

an unknown component due to a Fermat prime

• N There are no primes in the interval given by Lemmas 3.24 and 3.25,

or there are primes in the interval but they are already known, on

primes.

• SF1 There are k − 1 known primes, and the interval formula gives an

upper bound of pk < C, but we know from the fact that a large power

of a small Fermat prime divides N that some unknown prime is larger

than C by [4, Proposition 7].
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• SF2 Similar to SF1 except we have a contradiction between the interval

formula and Proposition 3.19.

• SNF1 Similar to SF1, except we have a contradiction from a small

non-Fermat prime, using Proposition 3.20.

• SNF2 Similar, using Proposition 3.26

The first seven contradictions are all standard, while the last four are new.

There were other contradictions we might have included, but they either rely

heavily on the extensive computations of others or do not present a signifi-

cant increase in the speed of the algorithm [4].
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